2025-03-02 23:28:01 +00:00

177 lines
6.7 KiB
Python

# built-in dependencies
from typing import Union
# 3rd party dependencies
from flask import Blueprint, request
import numpy as np
# project dependencies
from deepface import DeepFace
from deepface.api.src.modules.core import service
from deepface.commons import image_utils
from deepface.commons.logger import Logger
logger = Logger()
blueprint = Blueprint("routes", __name__)
# pylint: disable=no-else-return, broad-except
@blueprint.route("/")
def home():
return f"<h1>Welcome to DeepFace API v{DeepFace.__version__}!</h1>"
def extract_image_from_request(img_key: str) -> Union[str, np.ndarray]:
"""
Extracts an image from the request either from json or a multipart/form-data file.
Args:
img_key (str): The key used to retrieve the image data
from the request (e.g., 'img1').
Returns:
img (str or np.ndarray): Given image detail (base64 encoded string, image path or url)
or the decoded image as a numpy array.
"""
# Check if the request is multipart/form-data (file input)
if request.files:
# request.files is instance of werkzeug.datastructures.ImmutableMultiDict
# file is instance of werkzeug.datastructures.FileStorage
file = request.files.get(img_key)
if file is None:
raise ValueError(f"Request form data doesn't have {img_key}")
if file.filename == "":
raise ValueError(f"No file uploaded for '{img_key}'")
img = image_utils.load_image_from_file_storage(file)
return img
# Check if the request is coming as base64, file path or url from json or form data
elif request.is_json or request.form:
input_args = request.get_json() or request.form.to_dict()
if input_args is None:
raise ValueError("empty input set passed")
# this can be base64 encoded image, and image path or url
img = input_args.get(img_key)
if not img:
raise ValueError(f"'{img_key}' not found in either json or form data request")
return img
# If neither JSON nor file input is present
raise ValueError(f"'{img_key}' not found in request in either json or form data")
@blueprint.route("/represent", methods=["POST"])
def represent():
input_args = (request.is_json and request.get_json()) or (
request.form and request.form.to_dict()
)
try:
img = extract_image_from_request("img")
except Exception as err:
return {"exception": str(err)}, 400
obj = service.represent(
img_path=img,
model_name=input_args.get("model_name", "VGG-Face"),
detector_backend=input_args.get("detector_backend", "opencv"),
enforce_detection=input_args.get("enforce_detection", True) if type(input_args.get("enforce_detection", True)) is bool else input_args.get("enforce_detection") == "true",
align=input_args.get("align", True) if type(input_args.get("align", True)) is bool else input_args.get("align") == "true",
expand_percentage=int(input_args.get("expand_percentage", 0)),
normalization=input_args.get("normalization", "base"),
anti_spoofing=input_args.get("anti_spoofing", False) if type(input_args.get("anti_spoofing", False)) is bool else input_args.get("anti_spoofing") == "true",
max_faces=None if input_args.get("max_faces", None) is None else int(input_args.get("max_faces")),
)
logger.debug(obj)
return obj
@blueprint.route("/verify", methods=["POST"])
def verify():
input_args = (request.is_json and request.get_json()) or (
request.form and request.form.to_dict()
)
try:
img1 = extract_image_from_request("img1")
except Exception as err:
return {"exception": str(err)}, 400
try:
img2 = extract_image_from_request("img2")
except Exception as err:
return {"exception": str(err)}, 400
verification = service.verify(
img1_path=img1,
img2_path=img2,
model_name=input_args.get("model_name", "VGG-Face"),
detector_backend=input_args.get("detector_backend", "opencv"),
distance_metric=input_args.get("distance_metric", "cosine"),
enforce_detection=input_args.get("enforce_detection", True) if type(input_args.get("enforce_detection", True)) is bool else input_args.get("enforce_detection") == "true",
align=input_args.get("align", True) if type(input_args.get("align", True)) is bool else input_args.get("align") == "true",
expand_percentage=int(input_args.get("expand_percentage", 0)),
normalization=input_args.get("normalization", "base"),
silent=input_args.get("silent", False) if type(input_args.get("silent", False)) is bool else input_args.get("silent") == "true",
threshold=None if input_args.get("threshold", None) is None else float(input_args.get("threshold")),
anti_spoofing=input_args.get("anti_spoofing", False) if type(input_args.get("anti_spoofing", False)) is bool else input_args.get("anti_spoofing") == "true",
)
logger.debug(verification)
return verification
@blueprint.route("/analyze", methods=["POST"])
def analyze():
input_args = (request.is_json and request.get_json()) or (
request.form and request.form.to_dict()
)
try:
img = extract_image_from_request("img")
except Exception as err:
return {"exception": str(err)}, 400
actions = input_args.get("actions", ["age", "gender", "emotion", "race"])
# actions is the only argument instance of list or tuple
# if request is form data, input args can either be text or file
if isinstance(actions, str):
actions = (
actions.replace("[", "")
.replace("]", "")
.replace("(", "")
.replace(")", "")
.replace('"', "")
.replace("'", "")
.replace(" ", "")
.split(",")
)
demographies = service.analyze(
img_path=img,
actions=actions,
detector_backend=input_args.get("detector_backend", "opencv"),
enforce_detection=input_args.get("enforce_detection", True) if type(input_args.get("enforce_detection", True)) is bool else input_args.get("enforce_detection") == "true",
align=input_args.get("align", True) if type(input_args.get("align", True)) is bool else input_args.get("align") == "true",
expand_percentage=int(input_args.get("expand_percentage", 0)),
silent=input_args.get("silent", False) if type(input_args.get("silent", False)) is bool else input_args.get("silent") == "true",
anti_spoofing=input_args.get("anti_spoofing", False) if type(input_args.get("anti_spoofing", False)) is bool else input_args.get("anti_spoofing") == "true",
)
logger.debug(demographies)
return demographies