deepface/deepface/DeepFace.py
Sefik Ilkin Serengil bb2b28e1d9
Update DeepFace.py
2023-11-22 12:02:21 +00:00

901 lines
31 KiB
Python

# common dependencies
import os
from os import path
import warnings
import time
import pickle
import logging
# 3rd party dependencies
import numpy as np
import pandas as pd
from tqdm import tqdm
import cv2
import tensorflow as tf
from deprecated import deprecated
# package dependencies
from deepface.basemodels import (
VGGFace,
OpenFace,
Facenet,
Facenet512,
FbDeepFace,
DeepID,
DlibWrapper,
ArcFace,
SFace,
)
from deepface.extendedmodels import Age, Gender, Race, Emotion
from deepface.commons import functions, realtime, distance as dst
# -----------------------------------
# configurations for dependencies
warnings.filterwarnings("ignore")
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
tf_version = int(tf.__version__.split(".", maxsplit=1)[0])
if tf_version == 2:
tf.get_logger().setLevel(logging.ERROR)
# -----------------------------------
def build_model(model_name):
"""
This function builds a deepface model
Parameters:
model_name (string): face recognition or facial attribute model
VGG-Face, Facenet, OpenFace, DeepFace, DeepID for face recognition
Age, Gender, Emotion, Race for facial attributes
Returns:
built deepface model
"""
# singleton design pattern
global model_obj
models = {
"VGG-Face": VGGFace.loadModel,
"OpenFace": OpenFace.loadModel,
"Facenet": Facenet.loadModel,
"Facenet512": Facenet512.loadModel,
"DeepFace": FbDeepFace.loadModel,
"DeepID": DeepID.loadModel,
"Dlib": DlibWrapper.loadModel,
"ArcFace": ArcFace.loadModel,
"SFace": SFace.load_model,
"Emotion": Emotion.loadModel,
"Age": Age.loadModel,
"Gender": Gender.loadModel,
"Race": Race.loadModel,
}
if not "model_obj" in globals():
model_obj = {}
if not model_name in model_obj:
model = models.get(model_name)
if model:
model = model()
model_obj[model_name] = model
else:
raise ValueError(f"Invalid model_name passed - {model_name}")
return model_obj[model_name]
def verify(
img1_path,
img2_path,
model_name="VGG-Face",
detector_backend="opencv",
distance_metric="cosine",
enforce_detection=True,
align=True,
normalization="base",
):
"""
This function verifies an image pair is same person or different persons. In the background,
verification function represents facial images as vectors and then calculates the similarity
between those vectors. Vectors of same person images should have more similarity (or less
distance) than vectors of different persons.
Parameters:
img1_path, img2_path: exact image path as string. numpy array (BGR) or based64 encoded
images are also welcome. If one of pair has more than one face, then we will compare the
face pair with max similarity.
model_name (str): VGG-Face, Facenet, Facenet512, OpenFace, DeepFace, DeepID, Dlib
, ArcFace and SFace
distance_metric (string): cosine, euclidean, euclidean_l2
enforce_detection (boolean): If no face could not be detected in an image, then this
function will return exception by default. Set this to False not to have this exception.
This might be convenient for low resolution images.
detector_backend (string): set face detector backend to opencv, retinaface, mtcnn, ssd,
dlib, mediapipe or yolov8.
align (boolean): alignment according to the eye positions.
normalization (string): normalize the input image before feeding to model
Returns:
Verify function returns a dictionary.
