duckstation/dep/reshadefx/src/effect_codegen_spirv.cpp

2595 lines
86 KiB
C++

/*
* Copyright (C) 2014 Patrick Mours
* SPDX-License-Identifier: BSD-3-Clause
*/
#include "effect_parser.hpp"
#include "effect_codegen.hpp"
#include <cassert>
#include <cstring> // std::memcmp
#include <charconv> // std::from_chars
#include <algorithm> // std::find_if, std::max, std::sort
#include <unordered_set>
// Use the C++ variant of the SPIR-V headers
#include <spirv.hpp>
namespace spv {
#include <GLSL.std.450.h>
}
using namespace reshadefx;
inline uint32_t align_up(uint32_t size, uint32_t alignment)
{
alignment -= 1;
return ((size + alignment) & ~alignment);
}
/// <summary>
/// A single instruction in a SPIR-V module
/// </summary>
struct spirv_instruction
{
spv::Op op;
spv::Id type;
spv::Id result;
std::vector<spv::Id> operands;
explicit spirv_instruction(spv::Op op = spv::OpNop) : op(op), type(0), result(0) {}
spirv_instruction(spv::Op op, spv::Id result) : op(op), type(result), result(0) {}
spirv_instruction(spv::Op op, spv::Id type, spv::Id result) : op(op), type(type), result(result) {}
/// <summary>
/// Add a single operand to the instruction.
/// </summary>
spirv_instruction &add(spv::Id operand)
{
operands.push_back(operand);
return *this;
}
/// <summary>
/// Add a range of operands to the instruction.
/// </summary>
template <typename It>
spirv_instruction &add(It begin, It end)
{
operands.insert(operands.end(), begin, end);
return *this;
}
/// <summary>
/// Add a null-terminated literal UTF-8 string to the instruction.
/// </summary>
spirv_instruction &add_string(const char *string)
{
uint32_t word;
do {
word = 0;
for (uint32_t i = 0; i < 4 && *string; ++i)
reinterpret_cast<uint8_t *>(&word)[i] = *string++;
add(word);
} while (*string || (word & 0xFF000000));
return *this;
}
/// <summary>
/// Write this instruction to a SPIR-V module.
/// </summary>
/// <param name="output">The output stream to append this instruction to.</param>
void write(std::basic_string<char> &output) const
{
// See https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html
// 0 | Opcode: The 16 high-order bits are the WordCount of the instruction. The 16 low-order bits are the opcode enumerant.
// 1 | Optional instruction type <id>
// . | Optional instruction Result <id>
// . | Operand 1 (if needed)
// . | Operand 2 (if needed)
// ... | ...
// WordCount - 1 | Operand N (N is determined by WordCount minus the 1 to 3 words used for the opcode, instruction type <id>, and instruction Result <id>).
const uint32_t word_count = 1 + (type != 0) + (result != 0) + static_cast<uint32_t>(operands.size());
write_word(output, (word_count << spv::WordCountShift) | op);
// Optional instruction type ID
if (type != 0)
write_word(output, type);
// Optional instruction result ID
if (result != 0)
write_word(output, result);
// Write out the operands
for (const uint32_t operand : operands)
write_word(output, operand);
}
static void write_word(std::basic_string<char> &output, uint32_t word)
{
output.insert(output.end(), reinterpret_cast<const char *>(&word), reinterpret_cast<const char *>(&word + 1));
}
operator uint32_t() const
{
assert(result != 0);
return result;
}
};
/// <summary>
/// A list of instructions forming a basic block in the SPIR-V module
/// </summary>
struct spirv_basic_block
{
std::vector<spirv_instruction> instructions;
/// <summary>
/// Append another basic block the end of this one.
