2022-07-21 17:29:57 +10:00

277 lines
11 KiB
C++

// Copyright 2016 Dolphin Emulator Project
// Copyright 2020 DuckStation Emulator Project
// Licensed under GPLv2+
// Refer to the LICENSE file included.
#pragma once
#include "../types.h"
#include "loader.h"
#include <array>
#include <atomic>
#include <condition_variable>
#include <functional>
#include <map>
#include <memory>
#include <mutex>
#include <string>
#include <thread>
#include <vector>
struct WindowInfo;
namespace Vulkan {
class SwapChain;
class Context
{
public:
enum : u32
{
NUM_COMMAND_BUFFERS = 2
};
~Context();
// Determines if the Vulkan validation layer is available on the system.
static bool CheckValidationLayerAvailablility();
// Helper method to create a Vulkan instance.
static VkInstance CreateVulkanInstance(const WindowInfo* wi, bool enable_debug_utils, bool enable_validation_layer);
// Returns a list of Vulkan-compatible GPUs.
using GPUList = std::vector<VkPhysicalDevice>;
using GPUNameList = std::vector<std::string>;
static GPUList EnumerateGPUs(VkInstance instance);
static GPUNameList EnumerateGPUNames(VkInstance instance);
// Creates a new context and sets it up as global.
static bool Create(std::string_view gpu_name, const WindowInfo* wi, std::unique_ptr<SwapChain>* out_swap_chain,
bool threaded_presentation, bool enable_debug_utils, bool enable_validation_layer);
// Creates a new context from a pre-existing instance.
static bool CreateFromExistingInstance(VkInstance instance, VkPhysicalDevice gpu, VkSurfaceKHR surface,
bool take_ownership, bool enable_validation_layer, bool enable_debug_utils,
const char** required_device_extensions = nullptr,
u32 num_required_device_extensions = 0,
const char** required_device_layers = nullptr,
u32 num_required_device_layers = 0,
const VkPhysicalDeviceFeatures* required_features = nullptr);
// Destroys context.
static void Destroy();
// Enable/disable debug message runtime.
bool EnableDebugUtils();
void DisableDebugUtils();
// Global state accessors
ALWAYS_INLINE VkInstance GetVulkanInstance() const { return m_instance; }
ALWAYS_INLINE VkPhysicalDevice GetPhysicalDevice() const { return m_physical_device; }
ALWAYS_INLINE VkDevice GetDevice() const { return m_device; }
ALWAYS_INLINE VkQueue GetGraphicsQueue() const { return m_graphics_queue; }
ALWAYS_INLINE u32 GetGraphicsQueueFamilyIndex() const { return m_graphics_queue_family_index; }
ALWAYS_INLINE VkQueue GetPresentQueue() const { return m_present_queue; }
ALWAYS_INLINE u32 GetPresentQueueFamilyIndex() const { return m_present_queue_family_index; }
ALWAYS_INLINE const VkQueueFamilyProperties& GetGraphicsQueueProperties() const
{
return m_graphics_queue_properties;
}
ALWAYS_INLINE const VkPhysicalDeviceMemoryProperties& GetDeviceMemoryProperties() const
{
return m_device_memory_properties;
}
ALWAYS_INLINE const VkPhysicalDeviceProperties& GetDeviceProperties() const { return m_device_properties; }
ALWAYS_INLINE const VkPhysicalDeviceFeatures& GetDeviceFeatures() const { return m_device_features; }
ALWAYS_INLINE const VkPhysicalDeviceLimits& GetDeviceLimits() const { return m_device_properties.limits; }
// Support bits
ALWAYS_INLINE bool SupportsGeometryShaders() const { return m_device_features.geometryShader == VK_TRUE; }
ALWAYS_INLINE bool SupportsDualSourceBlend() const { return m_device_features.dualSrcBlend == VK_TRUE; }
// Helpers for getting constants
ALWAYS_INLINE VkDeviceSize GetUniformBufferAlignment() const
{
return m_device_properties.limits.minUniformBufferOffsetAlignment;
}
ALWAYS_INLINE VkDeviceSize GetTexelBufferAlignment() const
{
return m_device_properties.limits.minTexelBufferOffsetAlignment;
}
ALWAYS_INLINE VkDeviceSize GetStorageBufferAlignment() const
{
return m_device_properties.limits.minStorageBufferOffsetAlignment;
}
ALWAYS_INLINE VkDeviceSize GetBufferImageGranularity() const
{
return m_device_properties.limits.bufferImageGranularity;
}
// Finds a memory type index for the specified memory properties and the bits returned by
// vkGetImageMemoryRequirements
bool GetMemoryType(u32 bits, VkMemoryPropertyFlags properties, u32* out_type_index);
u32 GetMemoryType(u32 bits, VkMemoryPropertyFlags properties);
// Finds a memory type for upload or readback buffers.
