mirror of
https://github.com/serengil/deepface.git
synced 2025-06-07 12:05:22 +00:00
889 lines
30 KiB
Python
889 lines
30 KiB
Python
# common dependencies
|
|
import os
|
|
from os import path
|
|
import warnings
|
|
import time
|
|
import pickle
|
|
import logging
|
|
|
|
# 3rd party dependencies
|
|
import numpy as np
|
|
import pandas as pd
|
|
from tqdm import tqdm
|
|
import cv2
|
|
import tensorflow as tf
|
|
from deprecated import deprecated
|
|
|
|
# package dependencies
|
|
from deepface.basemodels import (
|
|
VGGFace,
|
|
OpenFace,
|
|
Facenet,
|
|
Facenet512,
|
|
FbDeepFace,
|
|
DeepID,
|
|
DlibWrapper,
|
|
ArcFace,
|
|
SFace,
|
|
)
|
|
from deepface.extendedmodels import Age, Gender, Race, Emotion
|
|
from deepface.commons import functions, realtime, distance as dst
|
|
|
|
# -----------------------------------
|
|
# configurations for dependencies
|
|
|
|
warnings.filterwarnings("ignore")
|
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
|
|
tf_version = int(tf.__version__.split(".", maxsplit=1)[0])
|
|
if tf_version == 2:
|
|
tf.get_logger().setLevel(logging.ERROR)
|
|
# -----------------------------------
|
|
|
|
|
|
def build_model(model_name):
|
|
|
|
"""
|
|
This function builds a deepface model
|
|
Parameters:
|
|
model_name (string): face recognition or facial attribute model
|
|
VGG-Face, Facenet, OpenFace, DeepFace, DeepID for face recognition
|
|
Age, Gender, Emotion, Race for facial attributes
|
|
|
|
Returns:
|
|
built deepface model
|
|
"""
|
|
|
|
# singleton design pattern
|
|
global model_obj
|
|
|
|
models = {
|
|
"VGG-Face": VGGFace.loadModel,
|
|
"OpenFace": OpenFace.loadModel,
|
|
"Facenet": Facenet.loadModel,
|
|
"Facenet512": Facenet512.loadModel,
|
|
"DeepFace": FbDeepFace.loadModel,
|
|
"DeepID": DeepID.loadModel,
|
|
"Dlib": DlibWrapper.loadModel,
|
|
"ArcFace": ArcFace.loadModel,
|
|
"SFace": SFace.load_model,
|
|
"Emotion": Emotion.loadModel,
|
|
"Age": Age.loadModel,
|
|
"Gender": Gender.loadModel,
|
|
"Race": Race.loadModel,
|
|
}
|
|
|
|
if not "model_obj" in globals():
|
|
model_obj = {}
|
|
|
|
if not model_name in model_obj:
|
|
model = models.get(model_name)
|
|
if model:
|
|
model = model()
|
|
model_obj[model_name] = model
|
|
else:
|
|
raise ValueError(f"Invalid model_name passed - {model_name}")
|
|
|
|
return model_obj[model_name]
|
|
|
|
|
|
def verify(
|
|
img1_path,
|
|
img2_path,
|
|
model_name="VGG-Face",
|
|
detector_backend="opencv",
|
|
distance_metric="cosine",
|
|
enforce_detection=True,
|
|
align=True,
|
|
normalization="base",
|
|
):
|
|
|
|
"""
|
|
This function verifies an image pair is same person or different persons. In the background,
|
|
verification function represents facial images as vectors and then calculates the similarity
|
|
between those vectors. Vectors of same person images should have more similarity (or less
|
|
distance) than vectors of different persons.
|
|
|
|
Parameters:
|
|
img1_path, img2_path: exact image path as string. numpy array (BGR) or based64 encoded
|
|
images are also welcome. If one of pair has more than one face, then we will compare the
|
|
face pair with max similarity.