/// </summary>
void append(const spirv_basic_block &block)
{
instructions.insert(instructions.end(), block.instructions.begin(), block.instructions.end());
}
};
class codegen_spirv final : public codegen
{
static_assert(sizeof(id) == sizeof(spv::Id), "unexpected SPIR-V id type size");
public:
codegen_spirv(bool vulkan_semantics, bool debug_info, bool uniforms_to_spec_constants, bool enable_16bit_types, bool flip_vert_y) :
_debug_info(debug_info),
_vulkan_semantics(vulkan_semantics),
_uniforms_to_spec_constants(uniforms_to_spec_constants),
_enable_16bit_types(enable_16bit_types),
_flip_vert_y(flip_vert_y)
{
_glsl_ext = make_id();
}
private:
struct type_lookup
{
reshadefx::type type;
bool is_ptr;
uint32_t array_stride;
std::pair<spv::StorageClass, spv::ImageFormat> storage;
friend bool operator==(const type_lookup &lhs, const type_lookup &rhs)
{
return lhs.type == rhs.type && lhs.is_ptr == rhs.is_ptr && lhs.array_stride == rhs.array_stride && lhs.storage == rhs.storage;
}
};
struct function_blocks
{
spirv_basic_block declaration;
spirv_basic_block variables;
spirv_basic_block definition;
reshadefx::type return_type;
std::vector<reshadefx::type> param_types;
friend bool operator==(const function_blocks &lhs, const function_blocks &rhs)
{
if (lhs.param_types.size() != rhs.param_types.size())
return false;
for (size_t i = 0; i < lhs.param_types.size(); ++i)
if (!(lhs.param_types[i] == rhs.param_types[i]))
return false;
return lhs.return_type == rhs.return_type;
}
};
bool _debug_info = false;
bool _vulkan_semantics = false;
bool _uniforms_to_spec_constants = false;
bool _enable_16bit_types = false;
bool _flip_vert_y = false;
spirv_basic_block _entries;
spirv_basic_block _execution_modes;
spirv_basic_block _debug_a;
spirv_basic_block _debug_b;
spirv_basic_block _annotations;
spirv_basic_block _types_and_constants;
spirv_basic_block _variables;
std::vector<function_blocks> _functions_blocks;
std::unordered_map<id, spirv_basic_block> _block_data;
spirv_basic_block *_current_block_data = nullptr;
spv::Id _glsl_ext = 0;
spv::Id _global_ubo_type = 0;
spv::Id _global_ubo_variable = 0;
std::vector<spv::Id> _global_ubo_types;
function_blocks *_current_function_blocks = nullptr;
std::vector<std::pair<type_lookup, spv::Id>> _type_lookup;
std::vector<std::tuple<type, constant, spv::Id>> _constant_lookup;
std::vector<std::pair<function_blocks, spv::Id>> _function_type_lookup;
std::unordered_map<std::string, spv::Id> _string_lookup;
std::unordered_map<spv::Id, std::pair<spv::StorageClass, spv::ImageFormat>> _storage_lookup;
std::unordered_map<std::string, uint32_t> _semantic_to_location;
std::unordered_set<spv::Id> _spec_constants;
std::unordered_set<spv::Capability> _capabilities;
void add_location(const location &loc, spirv_basic_block &block)
{
if (loc.source.empty() || !_debug_info)
return;
spv::Id file;
if (const auto it = _string_lookup.find(loc.source);
it != _string_lookup.end())
{
file = it->second;
}
else
{
file =
add_instruction(spv::OpString, 0, _debug_a)
.add_string(loc.source.c_str());
_string_lookup.emplace(loc.source, file);
}
// https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html#OpLine
add_instruction_without_result(spv::OpLine, block)
.add(file)
.add(loc.line)
.add(loc.column);
}
spirv_instruction &add_instruction(spv::Op op, spv::Id type = 0)
{
assert(is_in_function() && is_in_block());
return add_instruction(op, type, *_current_block_data);
}
spirv_instruction &add_instruction(spv::Op op, spv::Id type, spirv_basic_block &block)
{
spirv_instruction &instruction = add_instruction_without_result(op, block);
instruction.type = type;
instruction.result = make_id();
return instruction;
}
spirv_instruction &add_instruction_without_result(spv::Op op)
{
assert(is_in_function() && is_in_block());
return add_instruction_without_result(op, *_current_block_data);
