mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 03:55:21 +00:00
142 lines
4.1 KiB
Python
142 lines
4.1 KiB
Python
# stdlib dependencies
|
|
from typing import List, Union
|
|
|
|
# 3rd party dependencies
|
|
import numpy as np
|
|
import cv2
|
|
|
|
# project dependencies
|
|
from deepface.commons import package_utils, weight_utils
|
|
from deepface.models.Demography import Demography
|
|
from deepface.commons.logger import Logger
|
|
|
|
# dependency configuration
|
|
tf_version = package_utils.get_tf_major_version()
|
|
|
|
if tf_version == 1:
|
|
from keras.models import Sequential
|
|
from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D, Flatten, Dense, Dropout
|
|
else:
|
|
from tensorflow.keras.models import Sequential
|
|
from tensorflow.keras.layers import (
|
|
Conv2D,
|
|
MaxPooling2D,
|
|
AveragePooling2D,
|
|
Flatten,
|
|
Dense,
|
|
Dropout,
|
|
)
|
|
|
|
# Labels for the emotions that can be detected by the model.
|
|
labels = ["angry", "disgust", "fear", "happy", "sad", "surprise", "neutral"]
|
|
|
|
logger = Logger()
|
|
|
|
# pylint: disable=line-too-long, disable=too-few-public-methods
|
|
|
|
WEIGHTS_URL = "https://github.com/serengil/deepface_models/releases/download/v1.0/facial_expression_model_weights.h5"
|
|
|
|
|
|
class EmotionClient(Demography):
|
|
"""
|
|
Emotion model class
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.model = load_model()
|
|
self.model_name = "Emotion"
|
|
|
|
def _preprocess_image(self, img: np.ndarray) -> np.ndarray:
|
|
"""
|
|
Preprocess single image for emotion detection
|
|
Args:
|
|
img: Input image (224, 224, 3)
|
|
Returns:
|
|
Preprocessed grayscale image (48, 48)
|
|
"""
|
|
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
|
img_gray = cv2.resize(img_gray, (48, 48))
|
|
return img_gray
|
|
|
|
def predict(self, img: Union[np.ndarray, List[np.ndarray]]) -> np.ndarray:
|
|
"""
|
|
Predict emotion probabilities for single or multiple faces
|
|
Args:
|
|
img: Single image as np.ndarray (224, 224, 3) or
|
|
List of images as List[np.ndarray] or
|
|
Batch of images as np.ndarray (n, 224, 224, 3)
|
|
Returns:
|
|
np.ndarray (n, n_emotions)
|
|
where n_emotions is the number of emotion categories
|
|
"""
|
|
# Convert to numpy array if input is list
|
|
if isinstance(img, list):
|
|
imgs = np.array(img)
|
|
else:
|
|
imgs = img
|
|
|
|
# Remove batch dimension if exists
|
|
imgs = imgs.squeeze()
|
|
|
|
# Check input dimension
|
|
if len(imgs.shape) == 3:
|
|
# Single image - add batch dimension
|
|
imgs = np.expand_dims(imgs, axis=0)
|
|
|
|
# Preprocess each image
|
|
processed_imgs = np.array([self._preprocess_image(img) for img in imgs])
|
|
|
|
# Add channel dimension for grayscale images
|
|
processed_imgs = np.expand_dims(processed_imgs, axis=-1)
|
|
|
|
# Batch prediction
|
|
predictions = self.model.predict_on_batch(processed_imgs)
|
|
|
|
return predictions
|
|
|
|
|
|
def load_model(
|
|
url=WEIGHTS_URL,
|
|
) -> Sequential:
|
|
"""
|
|
Consruct emotion model, download and load weights
|
|
"""
|
|
|
|
num_classes = 7
|
|
|
|
model = Sequential()
|
|
|
|
# 1st convolution layer
|
|
model.add(Conv2D(64, (5, 5), activation="relu", input_shape=(48, 48, 1)))
|
|
model.add(MaxPooling2D(pool_size=(5, 5), strides=(2, 2)))
|
|
|
|
# 2nd convolution layer
|
|
model.add(Conv2D(64, (3, 3), activation="relu"))
|
|
model.add(Conv2D(64, (3, 3), activation="relu"))
|
|
model.add(AveragePooling2D(pool_size=(3, 3), strides=(2, 2)))
|
|
|
|
# 3rd convolution layer
|
|
model.add(Conv2D(128, (3, 3), activation="relu"))
|
|
model.add(Conv2D(128, (3, 3), activation="relu"))
|
|
model.add(AveragePooling2D(pool_size=(3, 3), strides=(2, 2)))
|
|
|
|
model.add(Flatten())
|
|
|
|
# fully connected neural networks
|
|
model.add(Dense(1024, activation="relu"))
|
|
model.add(Dropout(0.2))
|
|
model.add(Dense(1024, activation="relu"))
|
|
model.add(Dropout(0.2))
|
|
|
|
model.add(Dense(num_classes, activation="softmax"))
|
|
|
|
# ----------------------------
|
|
|
|
weight_file = weight_utils.download_weights_if_necessary(
|
|
file_name="facial_expression_model_weights.h5", source_url=url
|
|
)
|
|
|
|
model = weight_utils.load_model_weights(model=model, weight_file=weight_file)
|
|
|
|
return model
|