2023-12-24 14:38:14 +00:00

67 lines
1.9 KiB
Python

import os
import gdown
import numpy as np
import tensorflow as tf
from deepface.basemodels import VGGFace
from deepface.commons import functions
from deepface.commons.logger import Logger
logger = Logger(module="extendedmodels.Age")
# ----------------------------------------
# dependency configurations
tf_version = int(tf.__version__.split(".", maxsplit=1)[0])
if tf_version == 1:
from keras.models import Model, Sequential
from keras.layers import Convolution2D, Flatten, Activation
else:
from tensorflow.keras.models import Model, Sequential
from tensorflow.keras.layers import Convolution2D, Flatten, Activation
# ----------------------------------------
def loadModel(
url="https://github.com/serengil/deepface_models/releases/download/v1.0/age_model_weights.h5",
) -> Model:
model = VGGFace.baseModel()
# --------------------------
classes = 101
base_model_output = Sequential()
base_model_output = Convolution2D(classes, (1, 1), name="predictions")(model.layers[-4].output)
base_model_output = Flatten()(base_model_output)
base_model_output = Activation("softmax")(base_model_output)
# --------------------------
age_model = Model(inputs=model.input, outputs=base_model_output)
# --------------------------
# load weights
home = functions.get_deepface_home()
if os.path.isfile(home + "/.deepface/weights/age_model_weights.h5") != True:
logger.info("age_model_weights.h5 will be downloaded...")
output = home + "/.deepface/weights/age_model_weights.h5"
gdown.download(url, output, quiet=False)
age_model.load_weights(home + "/.deepface/weights/age_model_weights.h5")
return age_model
# --------------------------
def findApparentAge(age_predictions) -> np.float64:
output_indexes = np.array(list(range(0, 101)))
apparent_age = np.sum(age_predictions * output_indexes)
return apparent_age