{
"verified": True
, "distance": 0.2563
, "max_threshold_to_verify": 0.40
, "model": "VGG-Face"
, "similarity_metric": "cosine"
, 'facial_areas': {
'img1': {'x': 345, 'y': 211, 'w': 769, 'h': 769},
'img2': {'x': 318, 'y': 534, 'w': 779, 'h': 779}
}
, "time": 2
}
"""
tic = time.time()
# --------------------------------
target_size = functions.find_target_size(model_name=model_name)
# img pairs might have many faces
img1_objs = functions.extract_faces(
img=img1_path,
target_size=target_size,
detector_backend=detector_backend,
grayscale=False,
enforce_detection=enforce_detection,
align=align,
)
img2_objs = functions.extract_faces(
img=img2_path,
target_size=target_size,
detector_backend=detector_backend,
grayscale=False,
enforce_detection=enforce_detection,
align=align,
)
# --------------------------------
distances = []
regions = []
# now we will find the face pair with minimum distance
for img1_content, img1_region, _ in img1_objs:
for img2_content, img2_region, _ in img2_objs:
img1_embedding_obj = represent(
img_path=img1_content,
model_name=model_name,
enforce_detection=enforce_detection,
detector_backend="skip",
align=align,
normalization=normalization,
)
img2_embedding_obj = represent(
img_path=img2_content,
model_name=model_name,
enforce_detection=enforce_detection,
detector_backend="skip",
align=align,
normalization=normalization,
)
img1_representation = img1_embedding_obj[0]["embedding"]
img2_representation = img2_embedding_obj[0]["embedding"]
if distance_metric == "cosine":
distance = dst.findCosineDistance(img1_representation, img2_representation)
elif distance_metric == "euclidean":
distance = dst.findEuclideanDistance(img1_representation, img2_representation)
elif distance_metric == "euclidean_l2":
distance = dst.findEuclideanDistance(
dst.l2_normalize(img1_representation), dst.l2_normalize(img2_representation)
)
else:
raise ValueError("Invalid distance_metric passed - ", distance_metric)
distances.append(distance)
regions.append((img1_region, img2_region))
# -------------------------------
threshold = dst.findThreshold(model_name, distance_metric)
distance = min(distances) # best distance
facial_areas = regions[np.argmin(distances)]
toc = time.time()
resp_obj = {
"verified": distance <= threshold,
"distance": distance,
"threshold": threshold,
"model": model_name,
"detector_backend": detector_backend,
"similarity_metric": distance_metric,
"facial_areas": {"img1": facial_areas[0], "img2": facial_areas[1]},
"time": round(toc - tic, 2),
}
return resp_obj
def analyze(
img_path,
actions=("emotion", "age", "gender", "race"),
enforce_detection=True,
detector_backend="opencv",
align=True,
silent=False,
):
"""
This function analyzes facial attributes including age, gender, emotion and race.
In the background, analysis function builds convolutional neural network models to
classify age, gender, emotion and race of the input image.
Parameters:
img_path: exact image path, numpy array (BGR) or base64 encoded image could be passed.
If source image has more than one face, then result will be size of number of faces
appearing in the image.
actions (tuple): The default is ('age', 'gender', 'emotion', 'race'). You can drop
some of those attributes.
enforce_detection (bool): The function throws exception if no face detected by default.
Set this to False if you don't want to get exception. This might be convenient for low
resolution images.
detector_backend (string): set face detector backend to opencv, retinaface, mtcnn, ssd,
dlib, mediapipe or yolov8.
align (boolean): alignment according to the eye positions.
silent (boolean): disable (some) log messages
Returns:
The function returns a list of dictionaries for each face appearing in the image.
[
{
"region": {'x': 230, 'y': 120, 'w': 36, 'h': 45},
"age": 28.66,
'face_confidence': 0.9993908405303955,
"dominant_gender": "Woman",
"gender": {
'Woman': 99.99407529830933,
'Man': 0.005928758764639497,
}
"dominant_emotion": "neutral",
"emotion": {
'sad': 37.65260875225067,
'angry': 0.15512987738475204,
'surprise': 0.0022171278033056296,
'fear': 1.2489334680140018,
'happy': 4.609785228967667,
'disgust': 9.698561953541684e-07,
'neutral': 56.33133053779602
}
"dominant_race": "white",
"race": {
'indian': 0.5480832420289516,
'asian': 0.7830780930817127,
'latino hispanic': 2.0677512511610985,
'black': 0.06337375962175429,
'middle eastern': 3.088453598320484,
'white': 93.44925880432129
}
}
]
"""
# ---------------------------------
# validate actions
if isinstance(actions, str):
actions = (actions,)
# check if actions is not an iterable or empty.
if not hasattr(actions, "__getitem__") or not actions:
raise ValueError("`actions` must be a list of strings.")
actions = list(actions)
# For each action, check if it is valid
for action in actions:
if action not in ("emotion", "age", "gender", "race"):
raise ValueError(
f"Invalid action passed ({repr(action)})). "
"Valid actions are `emotion`, `age`, `gender`, `race`."