}
spirv_instruction &add_instruction_without_result(spv::Op op, spirv_basic_block &block)
{
return block.instructions.emplace_back(op);
}
void finalize_header_section(std::basic_string<char> &spirv) const
{
// Write SPIRV header info
spirv_instruction::write_word(spirv, spv::MagicNumber);
spirv_instruction::write_word(spirv, 0x10300); // Force SPIR-V 1.3
spirv_instruction::write_word(spirv, 0u); // Generator magic number, see https://www.khronos.org/registry/spir-v/api/spir-v.xml
spirv_instruction::write_word(spirv, _next_id); // Maximum ID
spirv_instruction::write_word(spirv, 0u); // Reserved for instruction schema
// All capabilities
spirv_instruction(spv::OpCapability)
.add(spv::CapabilityShader) // Implicitly declares the Matrix capability too
.write(spirv);
for (const spv::Capability capability : _capabilities)
spirv_instruction(spv::OpCapability)
.add(capability)
.write(spirv);
// Optional extension instructions
spirv_instruction(spv::OpExtInstImport, _glsl_ext)
.add_string("GLSL.std.450") // Import GLSL extension
.write(spirv);
// Single required memory model instruction
spirv_instruction(spv::OpMemoryModel)
.add(spv::AddressingModelLogical)
.add(spv::MemoryModelGLSL450)
.write(spirv);
}
void finalize_debug_info_section(std::basic_string<char> &spirv) const
{
spirv_instruction(spv::OpSource)
.add(spv::SourceLanguageUnknown) // ReShade FX is not a reserved token at the moment
.add(0) // Language version, TODO: Maybe fill in ReShade version here?
.write(spirv);
if (_debug_info)
{
// All debug instructions
for (const spirv_instruction &inst : _debug_a.instructions)
inst.write(spirv);
for (const spirv_instruction &inst : _debug_b.instructions)
inst.write(spirv);
}
}
void finalize_type_and_constants_section(std::basic_string<char> &spirv) const
{
// All type declarations
for (const spirv_instruction &inst : _types_and_constants.instructions)
inst.write(spirv);
// Initialize the UBO type now that all member types are known
if (_global_ubo_type == 0 || _global_ubo_variable == 0)
return;
const id global_ubo_type_ptr = _global_ubo_type + 1;
spirv_instruction(spv::OpTypeStruct, _global_ubo_type)
.add(_global_ubo_types.begin(), _global_ubo_types.end())
.write(spirv);
spirv_instruction(spv::OpTypePointer, global_ubo_type_ptr)
.add(spv::StorageClassUniform)
.add(_global_ubo_type)
.write(spirv);
spirv_instruction(spv::OpVariable, global_ubo_type_ptr, _global_ubo_variable)
.add(spv::StorageClassUniform)
.write(spirv);
}
std::basic_string<char> finalize_code() const override
{
std::basic_string<char> spirv;
finalize_header_section(spirv);
// All entry point declarations
for (const spirv_instruction &inst : _entries.instructions)
inst.write(spirv);
// All execution mode declarations
for (const spirv_instruction &inst : _execution_modes.instructions)
inst.write(spirv);
finalize_debug_info_section(spirv);
// All annotation instructions
for (const spirv_instruction &inst : _annotations.instructions)
inst.write(spirv);
finalize_type_and_constants_section(spirv);
for (const spirv_instruction &inst : _variables.instructions)
inst.write(spirv);
// All function definitions
for (const function_blocks &func : _functions_blocks)
{
if (func.definition.instructions.empty())
continue;
for (const spirv_instruction &inst : func.declaration.instructions)
inst.write(spirv);
// Grab first label and move it in front of variable declarations
func.definition.instructions.front().write(spirv);
assert(func.definition.instructions.front().op == spv::OpLabel);
for (const spirv_instruction &inst : func.variables.instructions)
inst.write(spirv);
for (auto inst_it = func.definition.instructions.begin() + 1; inst_it != func.definition.instructions.end(); ++inst_it)
inst_it->write(spirv);
}
return spirv;
}
std::basic_string<char> finalize_code_for_entry_point(const std::string &entry_point_name) const override