|
|
|
|
model_name (str): VGG-Face, Facenet, Facenet512, OpenFace, DeepFace, DeepID, Dlib
|
|
, ArcFace and SFace
|
|
|
|
distance_metric (string): cosine, euclidean, euclidean_l2
|
|
|
|
enforce_detection (boolean): If no face could not be detected in an image, then this
|
|
function will return exception by default. Set this to False not to have this exception.
|
|
This might be convenient for low resolution images.
|
|
|
|
detector_backend (string): set face detector backend to opencv, retinaface, mtcnn, ssd,
|
|
dlib, mediapipe or yolov8n.
|
|
|
|
align (boolean): alignment according to the eye positions.
|
|
|
|
normalization (string): normalize the input image before feeding to model
|
|
|
|
Returns:
|
|
Verify function returns a dictionary.
|
|
|
|
{
|
|
"verified": True
|
|
, "distance": 0.2563
|
|
, "max_threshold_to_verify": 0.40
|
|
, "model": "VGG-Face"
|
|
, "similarity_metric": "cosine"
|
|
, 'facial_areas': {
|
|
'img1': {'x': 345, 'y': 211, 'w': 769, 'h': 769},
|
|
'img2': {'x': 318, 'y': 534, 'w': 779, 'h': 779}
|
|
}
|
|
, "time": 2
|
|
}
|
|
|
|
"""
|
|
|
|
tic = time.time()
|
|
|
|
# --------------------------------
|
|
target_size = functions.find_target_size(model_name=model_name)
|
|
|
|
# img pairs might have many faces
|
|
img1_objs = functions.extract_faces(
|
|
img=img1_path,
|
|
target_size=target_size,
|
|
detector_backend=detector_backend,
|
|
grayscale=False,
|
|
enforce_detection=enforce_detection,
|
|
align=align,
|
|
)
|
|
|
|
img2_objs = functions.extract_faces(
|
|
img=img2_path,
|
|
target_size=target_size,
|
|
detector_backend=detector_backend,
|
|
grayscale=False,
|
|
enforce_detection=enforce_detection,
|
|
align=align,
|
|
)
|
|
# --------------------------------
|
|
distances = []
|
|
regions = []
|
|
# now we will find the face pair with minimum distance
|
|
for img1_content, img1_region, _ in img1_objs:
|
|
for img2_content, img2_region, _ in img2_objs:
|
|
img1_embedding_obj = represent(
|
|
img_path=img1_content,
|
|
model_name=model_name,
|
|
enforce_detection=enforce_detection,
|
|
detector_backend="skip",
|
|
align=align,
|
|
normalization=normalization,
|
|
)
|
|
|
|
img2_embedding_obj = represent(
|
|
img_path=img2_content,
|
|
model_name=model_name,
|
|
enforce_detection=enforce_detection,
|
|
detector_backend="skip",
|
|
align=align,
|
|
normalization=normalization,
|
|
)
|
|
|
|
img1_representation = img1_embedding_obj[0]["embedding"]
|
|
img2_representation = img2_embedding_obj[0]["embedding"]
|
|
|
|
if distance_metric == "cosine":
|
|
distance = dst.findCosineDistance(img1_representation, img2_representation)
|
|
elif distance_metric == "euclidean":
|
|
distance = dst.findEuclideanDistance(img1_representation, img2_representation)
|
|
elif distance_metric == "euclidean_l2":
|
|
distance = dst.findEuclideanDistance(
|
|
dst.l2_normalize(img1_representation), dst.l2_normalize(img2_representation)
|
|
)
|
|
else:
|
|
raise ValueError("Invalid distance_metric passed - ", distance_metric)
|
|
|
|
distances.append(distance)
|
|
regions.append((img1_region, img2_region))
|
|
|
|
# -------------------------------
|
|
threshold = dst.findThreshold(model_name, distance_metric)
|
|
distance = min(distances) # best distance
|
|
facial_areas = regions[np.argmin(distances)]
|
|
|
|
toc = time.time()
|
|
|
|
resp_obj = {
|
|
"verified": distance <= threshold,
|
|
"distance": distance,
|
|
"threshold": threshold,
|
|
"model": model_name,
|
|
"detector_backend": detector_backend,
|
|
"similarity_metric": distance_metric,
|
|
"facial_areas": {"img1": facial_areas[0], "img2": facial_areas[1]},
|
|
"time": round(toc - tic, 2),
|
|
}
|
|
|
|
return resp_obj
|
|
|
|
|
|
def analyze(
|
|
img_path,
|
|
actions=("emotion", "age", "gender", "race"),
|
|
enforce_detection=True,
|
|
detector_backend="opencv",
|
|
align=True,
|
|
silent=False,
|
|
):
|
|
|
|
"""
|
|
This function analyzes facial attributes including age, gender, emotion and race.
