duckstation/src/core/gpu_presenter.cpp
Stenzek 0129679bb0
GPU: Reduce overdraw when using overlays
Clear the four borders individually instead of a blit over the
entire texture.
2025-01-22 18:38:37 +10:00

1488 lines
59 KiB
C++

// SPDX-FileCopyrightText: 2019-2025 Connor McLaughlin <stenzek@gmail.com>
// SPDX-License-Identifier: CC-BY-NC-ND-4.0
#include "gpu_presenter.h"
#include "fullscreen_ui.h"
#include "gpu.h"
#include "gpu_backend.h"
#include "gpu_shadergen.h"
#include "gpu_thread.h"
#include "gpu_thread_commands.h"
#include "host.h"
#include "imgui_overlays.h"
#include "performance_counters.h"
#include "save_state_version.h"
#include "settings.h"
#include "system.h"
#include "util/gpu_device.h"
#include "util/image.h"
#include "util/imgui_fullscreen.h"
#include "util/imgui_manager.h"
#include "util/media_capture.h"
#include "util/postprocessing.h"
#include "util/state_wrapper.h"
#include "common/align.h"
#include "common/assert.h"
#include "common/error.h"
#include "common/file_system.h"
#include "common/gsvector_formatter.h"
#include "common/log.h"
#include "common/path.h"
#include "common/ryml_helpers.h"
#include "common/settings_interface.h"
#include "common/small_string.h"
#include "common/string_util.h"
#include "common/threading.h"
#include "common/timer.h"
#include <numbers>
LOG_CHANNEL(GPU);
GPUPresenter::GPUPresenter() = default;
GPUPresenter::~GPUPresenter()
{
DestroyDeinterlaceTextures();
g_gpu_device->RecycleTexture(std::move(m_chroma_smoothing_texture));
}
bool GPUPresenter::Initialize(Error* error)
{
// we can't change the format after compiling shaders
m_present_format =
g_gpu_device->HasMainSwapChain() ? g_gpu_device->GetMainSwapChain()->GetFormat() : GPUTexture::Format::RGBA8;
VERBOSE_LOG("Presentation format is {}", GPUTexture::GetFormatName(m_present_format));
// overlay has to come first, because it sets the alpha blending on the display pipeline
if (LoadOverlaySettings())
LoadOverlayTexture();
if (!CompileDisplayPipelines(true, true, g_gpu_settings.display_24bit_chroma_smoothing, error))
return false;
LoadPostProcessingSettings(false);
return true;
}
bool GPUPresenter::UpdateSettings(const GPUSettings& old_settings, Error* error)
{
if (g_gpu_settings.display_scaling != old_settings.display_scaling ||
g_gpu_settings.display_deinterlacing_mode != old_settings.display_deinterlacing_mode ||
g_gpu_settings.display_24bit_chroma_smoothing != old_settings.display_24bit_chroma_smoothing)
{
// Toss buffers on mode change.
if (g_gpu_settings.display_deinterlacing_mode != old_settings.display_deinterlacing_mode)
DestroyDeinterlaceTextures();
if (!CompileDisplayPipelines(
g_gpu_settings.display_scaling != old_settings.display_scaling,
g_gpu_settings.display_deinterlacing_mode != old_settings.display_deinterlacing_mode,
g_gpu_settings.display_24bit_chroma_smoothing != old_settings.display_24bit_chroma_smoothing, error))
{
Error::AddPrefix(error, "Failed to compile display pipeline on settings change:\n");
return false;
}
}
return true;
}
bool GPUPresenter::CompileDisplayPipelines(bool display, bool deinterlace, bool chroma_smoothing, Error* error)
{
const GPUShaderGen shadergen(g_gpu_device->GetRenderAPI(), g_gpu_device->GetFeatures().dual_source_blend,
g_gpu_device->GetFeatures().framebuffer_fetch);
GPUPipeline::GraphicsConfig plconfig;
plconfig.primitive = GPUPipeline::Primitive::Triangles;
plconfig.rasterization = GPUPipeline::RasterizationState::GetNoCullState();
plconfig.depth = GPUPipeline::DepthState::GetNoTestsState();
plconfig.blend = GPUPipeline::BlendState::GetNoBlendingState();
plconfig.geometry_shader = nullptr;
plconfig.depth_format = GPUTexture::Format::Unknown;
plconfig.samples = 1;
plconfig.per_sample_shading = false;
plconfig.render_pass_flags = GPUPipeline::NoRenderPassFlags;
if (display)
{
GPUBackend::SetScreenQuadInputLayout(plconfig);
plconfig.layout = GPUPipeline::Layout::SingleTextureAndPushConstants;
plconfig.SetTargetFormats(m_present_format);
std::unique_ptr<GPUShader> vso = g_gpu_device->CreateShader(GPUShaderStage::Vertex, shadergen.GetLanguage(),
shadergen.GenerateDisplayVertexShader(), error);
if (!vso)
return false;
GL_OBJECT_NAME(vso, "Display Vertex Shader");
std::string fs;
switch (g_gpu_settings.display_scaling)
{
case DisplayScalingMode::BilinearSharp:
fs = shadergen.GenerateDisplaySharpBilinearFragmentShader();
break;
case DisplayScalingMode::BilinearSmooth:
case DisplayScalingMode::BilinearInteger:
fs = shadergen.GenerateDisplayFragmentShader(true, false);
break;
case DisplayScalingMode::Nearest:
case DisplayScalingMode::NearestInteger:
default:
fs = shadergen.GenerateDisplayFragmentShader(false, true);
break;
}
std::unique_ptr<GPUShader> fso =
g_gpu_device->CreateShader(GPUShaderStage::Fragment, shadergen.GetLanguage(), fs, error);
if (!fso)
return false;
GL_OBJECT_NAME_FMT(fso, "Display Fragment Shader [{}]",
Settings::GetDisplayScalingName(g_gpu_settings.display_scaling));
plconfig.vertex_shader = vso.get();
plconfig.fragment_shader = fso.get();
if (!(m_display_pipeline = g_gpu_device->CreatePipeline(plconfig, error)))
return false;
GL_OBJECT_NAME_FMT(m_display_pipeline, "Display Pipeline [{}]",
Settings::GetDisplayScalingName(g_gpu_settings.display_scaling));
std::unique_ptr<GPUShader> copy_fso = g_gpu_device->CreateShader(
GPUShaderStage::Fragment, shadergen.GetLanguage(), shadergen.GenerateCopyFragmentShader(false), error);
if (!copy_fso)
return false;
GL_OBJECT_NAME(copy_fso, "Display Copy Fragment Shader");
plconfig.fragment_shader = copy_fso.get();
if (!(m_present_copy_pipeline = g_gpu_device->CreatePipeline(plconfig, error)))
return false;
GL_OBJECT_NAME(m_present_copy_pipeline, "Display Copy Pipeline");
// blended variants
if (m_border_overlay_texture)
{
std::unique_ptr<GPUShader> clear_fso = g_gpu_device->CreateShader(
GPUShaderStage::Fragment, shadergen.GetLanguage(),
shadergen.GenerateFillFragmentShader(GSVector4::cxpr(0.0f, 0.0f, 0.0f, 1.0f)), error);
if (!clear_fso)
return false;
GL_OBJECT_NAME(clear_fso, "Display Clear Fragment Shader");
plconfig.fragment_shader = copy_fso.get();
plconfig.blend = m_border_overlay_alpha_blend ? GPUPipeline::BlendState::GetAlphaBlendingState() :
GPUPipeline::BlendState::GetNoBlendingState();
if (!(m_border_overlay_pipeline = g_gpu_device->CreatePipeline(plconfig, error)))
return false;
GL_OBJECT_NAME(m_border_overlay_pipeline, "Border Overlay Pipeline");
plconfig.blend = GPUPipeline::BlendState::GetNoBlendingState();
if (m_border_overlay_destination_alpha_blend)
{
// destination blend the main present, not source
plconfig.blend.enable = true;
plconfig.blend.src_blend = GPUPipeline::BlendFunc::InvDstAlpha;
plconfig.blend.blend_op = GPUPipeline::BlendOp::Add;
plconfig.blend.dst_blend = GPUPipeline::BlendFunc::One;
plconfig.blend.src_alpha_blend = GPUPipeline::BlendFunc::One;
plconfig.blend.alpha_blend_op = GPUPipeline::BlendOp::Add;
plconfig.blend.dst_alpha_blend = GPUPipeline::BlendFunc::Zero;
}
plconfig.fragment_shader = clear_fso.get();
plconfig.primitive = GPUPipeline::Primitive::Triangles;
