duckstation/src/common/sha256_digest.cpp
2024-11-29 15:20:33 +10:00

194 lines
5.6 KiB
C++

// SPDX-FileCopyrightText: 2019-2024 Connor McLaughlin <stenzek@gmail.com>
// SPDX-License-Identifier: CC-BY-NC-ND-4.0
// Based on https://github.com/B-Con/crypto-algorithms/blob/master/sha256.c
// By Brad Conte (brad AT bradconte.com)
#include "sha256_digest.h"
#include "string_util.h"
#include <cstring>
SHA256Digest::SHA256Digest()
{
Reset();
}
std::string SHA256Digest::DigestToString(const std::span<const u8, DIGEST_SIZE> digest)
{
return StringUtil::EncodeHex<u8>(digest);
}
SHA256Digest::Digest SHA256Digest::GetDigest(const void* data, size_t len)
{
Digest ret;
SHA256Digest digest;
digest.Update(data, len);
digest.Final(ret);
return ret;
}
SHA256Digest::Digest SHA256Digest::GetDigest(std::span<const u8> data)
{
Digest ret;
SHA256Digest digest;
digest.Update(data);
digest.Final(ret);
return ret;
}
#define ROTLEFT(a, b) (((a) << (b)) | ((a) >> (32 - (b))))
#define ROTRIGHT(a, b) (((a) >> (b)) | ((a) << (32 - (b))))
#define CH(x, y, z) (((x) & (y)) ^ (~(x) & (z)))
#define MAJ(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#define EP0(x) (ROTRIGHT(x, 2) ^ ROTRIGHT(x, 13) ^ ROTRIGHT(x, 22))
#define EP1(x) (ROTRIGHT(x, 6) ^ ROTRIGHT(x, 11) ^ ROTRIGHT(x, 25))
#define SIG0(x) (ROTRIGHT(x, 7) ^ ROTRIGHT(x, 18) ^ ((x) >> 3))
#define SIG1(x) (ROTRIGHT(x, 17) ^ ROTRIGHT(x, 19) ^ ((x) >> 10))
static constexpr std::array<u32, 64> k = {
{0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2}};
void SHA256Digest::TransformBlock()
{
std::array<u32, 64> m;
size_t i = 0;
for (size_t j = 0; i < 16; ++i, j += 4)
m[i] = (m_block[j] << 24) | (m_block[j + 1] << 16) | (m_block[j + 2] << 8) | (m_block[j + 3]);
for (; i < 64; ++i)
m[i] = SIG1(m[i - 2]) + m[i - 7] + SIG0(m[i - 15]) + m[i - 16];
u32 a = m_state[0];
u32 b = m_state[1];
u32 c = m_state[2];
u32 d = m_state[3];
u32 e = m_state[4];
u32 f = m_state[5];
u32 g = m_state[6];
u32 h = m_state[7];
for (i = 0; i < 64; ++i)
{
u32 t1 = h + EP1(e) + CH(e, f, g) + k[i] + m[i];
u32 t2 = EP0(a) + MAJ(a, b, c);
h = g;
g = f;
f = e;
e = d + t1;
d = c;
c = b;
b = a;
a = t1 + t2;
}
m_state[0] += a;
m_state[1] += b;
m_state[2] += c;
m_state[3] += d;
m_state[4] += e;
m_state[5] += f;
m_state[6] += g;
m_state[7] += h;
}
void SHA256Digest::Reset()
{
m_block_length = 0;
m_bit_length = 0;
m_state[0] = 0x6a09e667;
m_state[1] = 0xbb67ae85;
m_state[2] = 0x3c6ef372;
m_state[3] = 0xa54ff53a;
m_state[4] = 0x510e527f;
m_state[5] = 0x9b05688c;
m_state[6] = 0x1f83d9ab;
m_state[7] = 0x5be0cd19;
}
void SHA256Digest::Update(std::span<const u8> data)
{
const size_t len = data.size();
for (size_t pos = 0; pos < len;)
{
const u32 copy_len = static_cast<u32>(std::min<size_t>(len - pos, BLOCK_SIZE - m_block_length));
std::memcpy(&m_block[m_block_length], &data[pos], copy_len);
m_block_length += copy_len;
pos += copy_len;
if (m_block_length == BLOCK_SIZE)
{
TransformBlock();
m_bit_length += 512;
m_block_length = 0;
}
}
}
void SHA256Digest::Update(const void* data, size_t len)
{
Update(std::span<const u8>(static_cast<const u8*>(data), len));
}
void SHA256Digest::Final(std::span<u8, DIGEST_SIZE> digest)
{
// Pad whatever data is left in the buffer.
if (m_block_length < 56)
{
size_t i = m_block_length;
m_block[i++] = 0x80;
while (i < 56)
m_block[i++] = 0x00;
}
else
{
size_t i = m_block_length;
m_block[i++] = 0x80;
while (i < 64)
m_block[i++] = 0x00;
TransformBlock();
m_block = {};
}
// Append to the padding the total message's length in bits and transform.
m_bit_length += m_block_length * 8;
m_block[63] = static_cast<u8>(m_bit_length);
m_block[62] = static_cast<u8>(m_bit_length >> 8);
m_block[61] = static_cast<u8>(m_bit_length >> 16);
m_block[60] = static_cast<u8>(m_bit_length >> 24);
m_block[59] = static_cast<u8>(m_bit_length >> 32);
m_block[58] = static_cast<u8>(m_bit_length >> 40);
m_block[57] = static_cast<u8>(m_bit_length >> 48);
m_block[56] = static_cast<u8>(m_bit_length >> 56);
TransformBlock();
// Since this implementation uses little endian byte ordering and SHA uses big endian,
// reverse all the bytes when copying the final state to the output hash.
for (size_t i = 0; i < 4; ++i)
{
digest[i] = (m_state[0] >> (24 - i * 8)) & 0x000000ff;
digest[i + 4] = (m_state[1] >> (24 - i * 8)) & 0x000000ff;
digest[i + 8] = (m_state[2] >> (24 - i * 8)) & 0x000000ff;
digest[i + 12] = (m_state[3] >> (24 - i * 8)) & 0x000000ff;
digest[i + 16] = (m_state[4] >> (24 - i * 8)) & 0x000000ff;
digest[i + 20] = (m_state[5] >> (24 - i * 8)) & 0x000000ff;
digest[i + 24] = (m_state[6] >> (24 - i * 8)) & 0x000000ff;
digest[i + 28] = (m_state[7] >> (24 - i * 8)) & 0x000000ff;
}
}
SHA256Digest::Digest SHA256Digest::Final()
{
Digest ret;
Final(ret);
return ret;
}