|
|
In the background, analysis function builds convolutional neural network models to
|
|
classify age, gender, emotion and race of the input image.
|
|
|
|
Parameters:
|
|
img_path: exact image path, numpy array (BGR) or base64 encoded image could be passed.
|
|
If source image has more than one face, then result will be size of number of faces
|
|
appearing in the image.
|
|
|
|
actions (tuple): The default is ('age', 'gender', 'emotion', 'race'). You can drop
|
|
some of those attributes.
|
|
|
|
enforce_detection (bool): The function throws exception if no face detected by default.
|
|
Set this to False if you don't want to get exception. This might be convenient for low
|
|
resolution images.
|
|
|
|
detector_backend (string): set face detector backend to opencv, retinaface, mtcnn, ssd,
|
|
dlib, mediapipe or yolov8n.
|
|
|
|
align (boolean): alignment according to the eye positions.
|
|
|
|
silent (boolean): disable (some) log messages
|
|
|
|
Returns:
|
|
The function returns a list of dictionaries for each face appearing in the image.
|
|
|
|
[
|
|
{
|
|
"region": {'x': 230, 'y': 120, 'w': 36, 'h': 45},
|
|
"age": 28.66,
|
|
"dominant_gender": "Woman",
|
|
"gender": {
|
|
'Woman': 99.99407529830933,
|
|
'Man': 0.005928758764639497,
|
|
}
|
|
"dominant_emotion": "neutral",
|
|
"emotion": {
|
|
'sad': 37.65260875225067,
|
|
'angry': 0.15512987738475204,
|
|
'surprise': 0.0022171278033056296,
|
|
'fear': 1.2489334680140018,
|
|
'happy': 4.609785228967667,
|
|
'disgust': 9.698561953541684e-07,
|
|
'neutral': 56.33133053779602
|
|
}
|
|
"dominant_race": "white",
|
|
"race": {
|
|
'indian': 0.5480832420289516,
|
|
'asian': 0.7830780930817127,
|
|
'latino hispanic': 2.0677512511610985,
|
|
'black': 0.06337375962175429,
|
|
'middle eastern': 3.088453598320484,
|
|
'white': 93.44925880432129
|
|
}
|
|
}
|
|
]
|
|
"""
|
|
# ---------------------------------
|
|
# validate actions
|
|
if isinstance(actions, str):
|
|
actions = (actions,)
|
|
|
|
actions = list(actions)
|
|
# ---------------------------------
|
|
# build models
|
|
models = {}
|
|
if "emotion" in actions:
|
|
models["emotion"] = build_model("Emotion")
|
|
|
|
if "age" in actions:
|
|
models["age"] = build_model("Age")
|
|
|
|
if "gender" in actions:
|
|
models["gender"] = build_model("Gender")
|
|
|
|
if "race" in actions:
|
|
models["race"] = build_model("Race")
|
|
# ---------------------------------
|
|
resp_objects = []
|
|
|
|
img_objs = functions.extract_faces(
|
|
img=img_path,
|
|
target_size=(224, 224),
|
|
detector_backend=detector_backend,
|
|
grayscale=False,
|
|
enforce_detection=enforce_detection,
|
|
align=align,
|
|
)
|
|
|
|
for img_content, img_region, _ in img_objs:
|
|
if img_content.shape[0] > 0 and img_content.shape[1] > 0:
|
|
obj = {}
|
|
# facial attribute analysis
|
|
pbar = tqdm(range(0, len(actions)), desc="Finding actions", disable=silent)
|
|
for index in pbar:
|
|
action = actions[index]
|
|
pbar.set_description(f"Action: {action}")
|
|
|
|
if action == "emotion":
|
|
img_gray = cv2.cvtColor(img_content[0], cv2.COLOR_BGR2GRAY)
|
|
img_gray = cv2.resize(img_gray, (48, 48))