if (!(m_present_clear_pipeline = g_gpu_device->CreatePipeline(plconfig, error)))
return false;
GL_OBJECT_NAME(m_present_clear_pipeline, "Display Clear Pipeline");
plconfig.fragment_shader = fso.get();
plconfig.primitive = GPUPipeline::Primitive::TriangleStrips;
if (!(m_display_blend_pipeline = g_gpu_device->CreatePipeline(plconfig, error)))
return false;
GL_OBJECT_NAME_FMT(m_display_blend_pipeline, "Display Pipeline [Blended, {}]",
Settings::GetDisplayScalingName(g_gpu_settings.display_scaling));
plconfig.fragment_shader = copy_fso.get();
if (!(m_present_copy_blend_pipeline = g_gpu_device->CreatePipeline(plconfig, error)))
return false;
GL_OBJECT_NAME(m_present_copy_blend_pipeline, "Display Copy Pipeline [Blended]");
}
else
{
m_border_overlay_pipeline.reset();
m_present_clear_pipeline.reset();
m_display_blend_pipeline.reset();
m_present_copy_blend_pipeline.reset();
}
}
plconfig.input_layout = {};
plconfig.primitive = GPUPipeline::Primitive::Triangles;
plconfig.blend = GPUPipeline::BlendState::GetNoBlendingState();
if (deinterlace)
{
std::unique_ptr<GPUShader> vso = g_gpu_device->CreateShader(GPUShaderStage::Vertex, shadergen.GetLanguage(),
shadergen.GenerateScreenQuadVertexShader(), error);
if (!vso)
return false;
GL_OBJECT_NAME(vso, "Deinterlace Vertex Shader");
plconfig.layout = GPUPipeline::Layout::SingleTextureAndPushConstants;
plconfig.vertex_shader = vso.get();
plconfig.SetTargetFormats(GPUTexture::Format::RGBA8);
switch (g_gpu_settings.display_deinterlacing_mode)
{
case DisplayDeinterlacingMode::Disabled:
case DisplayDeinterlacingMode::Progressive:
break;
case DisplayDeinterlacingMode::Weave:
{
std::unique_ptr<GPUShader> fso = g_gpu_device->CreateShader(
GPUShaderStage::Fragment, shadergen.GetLanguage(), shadergen.GenerateDeinterlaceWeaveFragmentShader(), error);
if (!fso)
return false;
GL_OBJECT_NAME(fso, "Weave Deinterlace Fragment Shader");
plconfig.layout = GPUPipeline::Layout::SingleTextureAndPushConstants;
plconfig.vertex_shader = vso.get();
plconfig.fragment_shader = fso.get();
if (!(m_deinterlace_pipeline = g_gpu_device->CreatePipeline(plconfig, error)))
return false;
GL_OBJECT_NAME(m_deinterlace_pipeline, "Weave Deinterlace Pipeline");
}
break;
case DisplayDeinterlacingMode::Blend:
{
std::unique_ptr<GPUShader> fso = g_gpu_device->CreateShader(
GPUShaderStage::Fragment, shadergen.GetLanguage(), shadergen.GenerateDeinterlaceBlendFragmentShader(), error);
if (!fso)
return false;
GL_OBJECT_NAME(fso, "Blend Deinterlace Fragment Shader");
plconfig.layout = GPUPipeline::Layout::MultiTextureAndPushConstants;
plconfig.vertex_shader = vso.get();
plconfig.fragment_shader = fso.get();
if (!(m_deinterlace_pipeline = g_gpu_device->CreatePipeline(plconfig, error)))
return false;
GL_OBJECT_NAME(m_deinterlace_pipeline, "Blend Deinterlace Pipeline");
}
break;
case DisplayDeinterlacingMode::Adaptive:
{
std::unique_ptr<GPUShader> fso =
g_gpu_device->CreateShader(GPUShaderStage::Fragment, shadergen.GetLanguage(),
shadergen.GenerateFastMADReconstructFragmentShader(), error);
if (!fso)
return false;
GL_OBJECT_NAME(fso, "FastMAD Reconstruct Fragment Shader");
plconfig.layout = GPUPipeline::Layout::MultiTextureAndPushConstants;
plconfig.fragment_shader = fso.get();
if (!(m_deinterlace_pipeline = g_gpu_device->CreatePipeline(plconfig, error)))
return false;
GL_OBJECT_NAME(m_deinterlace_pipeline, "FastMAD Reconstruct Pipeline");
}
break;
default:
UnreachableCode();
}
}
if (chroma_smoothing)
{
m_chroma_smoothing_pipeline.reset();
g_gpu_device->RecycleTexture(std::move(m_chroma_smoothing_texture));
if (g_gpu_settings.display_24bit_chroma_smoothing)
{
plconfig.layout = GPUPipeline::Layout::SingleTextureAndPushConstants;
plconfig.SetTargetFormats(GPUTexture::Format::RGBA8);
std::unique_ptr<GPUShader> vso = g_gpu_device->CreateShader(GPUShaderStage::Vertex, shadergen.GetLanguage(),
shadergen.GenerateScreenQuadVertexShader(), error);
std::unique_ptr<GPUShader> fso = g_gpu_device->CreateShader(
GPUShaderStage::Fragment, shadergen.GetLanguage(), shadergen.GenerateChromaSmoothingFragmentShader(), error);
if (!vso || !fso)
return false;
GL_OBJECT_NAME(vso, "Chroma Smoothing Vertex Shader");
GL_OBJECT_NAME(fso, "Chroma Smoothing Fragment Shader");
plconfig.vertex_shader = vso.get();
plconfig.fragment_shader = fso.get();
if (!(m_chroma_smoothing_pipeline = g_gpu_device->CreatePipeline(plconfig, error)))
return false;
GL_OBJECT_NAME(m_chroma_smoothing_pipeline, "Chroma Smoothing Pipeline");
}
}
return true;
}
void GPUPresenter::ClearDisplay()
{
ClearDisplayTexture();
// Just recycle the textures, it'll get re-fetched.
DestroyDeinterlaceTextures();
}
void GPUPresenter::ClearDisplayTexture()
{
m_display_texture = nullptr;
m_display_texture_view_x = 0;
m_display_texture_view_y = 0;
m_display_texture_view_width = 0;
m_display_texture_view_height = 0;
}
void GPUPresenter::SetDisplayParameters(u16 display_width, u16 display_height, u16 display_origin_left,
u16 display_origin_top, u16 display_vram_width, u16 display_vram_height,
float display_pixel_aspect_ratio)
{
m_display_width = display_width;
m_display_height = display_height;
m_display_origin_left = display_origin_left;
m_display_origin_top = display_origin_top;
m_display_vram_width = display_vram_width;
m_display_vram_height = display_vram_height;
m_display_pixel_aspect_ratio = display_pixel_aspect_ratio;
}
void GPUPresenter::SetDisplayTexture(GPUTexture* texture, s32 view_x, s32 view_y, s32 view_width, s32 view_height)
{
DebugAssert(texture);
if (g_gpu_settings.display_auto_resize_window &&
(view_width != m_display_texture_view_width || view_height != m_display_texture_view_height))
{
Host::RunOnCPUThread([]() { System::RequestDisplaySize(); });
}
m_display_texture = texture;
m_display_texture_view_x = view_x;
m_display_texture_view_y = view_y;
m_display_texture_view_width = view_width;
m_display_texture_view_height = view_height;
}
GPUDevice::PresentResult GPUPresenter::RenderDisplay(GPUTexture* target, const GSVector2i target_size, bool postfx,
bool apply_aspect_ratio)
{
GL_SCOPE_FMT("RenderDisplay: {}x{}", target_size.x, target_size.y);
if (m_display_texture)
m_display_texture->MakeReadyForSampling();
DebugAssert(target || g_gpu_device->HasMainSwapChain());
DebugAssert(!postfx || target_size.eq(g_gpu_device->GetMainSwapChain()->GetSizeVec()));
GPUSwapChain* const swap_chain = g_gpu_device->GetMainSwapChain();
const WindowInfo::PreRotation prerotation = target ? WindowInfo::PreRotation::Identity : swap_chain->GetPreRotation();
const GSVector2i final_target_size = target ? target->GetSizeVec() : swap_chain->GetPostRotatedSizeVec();
const bool is_vram_view = g_gpu_settings.gpu_show_vram;
const bool have_overlay = (postfx && !is_vram_view && HasBorderOverlay());
const bool have_prerotation = (prerotation != WindowInfo::PreRotation::Identity);
GL_INS(have_overlay ? "Overlay is ENABLED" : "Overlay is disabled");
GL_INS_FMT("Prerotation: {}", static_cast<u32>(prerotation));
GL_INS_FMT("Final target size: {}x{}", target_size.x, target_size.y);
// Compute draw area.
