mirror of
https://github.com/serengil/deepface.git
synced 2025-07-23 10:20:03 +00:00
91 lines
2.8 KiB
Python
91 lines
2.8 KiB
Python
from typing import Any
|
|
import numpy as np
|
|
from deepface.detectors import FaceDetector
|
|
from deepface.commons.logger import Logger
|
|
|
|
logger = Logger()
|
|
|
|
# Model's weights paths
|
|
PATH = "/.deepface/weights/yolov8n-face.pt"
|
|
|
|
# Google Drive URL
|
|
WEIGHT_URL = "https://drive.google.com/uc?id=1qcr9DbgsX3ryrz2uU8w4Xm3cOrRywXqb"
|
|
|
|
# Confidence thresholds for landmarks detection
|
|
# used in alignment_procedure function
|
|
LANDMARKS_CONFIDENCE_THRESHOLD = 0.5
|
|
|
|
|
|
def build_model() -> Any:
|
|
"""
|
|
Build a yolo detector model
|
|
Returns:
|
|
model (Any)
|
|
"""
|
|
import gdown
|
|
import os
|
|
|
|
# Import the Ultralytics YOLO model
|
|
try:
|
|
from ultralytics import YOLO
|
|
except ModuleNotFoundError as e:
|
|
raise ImportError(
|
|
"Yolo is an optional detector, ensure the library is installed. \
|
|
Please install using 'pip install ultralytics' "
|
|
) from e
|
|
|
|
from deepface.commons.functions import get_deepface_home
|
|
|
|
weight_path = f"{get_deepface_home()}{PATH}"
|
|
|
|
# Download the model's weights if they don't exist
|
|
if not os.path.isfile(weight_path):
|
|
gdown.download(WEIGHT_URL, weight_path, quiet=False)
|
|
logger.info(f"Downloaded YOLO model {os.path.basename(weight_path)}")
|
|
|
|
# Return face_detector
|
|
return YOLO(weight_path)
|
|
|
|
|
|
def detect_face(face_detector: Any, img: np.ndarray, align: bool = False) -> list:
|
|
"""
|
|
Detect and align face with yolo
|
|
Args:
|
|
face_detector (Any): yolo face detector object
|
|
img (np.ndarray): pre-loaded image
|
|
align (bool): default is true
|
|
Returns:
|
|
list of detected and aligned faces
|
|
"""
|
|
resp = []
|
|
|
|
# Detect faces
|
|
results = face_detector.predict(img, verbose=False, show=False, conf=0.25)[0]
|
|
|
|
# For each face, extract the bounding box, the landmarks and confidence
|
|
for result in results:
|
|
# Extract the bounding box and the confidence
|
|
x, y, w, h = result.boxes.xywh.tolist()[0]
|
|
confidence = result.boxes.conf.tolist()[0]
|
|
|
|
x, y, w, h = int(x - w / 2), int(y - h / 2), int(w), int(h)
|
|
detected_face = img[y : y + h, x : x + w].copy()
|
|
|
|
if align:
|
|
# Tuple of x,y and confidence for left eye
|
|
left_eye = result.keypoints.xy[0][0], result.keypoints.conf[0][0]
|
|
# Tuple of x,y and confidence for right eye
|
|
right_eye = result.keypoints.xy[0][1], result.keypoints.conf[0][1]
|
|
|
|
# Check the landmarks confidence before alignment
|
|
if (
|
|
left_eye[1] > LANDMARKS_CONFIDENCE_THRESHOLD
|
|
and right_eye[1] > LANDMARKS_CONFIDENCE_THRESHOLD
|
|
):
|
|
detected_face = FaceDetector.alignment_procedure(
|
|
detected_face, left_eye[0].cpu(), right_eye[0].cpu()
|
|
)
|
|
resp.append((detected_face, [x, y, w, h], confidence))
|
|
|
|
return resp
|