|
|
img_gray = np.expand_dims(img_gray, axis=0)
|
|
|
|
emotion_predictions = models["emotion"].predict(img_gray, verbose=0)[0, :]
|
|
|
|
sum_of_predictions = emotion_predictions.sum()
|
|
|
|
obj["emotion"] = {}
|
|
|
|
for i, emotion_label in enumerate(Emotion.labels):
|
|
emotion_prediction = 100 * emotion_predictions[i] / sum_of_predictions
|
|
obj["emotion"][emotion_label] = emotion_prediction
|
|
|
|
obj["dominant_emotion"] = Emotion.labels[np.argmax(emotion_predictions)]
|
|
|
|
elif action == "age":
|
|
age_predictions = models["age"].predict(img_content, verbose=0)[0, :]
|
|
apparent_age = Age.findApparentAge(age_predictions)
|
|
# int cast is for exception - object of type 'float32' is not JSON serializable
|
|
obj["age"] = int(apparent_age)
|
|
|
|
elif action == "gender":
|
|
gender_predictions = models["gender"].predict(img_content, verbose=0)[0, :]
|
|
obj["gender"] = {}
|
|
for i, gender_label in enumerate(Gender.labels):
|
|
gender_prediction = 100 * gender_predictions[i]
|
|
obj["gender"][gender_label] = gender_prediction
|
|
|
|
obj["dominant_gender"] = Gender.labels[np.argmax(gender_predictions)]
|
|
|
|
elif action == "race":
|
|
race_predictions = models["race"].predict(img_content, verbose=0)[0, :]
|
|
sum_of_predictions = race_predictions.sum()
|
|
|
|
obj["race"] = {}
|
|
for i, race_label in enumerate(Race.labels):
|
|
race_prediction = 100 * race_predictions[i] / sum_of_predictions
|
|
obj["race"][race_label] = race_prediction
|
|
|
|
obj["dominant_race"] = Race.labels[np.argmax(race_predictions)]
|
|
|
|
# -----------------------------
|
|
# mention facial areas
|
|
obj["region"] = img_region
|
|
|
|
resp_objects.append(obj)
|
|
|
|
return resp_objects
|
|
|
|
|
|
def find(
|
|
img_path,
|
|
db_path,
|
|
model_name="VGG-Face",
|
|
distance_metric="cosine",
|
|
enforce_detection=True,
|
|
detector_backend="opencv",
|
|
align=True,
|
|
normalization="base",
|
|
silent=False,
|
|
):
|
|
|
|
"""
|
|
This function applies verification several times and find the identities in a database
|
|
|
|
Parameters:
|
|
img_path: exact image path, numpy array (BGR) or based64 encoded image.
|
|
Source image can have many faces. Then, result will be the size of number of
|
|
faces in the source image.
|
|
|
|
db_path (string): You should store some image files in a folder and pass the
|
|
exact folder path to this. A database image can also have many faces.
|
|
Then, all detected faces in db side will be considered in the decision.
|
|
|
|
model_name (string): VGG-Face, Facenet, Facenet512, OpenFace, DeepFace, DeepID,
|
|
Dlib, ArcFace, SFace or Ensemble
|
|
|
|
distance_metric (string): cosine, euclidean, euclidean_l2
|
|
|
|
enforce_detection (bool): The function throws exception if a face could not be detected.
|
|
Set this to True if you don't want to get exception. This might be convenient for low
|
|
resolution images.
|
|
|
|
detector_backend (string): set face detector backend to opencv, retinaface, mtcnn, ssd,
|
|
dlib, mediapipe or yolov8n.
|
|
|
|
align (boolean): alignment according to the eye positions.
