2024-08-12 03:18:40 +03:00

86 lines
2.4 KiB
Python

# built-in dependencies
import os
# 3rd party dependencies
import gdown
import numpy as np
# project dependencies
from deepface.models.facial_recognition import VGGFace
from deepface.commons import package_utils, folder_utils
from deepface.models.Demography import Demography
from deepface.commons.logger import Logger
logger = Logger()
# -------------------------------------
# pylint: disable=line-too-long
# -------------------------------------
# dependency configurations
tf_version = package_utils.get_tf_major_version()
if tf_version == 1:
from keras.models import Model, Sequential
from keras.layers import Convolution2D, Flatten, Activation
else:
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.layers import Convolution2D, Flatten, Activation
# -------------------------------------
# Labels for the genders that can be detected by the model.
labels = ["Woman", "Man"]
# pylint: disable=too-few-public-methods
class GenderClient(Demography):
"""
Gender model class
"""
def __init__(self):
self.model = load_model()
self.model_name = "Gender"
def predict(self, img: np.ndarray) -> np.ndarray:
# model.predict causes memory issue when it is called in a for loop
# return self.model.predict(img, verbose=0)[0, :]
return self.model(img, training=False).numpy()[0, :]
def load_model(
url="https://github.com/serengil/deepface_models/releases/download/v1.0/gender_model_weights.h5",
) -> Model:
"""
Construct gender model, download its weights and load
Returns:
model (Model)
"""
model = VGGFace.base_model()
# --------------------------
classes = 2
base_model_output = Sequential()
base_model_output = Convolution2D(classes, (1, 1), name="predictions")(model.layers[-4].output)
base_model_output = Flatten()(base_model_output)
base_model_output = Activation("softmax")(base_model_output)
# --------------------------
gender_model = Model(inputs=model.input, outputs=base_model_output)
# --------------------------
# load weights
home = folder_utils.get_deepface_home()
output = os.path.join(home, ".deepface/weights/gender_model_weights.h5")
if not os.path.isfile(output):
logger.info(f"{os.path.basename(output)} will be downloaded...")
gdown.download(url, output, quiet=False)
gender_model.load_weights(output)
return gender_model