GSVector4i display_rect;
GSVector4i draw_rect;
GSVector4i overlay_display_rect = GSVector4i::zero();
GSVector4i overlay_rect = GSVector4i::zero();
if (have_overlay)
{
overlay_rect = GSVector4i::rfit(GSVector4i::loadh(target_size), m_border_overlay_texture->GetSizeVec());
// Align the overlay rectangle to the top/bottom if requested.
const GSVector2i overlay_rect_size = overlay_rect.rsize();
if (g_gpu_settings.display_alignment == DisplayAlignment::LeftOrTop)
overlay_rect = overlay_rect.sub32(overlay_rect.xyxy());
else if (g_gpu_settings.display_alignment == DisplayAlignment::RightOrBottom)
overlay_rect = GSVector4i::xyxy(target_size).sub32(GSVector4i(overlay_rect_size));
const GSVector2 scale = GSVector2(overlay_rect_size) / GSVector2(m_border_overlay_texture->GetSizeVec());
overlay_display_rect =
GSVector4i(GSVector4(m_border_overlay_display_rect) * GSVector4::xyxy(scale)).add32(overlay_rect.xyxy());
// Draw to the overlay area instead of the whole screen. Always align in center, we align the overlay instead.
CalculateDrawRect(overlay_display_rect.width(), overlay_display_rect.height(), apply_aspect_ratio, false,
&display_rect, &draw_rect);
// Apply overlay area offset.
display_rect = display_rect.add32(overlay_display_rect.xyxy());
draw_rect = draw_rect.add32(overlay_display_rect.xyxy());
}
else
{
CalculateDrawRect(target_size.x, target_size.y, apply_aspect_ratio, true, &display_rect, &draw_rect);
}
// There's a bunch of scenarios where we need to use intermediate buffers.
// If we have post-processing and overlays enabled, postfx needs to happen on an intermediate buffer first.
// If pre-rotation is enabled with post-processing, we need to draw to an intermediate buffer, and apply the
// rotation at the end.
const GSVector2i postfx_size = have_overlay ? overlay_display_rect.rsize() : target_size;
const bool really_postfx =
(postfx && !is_vram_view && m_display_postfx && m_display_postfx->IsActive() && m_display_postfx &&
m_display_postfx->CheckTargets(m_present_format, postfx_size.x, postfx_size.y));
GL_INS(really_postfx ? "Post-processing is ENABLED" : "Post-processing is disabled");
GL_INS_FMT("Post-processing render target size: {}x{}", postfx_size.x, postfx_size.y);
// Helper to bind swap chain/final target.
const auto bind_final_target = [&target, &swap_chain, &final_target_size](bool clear) {
if (target)
{
if (clear)
g_gpu_device->ClearRenderTarget(target, GPUDevice::DEFAULT_CLEAR_COLOR);
else
g_gpu_device->InvalidateRenderTarget(target);
g_gpu_device->SetRenderTarget(target);
}
else
{
const GPUDevice::PresentResult res = g_gpu_device->BeginPresent(swap_chain);
if (res != GPUDevice::PresentResult::OK)
return res;
}
g_gpu_device->SetViewport(GSVector4i::loadh(final_target_size));
return GPUDevice::PresentResult::OK;
};
// If postfx is enabled, we need to draw to an intermediate buffer first.
if (really_postfx)
{
// Remove draw offset if we're using an overlay.
const GSVector4i real_draw_rect = have_overlay ? draw_rect.sub32(overlay_display_rect.xyxy()) : draw_rect;
// Display is always drawn to the postfx input.
GPUTexture* const postfx_input = m_display_postfx->GetInputTexture();
g_gpu_device->ClearRenderTarget(postfx_input, GPUDevice::DEFAULT_CLEAR_COLOR);
g_gpu_device->SetRenderTarget(postfx_input);
g_gpu_device->SetViewport(GSVector4i::loadh(postfx_size));
if (m_display_texture)
{
DrawDisplay(postfx_size, postfx_size, real_draw_rect, false, g_gpu_settings.display_rotation,
WindowInfo::PreRotation::Identity);
}
postfx_input->MakeReadyForSampling();
// Apply postprocessing to an intermediate texture if we're prerotating or have an overlay.
if (have_prerotation || have_overlay)
{
GPUTexture* const postfx_output = m_display_postfx->GetTextureUnusedAtEndOfChain();
ApplyDisplayPostProcess(postfx_output, postfx_input, real_draw_rect);
postfx_output->MakeReadyForSampling();
// Start draw to final buffer.
if (const GPUDevice::PresentResult pres = bind_final_target(have_overlay); pres != GPUDevice::PresentResult::OK)
return pres;
// UVs of post-processed/prerotated output are flipped in OpenGL.
const GSVector4 src_uv_rect = g_gpu_device->UsesLowerLeftOrigin() ? GSVector4::cxpr(0.0f, 1.0f, 1.0f, 0.0f) :
GSVector4::cxpr(0.0f, 0.0f, 1.0f, 1.0f);
// If we have an overlay, draw it, and then copy the postprocessed framebuffer in.
if (have_overlay)
{
GL_SCOPE_FMT("Draw overlay and postfx buffer");
g_gpu_device->SetPipeline(m_border_overlay_pipeline.get());
g_gpu_device->SetTextureSampler(0, m_border_overlay_texture.get(), g_gpu_device->GetLinearSampler());
DrawScreenQuad(overlay_rect, GSVector4::cxpr(0.0f, 0.0f, 1.0f, 1.0f), target_size, final_target_size,
DisplayRotation::Normal, prerotation);
g_gpu_device->SetPipeline(m_border_overlay_pipeline.get());
g_gpu_device->SetTextureSampler(0, postfx_output, g_gpu_device->GetNearestSampler());
DrawScreenQuad(overlay_display_rect, src_uv_rect, target_size, final_target_size, DisplayRotation::Normal,
prerotation);
}
else
{
// Otherwise, just copy the framebuffer.
GL_SCOPE_FMT("Copy framebuffer for prerotation");
g_gpu_device->SetPipeline(m_present_copy_pipeline.get());
g_gpu_device->SetTextureSampler(0, postfx_output, g_gpu_device->GetNearestSampler());
DrawScreenQuad(GSVector4i::loadh(postfx_size), src_uv_rect, target_size, final_target_size,
DisplayRotation::Normal, prerotation);
}
// All done
return GPUDevice::PresentResult::OK;
}
else
{
// Otherwise apply postprocessing directly to swap chain.
return ApplyDisplayPostProcess(target, postfx_input, display_rect);
}
}
else
{
// The non-postprocessing cases are much simpler. We always optionally draw the overlay, then draw the display.