|
|
|
|
normalization (string): normalize the input image before feeding to model
|
|
|
|
silent (boolean): disable some logging and progress bars
|
|
|
|
Returns:
|
|
This function returns list of pandas data frame. Each item of the list corresponding to
|
|
an identity in the img_path.
|
|
"""
|
|
|
|
tic = time.time()
|
|
|
|
# -------------------------------
|
|
if os.path.isdir(db_path) is not True:
|
|
raise ValueError("Passed db_path does not exist!")
|
|
|
|
target_size = functions.find_target_size(model_name=model_name)
|
|
|
|
# ---------------------------------------
|
|
|
|
file_name = f"representations_{model_name}.pkl"
|
|
file_name = file_name.replace("-", "_").lower()
|
|
|
|
if path.exists(db_path + "/" + file_name):
|
|
|
|
if not silent:
|
|
print(
|
|
f"WARNING: Representations for images in {db_path} folder were previously stored"
|
|
+ f" in {file_name}. If you added new instances after the creation, then please "
|
|
+ "delete this file and call find function again. It will create it again."
|
|
)
|
|
|
|
with open(f"{db_path}/{file_name}", "rb") as f:
|
|
representations = pickle.load(f)
|
|
|
|
if not silent:
|
|
print("There are ", len(representations), " representations found in ", file_name)
|
|
|
|
else: # create representation.pkl from scratch
|
|
employees = []
|
|
|
|
for r, _, f in os.walk(db_path):
|
|
for file in f:
|
|
if (
|
|
(".jpg" in file.lower())
|
|
or (".jpeg" in file.lower())
|
|
or (".png" in file.lower())
|
|
):
|
|
exact_path = r + "/" + file
|
|
employees.append(exact_path)
|
|
|
|
if len(employees) == 0:
|
|
raise ValueError(
|
|
"There is no image in ",
|
|
db_path,
|
|
" folder! Validate .jpg or .png files exist in this path.",
|
|
)
|
|
|
|
# ------------------------
|
|
# find representations for db images
|
|
|
|
representations = []
|
|
|
|
# for employee in employees:
|
|
pbar = tqdm(
|
|
range(0, len(employees)),
|
|
desc="Finding representations",
|
|
disable=silent,
|
|
)
|
|
for index in pbar:
|
|
employee = employees[index]
|
|
|
|
img_objs = functions.extract_faces(
|
|
img=employee,
|
|
target_size=target_size,
|
|
detector_backend=detector_backend,
|
|
grayscale=False,
|
|
enforce_detection=enforce_detection,
|
|
align=align,
|
|
)
|
|
|
|
for img_content, _, _ in img_objs:
|
|
embedding_obj = represent(
|
|
img_path=img_content,
|
|
model_name=model_name,
|
|
enforce_detection=enforce_detection,
|
|
detector_backend="skip",
|
|
align=align,
|
|
normalization=normalization,
|
|
)
|
|
|
|
img_representation = embedding_obj[0]["embedding"]
|
|
|
|
instance = []
|
|
instance.append(employee)
|
|
instance.append(img_representation)
|
|
representations.append(instance)
|
|
|
|
# -------------------------------
|
|
|
|
with open(f"{db_path}/{file_name}", "wb") as f:
|
|
pickle.dump(representations, f)
|
|
|
|
if not silent:
|
|
print(
|
|
f"Representations stored in {db_path}/{file_name} file."
|
|
+ "Please delete this file when you add new identities in your database."
