#ifndef FASTFLOAT_ASCII_NUMBER_H #define FASTFLOAT_ASCII_NUMBER_H #include #include #include #include #include "float_common.h" namespace fast_float { // Next function can be micro-optimized, but compilers are entirely // able to optimize it well. fastfloat_really_inline bool is_integer(char c) noexcept { return c >= '0' && c <= '9'; } fastfloat_really_inline uint64_t byteswap(uint64_t val) { return (val & 0xFF00000000000000) >> 56 | (val & 0x00FF000000000000) >> 40 | (val & 0x0000FF0000000000) >> 24 | (val & 0x000000FF00000000) >> 8 | (val & 0x00000000FF000000) << 8 | (val & 0x0000000000FF0000) << 24 | (val & 0x000000000000FF00) << 40 | (val & 0x00000000000000FF) << 56; } fastfloat_really_inline uint64_t read_u64(const char *chars) { uint64_t val; ::memcpy(&val, chars, sizeof(uint64_t)); #if FASTFLOAT_IS_BIG_ENDIAN == 1 // Need to read as-if the number was in little-endian order. val = byteswap(val); #endif return val; } fastfloat_really_inline void write_u64(uint8_t *chars, uint64_t val) { #if FASTFLOAT_IS_BIG_ENDIAN == 1 // Need to read as-if the number was in little-endian order. val = byteswap(val); #endif ::memcpy(chars, &val, sizeof(uint64_t)); } // credit @aqrit fastfloat_really_inline uint32_t parse_eight_digits_unrolled(uint64_t val) { const uint64_t mask = 0x000000FF000000FF; const uint64_t mul1 = 0x000F424000000064; // 100 + (1000000ULL << 32) const uint64_t mul2 = 0x0000271000000001; // 1 + (10000ULL << 32) val -= 0x3030303030303030; val = (val * 10) + (val >> 8); // val = (val * 2561) >> 8; val = (((val & mask) * mul1) + (((val >> 16) & mask) * mul2)) >> 32; return uint32_t(val); } fastfloat_really_inline uint32_t parse_eight_digits_unrolled(const char *chars) noexcept { return parse_eight_digits_unrolled(read_u64(chars)); } // credit @aqrit fastfloat_really_inline bool is_made_of_eight_digits_fast(uint64_t val) noexcept { return !((((val + 0x4646464646464646) | (val - 0x3030303030303030)) & 0x8080808080808080)); } fastfloat_really_inline bool is_made_of_eight_digits_fast(const char *chars) noexcept { return is_made_of_eight_digits_fast(read_u64(chars)); } typedef span byte_span; struct parsed_number_string { int64_t exponent{0}; uint64_t mantissa{0}; const char *lastmatch{nullptr}; bool negative{false}; bool valid{false}; bool too_many_digits{false}; // contains the range of the significant digits byte_span integer{}; // non-nullable byte_span fraction{}; // nullable }; // Assuming that you use no more than 19 digits, this will // parse an ASCII string. fastfloat_really_inline parsed_number_string parse_number_string(const char *p, const char *pend, parse_options options) noexcept { const chars_format fmt = options.format; const char decimal_point = options.decimal_point; parsed_number_string answer; answer.valid = false; answer.too_many_digits = false; answer.negative = (*p == '-'); if (*p == '-') { // C++17 20.19.3.(7.1) explicitly forbids '+' sign here ++p; if (p == pend) { return answer; } if (!is_integer(*p) && (*p != decimal_point)) { // a sign must be followed by an integer or the dot return answer; } } const char *const start_digits = p; uint64_t i = 0; // an unsigned int avoids signed overflows (which are bad) while ((p != pend) && is_integer(*p)) { // a multiplication by 10 is cheaper than an arbitrary integer // multiplication i = 10 * i + uint64_t(*p - '0'); // might overflow, we will handle the overflow later ++p; } const char *const end_of_integer_part = p; int64_t digit_count = int64_t(end_of_integer_part - start_digits); answer.integer = byte_span(start_digits, size_t(digit_count)); int64_t exponent = 0; if ((p != pend) && (*p == decimal_point)) { ++p; const char* before = p; // can occur at most twice without overflowing, but let it occur more, since // for integers with many digits, digit parsing is the primary bottleneck. while ((std::distance(p, pend) >= 8) && is_made_of_eight_digits_fast(p)) { i = i * 100000000 + parse_eight_digits_unrolled(p); // in rare cases, this will overflow, but that's ok p += 8; } while ((p != pend) && is_integer(*p)) { uint8_t digit = uint8_t(*p - '0'); ++p; i = i * 10 + digit; // in rare cases, this will overflow, but that's ok } exponent = before - p; answer.fraction = byte_span(before, size_t(p - before)); digit_count -= exponent; } // we must have encountered at least one integer! if (digit_count == 0) { return answer; } int64_t exp_number = 0; // explicit exponential part if ((fmt & chars_format::scientific) && (p != pend) && (('e' == *p) || ('E' == *p))) { const char * location_of_e = p; ++p; bool neg_exp = false; if ((p != pend) && ('-' == *p)) { neg_exp = true; ++p; } else if ((p != pend) && ('+' == *p)) { // '+' on exponent is allowed by C++17 20.19.3.(7.1) ++p; } if ((p == pend) || !is_integer(*p)) { if(!(fmt & chars_format::fixed)) { // We are in error. return answer; } // Otherwise, we will be ignoring the 'e'. p = location_of_e; } else { while ((p != pend) && is_integer(*p)) { uint8_t digit = uint8_t(*p - '0'); if (exp_number < 0x10000000) { exp_number = 10 * exp_number + digit; } ++p; } if(neg_exp) { exp_number = - exp_number; } exponent += exp_number; } } else { // If it scientific and not fixed, we have to bail out. if((fmt & chars_format::scientific) && !(fmt & chars_format::fixed)) { return answer; } } answer.lastmatch = p; answer.valid = true; // If we frequently had to deal with long strings of digits, // we could extend our code by using a 128-bit integer instead // of a 64-bit integer. However, this is uncommon. // // We can deal with up to 19 digits. if (digit_count > 19) { // this is uncommon // It is possible that the integer had an overflow. // We have to handle the case where we have 0.0000somenumber. // We need to be mindful of the case where we only have zeroes... // E.g., 0.000000000...000. const char *start = start_digits; while ((start != pend) && (*start == '0' || *start == decimal_point)) { if(*start == '0') { digit_count --; } start++; } if (digit_count > 19) { answer.too_many_digits = true; // Let us start again, this time, avoiding overflows. // We don't need to check if is_integer, since we use the // pre-tokenized spans from above. i = 0; p = answer.integer.ptr; const char* int_end = p + answer.integer.len(); const uint64_t minimal_nineteen_digit_integer{1000000000000000000}; while((i < minimal_nineteen_digit_integer) && (p != int_end)) { i = i * 10 + uint64_t(*p - '0'); ++p; } if (i >= minimal_nineteen_digit_integer) { // We have a big integers exponent = end_of_integer_part - p + exp_number; } else { // We have a value with a fractional component. p = answer.fraction.ptr; const char* frac_end = p + answer.fraction.len(); while((i < minimal_nineteen_digit_integer) && (p != frac_end)) { i = i * 10 + uint64_t(*p - '0'); ++p; } exponent = answer.fraction.ptr - p + exp_number; } // We have now corrected both exponent and i, to a truncated value } } answer.exponent = exponent; answer.mantissa = i; return answer; } } // namespace fast_float #endif