mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 03:55:21 +00:00
86 lines
2.4 KiB
Python
86 lines
2.4 KiB
Python
# built-in dependencies
|
|
import os
|
|
|
|
# 3rd party dependencies
|
|
import gdown
|
|
import numpy as np
|
|
|
|
# project dependencies
|
|
from deepface.models.facial_recognition import VGGFace
|
|
from deepface.commons import package_utils, folder_utils
|
|
from deepface.models.Demography import Demography
|
|
from deepface.commons.logger import Logger
|
|
|
|
logger = Logger()
|
|
|
|
# -------------------------------------
|
|
# pylint: disable=line-too-long
|
|
# -------------------------------------
|
|
# dependency configurations
|
|
|
|
tf_version = package_utils.get_tf_major_version()
|
|
if tf_version == 1:
|
|
from keras.models import Model, Sequential
|
|
from keras.layers import Convolution2D, Flatten, Activation
|
|
else:
|
|
from tensorflow.keras.models import Model, Sequential
|
|
from tensorflow.keras.layers import Convolution2D, Flatten, Activation
|
|
# -------------------------------------
|
|
|
|
# Labels for the genders that can be detected by the model.
|
|
labels = ["Woman", "Man"]
|
|
|
|
# pylint: disable=too-few-public-methods
|
|
class GenderClient(Demography):
|
|
"""
|
|
Gender model class
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.model = load_model()
|
|
self.model_name = "Gender"
|
|
|
|
def predict(self, img: np.ndarray) -> np.ndarray:
|
|
# model.predict causes memory issue when it is called in a for loop
|
|
# return self.model.predict(img, verbose=0)[0, :]
|
|
return self.model(img, training=False).numpy()[0, :]
|
|
|
|
|
|
def load_model(
|
|
url="https://github.com/serengil/deepface_models/releases/download/v1.0/gender_model_weights.h5",
|
|
) -> Model:
|
|
"""
|
|
Construct gender model, download its weights and load
|
|
Returns:
|
|
model (Model)
|
|
"""
|
|
|
|
model = VGGFace.base_model()
|
|
|
|
# --------------------------
|
|
|
|
classes = 2
|
|
base_model_output = Sequential()
|
|
base_model_output = Convolution2D(classes, (1, 1), name="predictions")(model.layers[-4].output)
|
|
base_model_output = Flatten()(base_model_output)
|
|
base_model_output = Activation("softmax")(base_model_output)
|
|
|
|
# --------------------------
|
|
|
|
gender_model = Model(inputs=model.input, outputs=base_model_output)
|
|
|
|
# --------------------------
|
|
|
|
# load weights
|
|
|
|
home = folder_utils.get_deepface_home()
|
|
output = os.path.join(home, ".deepface/weights/gender_model_weights.h5")
|
|
|
|
if not os.path.isfile(output):
|
|
logger.info(f"{os.path.basename(output)} will be downloaded...")
|
|
gdown.download(url, output, quiet=False)
|
|
|
|
gender_model.load_weights(output)
|
|
|
|
return gender_model
|