)
# ---------------------------------
# build models
models = {}
if "emotion" in actions:
models["emotion"] = build_model("Emotion")
if "age" in actions:
models["age"] = build_model("Age")
if "gender" in actions:
models["gender"] = build_model("Gender")
if "race" in actions:
models["race"] = build_model("Race")
# ---------------------------------
resp_objects = []
img_objs = functions.extract_faces(
img=img_path,
target_size=(224, 224),
detector_backend=detector_backend,
grayscale=False,
enforce_detection=enforce_detection,
align=align,
)
for img_content, img_region, img_confidence in img_objs:
if img_content.shape[0] > 0 and img_content.shape[1] > 0:
obj = {}
# facial attribute analysis
pbar = tqdm(range(0, len(actions)), desc="Finding actions", disable=silent)
for index in pbar:
action = actions[index]
pbar.set_description(f"Action: {action}")
if action == "emotion":
img_gray = cv2.cvtColor(img_content[0], cv2.COLOR_BGR2GRAY)
img_gray = cv2.resize(img_gray, (48, 48))
img_gray = np.expand_dims(img_gray, axis=0)
emotion_predictions = models["emotion"].predict(img_gray, verbose=0)[0, :]
sum_of_predictions = emotion_predictions.sum()
obj["emotion"] = {}
for i, emotion_label in enumerate(Emotion.labels):
emotion_prediction = 100 * emotion_predictions[i] / sum_of_predictions
obj["emotion"][emotion_label] = emotion_prediction
obj["dominant_emotion"] = Emotion.labels[np.argmax(emotion_predictions)]
elif action == "age":
age_predictions = models["age"].predict(img_content, verbose=0)[0, :]
apparent_age = Age.findApparentAge(age_predictions)
# int cast is for exception - object of type 'float32' is not JSON serializable
obj["age"] = int(apparent_age)
elif action == "gender":
gender_predictions = models["gender"].predict(img_content, verbose=0)[0, :]
obj["gender"] = {}
for i, gender_label in enumerate(Gender.labels):
gender_prediction = 100 * gender_predictions[i]
obj["gender"][gender_label] = gender_prediction
obj["dominant_gender"] = Gender.labels[np.argmax(gender_predictions)]
elif action == "race":
race_predictions = models["race"].predict(img_content, verbose=0)[0, :]
sum_of_predictions = race_predictions.sum()
obj["race"] = {}
for i, race_label in enumerate(Race.labels):
race_prediction = 100 * race_predictions[i] / sum_of_predictions
obj["race"][race_label] = race_prediction
obj["dominant_race"] = Race.labels[np.argmax(race_predictions)]
# -----------------------------
# mention facial areas
obj["region"] = img_region
# include image confidence
obj["face_confidence"] = img_confidence
resp_objects.append(obj)
return resp_objects
def find(
img_path,
db_path,
model_name="VGG-Face",
distance_metric="cosine",
enforce_detection=True,
detector_backend="opencv",
align=True,
normalization="base",
silent=False,
):
"""
This function applies verification several times and find the identities in a database
Parameters:
img_path: exact image path, numpy array (BGR) or based64 encoded image.
Source image can have many faces. Then, result will be the size of number of
faces in the source image.
db_path (string): You should store some image files in a folder and pass the
exact folder path to this. A database image can also have many faces.
Then, all detected faces in db side will be considered in the decision.
model_name (string): VGG-Face, Facenet, Facenet512, OpenFace, DeepFace, DeepID,
Dlib, ArcFace, SFace or Ensemble
distance_metric (string): cosine, euclidean, euclidean_l2
enforce_detection (bool): The function throws exception if a face could not be detected.