{
const auto entry_point_it = std::find_if(_functions.begin(), _functions.end(),
[&entry_point_name](const std::unique_ptr<function> &func) {
return func->unique_name == entry_point_name;
});
if (entry_point_it == _functions.end())
return {};
const function &entry_point = *entry_point_it->get();
const auto write_entry_point = [this](const spirv_instruction& oins, std::basic_string<char>& spirv) {
assert(oins.operands.size() > 2);
spirv_instruction nins(oins.op, oins.type, oins.result);
nins.add(oins.operands[0]);
nins.add(oins.operands[1]);
nins.add_string("main");
size_t param_start_index = 2;
while (param_start_index < oins.operands.size() && (oins.operands[param_start_index] & 0xFF000000) != 0)
param_start_index++;
// skip zero
param_start_index++;
for (size_t i = param_start_index; i < oins.operands.size(); i++)
nins.add(oins.operands[i]);
nins.write(spirv);
};
// Build list of IDs to remove
std::vector<spv::Id> variables_to_remove;
#if 1
std::vector<spv::Id> functions_to_remove;
#else
for (const sampler &info : _module.samplers)
if (std::find(entry_point.referenced_samplers.begin(), entry_point.referenced_samplers.end(), info.id) == entry_point.referenced_samplers.end())
variables_to_remove.push_back(info.id);
for (const storage &info : _module.storages)
if (std::find(entry_point.referenced_storages.begin(), entry_point.referenced_storages.end(), info.id) == entry_point.referenced_storages.end())
variables_to_remove.push_back(info.id);
#endif
std::basic_string<char> spirv;
finalize_header_section(spirv);
// The entry point and execution mode declaration
for (const spirv_instruction &inst : _entries.instructions)
{
assert(inst.op == spv::OpEntryPoint);
// Only add the matching entry point
if (inst.operands[1] == entry_point.id)
{
write_entry_point(inst, spirv);
}
else
{
#if 1
functions_to_remove.push_back(inst.operands[1]);
#endif
// Add interface variables to list of variables to remove
for (uint32_t k = 2 + static_cast<uint32_t>((std::strlen(reinterpret_cast<const char *>(&inst.operands[2])) + 4) / 4); k < inst.operands.size(); ++k)
variables_to_remove.push_back(inst.operands[k]);
}
}
for (const spirv_instruction &inst : _execution_modes.instructions)
{
assert(inst.op == spv::OpExecutionMode);
// Only add execution mode for the matching entry point
if (inst.operands[0] == entry_point.id)
{
inst.write(spirv);
}
}
finalize_debug_info_section(spirv);
// All annotation instructions
for (spirv_instruction inst : _annotations.instructions)
{
if (inst.op == spv::OpDecorate)
{
// Remove all decorations targeting any of the interface variables for non-matching entry points
if (std::find(variables_to_remove.begin(), variables_to_remove.end(), inst.operands[0]) != variables_to_remove.end())
continue;
// Replace bindings
if (inst.operands[1] == spv::DecorationBinding)
{
if (const auto referenced_sampler_it = std::find(entry_point.referenced_samplers.begin(), entry_point.referenced_samplers.end(), inst.operands[0]);
referenced_sampler_it != entry_point.referenced_samplers.end())
inst.operands[2] = static_cast<uint32_t>(std::distance(entry_point.referenced_samplers.begin(), referenced_sampler_it));
else
if (const auto referenced_storage_it = std::find(entry_point.referenced_storages.begin(), entry_point.referenced_storages.end(), inst.operands[0]);
referenced_storage_it != entry_point.referenced_storages.end())
inst.operands[2] = static_cast<uint32_t>(std::distance(entry_point.referenced_storages.begin(), referenced_storage_it));
}
}
inst.write(spirv);
}
finalize_type_and_constants_section(spirv);
for (const spirv_instruction &inst : _variables.instructions)
{
// Remove all declarations of the interface variables for non-matching entry points
if (inst.op == spv::OpVariable && std::find(variables_to_remove.begin(), variables_to_remove.end(), inst.result) != variables_to_remove.end())