|
|
)
|
|
|
|
# ----------------------------
|
|
# now, we got representations for facial database
|
|
df = pd.DataFrame(representations, columns=["identity", f"{model_name}_representation"])
|
|
|
|
# img path might have more than once face
|
|
target_objs = functions.extract_faces(
|
|
img=img_path,
|
|
target_size=target_size,
|
|
detector_backend=detector_backend,
|
|
grayscale=False,
|
|
enforce_detection=enforce_detection,
|
|
align=align,
|
|
)
|
|
|
|
resp_obj = []
|
|
|
|
for target_img, target_region, _ in target_objs:
|
|
target_embedding_obj = represent(
|
|
img_path=target_img,
|
|
model_name=model_name,
|
|
enforce_detection=enforce_detection,
|
|
detector_backend="skip",
|
|
align=align,
|
|
normalization=normalization,
|
|
)
|
|
|
|
target_representation = target_embedding_obj[0]["embedding"]
|
|
|
|
result_df = df.copy() # df will be filtered in each img
|
|
result_df["source_x"] = target_region["x"]
|
|
result_df["source_y"] = target_region["y"]
|
|
result_df["source_w"] = target_region["w"]
|
|
result_df["source_h"] = target_region["h"]
|
|
|
|
distances = []
|
|
for index, instance in df.iterrows():
|
|
source_representation = instance[f"{model_name}_representation"]
|
|
|
|
if distance_metric == "cosine":
|
|
distance = dst.findCosineDistance(source_representation, target_representation)
|
|
elif distance_metric == "euclidean":
|
|
distance = dst.findEuclideanDistance(source_representation, target_representation)
|
|
elif distance_metric == "euclidean_l2":
|
|
distance = dst.findEuclideanDistance(
|
|
dst.l2_normalize(source_representation),
|
|
dst.l2_normalize(target_representation),
|
|
)
|
|
else:
|
|
raise ValueError(f"invalid distance metric passes - {distance_metric}")
|
|
|
|
distances.append(distance)
|
|
|
|
# ---------------------------
|
|
|
|
result_df[f"{model_name}_{distance_metric}"] = distances
|
|
|
|
threshold = dst.findThreshold(model_name, distance_metric)
|
|
result_df = result_df.drop(columns=[f"{model_name}_representation"])
|
|
result_df = result_df[result_df[f"{model_name}_{distance_metric}"] <= threshold]
|
|
result_df = result_df.sort_values(
|
|
by=[f"{model_name}_{distance_metric}"], ascending=True
|
|
).reset_index(drop=True)
|
|
|
|
resp_obj.append(result_df)
|
|
|
|
# -----------------------------------
|
|
|
|
toc = time.time()
|
|
|
|
if not silent:
|
|
print("find function lasts ", toc - tic, " seconds")
|
|
|
|
return resp_obj
|
|
|
|
|
|
def represent(
|
|
img_path,
|
|
model_name="VGG-Face",
|
|
enforce_detection=True,
|
|
detector_backend="opencv",
|
|
align=True,
|
|
normalization="base",
|
|
):
|
|
|
|
"""
|
|
This function represents facial images as vectors. The function uses convolutional neural
|
|
networks models to generate vector embeddings.
|
|
|
|
Parameters:
|
|
img_path (string): exact image path. Alternatively, numpy array (BGR) or based64
|
|
encoded images could be passed. Source image can have many faces. Then, result will
|
|
be the size of number of faces appearing in the source image.
|
|
|
|
model_name (string): VGG-Face, Facenet, Facenet512, OpenFace, DeepFace, DeepID, Dlib,
|
|
ArcFace, SFace
|
|
|
|
enforce_detection (boolean): If no face could not be detected in an image, then this
|
|
function will return exception by default. Set this to False not to have this exception.
|
|
This might be convenient for low resolution images.
|
|
|
|
detector_backend (string): set face detector backend to opencv, retinaface, mtcnn, ssd,
|
|
dlib, mediapipe or yolov8n.
|
|
|
|
align (boolean): alignment according to the eye positions.
|
|
|
|
normalization (string): normalize the input image before feeding to model
|
|
|
|
Returns:
|
|
Represent function returns a list of object with multidimensional vector (embedding).
|
|
The number of dimensions is changing based on the reference model.
|
|
E.g. FaceNet returns 128 dimensional vector; VGG-Face returns 2622 dimensional vector.