u32 GetUploadMemoryType(u32 bits, bool* is_coherent = nullptr);
u32 GetReadbackMemoryType(u32 bits, bool* is_coherent = nullptr, bool* is_cached = nullptr);
// Creates a simple render pass.
VkRenderPass GetRenderPass(VkFormat color_format, VkFormat depth_format, VkSampleCountFlagBits samples,
VkAttachmentLoadOp load_op);
// These command buffers are allocated per-frame. They are valid until the command buffer
// is submitted, after that you should call these functions again.
ALWAYS_INLINE VkDescriptorPool GetGlobalDescriptorPool() const { return m_global_descriptor_pool; }
ALWAYS_INLINE VkCommandBuffer GetCurrentCommandBuffer() const { return m_current_command_buffer; }
ALWAYS_INLINE VkDescriptorPool GetCurrentDescriptorPool() const
{
return m_frame_resources[m_current_frame].descriptor_pool;
}
/// Allocates a descriptor set from the pool reserved for the current frame.
VkDescriptorSet AllocateDescriptorSet(VkDescriptorSetLayout set_layout);
/// Allocates a descriptor set from the pool reserved for the current frame.
VkDescriptorSet AllocateGlobalDescriptorSet(VkDescriptorSetLayout set_layout);
/// Frees a descriptor set allocated from the global pool.
void FreeGlobalDescriptorSet(VkDescriptorSet set);
// Gets the fence that will be signaled when the currently executing command buffer is
// queued and executed. Do not wait for this fence before the buffer is executed.
ALWAYS_INLINE VkFence GetCurrentCommandBufferFence() const { return m_frame_resources[m_current_frame].fence; }
// Fence "counters" are used to track which commands have been completed by the GPU.
// If the last completed fence counter is greater or equal to N, it means that the work
// associated counter N has been completed by the GPU. The value of N to associate with
// commands can be retreived by calling GetCurrentFenceCounter().
u64 GetCompletedFenceCounter() const { return m_completed_fence_counter; }
// Gets the fence that will be signaled when the currently executing command buffer is
// queued and executed. Do not wait for this fence before the buffer is executed.
u64 GetCurrentFenceCounter() const { return m_frame_resources[m_current_frame].fence_counter; }
void SubmitCommandBuffer(VkSemaphore wait_semaphore = VK_NULL_HANDLE, VkSemaphore signal_semaphore = VK_NULL_HANDLE,
VkSwapchainKHR present_swap_chain = VK_NULL_HANDLE,
uint32_t present_image_index = 0xFFFFFFFF, bool submit_on_thread = false);
void MoveToNextCommandBuffer();
void ExecuteCommandBuffer(bool wait_for_completion);
void WaitForPresentComplete();
// Was the last present submitted to the queue a failure? If so, we must recreate our swapchain.
bool CheckLastPresentFail();
// Schedule a vulkan resource for destruction later on. This will occur when the command buffer
// is next re-used, and the GPU has finished working with the specified resource.
void DeferBufferDestruction(VkBuffer object);
void DeferBufferViewDestruction(VkBufferView object);
void DeferDeviceMemoryDestruction(VkDeviceMemory object);
void DeferFramebufferDestruction(VkFramebuffer object);
void DeferImageDestruction(VkImage object);
void DeferImageViewDestruction(VkImageView object);
void DeferPipelineDestruction(VkPipeline pipeline);
// Wait for a fence to be completed.