continue;
inst.write(spirv);
}
// All referenced function definitions
for (const function_blocks &func : _functions_blocks)
{
if (func.definition.instructions.empty())
continue;
const bool has_line = (_debug_info && func.declaration.instructions[0].op == spv::OpLine);
assert(func.declaration.instructions[has_line ? 1 : 0].op == spv::OpFunction);
const spv::Id definition = func.declaration.instructions[has_line ? 1 : 0].result;
#if 1
if (std::find(functions_to_remove.begin(), functions_to_remove.end(), definition) != functions_to_remove.end())
#else
if (struct_definition != entry_point.struct_definition &&
entry_point.referenced_functions.find(struct_definition) == entry_point.referenced_functions.end())
#endif
continue;
for (const spirv_instruction &inst : func.declaration.instructions)
inst.write(spirv);
// Grab first label and move it in front of variable declarations
func.definition.instructions.front().write(spirv);
assert(func.definition.instructions.front().op == spv::OpLabel);
for (const spirv_instruction &inst : func.variables.instructions)
inst.write(spirv);
for (auto inst_it = func.definition.instructions.begin() + 1; inst_it != func.definition.instructions.end(); ++inst_it)
inst_it->write(spirv);
}
return spirv;
}
spv::Id convert_type(type info, bool is_ptr = false, spv::StorageClass storage = spv::StorageClassFunction, spv::ImageFormat format = spv::ImageFormatUnknown, uint32_t array_stride = 0)
{
assert(array_stride == 0 || info.is_array());
// The storage class is only relevant for pointers, so ignore it for other types during lookup
if (is_ptr == false)
storage = spv::StorageClassFunction;
// There cannot be sampler variables that are local to a function, so always assume uniform storage for them
if (info.is_object())
storage = spv::StorageClassUniformConstant;
else
assert(format == spv::ImageFormatUnknown);
if (info.is_sampler() || info.is_storage())
info.rows = info.cols = 1;
// Fall back to 32-bit types and use relaxed precision decoration instead if 16-bit types are not enabled
if (!_enable_16bit_types && info.is_numeric() && info.precision() < 32)
info.base = static_cast<type::datatype>(info.base + 1); // min16int -> int, min16uint -> uint, min16float -> float
const type_lookup lookup { info, is_ptr, array_stride, { storage, format } };
if (const auto lookup_it = std::find_if(_type_lookup.begin(), _type_lookup.end(),
[&lookup](const std::pair<type_lookup, spv::Id> &lookup_entry) { return lookup_entry.first == lookup; });
lookup_it != _type_lookup.end())
return lookup_it->second;
spv::Id type_id, elem_type_id;
if (is_ptr)
{
elem_type_id = convert_type(info, false, storage, format, array_stride);
type_id =
add_instruction(spv::OpTypePointer, 0, _types_and_constants)
.add(storage)
.add(elem_type_id);
}
else if (info.is_array())
{
type elem_info = info;
elem_info.array_length = 0;
elem_type_id = convert_type(elem_info, false, storage, format);
// Make sure we don't get any dynamic arrays here
assert(info.is_bounded_array());
const spv::Id array_length_id = emit_constant(info.array_length);
type_id =
add_instruction(spv::OpTypeArray, 0, _types_and_constants)
.add(elem_type_id)
.add(array_length_id);
if (array_stride != 0)
add_decoration(type_id, spv::DecorationArrayStride, { array_stride });
}
else if (info.is_matrix())
{
// Convert MxN matrix to a SPIR-V matrix with M vectors with N elements
type elem_info = info;
elem_info.rows = info.cols;
elem_info.cols = 1;
elem_type_id = convert_type(elem_info, false, storage, format);
// Matrix types with just one row are interpreted as if they were a vector type
if (info.rows == 1)
return elem_type_id;
type_id =
add_instruction(spv::OpTypeMatrix, 0, _types_and_constants)
.add(elem_type_id)
.add(info.rows);
}
else if (info.is_vector())
{