// The only tricky bit is we have to combine the display rotation and prerotation for the latter.
if (const GPUDevice::PresentResult pres = bind_final_target(true); pres != GPUDevice::PresentResult::OK)
return pres;
if (have_overlay)
{
GL_SCOPE_FMT("Draw overlay to {}", overlay_rect);
g_gpu_device->SetPipeline(m_border_overlay_pipeline.get());
g_gpu_device->SetTextureSampler(0, m_border_overlay_texture.get(), g_gpu_device->GetLinearSampler());
DrawScreenQuad(overlay_rect, GSVector4::cxpr(0.0f, 0.0f, 1.0f, 1.0f), target_size, final_target_size,
DisplayRotation::Normal, prerotation);
if (!overlay_display_rect.eq(draw_rect))
{
DrawOverlayBorders(target_size, final_target_size, overlay_display_rect,
m_display_texture ? draw_rect : draw_rect.xyxy(), prerotation);
}
}
if (m_display_texture)
{
DrawDisplay(target_size, final_target_size, draw_rect, have_overlay && m_border_overlay_destination_alpha_blend,
g_gpu_settings.display_rotation, prerotation);
}
return GPUDevice::PresentResult::OK;
}
}
void GPUPresenter::DrawOverlayBorders(const GSVector2i target_size, const GSVector2i final_target_size,
const GSVector4i overlay_display_rect, const GSVector4i draw_rect,
const WindowInfo::PreRotation prerotation)
{
GL_SCOPE_FMT("Fill in overlay borders - odisplay={}, draw={}", overlay_display_rect, draw_rect);
const GSVector2i overlay_display_rect_size = overlay_display_rect.rsize();
const GSVector4i overlay_display_rect_offset = overlay_display_rect.xyxy();
const GSVector4i draw_rect_inside_overlay = draw_rect.sub32(overlay_display_rect_offset);
const GSVector4i padding =
GSVector4i::xyxy(draw_rect_inside_overlay.xy(), overlay_display_rect_size.sub32(draw_rect_inside_overlay.zw()));
GPUBackend::ScreenVertex* vertices;
u32 space;
u32 base_vertex;
g_gpu_device->MapVertexBuffer(sizeof(GPUBackend::ScreenVertex), 24, reinterpret_cast<void**>(&vertices), &space,
&base_vertex);
u32 vertex_count = 0;
const auto add_rect = [&](const GSVector4i& rc) {
const GSVector4i screen_rect = overlay_display_rect_offset.add32(rc);
const GSVector4 xy = GPUBackend::GetScreenQuadClipSpaceCoordinates(
GPUSwapChain::PreRotateClipRect(prerotation, target_size, screen_rect), final_target_size);
const GSVector2 uv = GSVector2::zero();
vertices[vertex_count + 0].Set(xy.xy(), uv);
vertices[vertex_count + 1].Set(xy.zyzw().xy(), uv);
vertices[vertex_count + 2].Set(xy.xwzw().xy(), uv);
vertices[vertex_count + 3].Set(xy.zyzw().xy(), uv);
vertices[vertex_count + 4].Set(xy.xwzw().xy(), uv);
vertices[vertex_count + 5].Set(xy.zw(), uv);
vertex_count += 6;
};
const s32 left_padding = padding.left;
const s32 top_padding = padding.top;
const s32 right_padding = padding.right;
const s32 bottom_padding = padding.bottom;
GL_INS_FMT("Padding: left={}, top={}, right={}, bottom={}", left_padding, top_padding, right_padding, bottom_padding);
// this is blended, so be careful not to overlap two rects
if (left_padding > 0)
{
add_rect(GSVector4i(0, 0, left_padding, overlay_display_rect_size.y));
}
if (top_padding > 0)
{
add_rect(GSVector4i((left_padding > 0) ? left_padding : 0, 0,
overlay_display_rect_size.x - ((right_padding > 0) ? right_padding : 0), top_padding));
}
if (right_padding > 0)
{
add_rect(GSVector4i(overlay_display_rect_size.x - right_padding, 0, overlay_display_rect_size.x,
overlay_display_rect_size.y));
}
if (bottom_padding > 0)
{
add_rect(GSVector4i((left_padding > 0) ? left_padding : 0, overlay_display_rect_size.y - bottom_padding,
overlay_display_rect_size.x - ((right_padding > 0) ? right_padding : 0),
overlay_display_rect_size.y));
}
g_gpu_device->UnmapVertexBuffer(sizeof(GPUBackend::ScreenVertex), vertex_count);
if (vertex_count > 0)
{
const GSVector4i scissor = GPUSwapChain::PreRotateClipRect(prerotation, target_size, overlay_display_rect);
g_gpu_device->SetScissor(
g_gpu_device->UsesLowerLeftOrigin() ? GPUDevice::FlipToLowerLeft(scissor, final_target_size.y) : scissor);
g_gpu_device->SetPipeline(m_present_clear_pipeline.get());
g_gpu_device->Draw(vertex_count, base_vertex);
}
}
void GPUPresenter::DrawDisplay(const GSVector2i target_size, const GSVector2i final_target_size,
const GSVector4i display_rect, bool dst_alpha_blend, DisplayRotation rotation,
WindowInfo::PreRotation prerotation)
{
bool texture_filter_linear = false;
struct alignas(16) Uniforms
{
float src_size[4];
float clamp_rect[4];
float params[4];
} uniforms;
std::memset(uniforms.params, 0, sizeof(uniforms.params));
switch (g_gpu_settings.display_scaling)
{
case DisplayScalingMode::Nearest:
case DisplayScalingMode::NearestInteger:
break;
case DisplayScalingMode::BilinearSmooth:
case DisplayScalingMode::BilinearInteger:
texture_filter_linear = true;
break;
case DisplayScalingMode::BilinearSharp:
{
texture_filter_linear = true;
uniforms.params[0] = std::max(
std::floor(static_cast<float>(display_rect.width()) / static_cast<float>(m_display_texture_view_width)), 1.0f);
uniforms.params[1] = std::max(
std::floor(static_cast<float>(display_rect.height()) / static_cast<float>(m_display_texture_view_height)),
1.0f);
uniforms.params[2] = 0.5f - 0.5f / uniforms.params[0];
uniforms.params[3] = 0.5f - 0.5f / uniforms.params[1];
}
break;
default:
UnreachableCode();
break;
}
g_gpu_device->SetPipeline(dst_alpha_blend ? m_display_blend_pipeline.get() : m_display_pipeline.get());
g_gpu_device->SetTextureSampler(
0, m_display_texture, texture_filter_linear ? g_gpu_device->GetLinearSampler() : g_gpu_device->GetNearestSampler());
// For bilinear, clamp to 0.5/SIZE-0.5 to avoid bleeding from the adjacent texels in VRAM. This is because
// 1.0 in UV space is not the bottom-right texel, but a mix of the bottom-right and wrapped/next texel.
const GSVector2 display_texture_size = GSVector2(m_display_texture->GetSizeVec());
const GSVector4 display_texture_size4 = GSVector4::xyxy(display_texture_size);
const GSVector4 uv_rect = GSVector4(GSVector4i(m_display_texture_view_x, m_display_texture_view_y,
m_display_texture_view_x + m_display_texture_view_width,
m_display_texture_view_y + m_display_texture_view_height)) /
display_texture_size4;
GSVector4::store<true>(
uniforms.clamp_rect,
GSVector4(static_cast<float>(m_display_texture_view_x) + 0.5f, static_cast<float>(m_display_texture_view_y) + 0.5f,
static_cast<float>(m_display_texture_view_x + m_display_texture_view_width) - 0.5f,
static_cast<float>(m_display_texture_view_y + m_display_texture_view_height) - 0.5f) /
display_texture_size4);
GSVector4::store<true>(uniforms.src_size,
GSVector4::xyxy(display_texture_size, GSVector2::cxpr(1.0f) / display_texture_size));
g_gpu_device->PushUniformBuffer(&uniforms, sizeof(uniforms));
DrawScreenQuad(display_rect, uv_rect, target_size, final_target_size, rotation, prerotation);
}
void GPUPresenter::DrawScreenQuad(const GSVector4i rect, const GSVector4 uv_rect, const GSVector2i target_size,
const GSVector2i final_target_size, DisplayRotation rotation,
WindowInfo::PreRotation prerotation)
{
const GSVector4i real_rect = GPUSwapChain::PreRotateClipRect(prerotation, target_size, rect);
g_gpu_device->SetScissor(g_gpu_device->UsesLowerLeftOrigin() ? GPUDevice::FlipToLowerLeft(real_rect, target_size.y) :
real_rect);
GPUBackend::ScreenVertex* vertices;
u32 space;
u32 base_vertex;
g_gpu_device->MapVertexBuffer(sizeof(GPUBackend::ScreenVertex), 4, reinterpret_cast<void**>(&vertices), &space,
&base_vertex);
// Combine display rotation and prerotation together, since the rectangle has already been adjusted.
