deepface/deepface/detectors/DetectorWrapper.py
2024-01-27 19:20:03 +00:00

71 lines
2.2 KiB
Python

from typing import Any, List
import numpy as np
from deepface.models.Detector import Detector, DetectedFace
from deepface.detectors import (
FastMtCnn,
MediaPipe,
MtCnn,
OpenCv,
Dlib,
RetinaFace,
Ssd,
Yolo,
YuNet,
)
def build_model(detector_backend: str) -> Any:
"""
Build a face detector model
Args:
detector_backend (str): backend detector name
Returns:
built detector (Any)
"""
global face_detector_obj # singleton design pattern
backends = {
"opencv": OpenCv.OpenCvClient,
"mtcnn": MtCnn.MtCnnClient,
"ssd": Ssd.SsdClient,
"dlib": Dlib.DlibClient,
"retinaface": RetinaFace.RetinaFaceClient,
"mediapipe": MediaPipe.MediaPipeClient,
"yolov8": Yolo.YoloClient,
"yunet": YuNet.YuNetClient,
"fastmtcnn": FastMtCnn.FastMtCnnClient,
}
if not "face_detector_obj" in globals():
face_detector_obj = {}
built_models = list(face_detector_obj.keys())
if detector_backend not in built_models:
face_detector = backends.get(detector_backend)
if face_detector:
face_detector = face_detector()
face_detector_obj[detector_backend] = face_detector
else:
raise ValueError("invalid detector_backend passed - " + detector_backend)
return face_detector_obj[detector_backend]
def detect_faces(detector_backend: str, img: np.ndarray, align: bool = True) -> List[DetectedFace]:
"""
Detect face(s) from a given image
Args:
detector_backend (str): detector name
img (np.ndarray): pre-loaded image
alig (bool): enable or disable alignment after detection
Returns:
results (List[DetectedFace]): A list of DetectedFace objects
where each object contains:
- img (np.ndarray): The detected face as a NumPy array.
- facial_area (FacialAreaRegion): The facial area region represented as x, y, w, h
- confidence (float): The confidence score associated with the detected face.
"""
face_detector: Detector = build_model(detector_backend)
return face_detector.detect_faces(img=img, align=align)