type elem_info = info;
elem_info.rows = 1;
elem_info.cols = 1;
elem_type_id = convert_type(elem_info, false, storage, format);
type_id =
add_instruction(spv::OpTypeVector, 0, _types_and_constants)
.add(elem_type_id)
.add(info.rows);
}
else
{
switch (info.base)
{
case type::t_void:
assert(info.rows == 0 && info.cols == 0);
type_id = add_instruction(spv::OpTypeVoid, 0, _types_and_constants);
break;
case type::t_bool:
assert(info.rows == 1 && info.cols == 1);
type_id = add_instruction(spv::OpTypeBool, 0, _types_and_constants);
break;
case type::t_min16int:
assert(_enable_16bit_types && info.rows == 1 && info.cols == 1);
add_capability(spv::CapabilityInt16);
if (storage == spv::StorageClassInput || storage == spv::StorageClassOutput)
add_capability(spv::CapabilityStorageInputOutput16);
type_id =
add_instruction(spv::OpTypeInt, 0, _types_and_constants)
.add(16) // Width
.add(1); // Signedness
break;
case type::t_int:
assert(info.rows == 1 && info.cols == 1);
type_id =
add_instruction(spv::OpTypeInt, 0, _types_and_constants)
.add(32) // Width
.add(1); // Signedness
break;
case type::t_min16uint:
assert(_enable_16bit_types && info.rows == 1 && info.cols == 1);
add_capability(spv::CapabilityInt16);
if (storage == spv::StorageClassInput || storage == spv::StorageClassOutput)
add_capability(spv::CapabilityStorageInputOutput16);
type_id =
add_instruction(spv::OpTypeInt, 0, _types_and_constants)
.add(16) // Width
.add(0); // Signedness
break;
case type::t_uint:
assert(info.rows == 1 && info.cols == 1);
type_id =
add_instruction(spv::OpTypeInt, 0, _types_and_constants)
.add(32) // Width
.add(0); // Signedness
break;
case type::t_min16float:
assert(_enable_16bit_types && info.rows == 1 && info.cols == 1);
add_capability(spv::CapabilityFloat16);
if (storage == spv::StorageClassInput || storage == spv::StorageClassOutput)
add_capability(spv::CapabilityStorageInputOutput16);
type_id =
add_instruction(spv::OpTypeFloat, 0, _types_and_constants)
.add(16); // Width
break;
case type::t_float:
assert(info.rows == 1 && info.cols == 1);
type_id =
add_instruction(spv::OpTypeFloat, 0, _types_and_constants)
.add(32); // Width
break;
case type::t_struct:
assert(info.rows == 0 && info.cols == 0 && info.struct_definition != 0);
type_id = info.struct_definition;
break;
case type::t_sampler1d_int:
case type::t_sampler1d_uint:
case type::t_sampler1d_float:
add_capability(spv::CapabilitySampled1D);
[[fallthrough]];
case type::t_sampler2d_int:
case type::t_sampler2d_uint:
case type::t_sampler2d_float:
case type::t_sampler3d_int:
case type::t_sampler3d_uint:
case type::t_sampler3d_float:
elem_type_id = convert_image_type(info, format);
type_id =
add_instruction(spv::OpTypeSampledImage, 0, _types_and_constants)
.add(elem_type_id);
break;
case type::t_storage1d_int:
case type::t_storage1d_uint:
case type::t_storage1d_float:
add_capability(spv::CapabilityImage1D);
[[fallthrough]];
case type::t_storage2d_int:
case type::t_storage2d_uint:
case type::t_storage2d_float:
case type::t_storage3d_int:
case type::t_storage3d_uint:
case type::t_storage3d_float:
// No format specified for the storage image
if (format == spv::ImageFormatUnknown)
add_capability(spv::CapabilityStorageImageWriteWithoutFormat);
return convert_image_type(info, format);
default:
assert(false);
return 0;
}
}
_type_lookup.push_back({ lookup, type_id });
return type_id;
}
spv::Id convert_type(const function_blocks &info)
{
if (const auto lookup_it = std::find_if(_function_type_lookup.begin(), _function_type_lookup.end(),
[&lookup = info](const std::pair<function_blocks, spv::Id> &lookup_entry) { return lookup_entry.first == lookup; });
lookup_it != _function_type_lookup.end())
return lookup_it->second;
const spv::Id return_type_id = convert_type(info.return_type);
assert(return_type_id != 0);
std::vector<spv::Id> param_type_ids;
