mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 20:15:21 +00:00
298 lines
6.5 KiB
Python
298 lines
6.5 KiB
Python
import warnings
|
|
warnings.filterwarnings("ignore")
|
|
|
|
import os
|
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
|
|
|
|
#------------------------------
|
|
|
|
from flask import Flask, jsonify, request, make_response
|
|
|
|
import argparse
|
|
import uuid
|
|
import json
|
|
import time
|
|
from tqdm import tqdm
|
|
|
|
#------------------------------
|
|
|
|
import tensorflow as tf
|
|
tf_version = int(tf.__version__.split(".")[0])
|
|
|
|
#------------------------------
|
|
|
|
if tf_version == 2:
|
|
import logging
|
|
tf.get_logger().setLevel(logging.ERROR)
|
|
|
|
#------------------------------
|
|
|
|
from deepface import DeepFace
|
|
|
|
#------------------------------
|
|
|
|
app = Flask(__name__)
|
|
|
|
#------------------------------
|
|
|
|
if tf_version == 1:
|
|
graph = tf.get_default_graph()
|
|
|
|
#------------------------------
|
|
#Service API Interface
|
|
|
|
@app.route('/')
|
|
def index():
|
|
return '<h1>Hello, world!</h1>'
|
|
|
|
@app.route('/analyze', methods=['POST'])
|
|
def analyze():
|
|
|
|
global graph
|
|
|
|
tic = time.time()
|
|
req = request.get_json()
|
|
trx_id = uuid.uuid4()
|
|
|
|
#---------------------------
|
|
|
|
if tf_version == 1:
|
|
with graph.as_default():
|
|
resp_obj = analyzeWrapper(req, trx_id)
|
|
elif tf_version == 2:
|
|
resp_obj = analyzeWrapper(req, trx_id)
|
|
|
|
#---------------------------
|
|
|
|
toc = time.time()
|
|
|
|
resp = {}
|
|
|
|
resp["trx_id"] = trx_id
|
|
resp["seconds"] = toc-tic
|
|
|
|
if isinstance(resp_obj, list):
|
|
for idx, instance in enumerate(resp_obj):
|
|
resp[f"instance_{idx+1}"] = instance
|
|
elif isinstance(resp_obj, dict):
|
|
resp["instance_1"] = resp_obj
|
|
|
|
return resp, 200
|
|
|
|
def analyzeWrapper(req, trx_id = 0):
|
|
resp_obj = jsonify({'success': False})
|
|
|
|
instances = []
|
|
if "img" in list(req.keys()):
|
|
raw_content = req["img"] #list
|
|
|
|
for item in raw_content: #item is in type of dict
|
|
instances.append(item)
|
|
|
|
if len(instances) == 0:
|
|
return jsonify({'success': False, 'error': 'you must pass at least one img object in your request'}), 205
|
|
|
|
print("Analyzing ", len(instances)," instances")
|
|
|
|
#---------------------------
|
|
|
|
detector_backend = 'opencv'
|
|
|
|
actions= ['emotion', 'age', 'gender', 'race']
|
|
|
|
if "actions" in list(req.keys()):
|
|
actions = req["actions"]
|
|
|
|
if "detector_backend" in list(req.keys()):
|
|
detector_backend = req["detector_backend"]
|
|
|
|
#---------------------------
|
|
|
|
try:
|
|
resp_obj = DeepFace.analyze(instances, actions = actions)
|
|
except Exception as err:
|
|
print("Exception: ", str(err))
|
|
return jsonify({'success': False, 'error': str(err)}), 205
|
|
|
|
#---------------
|
|
#print(resp_obj)
|
|
return resp_obj
|
|
|
|
@app.route('/verify', methods=['POST'])
|
|
def verify():
|
|
|
|
global graph
|
|
|
|
tic = time.time()
|
|
req = request.get_json()
|
|
trx_id = uuid.uuid4()
|
|
|
|
resp_obj = jsonify({'success': False})
|
|
|
|
if tf_version == 1:
|
|
with graph.as_default():
|
|
resp_obj = verifyWrapper(req, trx_id)
|
|
elif tf_version == 2:
|
|
resp_obj = verifyWrapper(req, trx_id)
|
|
|
|
#--------------------------
|
|
|
|
toc = time.time()
|
|
|
|
resp_obj["trx_id"] = trx_id
|
|
resp_obj["seconds"] = toc-tic
|
|
|
|
return resp_obj, 200
|
|
|
|
def verifyWrapper(req, trx_id = 0):
|
|
|
|
resp_obj = jsonify({'success': False})
|
|
|
|
model_name = "VGG-Face"; distance_metric = "cosine"; detector_backend = "opencv"
|
|
if "model_name" in list(req.keys()):
|
|
model_name = req["model_name"]
|
|
if "distance_metric" in list(req.keys()):
|
|
distance_metric = req["distance_metric"]
|
|
