deepface/deepface/detectors/DlibWrapper.py

72 lines
1.9 KiB
Python

from pathlib import Path
import gdown
import bz2
import os
from deepface.commons import functions
def build_model():
home = functions.get_deepface_home()
import dlib #this requirement is not a must that's why imported here
#check required file exists in the home/.deepface/weights folder
if os.path.isfile(home+'/.deepface/weights/shape_predictor_5_face_landmarks.dat') != True:
print("shape_predictor_5_face_landmarks.dat.bz2 is going to be downloaded")
url = "http://dlib.net/files/shape_predictor_5_face_landmarks.dat.bz2"
output = home+'/.deepface/weights/'+url.split("/")[-1]
gdown.download(url, output, quiet=False)
zipfile = bz2.BZ2File(output)
data = zipfile.read()
newfilepath = output[:-4] #discard .bz2 extension
open(newfilepath, 'wb').write(data)
face_detector = dlib.get_frontal_face_detector()
sp = dlib.shape_predictor(home+"/.deepface/weights/shape_predictor_5_face_landmarks.dat")
detector = {}
detector["face_detector"] = face_detector
detector["sp"] = sp
return detector
def detect_face(detector, img, align = True):
import dlib #this requirement is not a must that's why imported here
resp = []
home = str(Path.home())
sp = detector["sp"]
detected_face = None
img_region = [0, 0, img.shape[1], img.shape[0]]
face_detector = detector["face_detector"]
detections = face_detector(img, 1)
if len(detections) > 0:
for idx, d in enumerate(detections):
left = d.left(); right = d.right()
top = d.top(); bottom = d.bottom()
#detected_face = img[top:bottom, left:right]
detected_face = img[max(0, top): min(bottom, img.shape[0]), max(0, left): min(right, img.shape[1])]
img_region = [left, top, right - left, bottom - top]
if align:
img_shape = sp(img, detections[idx])
detected_face = dlib.get_face_chip(img, img_shape, size = detected_face.shape[0])
resp.append((detected_face, img_region))
return resp