param_type_ids.reserve(info.param_types.size());
for (const type &param_type : info.param_types)
param_type_ids.push_back(convert_type(param_type, true));
spirv_instruction &inst = add_instruction(spv::OpTypeFunction, 0, _types_and_constants)
.add(return_type_id)
.add(param_type_ids.begin(), param_type_ids.end());
_function_type_lookup.push_back({ info, inst });
return inst;
}
spv::Id convert_image_type(type info, spv::ImageFormat format = spv::ImageFormatUnknown)
{
type elem_info = info;
elem_info.rows = 1;
elem_info.cols = 1;
if (!info.is_numeric())
{
if ((info.is_integral() && info.is_signed()) || (format >= spv::ImageFormatRgba32i && format <= spv::ImageFormatR8i))
elem_info.base = type::t_int;
else if ((info.is_integral() && info.is_unsigned()) || (format >= spv::ImageFormatRgba32ui && format <= spv::ImageFormatR8ui))
elem_info.base = type::t_uint;
else
elem_info.base = type::t_float;
}
type_lookup lookup { info, false, 0u, { spv::StorageClassUniformConstant, format } };
if (!info.is_storage())
{
lookup.type = elem_info;
lookup.type.base = static_cast<type::datatype>(type::t_texture1d + info.texture_dimension() - 1);
lookup.type.struct_definition = static_cast<uint32_t>(elem_info.base);
}
if (const auto lookup_it = std::find_if(_type_lookup.begin(), _type_lookup.end(),
[&lookup](const std::pair<type_lookup, spv::Id> &lookup_entry) { return lookup_entry.first == lookup; });
lookup_it != _type_lookup.end())
return lookup_it->second;
spv::Id type_id, elem_type_id = convert_type(elem_info, false, spv::StorageClassUniformConstant);
type_id =
add_instruction(spv::OpTypeImage, 0, _types_and_constants)
.add(elem_type_id) // Sampled Type (always a scalar type)
.add(spv::Dim1D + info.texture_dimension() - 1)
.add(0) // Not a depth image
.add(0) // Not an array
.add(0) // Not multi-sampled
.add(info.is_storage() ? 2 : 1) // Used with a sampler or as storage
.add(format);
_type_lookup.push_back({ lookup, type_id });
return type_id;
}
uint32_t semantic_to_location(const std::string &semantic, uint32_t max_attributes = 1)
{
if (const auto it = _semantic_to_location.find(semantic);
it != _semantic_to_location.end())
return it->second;
// Extract the semantic index from the semantic name (e.g. 2 for "TEXCOORD2")
size_t digit_index = semantic.size() - 1;
while (digit_index != 0 && semantic[digit_index] >= '0' && semantic[digit_index] <= '9')
digit_index--;
digit_index++;
const std::string semantic_base = semantic.substr(0, digit_index);
uint32_t semantic_digit = 0;
std::from_chars(semantic.c_str() + digit_index, semantic.c_str() + semantic.size(), semantic_digit);
if (semantic_base == "COLOR" || semantic_base == "SV_TARGET")
return semantic_digit;
uint32_t location = static_cast<uint32_t>(_semantic_to_location.size());
// Now create adjoining location indices for all possible semantic indices belonging to this semantic name
for (uint32_t a = 0; a < semantic_digit + max_attributes; ++a)
{
const auto insert = _semantic_to_location.emplace(semantic_base + std::to_string(a), location + a);
if (!insert.second)
{
assert(a == 0 || (insert.first->second - a) == location);
// Semantic was already created with a different location index, so need to remap to that
location = insert.first->second - a;
}
}
return location + semantic_digit;
}
spv::BuiltIn semantic_to_builtin(const std::string &semantic, shader_type stype) const
{
if (semantic == "SV_POSITION")
return stype == shader_type::pixel ? spv::BuiltInFragCoord : spv::BuiltInPosition;
if (semantic == "SV_POINTSIZE")
return spv::BuiltInPointSize;
if (semantic == "SV_DEPTH")
return spv::BuiltInFragDepth;
if (semantic == "SV_VERTEXID")
return _vulkan_semantics ? spv::BuiltInVertexIndex : spv::BuiltInVertexId;
if (semantic == "SV_ISFRONTFACE")
return spv::BuiltInFrontFacing;
if (semantic == "SV_GROUPID")
return spv::BuiltInWorkgroupId;