const GSVector4 xy = GPUBackend::GetScreenQuadClipSpaceCoordinates(real_rect, final_target_size);
const DisplayRotation effective_rotation = static_cast<DisplayRotation>(
(static_cast<u32>(rotation) + static_cast<u32>(prerotation)) % static_cast<u32>(DisplayRotation::Count));
switch (effective_rotation)
{
case DisplayRotation::Normal:
vertices[0].Set(xy.xy(), uv_rect.xy());
vertices[1].Set(xy.zyzw().xy(), uv_rect.zyzw().xy());
vertices[2].Set(xy.xwzw().xy(), uv_rect.xwzw().xy());
vertices[3].Set(xy.zw(), uv_rect.zw());
break;
case DisplayRotation::Rotate90:
vertices[0].Set(xy.xy(), uv_rect.xwzw().xy());
vertices[1].Set(xy.zyzw().xy(), uv_rect.xy());
vertices[2].Set(xy.xwzw().xy(), uv_rect.zw());
vertices[3].Set(xy.zw(), uv_rect.zyzw().xy());
break;
case DisplayRotation::Rotate180:
vertices[0].Set(xy.xy(), uv_rect.xwzw().xy());
vertices[1].Set(xy.zyzw().xy(), uv_rect.zw());
vertices[2].Set(xy.xwzw().xy(), uv_rect.xy());
vertices[3].Set(xy.zw(), uv_rect.zyzw().xy());
break;
case DisplayRotation::Rotate270:
vertices[0].Set(xy.xy(), uv_rect.zyzw().xy());
vertices[1].Set(xy.zyzw().xy(), uv_rect.zw());
vertices[2].Set(xy.xwzw().xy(), uv_rect.xy());
vertices[3].Set(xy.zw(), uv_rect.xwzw().xy());
break;
DefaultCaseIsUnreachable();
}
g_gpu_device->UnmapVertexBuffer(sizeof(GPUBackend::ScreenVertex), 4);
g_gpu_device->Draw(4, base_vertex);
}
GPUDevice::PresentResult GPUPresenter::ApplyDisplayPostProcess(GPUTexture* target, GPUTexture* input,
const GSVector4i display_rect)
{
DebugAssert(!g_gpu_settings.gpu_show_vram);
// "original size" in postfx includes padding.
const float upscale_x =
m_display_texture ? static_cast<float>(m_display_texture_view_width) / static_cast<float>(m_display_vram_width) :
1.0f;
const float upscale_y =
m_display_texture ? static_cast<float>(m_display_texture_view_height) / static_cast<float>(m_display_vram_height) :
1.0f;
const s32 orig_width = static_cast<s32>(std::ceil(static_cast<float>(m_display_width) * upscale_x));
const s32 orig_height = static_cast<s32>(std::ceil(static_cast<float>(m_display_height) * upscale_y));
return m_display_postfx->Apply(input, nullptr, target, display_rect, orig_width, orig_height, m_display_width,
m_display_height);
}
void GPUPresenter::SendDisplayToMediaCapture(MediaCapture* cap)
{
GPUTexture* target = cap->GetRenderTexture();
if (!target) [[unlikely]]
{
WARNING_LOG("Failed to get video capture render texture.");
Host::RunOnCPUThread(&System::StopMediaCapture);
return;
}
const bool apply_aspect_ratio =
(g_gpu_settings.display_screenshot_mode != DisplayScreenshotMode::UncorrectedInternalResolution);
const bool postfx =
(g_gpu_settings.display_screenshot_mode == DisplayScreenshotMode::ScreenResolution &&
g_gpu_device->HasMainSwapChain() && target->GetSizeVec().eq(g_gpu_device->GetMainSwapChain()->GetSizeVec()));
if (RenderDisplay(target, target->GetSizeVec(), postfx, apply_aspect_ratio) != GPUDevice::PresentResult::OK ||
!cap->DeliverVideoFrame(target)) [[unlikely]]
{
WARNING_LOG("Failed to render/deliver video capture frame.");
Host::RunOnCPUThread(&System::StopMediaCapture);
return;
}
}
void GPUPresenter::DestroyDeinterlaceTextures()
{
for (std::unique_ptr<GPUTexture>& tex : m_deinterlace_buffers)
g_gpu_device->RecycleTexture(std::move(tex));
g_gpu_device->RecycleTexture(std::move(m_deinterlace_texture));
m_current_deinterlace_buffer = 0;
}
bool GPUPresenter::Deinterlace(u32 field)
{
GPUTexture* src = m_display_texture;
const u32 x = m_display_texture_view_x;
const u32 y = m_display_texture_view_y;
const u32 width = m_display_texture_view_width;
const u32 height = m_display_texture_view_height;
const auto copy_to_field_buffer = [&](u32 buffer) {
if (!g_gpu_device->ResizeTexture(&m_deinterlace_buffers[buffer], width, height, GPUTexture::Type::Texture,
src->GetFormat(), GPUTexture::Flags::None, false)) [[unlikely]]
{
return false;
}
GL_OBJECT_NAME_FMT(m_deinterlace_buffers[buffer], "Blend Deinterlace Buffer {}", buffer);
GL_INS_FMT("Copy {}x{} from {},{} to field buffer {}", width, height, x, y, buffer);
g_gpu_device->CopyTextureRegion(m_deinterlace_buffers[buffer].get(), 0, 0, 0, 0, m_display_texture, x, y, 0, 0,
width, height);
return true;
};
src->MakeReadyForSampling();
switch (g_gpu_settings.display_deinterlacing_mode)
{
case DisplayDeinterlacingMode::Disabled:
{
GL_INS("Deinterlacing disabled, displaying field texture");
return true;
}
case DisplayDeinterlacingMode::Weave:
{
GL_SCOPE_FMT("DeinterlaceWeave({{{},{}}}, {}x{}, field={})", x, y, width, height, field);
const u32 full_height = height * 2;
if (!DeinterlaceSetTargetSize(width, full_height, true)) [[unlikely]]
{
ClearDisplayTexture();
return false;
}
src->MakeReadyForSampling();
g_gpu_device->SetRenderTarget(m_deinterlace_texture.get());
g_gpu_device->SetPipeline(m_deinterlace_pipeline.get());
g_gpu_device->SetTextureSampler(0, src, g_gpu_device->GetNearestSampler());
const u32 uniforms[4] = {x, y, field, 0};
g_gpu_device->PushUniformBuffer(uniforms, sizeof(uniforms));
g_gpu_device->SetViewportAndScissor(0, 0, width, full_height);
g_gpu_device->Draw(3, 0);
m_deinterlace_texture->MakeReadyForSampling();
SetDisplayTexture(m_deinterlace_texture.get(), 0, 0, width, full_height);
return true;
}
case DisplayDeinterlacingMode::Blend:
{
constexpr u32 NUM_BLEND_BUFFERS = 2;
GL_SCOPE_FMT("DeinterlaceBlend({{{},{}}}, {}x{}, field={})", x, y, width, height, field);
const u32 this_buffer = m_current_deinterlace_buffer;
m_current_deinterlace_buffer = (m_current_deinterlace_buffer + 1u) % NUM_BLEND_BUFFERS;
GL_INS_FMT("Current buffer: {}", this_buffer);
if (!DeinterlaceSetTargetSize(width, height, false) || !copy_to_field_buffer(this_buffer)) [[unlikely]]
{
ClearDisplayTexture();
return false;
}
copy_to_field_buffer(this_buffer);
// TODO: could be implemented with alpha blending instead..