|
|
"""
|
|
resp_objs = []
|
|
|
|
model = build_model(model_name)
|
|
|
|
# ---------------------------------
|
|
# we have run pre-process in verification. so, this can be skipped if it is coming from verify.
|
|
target_size = functions.find_target_size(model_name=model_name)
|
|
if detector_backend != "skip":
|
|
img_objs = functions.extract_faces(
|
|
img=img_path,
|
|
target_size=target_size,
|
|
detector_backend=detector_backend,
|
|
grayscale=False,
|
|
enforce_detection=enforce_detection,
|
|
align=align,
|
|
)
|
|
else: # skip
|
|
if isinstance(img_path, str):
|
|
img = functions.load_image(img_path)
|
|
elif type(img_path).__module__ == np.__name__:
|
|
img = img_path.copy()
|
|
else:
|
|
raise ValueError(f"unexpected type for img_path - {type(img_path)}")
|
|
# --------------------------------
|
|
if len(img.shape) == 4:
|
|
img = img[0] # e.g. (1, 224, 224, 3) to (224, 224, 3)
|
|
if len(img.shape) == 3:
|
|
img = cv2.resize(img, target_size)
|
|
img = np.expand_dims(img, axis=0)
|
|
# --------------------------------
|
|
img_region = [0, 0, img.shape[1], img.shape[0]]
|
|
img_objs = [(img, img_region, 0)]
|
|
# ---------------------------------
|
|
|
|
for img, region, confidence in img_objs:
|
|
# custom normalization
|
|
img = functions.normalize_input(img=img, normalization=normalization)
|
|
|
|
# represent
|
|
if "keras" in str(type(model)):
|
|
# new tf versions show progress bar and it is annoying
|
|
embedding = model.predict(img, verbose=0)[0].tolist()
|
|
else:
|
|
# SFace and Dlib are not keras models and no verbose arguments
|
|
embedding = model.predict(img)[0].tolist()
|
|
|
|
resp_obj = {}
|
|
resp_obj["embedding"] = embedding
|
|
resp_obj["facial_area"] = region
|
|
resp_obj["face_confidence"] = confidence
|
|
resp_objs.append(resp_obj)
|
|
|
|
return resp_objs
|
|
|
|
|
|
def stream(
|
|
db_path="",
|
|
model_name="VGG-Face",
|
|
detector_backend="opencv",
|
|
distance_metric="cosine",
|
|
enable_face_analysis=True,
|
|
source=0,
|
|
time_threshold=5,
|
|
frame_threshold=5,
|
|
):
|
|
|
|
"""
|
|
This function applies real time face recognition and facial attribute analysis
|
|
|
|
Parameters:
|
|
db_path (string): facial database path. You should store some .jpg files in this folder.
|
|
|
|
model_name (string): VGG-Face, Facenet, Facenet512, OpenFace, DeepFace, DeepID, Dlib,
|
|
ArcFace, SFace
|
|
|
|
detector_backend (string): opencv, retinaface, mtcnn, ssd, dlib, mediapipe or yolov8n.
|
|
|
|
distance_metric (string): cosine, euclidean, euclidean_l2
|
|
|
|
enable_facial_analysis (boolean): Set this to False to just run face recognition
|
|
|
|
source: Set this to 0 for access web cam. Otherwise, pass exact video path.
|
|
|
|
time_threshold (int): how many second analyzed image will be displayed
|
|
|
|
frame_threshold (int): how many frames required to focus on face
|
|
|
|
"""
|
|
|
|
if time_threshold < 1:
|
|
raise ValueError(
|
|
"time_threshold must be greater than the value 1 but you passed " + str(time_threshold)
|
|
)
|
|
|
|
if frame_threshold < 1:
|
|
raise ValueError(
|
|
"frame_threshold must be greater than the value 1 but you passed "
|
|
+ str(frame_threshold)
|
|
)
|
|
|
|
realtime.analysis(
|
|
db_path,
|
|
model_name,
|
|
detector_backend,
|
|
distance_metric,
|
|
enable_face_analysis,
|
|
source=source,
|
|
time_threshold=time_threshold,
|
|
frame_threshold=frame_threshold,
|
|
)
|
|
|
|
|
|
def extract_faces(
|
|
img_path,
|
|
target_size=(224, 224),
|
|
detector_backend="opencv",
|
|
enforce_detection=True,
|
|
align=True,
|
|
grayscale=False,
|
|
):
|
|
|
|
"""
|
|
This function applies pre-processing stages of a face recognition pipeline
|
|
including detection and alignment
|
|
|
|
Parameters:
|
|
img_path: exact image path, numpy array (BGR) or base64 encoded image.