// Also invokes callbacks for completion.
void WaitForFenceCounter(u64 fence_counter);
void WaitForGPUIdle();
private:
Context(VkInstance instance, VkPhysicalDevice physical_device, bool owns_device);
using ExtensionList = std::vector<const char*>;
static bool SelectInstanceExtensions(ExtensionList* extension_list, const WindowInfo* wi, bool enable_debug_utils);
bool SelectDeviceExtensions(ExtensionList* extension_list, bool enable_surface);
bool SelectDeviceFeatures(const VkPhysicalDeviceFeatures* required_features);
bool CreateDevice(VkSurfaceKHR surface, bool enable_validation_layer, const char** required_device_extensions,
u32 num_required_device_extensions, const char** required_device_layers,
u32 num_required_device_layers, const VkPhysicalDeviceFeatures* required_features);
bool CreateCommandBuffers();
void DestroyCommandBuffers();
bool CreateGlobalDescriptorPool();
void DestroyGlobalDescriptorPool();
void DestroyRenderPassCache();
void ActivateCommandBuffer(u32 index);
void WaitForCommandBufferCompletion(u32 index);
void DoSubmitCommandBuffer(u32 index, VkSemaphore wait_semaphore, VkSemaphore signal_semaphore);
void DoPresent(VkSemaphore wait_semaphore, VkSwapchainKHR present_swap_chain, uint32_t present_image_index);
void WaitForPresentComplete(std::unique_lock<std::mutex>& lock);
void PresentThread();
void StartPresentThread();
void StopPresentThread();
struct FrameResources
{
// [0] - Init (upload) command buffer, [1] - draw command buffer
VkCommandPool command_pool = VK_NULL_HANDLE;
VkCommandBuffer command_buffer = VK_NULL_HANDLE;
VkDescriptorPool descriptor_pool = VK_NULL_HANDLE;
VkFence fence = VK_NULL_HANDLE;
u64 fence_counter = 0;
bool needs_fence_wait = false;
std::vector<std::function<void()>> cleanup_resources;
};
VkInstance m_instance = VK_NULL_HANDLE;
VkPhysicalDevice m_physical_device = VK_NULL_HANDLE;
VkDevice m_device = VK_NULL_HANDLE;
VkCommandBuffer m_current_command_buffer = VK_NULL_HANDLE;
VkDescriptorPool m_global_descriptor_pool = VK_NULL_HANDLE;
VkQueue m_graphics_queue = VK_NULL_HANDLE;
u32 m_graphics_queue_family_index = 0;
VkQueue m_present_queue = VK_NULL_HANDLE;
u32 m_present_queue_family_index = 0;
std::array<FrameResources, NUM_COMMAND_BUFFERS> m_frame_resources;
u64 m_next_fence_counter = 1;
u64 m_completed_fence_counter = 0;
u32 m_current_frame;
bool m_owns_device = false;
std::atomic_bool m_last_present_failed{false};
std::atomic_bool m_present_done{true};
std::mutex m_present_mutex;
std::condition_variable m_present_queued_cv;
std::condition_variable m_present_done_cv;
std::thread m_present_thread;
std::atomic_bool m_present_thread_done{false};
struct QueuedPresent
{
VkSemaphore wait_semaphore;
VkSemaphore signal_semaphore;
VkSwapchainKHR present_swap_chain;
u32 command_buffer_index;
u32 present_image_index;
};
QueuedPresent m_queued_present = {};
// Render pass cache
using RenderPassCacheKey = std::tuple<VkFormat, VkFormat, VkSampleCountFlagBits, VkAttachmentLoadOp>;
std::map<RenderPassCacheKey, VkRenderPass> m_render_pass_cache;
VkDebugUtilsMessengerEXT m_debug_messenger_callback = VK_NULL_HANDLE;
VkQueueFamilyProperties m_graphics_queue_properties = {};
VkPhysicalDeviceFeatures m_device_features = {};
VkPhysicalDeviceProperties m_device_properties = {};
VkPhysicalDeviceMemoryProperties m_device_memory_properties = {};
};
} // namespace Vulkan
extern std::unique_ptr<Vulkan::Context> g_vulkan_context;