g_gpu_device->InvalidateRenderTarget(m_deinterlace_texture.get());
g_gpu_device->SetRenderTarget(m_deinterlace_texture.get());
g_gpu_device->SetPipeline(m_deinterlace_pipeline.get());
g_gpu_device->SetTextureSampler(0, m_deinterlace_buffers[this_buffer].get(), g_gpu_device->GetNearestSampler());
g_gpu_device->SetTextureSampler(1, m_deinterlace_buffers[(this_buffer - 1) % NUM_BLEND_BUFFERS].get(),
g_gpu_device->GetNearestSampler());
g_gpu_device->SetViewportAndScissor(0, 0, width, height);
g_gpu_device->Draw(3, 0);
m_deinterlace_texture->MakeReadyForSampling();
SetDisplayTexture(m_deinterlace_texture.get(), 0, 0, width, height);
return true;
}
case DisplayDeinterlacingMode::Adaptive:
{
GL_SCOPE_FMT("DeinterlaceAdaptive({{{},{}}}, {}x{}, field={})", x, y, width, height, field);
const u32 this_buffer = m_current_deinterlace_buffer;
const u32 full_height = height * 2;
m_current_deinterlace_buffer = (m_current_deinterlace_buffer + 1u) % DEINTERLACE_BUFFER_COUNT;
GL_INS_FMT("Current buffer: {}", this_buffer);
if (!DeinterlaceSetTargetSize(width, full_height, false) || !copy_to_field_buffer(this_buffer)) [[unlikely]]
{
ClearDisplayTexture();
return false;
}
g_gpu_device->SetRenderTarget(m_deinterlace_texture.get());
g_gpu_device->SetPipeline(m_deinterlace_pipeline.get());
g_gpu_device->SetTextureSampler(0, m_deinterlace_buffers[this_buffer].get(), g_gpu_device->GetNearestSampler());
g_gpu_device->SetTextureSampler(1, m_deinterlace_buffers[(this_buffer - 1) % DEINTERLACE_BUFFER_COUNT].get(),
g_gpu_device->GetNearestSampler());
g_gpu_device->SetTextureSampler(2, m_deinterlace_buffers[(this_buffer - 2) % DEINTERLACE_BUFFER_COUNT].get(),
g_gpu_device->GetNearestSampler());
g_gpu_device->SetTextureSampler(3, m_deinterlace_buffers[(this_buffer - 3) % DEINTERLACE_BUFFER_COUNT].get(),
g_gpu_device->GetNearestSampler());
const u32 uniforms[] = {field, full_height};
g_gpu_device->PushUniformBuffer(uniforms, sizeof(uniforms));
g_gpu_device->SetViewportAndScissor(0, 0, width, full_height);
g_gpu_device->Draw(3, 0);
m_deinterlace_texture->MakeReadyForSampling();
SetDisplayTexture(m_deinterlace_texture.get(), 0, 0, width, full_height);
return true;
}
default:
UnreachableCode();
}
}
bool GPUPresenter::DeinterlaceSetTargetSize(u32 width, u32 height, bool preserve)
{
if (!g_gpu_device->ResizeTexture(&m_deinterlace_texture, width, height, GPUTexture::Type::RenderTarget,
GPUTexture::Format::RGBA8, GPUTexture::Flags::None, preserve)) [[unlikely]]
{
return false;
}
GL_OBJECT_NAME(m_deinterlace_texture, "Deinterlace target texture");
return true;
}
bool GPUPresenter::ApplyChromaSmoothing()
{
const u32 x = m_display_texture_view_x;
const u32 y = m_display_texture_view_y;
const u32 width = m_display_texture_view_width;
const u32 height = m_display_texture_view_height;
if (!g_gpu_device->ResizeTexture(&m_chroma_smoothing_texture, width, height, GPUTexture::Type::RenderTarget,
GPUTexture::Format::RGBA8, GPUTexture::Flags::None, false))
{
ClearDisplayTexture();
return false;
}
GL_OBJECT_NAME(m_chroma_smoothing_texture, "Chroma smoothing texture");
GL_SCOPE_FMT("ApplyChromaSmoothing({{{},{}}}, {}x{})", x, y, width, height);
m_display_texture->MakeReadyForSampling();
g_gpu_device->InvalidateRenderTarget(m_chroma_smoothing_texture.get());
g_gpu_device->SetRenderTarget(m_chroma_smoothing_texture.get());
g_gpu_device->SetPipeline(m_chroma_smoothing_pipeline.get());
g_gpu_device->SetTextureSampler(0, m_display_texture, g_gpu_device->GetNearestSampler());
const u32 uniforms[] = {x, y, width - 1, height - 1};
g_gpu_device->PushUniformBuffer(uniforms, sizeof(uniforms));
g_gpu_device->SetViewportAndScissor(0, 0, width, height);
g_gpu_device->Draw(3, 0);
m_chroma_smoothing_texture->MakeReadyForSampling();
SetDisplayTexture(m_chroma_smoothing_texture.get(), 0, 0, width, height);
return true;
}
void GPUPresenter::CalculateDrawRect(s32 window_width, s32 window_height, bool apply_aspect_ratio, bool apply_alignment,
GSVector4i* display_rect, GSVector4i* draw_rect) const
{
const bool integer_scale = (g_gpu_settings.display_scaling == DisplayScalingMode::NearestInteger ||
g_gpu_settings.display_scaling == DisplayScalingMode::BilinearInteger);
const bool show_vram = g_gpu_settings.gpu_show_vram;
const u32 display_width = show_vram ? VRAM_WIDTH : m_display_width;
const u32 display_height = show_vram ? VRAM_HEIGHT : m_display_height;
const s32 display_origin_left = show_vram ? 0 : m_display_origin_left;
const s32 display_origin_top = show_vram ? 0 : m_display_origin_top;
const u32 display_vram_width = show_vram ? VRAM_WIDTH : m_display_vram_width;
const u32 display_vram_height = show_vram ? VRAM_HEIGHT : m_display_vram_height;
const float display_pixel_aspect_ratio = (show_vram || !apply_aspect_ratio) ? 1.0f : m_display_pixel_aspect_ratio;
const DisplayRotation display_rotation = show_vram ? DisplayRotation::Normal : g_gpu_settings.display_rotation;
const DisplayAlignment display_alignment =
apply_alignment ? g_gpu_settings.display_alignment : DisplayAlignment::Center;
GPU::CalculateDrawRect(window_width, window_height, display_width, display_height, display_origin_left,
display_origin_top, display_vram_width, display_vram_height, display_rotation,
display_alignment, display_pixel_aspect_ratio, g_gpu_settings.display_stretch_vertically,
integer_scale, display_rect, draw_rect);
}
bool GPUPresenter::PresentFrame(GPUPresenter* presenter, GPUBackend* backend, bool allow_skip_present, u64 present_time)
{
const bool skip_present = (!g_gpu_device->HasMainSwapChain() ||
(allow_skip_present && g_gpu_device->GetMainSwapChain()->ShouldSkipPresentingFrame() &&
presenter && presenter->m_skipped_present_count < MAX_SKIPPED_PRESENT_COUNT));
if (!skip_present)
{
// acquire for IO.MousePos and system state.