Set this to False if you don't want to get exception. This might be convenient for low
resolution images.
detector_backend (string): set face detector backend to opencv, retinaface, mtcnn, ssd,
dlib, mediapipe or yolov8.
align (boolean): alignment according to the eye positions.
normalization (string): normalize the input image before feeding to model
silent (boolean): disable some logging and progress bars
Returns:
This function returns list of pandas data frame. Each item of the list corresponding to
an identity in the img_path.
"""
tic = time.time()
# -------------------------------
if os.path.isdir(db_path) is not True:
raise ValueError("Passed db_path does not exist!")
target_size = functions.find_target_size(model_name=model_name)
# ---------------------------------------
file_name = f"representations_{model_name}.pkl"
file_name = file_name.replace("-", "_").lower()
if path.exists(db_path + "/" + file_name):
if not silent:
print(
f"WARNING: Representations for images in {db_path} folder were previously stored"
+ f" in {file_name}. If you added new instances after the creation, then please "
+ "delete this file and call find function again. It will create it again."
)
with open(f"{db_path}/{file_name}", "rb") as f:
representations = pickle.load(f)
if not silent:
print("There are ", len(representations), " representations found in ", file_name)
else: # create representation.pkl from scratch
employees = []
for r, _, f in os.walk(db_path):
for file in f:
if (
(".jpg" in file.lower())
or (".jpeg" in file.lower())
or (".png" in file.lower())
):
exact_path = r + "/" + file
employees.append(exact_path)
if len(employees) == 0:
raise ValueError(
"There is no image in ",
db_path,
" folder! Validate .jpg or .png files exist in this path.",
)
# ------------------------
# find representations for db images
representations = []
# for employee in employees:
pbar = tqdm(
range(0, len(employees)),
desc="Finding representations",
disable=silent,
)
for index in pbar:
employee = employees[index]
img_objs = functions.extract_faces(
img=employee,
target_size=target_size,
detector_backend=detector_backend,
grayscale=False,
enforce_detection=enforce_detection,
align=align,
)
for img_content, _, _ in img_objs:
embedding_obj = represent(
img_path=img_content,
model_name=model_name,
enforce_detection=enforce_detection,
detector_backend="skip",
align=align,
normalization=normalization,
)
img_representation = embedding_obj[0]["embedding"]
instance = []
instance.append(employee)
instance.append(img_representation)
representations.append(instance)
# -------------------------------
with open(f"{db_path}/{file_name}", "wb") as f:
pickle.dump(representations, f)
if not silent:
print(
f"Representations stored in {db_path}/{file_name} file."
+ "Please delete this file when you add new identities in your database."
)
# ----------------------------
# now, we got representations for facial database
df = pd.DataFrame(representations, columns=["identity", f"{model_name}_representation"])
# img path might have more than once face
target_objs = functions.extract_faces(
img=img_path,
target_size=target_size,
detector_backend=detector_backend,
grayscale=False,
enforce_detection=enforce_detection,
align=align,
)
resp_obj = []
for target_img, target_region, _ in target_objs:
target_embedding_obj = represent(
img_path=target_img,
model_name=model_name,
enforce_detection=enforce_detection,
detector_backend="skip",
align=align,
normalization=normalization,
)
target_representation = target_embedding_obj[0]["embedding"]
result_df = df.copy() # df will be filtered in each img
result_df["source_x"] = target_region["x"]
result_df["source_y"] = target_region["y"]
result_df["source_w"] = target_region["w"]
result_df["source_h"] = target_region["h"]
distances = []
for index, instance in df.iterrows():
source_representation = instance[f"{model_name}_representation"]
if distance_metric == "cosine":
distance = dst.findCosineDistance(source_representation, target_representation)
elif distance_metric == "euclidean":
distance = dst.findEuclideanDistance(source_representation, target_representation)
elif distance_metric == "euclidean_l2":
distance = dst.findEuclideanDistance(
dst.l2_normalize(source_representation),
dst.l2_normalize(target_representation),
)
else:
raise ValueError(f"invalid distance metric passes - {distance_metric}")
distances.append(distance)
# ---------------------------
result_df[f"{model_name}_{distance_metric}"] = distances
threshold = dst.findThreshold(model_name, distance_metric)
result_df = result_df.drop(columns=[f"{model_name}_representation"])
result_df = result_df[result_df[f"{model_name}_{distance_metric}"] <= threshold]
result_df = result_df.sort_values(
by=[f"{model_name}_{distance_metric}"], ascending=True
).reset_index(drop=True)
resp_obj.append(result_df)
# -----------------------------------
toc = time.time()
if not silent:
print("find function lasts ", toc - tic, " seconds")
return resp_obj
def represent(
img_path,
model_name="VGG-Face",
enforce_detection=True,
detector_backend="opencv",
align=True,
normalization="base",
):
"""
This function represents facial images as vectors. The function uses convolutional neural
networks models to generate vector embeddings.
