mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 20:15:21 +00:00
84 lines
2.6 KiB
Python
84 lines
2.6 KiB
Python
from typing import Any, Union, List
|
|
import cv2
|
|
import numpy as np
|
|
from deepface.models.Detector import Detector, FacialAreaRegion
|
|
|
|
# Link -> https://github.com/timesler/facenet-pytorch
|
|
# Examples https://www.kaggle.com/timesler/guide-to-mtcnn-in-facenet-pytorch
|
|
|
|
|
|
class FastMtCnnClient(Detector):
|
|
def __init__(self):
|
|
self.model = self.build_model()
|
|
|
|
def detect_faces(self, img: np.ndarray) -> List[FacialAreaRegion]:
|
|
"""
|
|
Detect and align face with mtcnn
|
|
|
|
Args:
|
|
img (np.ndarray): pre-loaded image as numpy array
|
|
|
|
Returns:
|
|
results (List[FacialAreaRegion]): A list of FacialAreaRegion objects
|
|
"""
|
|
resp = []
|
|
|
|
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # mtcnn expects RGB but OpenCV read BGR
|
|
detections = self.model.detect(
|
|
img_rgb, landmarks=True
|
|
) # returns boundingbox, prob, landmark
|
|
if detections is not None and len(detections) > 0:
|
|
|
|
for current_detection in zip(*detections):
|
|
x, y, w, h = xyxy_to_xywh(current_detection[0])
|
|
confidence = current_detection[1]
|
|
left_eye = current_detection[2][0]
|
|
right_eye = current_detection[2][1]
|
|
|
|
facial_area = FacialAreaRegion(
|
|
x=x,
|
|
y=y,
|
|
w=w,
|
|
h=h,
|
|
left_eye=left_eye,
|
|
right_eye=right_eye,
|
|
confidence=confidence,
|
|
)
|
|
resp.append(facial_area)
|
|
|
|
return resp
|
|
|
|
def build_model(self) -> Any:
|
|
"""
|
|
Build a fast mtcnn face detector model
|
|
Returns:
|
|
model (Any)
|
|
"""
|
|
# this is not a must dependency. do not import it in the global level.
|
|
try:
|
|
from facenet_pytorch import MTCNN as fast_mtcnn
|
|
except ModuleNotFoundError as e:
|
|
raise ImportError(
|
|
"FastMtcnn is an optional detector, ensure the library is installed."
|
|
"Please install using 'pip install facenet-pytorch' "
|
|
) from e
|
|
|
|
face_detector = fast_mtcnn(
|
|
image_size=160,
|
|
thresholds=[0.6, 0.7, 0.7], # MTCNN thresholds
|
|
post_process=True,
|
|
device="cpu",
|
|
select_largest=False, # return result in descending order
|
|
)
|
|
return face_detector
|
|
|
|
|
|
def xyxy_to_xywh(xyxy: Union[list, tuple]) -> list:
|
|
"""
|
|
Convert xyxy format to xywh format.
|
|
"""
|
|
x, y = xyxy[0], xyxy[1]
|
|
w = xyxy[2] - x + 1
|
|
h = xyxy[3] - y + 1
|
|
return [x, y, w, h]
|