std::atomic_thread_fence(std::memory_order_acquire);
FullscreenUI::Render();
if (backend && System::IsValid())
ImGuiManager::RenderTextOverlays(backend);
ImGuiManager::RenderOverlayWindows();
ImGuiManager::RenderOSDMessages();
ImGuiFullscreen::RenderOverlays();
if (backend && System::GetState() == System::State::Running)
ImGuiManager::RenderSoftwareCursors();
ImGuiManager::RenderDebugWindows();
}
GPUSwapChain* const swap_chain = g_gpu_device->GetMainSwapChain();
const GPUDevice::PresentResult pres =
skip_present ? GPUDevice::PresentResult::SkipPresent :
(presenter ? presenter->RenderDisplay(nullptr, swap_chain->GetSizeVec(), true, true) :
g_gpu_device->BeginPresent(swap_chain));
if (pres == GPUDevice::PresentResult::OK)
{
if (presenter)
presenter->m_skipped_present_count = 0;
g_gpu_device->RenderImGui(swap_chain);
const GPUDevice::Features features = g_gpu_device->GetFeatures();
const bool scheduled_present = (present_time != 0);
const bool explicit_present = (scheduled_present && (features.explicit_present && !features.timed_present));
const bool timed_present = (scheduled_present && features.timed_present);
if (scheduled_present && !explicit_present)
{
// No explicit present support, simulate it with Flush.
g_gpu_device->FlushCommands();
SleepUntilPresentTime(present_time);
}
g_gpu_device->EndPresent(swap_chain, explicit_present, timed_present ? present_time : 0);
if (g_gpu_device->IsGPUTimingEnabled())
PerformanceCounters::AccumulateGPUTime();
if (explicit_present)
{
SleepUntilPresentTime(present_time);
g_gpu_device->SubmitPresent(swap_chain);
}
}
else
{
if (presenter)
presenter->m_skipped_present_count++;
if (pres == GPUDevice::PresentResult::DeviceLost) [[unlikely]]
{
ERROR_LOG("GPU device lost during present.");
GPUThread::ReportFatalErrorAndShutdown("GPU device lost. The log may contain more information.");
return false;
}
if (pres == GPUDevice::PresentResult::ExclusiveFullscreenLost) [[unlikely]]
{
WARNING_LOG("Lost exclusive fullscreen.");
Host::SetFullscreen(false);
}
if (!skip_present)
g_gpu_device->FlushCommands();
// Still need to kick ImGui or it gets cranky.
ImGui::EndFrame();
}
ImGuiManager::NewFrame();
return true;
}
void GPUPresenter::SleepUntilPresentTime(u64 present_time)
{
// Use a spinwait if we undersleep for all platforms except android.. don't want to burn battery.
// Linux also seems to do a much better job of waking up at the requested time.
#if !defined(__linux__) && !defined(__ANDROID__)
Timer::SleepUntil(present_time, true);
#else
Timer::SleepUntil(present_time, false);
#endif
}
bool GPUPresenter::RenderScreenshotToBuffer(u32 width, u32 height, bool postfx, bool apply_aspect_ratio,
Image* out_image, Error* error)
{
const ImageFormat image_format = GPUTexture::GetImageFormatForTextureFormat(m_present_format);
if (image_format == ImageFormat::None)
return false;
auto render_texture = g_gpu_device->FetchAutoRecycleTexture(width, height, 1, 1, 1, GPUTexture::Type::RenderTarget,
m_present_format, GPUTexture::Flags::None);
if (!render_texture)
return false;
g_gpu_device->ClearRenderTarget(render_texture.get(), GPUDevice::DEFAULT_CLEAR_COLOR);
if (RenderDisplay(render_texture.get(), render_texture->GetSizeVec(), postfx, apply_aspect_ratio) !=
GPUDevice::PresentResult::OK)
{
Error::SetStringView(error, "RenderDisplay() failed");
return false;
}
Image image(width, height, image_format);
std::unique_ptr<GPUDownloadTexture> dltex;
if (g_gpu_device->GetFeatures().memory_import)
{
dltex = g_gpu_device->CreateDownloadTexture(width, height, m_present_format, image.GetPixels(),
image.GetStorageSize(), image.GetPitch(), error);
}
if (!dltex)
{
if (!(dltex = g_gpu_device->CreateDownloadTexture(width, height, m_present_format, error)))
{
Error::AddPrefixFmt(error, "Failed to create {}x{} download texture: ", width, height);
return false;
}
}
dltex->CopyFromTexture(0, 0, render_texture.get(), 0, 0, width, height, 0, 0, false);
if (!dltex->ReadTexels(0, 0, width, height, image.GetPixels(), image.GetPitch()))
return false;
*out_image = std::move(image);
return true;
}
GSVector2i GPUPresenter::CalculateScreenshotSize(DisplayScreenshotMode mode) const
{
const bool internal_resolution = (mode != DisplayScreenshotMode::ScreenResolution || g_gpu_settings.gpu_show_vram);
if (internal_resolution && m_display_texture_view_width != 0 && m_display_texture_view_height != 0)
{
if (mode == DisplayScreenshotMode::InternalResolution)
{
float f_width = static_cast<float>(m_display_texture_view_width);
float f_height = static_cast<float>(m_display_texture_view_height);
if (!g_gpu_settings.gpu_show_vram)
GPU::ApplyPixelAspectRatioToSize(m_display_pixel_aspect_ratio, &f_width, &f_height);
// DX11 won't go past 16K texture size.
const float max_texture_size = static_cast<float>(g_gpu_device->GetMaxTextureSize());
if (f_width > max_texture_size)
{
f_height = f_height / (f_width / max_texture_size);
f_width = max_texture_size;
}
if (f_height > max_texture_size)
{
f_height = max_texture_size;
f_width = f_width / (f_height / max_texture_size);
}
return GSVector2i(static_cast<s32>(std::ceil(f_width)), static_cast<s32>(std::ceil(f_height)));
}
else // if (mode == DisplayScreenshotMode::UncorrectedInternalResolution)
{
return GSVector2i(m_display_texture_view_width, m_display_texture_view_height);
}
}
else
{
return g_gpu_device->HasMainSwapChain() ? g_gpu_device->GetMainSwapChain()->GetSizeVec() : GSVector2i(1, 1);
}
}
void GPUPresenter::LoadPostProcessingSettings(bool force_load)
{
static constexpr const char* section = PostProcessing::Config::DISPLAY_CHAIN_SECTION;
auto lock = Host::GetSettingsLock();
const SettingsInterface& si = GetPostProcessingSettingsInterface(section);
// This is the initial load, defer creating the chain until it's actually enabled if disabled.
if (!force_load &&
(!PostProcessing::Config::IsEnabled(si, section) || PostProcessing::Config::GetStageCount(si, section) == 0))
{
return;
}
m_display_postfx = std::make_unique<PostProcessing::Chain>(section);
m_display_postfx->LoadStages(lock, si, true);
}
bool GPUPresenter::UpdatePostProcessingSettings(bool force_reload, Error* error)
{
if (LoadOverlaySettings())
{
// something changed, need to recompile pipelines, the needed pipelines are based on alpha blend
LoadOverlayTexture();
if (!CompileDisplayPipelines(true, false, false, error))
return false;
}
// Update postfx settings
{
static constexpr const char* section = PostProcessing::Config::DISPLAY_CHAIN_SECTION;
auto lock = Host::GetSettingsLock();
const SettingsInterface& si = GetPostProcessingSettingsInterface(section);
// Don't delete the chain if we're just temporarily disabling.
if (PostProcessing::Config::GetStageCount(si, section) == 0)
{
m_display_postfx.reset();
}
else
{
if (!m_display_postfx || force_reload)
{
if (!m_display_postfx)
m_display_postfx = std::make_unique<PostProcessing::Chain>(section);
m_display_postfx->LoadStages(lock, si, true);
}
else if (!force_reload)
{
m_display_postfx->UpdateSettings(lock, si);
}
}
}
return true;
}
SettingsInterface& GPUPresenter::GetPostProcessingSettingsInterface(const char* section)
{
// If PostProcessing/Enable is set in the game settings interface, use that.
// Otherwise, use the base settings.