Parameters:
img_path (string): exact image path. Alternatively, numpy array (BGR) or based64
encoded images could be passed. Source image can have many faces. Then, result will
be the size of number of faces appearing in the source image.
model_name (string): VGG-Face, Facenet, Facenet512, OpenFace, DeepFace, DeepID, Dlib,
ArcFace, SFace
enforce_detection (boolean): If no face could not be detected in an image, then this
function will return exception by default. Set this to False not to have this exception.
This might be convenient for low resolution images.
detector_backend (string): set face detector backend to opencv, retinaface, mtcnn, ssd,
dlib, mediapipe or yolov8.
align (boolean): alignment according to the eye positions.
normalization (string): normalize the input image before feeding to model
Returns:
Represent function returns a list of object with multidimensional vector (embedding).
The number of dimensions is changing based on the reference model.
E.g. FaceNet returns 128 dimensional vector; VGG-Face returns 2622 dimensional vector.
"""
resp_objs = []
model = build_model(model_name)
# ---------------------------------
# we have run pre-process in verification. so, this can be skipped if it is coming from verify.
target_size = functions.find_target_size(model_name=model_name)
if detector_backend != "skip":
img_objs = functions.extract_faces(
img=img_path,
target_size=target_size,
detector_backend=detector_backend,
grayscale=False,
enforce_detection=enforce_detection,
align=align,
)
else: # skip
if isinstance(img_path, str):
img = functions.load_image(img_path)
elif type(img_path).__module__ == np.__name__:
img = img_path.copy()
else:
raise ValueError(f"unexpected type for img_path - {type(img_path)}")
# --------------------------------
if len(img.shape) == 4:
img = img[0] # e.g. (1, 224, 224, 3) to (224, 224, 3)
if len(img.shape) == 3:
img = cv2.resize(img, target_size)
img = np.expand_dims(img, axis=0)
# when represent is called from verify, this is already normalized
if img.max() > 1:
img /= 255
# --------------------------------
img_region = [0, 0, img.shape[1], img.shape[0]]
img_objs = [(img, img_region, 0)]
# ---------------------------------
for img, region, confidence in img_objs:
# custom normalization
img = functions.normalize_input(img=img, normalization=normalization)
# represent
if "keras" in str(type(model)):
# model.predict causes memory issue when it is called in a for loop
# embedding = model.predict(img, verbose=0)[0].tolist()
embedding = model(img, training=False).numpy()[0].tolist()
else:
# SFace and Dlib are not keras models and no verbose arguments
embedding = model.predict(img)[0].tolist()
resp_obj = {}
resp_obj["embedding"] = embedding
resp_obj["facial_area"] = region
resp_obj["face_confidence"] = confidence
resp_objs.append(resp_obj)
return resp_objs
def stream(
db_path="",
model_name="VGG-Face",
detector_backend="opencv",
distance_metric="cosine",
enable_face_analysis=True,
source=0,
time_threshold=5,
frame_threshold=5,
):
"""
This function applies real time face recognition and facial attribute analysis
Parameters:
db_path (string): facial database path. You should store some .jpg files in this folder.