if "detector_backend" in list(req.keys()):
|
|
detector_backend = req["detector_backend"]
|
|
|
|
#----------------------
|
|
|
|
instances = []
|
|
if "img" in list(req.keys()):
|
|
raw_content = req["img"] #list
|
|
|
|
for item in raw_content: #item is in type of dict
|
|
instance = []
|
|
img1 = item["img1"]; img2 = item["img2"]
|
|
|
|
validate_img1 = False
|
|
if len(img1) > 11 and img1[0:11] == "data:image/":
|
|
validate_img1 = True
|
|
|
|
validate_img2 = False
|
|
if len(img2) > 11 and img2[0:11] == "data:image/":
|
|
validate_img2 = True
|
|
|
|
if validate_img1 != True or validate_img2 != True:
|
|
return jsonify({'success': False, 'error': 'you must pass both img1 and img2 as base64 encoded string'}), 205
|
|
|
|
instance.append(img1); instance.append(img2)
|
|
instances.append(instance)
|
|
|
|
#--------------------------
|
|
|
|
if len(instances) == 0:
|
|
return jsonify({'success': False, 'error': 'you must pass at least one img object in your request'}), 205
|
|
|
|
print("Input request of ", trx_id, " has ",len(instances)," pairs to verify")
|
|
|
|
#--------------------------
|
|
|
|
try:
|
|
resp_obj = DeepFace.verify(instances
|
|
, model_name = model_name
|
|
, distance_metric = distance_metric
|
|
, detector_backend = detector_backend
|
|
)
|
|
|
|
if model_name == "Ensemble": #issue 198.
|
|
for key in resp_obj: #issue 198.
|
|
resp_obj[key]['verified'] = bool(resp_obj[key]['verified'])
|
|
|
|
except Exception as err:
|
|
resp_obj = jsonify({'success': False, 'error': str(err)}), 205
|
|
|
|
return resp_obj
|
|
|
|
@app.route('/represent', methods=['POST'])
|
|
def represent():
|
|
|
|
global graph
|
|
|
|
tic = time.time()
|
|
req = request.get_json()
|
|
trx_id = uuid.uuid4()
|
|
|
|
resp_obj = jsonify({'success': False})
|
|
|
|
if tf_version == 1:
|
|
with graph.as_default():
|
|
resp_obj = representWrapper(req, trx_id)
|
|
elif tf_version == 2:
|
|
resp_obj = representWrapper(req, trx_id)
|
|
|
|
#--------------------------
|
|
|
|
toc = time.time()
|
|
|
|
resp_obj["trx_id"] = trx_id
|
|
resp_obj["seconds"] = toc-tic
|
|
|
|
return resp_obj, 200
|
|
|
|
def representWrapper(req, trx_id = 0):
|
|
|
|
resp_obj = jsonify({'success': False})
|
|
|
|
#-------------------------------------
|
|
#find out model
|
|
|
|
model_name = "VGG-Face"; distance_metric = "cosine"; detector_backend = 'opencv'
|
|
|
|
if "model_name" in list(req.keys()):
|
|
model_name = req["model_name"]
|
|
|
|
if "detector_backend" in list(req.keys()):
|
|
detector_backend = req["detector_backend"]
|
|
|
|
#-------------------------------------
|
|
#retrieve images from request
|
|
|
|
img = ""
|
|
if "img" in list(req.keys()):
|
|
img = req["img"] #list
|
|
#print("img: ", img)
|
|
|
|
validate_img = False
|
|
if len(img) > 11 and img[0:11] == "data:image/":
|
|
validate_img = True
|
|
|
|
if validate_img != True:
|
|
print("invalid image passed!")
|
|
return jsonify({'success': False, 'error': 'you must pass img as base64 encoded string'}), 205
|
|
|
|
#-------------------------------------
|
|
#call represent function from the interface
|
|
|
|
try:
|
|
|
|
embedding = DeepFace.represent(img
|
|
, model_name = model_name
|
|
, detector_backend = detector_backend
|
|
)
|
|
|
|
except Exception as err:
|
|
print("Exception: ",str(err))
|
|
resp_obj = jsonify({'success': False, 'error': str(err)}), 205
|
|
|
|
#-------------------------------------
|
|
|
|
#print("embedding is ", len(embedding)," dimensional vector")
|
|
resp_obj = {}
|
|
resp_obj["embedding"] = embedding
|
|
|
|
#-------------------------------------
|
|
|
|
return resp_obj
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
'-p', '--port',
|
|
type=int,
|
|
default=5000,
|
|
help='Port of serving api')
|
|
args = parser.parse_args()
|
|
app.run(host='0.0.0.0', port=args.port)
|