SettingsInterface* game_si = Host::Internal::GetGameSettingsLayer();
if (game_si && game_si->ContainsValue(section, "Enabled"))
return *game_si;
else
return *Host::Internal::GetBaseSettingsLayer();
}
void GPUPresenter::TogglePostProcessing()
{
DebugAssert(!GPUThread::IsOnThread());
GPUThread::RunOnBackend(
[](GPUBackend* backend) {
if (!backend)
return;
GPUPresenter& presenter = backend->GetPresenter();
// if it is being lazy loaded, we have to load it here
if (!presenter.m_display_postfx)
{
presenter.LoadPostProcessingSettings(true);
if (presenter.m_display_postfx && presenter.m_display_postfx->IsActive())
return;
}
if (presenter.m_display_postfx)
presenter.m_display_postfx->Toggle();
},
false, true);
}
void GPUPresenter::ReloadPostProcessingSettings(bool display, bool internal, bool reload_shaders)
{
DebugAssert(!GPUThread::IsOnThread());
GPUThread::RunOnBackend(
[display, internal, reload_shaders](GPUBackend* backend) {
if (!backend)
return;
// OSD message first in case any errors occur.
if (reload_shaders)
{
Host::AddIconOSDMessage("PostProcessing", ICON_FA_PAINT_ROLLER,
TRANSLATE_STR("OSDMessage", "Post-processing shaders reloaded."),
Host::OSD_QUICK_DURATION);
}
if (display)
{
Error error;
if (!backend->GetPresenter().UpdatePostProcessingSettings(reload_shaders, &error))
{
GPUThread::ReportFatalErrorAndShutdown(fmt::format("Failed to update settings: {}", error.GetDescription()));
return;
}
}
if (internal)
backend->UpdatePostProcessingSettings(reload_shaders);
// trigger represent of frame
if (GPUThread::IsSystemPaused())
GPUThread::Internal::PresentFrameAndRestoreContext();
},
false, true);
}
bool GPUPresenter::LoadOverlaySettings()
{
std::string preset_name = Host::GetStringSettingValue("BorderOverlay", "PresetName");
std::string image_path;
GSVector4i display_rect = m_border_overlay_display_rect;
bool alpha_blend = m_border_overlay_alpha_blend;
bool destination_alpha_blend = m_border_overlay_destination_alpha_blend;
if (preset_name == "Custom")
{
image_path = Host::GetStringSettingValue("BorderOverlay", "ImagePath");
display_rect = GSVector4i(Host::GetIntSettingValue("BorderOverlay", "DisplayStartX", 0),
Host::GetIntSettingValue("BorderOverlay", "DisplayStartY", 0),
Host::GetIntSettingValue("BorderOverlay", "DisplayEndX", 0),
Host::GetIntSettingValue("BorderOverlay", "DisplayEndY", 0));
alpha_blend = Host::GetBoolSettingValue("BorderOverlay", "AlphaBlend", false);
destination_alpha_blend = Host::GetBoolSettingValue("BorderOverlay", "DestinationAlphaBlend", false);
}
// check rect validity.. ignore everything if it's bogus
if (!image_path.empty() && display_rect.rempty())
{
ERROR_LOG("Border overlay rectangle {} is invalid.", display_rect);
image_path = {};
}
if (image_path.empty())
{
// using preset?
if (!preset_name.empty())
{
// don't worry about the other settings, the loader will fix them up
if (m_border_overlay_image_path == preset_name)
return false;
image_path = std::move(preset_name);
}
display_rect = GSVector4i::zero();
alpha_blend = false;
}
// display rect can be updated without issue
m_border_overlay_display_rect = display_rect;
// but images and alphablend require pipeline/texture changes
const bool image_changed = (m_border_overlay_image_path != image_path);
const bool changed =
(image_changed || (!image_path.empty() && (alpha_blend == m_border_overlay_alpha_blend ||
destination_alpha_blend == m_border_overlay_destination_alpha_blend)));
if (image_changed)
m_border_overlay_image_path = std::move(image_path);
m_border_overlay_alpha_blend = alpha_blend;
m_border_overlay_destination_alpha_blend = destination_alpha_blend;
return changed;
}
bool GPUPresenter::LoadOverlayTexture()
{
g_gpu_device->RecycleTexture(std::move(m_border_overlay_texture));
if (m_border_overlay_image_path.empty())
{
m_border_overlay_display_rect = GSVector4i::zero();
m_border_overlay_image_path = {};
m_border_overlay_alpha_blend = false;
return true;
}
Image image;
Error error;
bool image_load_result;
if (Path::IsAbsolute(m_border_overlay_image_path))
image_load_result = image.LoadFromFile(m_border_overlay_image_path.c_str(), &error);
else
image_load_result = LoadOverlayPreset(&error, &image);
if (!image_load_result ||
!(m_border_overlay_texture = g_gpu_device->FetchAndUploadTextureImage(image, GPUTexture::Flags::None, &error)))
{
ERROR_LOG("Failed to load overlay '{}': {}", Path::GetFileName(m_border_overlay_image_path),
error.GetDescription());
m_border_overlay_display_rect = GSVector4i::zero();
m_border_overlay_image_path = {};
m_border_overlay_alpha_blend = false;
return false;
}
INFO_LOG("Loaded overlay image {}: {}x{}", Path::GetFileName(m_border_overlay_image_path),
m_border_overlay_texture->GetWidth(), m_border_overlay_texture->GetHeight());
return true;
}
std::vector<std::string> GPUPresenter::EnumerateBorderOverlayPresets()
{
static constexpr const char* pattern = "*.yml";
std::vector<std::string> ret;
FileSystem::FindResultsArray files;
FileSystem::FindFiles(Path::Combine(EmuFolders::Resources, "overlays").c_str(), pattern,
FILESYSTEM_FIND_RELATIVE_PATHS | FILESYSTEM_FIND_FILES, &files);
FileSystem::FindFiles(Path::Combine(EmuFolders::UserResources, "overlays").c_str(), pattern,
FILESYSTEM_FIND_RELATIVE_PATHS | FILESYSTEM_FIND_FILES | FILESYSTEM_FIND_KEEP_ARRAY, &files);
ret.reserve(files.size());
for (FILESYSTEM_FIND_DATA& fd : files)
{
const std::string_view name = Path::GetFileTitle(fd.FileName);
if (StringUtil::IsInStringList(ret, name))
continue;
ret.emplace_back(name);
}
std::sort(ret.begin(), ret.end());
return ret;
}
bool GPUPresenter::LoadOverlayPreset(Error* error, Image* image)
{
SmallString path = SmallString::from_format("overlays/{}.yml", m_border_overlay_image_path);
std::optional<std::string> yaml_data = Host::ReadResourceFileToString(path, true, error);
if (!yaml_data.has_value())
return false;
const ryml::Tree yaml =
ryml::parse_in_place(to_csubstr(path), c4::substr(reinterpret_cast<char*>(yaml_data->data()), yaml_data->size()));
const ryml::ConstNodeRef root = yaml.rootref();
if (root.empty())
{
Error::SetStringView(error, "Configuration is empty.");
return false;
}
std::string_view image_filename;
GSVector4i display_area = GSVector4i::zero();
bool alpha_blend = false;
bool destination_alpha_blend = false;
if (!GetStringFromObject(root, "image", &image_filename) ||
!GetUIntFromObject(root, "displayStartX", &display_area.x) ||
!GetUIntFromObject(root, "displayStartY", &display_area.y) ||
!GetUIntFromObject(root, "displayEndX", &display_area.z) ||
!GetUIntFromObject(root, "displayEndY", &display_area.w) ||
!GetUIntFromObject(root, "alphaBlend", &alpha_blend) ||
!GetUIntFromObject(root, "destinationAlphaBlend", &destination_alpha_blend))
{
Error::SetStringView(error, "One or more parameters is missing.");
return false;
}
path.format("overlays/{}", image_filename);
std::optional<DynamicHeapArray<u8>> image_data = Host::ReadResourceFile(path, true, error);
if (!image_data.has_value() || !image->LoadFromBuffer(image_filename, image_data.value(), error))
return false;
m_border_overlay_display_rect = display_area;
m_border_overlay_alpha_blend = alpha_blend;
m_border_overlay_destination_alpha_blend = destination_alpha_blend;
return true;
}