model_name (string): VGG-Face, Facenet, Facenet512, OpenFace, DeepFace, DeepID, Dlib,
ArcFace, SFace
detector_backend (string): opencv, retinaface, mtcnn, ssd, dlib, mediapipe or yolov8.
distance_metric (string): cosine, euclidean, euclidean_l2
enable_facial_analysis (boolean): Set this to False to just run face recognition
source: Set this to 0 for access web cam. Otherwise, pass exact video path.
time_threshold (int): how many second analyzed image will be displayed
frame_threshold (int): how many frames required to focus on face
"""
if time_threshold < 1:
raise ValueError(
"time_threshold must be greater than the value 1 but you passed " + str(time_threshold)
)
if frame_threshold < 1:
raise ValueError(
"frame_threshold must be greater than the value 1 but you passed "
+ str(frame_threshold)
)
realtime.analysis(
db_path,
model_name,
detector_backend,
distance_metric,
enable_face_analysis,
source=source,
time_threshold=time_threshold,
frame_threshold=frame_threshold,
)
def extract_faces(
img_path,
target_size=(224, 224),
detector_backend="opencv",
enforce_detection=True,
align=True,
grayscale=False,
):
"""
This function applies pre-processing stages of a face recognition pipeline
including detection and alignment
Parameters:
img_path: exact image path, numpy array (BGR) or base64 encoded image.
Source image can have many face. Then, result will be the size of number
of faces appearing in that source image.
target_size (tuple): final shape of facial image. black pixels will be
added to resize the image.
detector_backend (string): face detection backends are retinaface, mtcnn,
opencv, ssd or dlib
enforce_detection (boolean): function throws exception if face cannot be
detected in the fed image. Set this to False if you do not want to get
an exception and run the function anyway.
align (boolean): alignment according to the eye positions.
grayscale (boolean): extracting faces in rgb or gray scale
Returns:
list of dictionaries. Each dictionary will have facial image itself,
extracted area from the original image and confidence score.
"""
resp_objs = []
img_objs = functions.extract_faces(
img=img_path,
target_size=target_size,
detector_backend=detector_backend,
grayscale=grayscale,
enforce_detection=enforce_detection,
align=align,
)
for img, region, confidence in img_objs:
resp_obj = {}
# discard expanded dimension
if len(img.shape) == 4:
img = img[0]
resp_obj["face"] = img[:, :, ::-1]
resp_obj["facial_area"] = region
resp_obj["confidence"] = confidence
resp_objs.append(resp_obj)
return resp_objs
# ---------------------------
# deprecated functions
@deprecated(version="0.0.78", reason="Use DeepFace.extract_faces instead of DeepFace.detectFace")
def detectFace(
img_path, target_size=(224, 224), detector_backend="opencv", enforce_detection=True, align=True
):
"""
Deprecated function. Use extract_faces for same functionality.
This function applies pre-processing stages of a face recognition pipeline
including detection and alignment
Parameters:
img_path: exact image path, numpy array (BGR) or base64 encoded image.
Source image can have many face. Then, result will be the size of number
of faces appearing in that source image.
target_size (tuple): final shape of facial image. black pixels will be
added to resize the image.
detector_backend (string): face detection backends are retinaface, mtcnn,
opencv, ssd or dlib
enforce_detection (boolean): function throws exception if face cannot be
detected in the fed image. Set this to False if you do not want to get
an exception and run the function anyway.
align (boolean): alignment according to the eye positions.
grayscale (boolean): extracting faces in rgb or gray scale
Returns:
detected and aligned face as numpy array
"""
print("⚠️ Function detectFace is deprecated. Use extract_faces instead.")
face_objs = extract_faces(
img_path=img_path,
target_size=target_size,
detector_backend=detector_backend,
enforce_detection=enforce_detection,
align=align,
grayscale=False,
)
extracted_face = None
if len(face_objs) > 0:
extracted_face = face_objs[0]["face"]
return extracted_face
# ---------------------------
# main
functions.initialize_folder()
def cli():
"""
command line interface function will be offered in this block
"""
import fire
fire.Fire()