|
|
Source image can have many face. Then, result will be the size of number
|
|
of faces appearing in that source image.
|
|
|
|
target_size (tuple): final shape of facial image. black pixels will be
|
|
added to resize the image.
|
|
|
|
detector_backend (string): face detection backends are retinaface, mtcnn,
|
|
opencv, ssd or dlib
|
|
|
|
enforce_detection (boolean): function throws exception if face cannot be
|
|
detected in the fed image. Set this to False if you do not want to get
|
|
an exception and run the function anyway.
|
|
|
|
align (boolean): alignment according to the eye positions.
|
|
|
|
grayscale (boolean): extracting faces in rgb or gray scale
|
|
|
|
Returns:
|
|
list of dictionaries. Each dictionary will have facial image itself,
|
|
extracted area from the original image and confidence score.
|
|
|
|
"""
|
|
|
|
resp_objs = []
|
|
img_objs = functions.extract_faces(
|
|
img=img_path,
|
|
target_size=target_size,
|
|
detector_backend=detector_backend,
|
|
grayscale=grayscale,
|
|
enforce_detection=enforce_detection,
|
|
align=align,
|
|
)
|
|
|
|
for img, region, confidence in img_objs:
|
|
resp_obj = {}
|
|
|
|
# discard expanded dimension
|
|
if len(img.shape) == 4:
|
|
img = img[0]
|
|
|
|
resp_obj["face"] = img[:, :, ::-1]
|
|
resp_obj["facial_area"] = region
|
|
resp_obj["confidence"] = confidence
|
|
resp_objs.append(resp_obj)
|
|
|
|
return resp_objs
|
|
|
|
|
|
# ---------------------------
|
|
# deprecated functions
|
|
|
|
|
|
@deprecated(version="0.0.78", reason="Use DeepFace.extract_faces instead of DeepFace.detectFace")
|
|
def detectFace(
|
|
img_path, target_size=(224, 224), detector_backend="opencv", enforce_detection=True, align=True
|
|
):
|
|
"""
|
|
Deprecated function. Use extract_faces for same functionality.
|
|
|
|
This function applies pre-processing stages of a face recognition pipeline
|
|
including detection and alignment
|
|
|
|
Parameters:
|
|
img_path: exact image path, numpy array (BGR) or base64 encoded image.
|
|
Source image can have many face. Then, result will be the size of number
|
|
of faces appearing in that source image.
|
|
|
|
target_size (tuple): final shape of facial image. black pixels will be
|
|
added to resize the image.
|
|
|
|
detector_backend (string): face detection backends are retinaface, mtcnn,
|
|
opencv, ssd or dlib
|
|
|
|
enforce_detection (boolean): function throws exception if face cannot be
|
|
detected in the fed image. Set this to False if you do not want to get
|
|
an exception and run the function anyway.
|
|
|
|
align (boolean): alignment according to the eye positions.
|
|
|
|
grayscale (boolean): extracting faces in rgb or gray scale
|
|
|
|
Returns:
|
|
detected and aligned face as numpy array
|
|
|
|
"""
|
|
print("⚠️ Function detectFace is deprecated. Use extract_faces instead.")
|
|
face_objs = extract_faces(
|
|
img_path=img_path,
|
|
target_size=target_size,
|
|
detector_backend=detector_backend,
|
|
enforce_detection=enforce_detection,
|
|
align=align,
|
|
grayscale=False,
|
|
)
|
|
|
|
extracted_face = None
|
|
if len(face_objs) > 0:
|
|
extracted_face = face_objs[0]["face"]
|
|
return extracted_face
|
|
|
|
|
|
# ---------------------------
|
|
# main
|
|
|
|
functions.initialize_folder()
|
|
|
|
|
|
def cli():
|
|
"""
|
|
command line interface function will be offered in this block
|
|
"""
|
|
import fire
|
|
|
|
fire.Fire()
|