deepface/api/api.py
Şefik Serangil ccb7aafc48 api
2020-04-11 16:38:31 +03:00

165 lines
4.2 KiB
Python

from flask import Flask, jsonify, request, make_response
import uuid
import json
import time
import tensorflow as tf
from deepface import DeepFace
from deepface.basemodels import VGGFace, OpenFace, Facenet, FbDeepFace
#import DeepFace
#from basemodels import VGGFace, OpenFace, Facenet, FbDeepFace
#------------------------------
app = Flask(__name__)
tic = time.time()
vggface_model = VGGFace.loadModel()
print("VGG-Face model is built.")
openface_model = OpenFace.loadModel()
print("OpenFace model is built")
facenet_model = Facenet.loadModel()
print("FaceNet model is built")
deepface_model = FbDeepFace.loadModel()
print("DeepFace model is built")
toc = time.time()
print("Face recognition models are built in ", toc-tic," seconds")
graph = tf.get_default_graph()
#------------------------------
#Service API Interface
@app.route('/')
def index():
return '<h1>Hello, world!</h1>'
@app.route('/analyze', methods=['POST'])
def analyze():
global graph
tic = time.time()
req = request.get_json()
trx_id = uuid.uuid4()
#---------------------------
resp_obj = jsonify({'success': False})
with graph.as_default():
instances = []
if "img" in list(req.keys()):
raw_content = req["img"] #list
for item in raw_content: #item is in type of dict
instances.append(item)
if len(instances) == 0:
return jsonify({'success': False, 'error': 'you must pass at least one img object in your request'}), 205
print("Analyzing ", len(instances)," instances")
#---------------------------
actions= ['emotion', 'age', 'gender', 'race']
if "actions" in list(req.keys()):
actions = req["actions"]
#---------------------------
resp_obj = DeepFace.analyze(instances, actions=actions)
#---------------------------
toc = time.time()
resp_obj["trx_id"] = trx_id
resp_obj["seconds"] = toc-tic
return resp_obj
@app.route('/verify', methods=['POST'])
def verify():
global graph
tic = time.time()
req = request.get_json()
trx_id = uuid.uuid4()
resp_obj = jsonify({'success': False})
with graph.as_default():
model_name = "VGG-Face"; distance_metric = "cosine"
if "model_name" in list(req.keys()):
model_name = req["model_name"]
if "distance_metric" in list(req.keys()):
distance_metric = req["distance_metric"]
#----------------------
instances = []
if "img" in list(req.keys()):
raw_content = req["img"] #list
for item in raw_content: #item is in type of dict
instance = []
img1 = item["img1"]; img2 = item["img2"]
validate_img1 = False
if len(img1) > 11 and img1[0:11] == "data:image/":
validate_img1 = True
validate_img2 = False
if len(img2) > 11 and img2[0:11] == "data:image/":
validate_img2 = True
if validate_img1 != True or validate_img2 != True:
return jsonify({'success': False, 'error': 'you must pass both img1 and img2 as base64 encoded string'}), 205
instance.append(img1); instance.append(img2)
instances.append(instance)
#--------------------------
if len(instances) == 0:
return jsonify({'success': False, 'error': 'you must pass at least one img object in your request'}), 205
print("Input request of ", trx_id, " has ",len(instances)," pairs to verify")
#--------------------------
if model_name == "VGG-Face":
resp_obj = DeepFace.verify(instances, model_name = model_name, distance_metric = distance_metric, model = vggface_model)
elif model_name == "Facenet":
resp_obj = DeepFace.verify(instances, model_name = model_name, distance_metric = distance_metric, model = facenet_model)
elif model_name == "OpenFace":
resp_obj = DeepFace.verify(instances, model_name = model_name, distance_metric = distance_metric, model = openface_model)
elif model_name == "DeepFace":
resp_obj = DeepFace.verify(instances, model_name = model_name, distance_metric = distance_metric, model = deepface_model)
else:
return jsonify({'success': False, 'error': 'You must pass a valid model name. Available models are VGG-Face, Facenet, OpenFace, DeepFace but you passed %s' % (model_name)}), 205
#--------------------------
toc = time.time()
resp_obj["trx_id"] = trx_id
resp_obj["seconds"] = toc-tic
return resp_obj, 200
if __name__ == '__main__':
app.run()