if (semantic == "SV_GROUPINDEX")
return spv::BuiltInLocalInvocationIndex;
if (semantic == "SV_GROUPTHREADID")
return spv::BuiltInLocalInvocationId;
if (semantic == "SV_DISPATCHTHREADID")
return spv::BuiltInGlobalInvocationId;
return spv::BuiltInMax;
}
spv::ImageFormat format_to_image_format(texture_format format)
{
switch (format)
{
default:
assert(false);
[[fallthrough]];
case texture_format::unknown:
return spv::ImageFormatUnknown;
case texture_format::r8:
add_capability(spv::CapabilityStorageImageExtendedFormats);
return spv::ImageFormatR8;
case texture_format::r16:
add_capability(spv::CapabilityStorageImageExtendedFormats);
return spv::ImageFormatR16;
case texture_format::r16f:
add_capability(spv::CapabilityStorageImageExtendedFormats);
return spv::ImageFormatR16f;
case texture_format::r32i:
return spv::ImageFormatR32i;
case texture_format::r32u:
return spv::ImageFormatR32ui;
case texture_format::r32f:
return spv::ImageFormatR32f;
case texture_format::rg8:
add_capability(spv::CapabilityStorageImageExtendedFormats);
return spv::ImageFormatRg8;
case texture_format::rg16:
add_capability(spv::CapabilityStorageImageExtendedFormats);
return spv::ImageFormatRg16;
case texture_format::rg16f:
add_capability(spv::CapabilityStorageImageExtendedFormats);
return spv::ImageFormatRg16f;
case texture_format::rg32f:
add_capability(spv::CapabilityStorageImageExtendedFormats);
return spv::ImageFormatRg32f;
case texture_format::rgba8:
return spv::ImageFormatRgba8;
case texture_format::rgba16:
add_capability(spv::CapabilityStorageImageExtendedFormats);
return spv::ImageFormatRgba16;
case texture_format::rgba16f:
return spv::ImageFormatRgba16f;
case texture_format::rgba32f:
return spv::ImageFormatRgba32f;
case texture_format::rgb10a2:
add_capability(spv::CapabilityStorageImageExtendedFormats);
return spv::ImageFormatRgb10A2;
}
}
void add_name(id id, const char *name)
{
if (!_debug_info)
return;
assert(name != nullptr);
// https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html#OpName
add_instruction_without_result(spv::OpName, _debug_b)
.add(id)
.add_string(name);
}
void add_builtin(id id, spv::BuiltIn builtin)
{
add_instruction_without_result(spv::OpDecorate, _annotations)
.add(id)
.add(spv::DecorationBuiltIn)
.add(builtin);
}
void add_decoration(id id, spv::Decoration decoration, std::initializer_list<uint32_t> values = {})
{
// https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html#OpDecorate
add_instruction_without_result(spv::OpDecorate, _annotations)
.add(id)
.add(decoration)
.add(values.begin(), values.end());
}
void add_member_name(id id, uint32_t member_index, const char *name)
{
if (!_debug_info)
return;
assert(name != nullptr);
// https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html#OpMemberName
add_instruction_without_result(spv::OpMemberName, _debug_b)
.add(id)
.add(member_index)
.add_string(name);
}
void add_member_builtin(id id, uint32_t member_index, spv::BuiltIn builtin)
{
add_instruction_without_result(spv::OpMemberDecorate, _annotations)
.add(id)
.add(member_index)
.add(spv::DecorationBuiltIn)
.add(builtin);
}
void add_member_decoration(id id, uint32_t member_index, spv::Decoration decoration, std::initializer_list<uint32_t> values = {})
{
// https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html#OpMemberDecorate
add_instruction_without_result(spv::OpMemberDecorate, _annotations)
.add(id)
.add(member_index)
.add(decoration)
.add(values.begin(), values.end());
}
void add_capability(spv::Capability capability)
{
_capabilities.insert(capability);
}
id define_struct(const location &loc, struct_type &info) override
{
// First define all member types to make sure they are declared before the struct type references them
std::vector<spv::Id> member_types;
member_types.reserve(info.member_list.size());
for (const member_type &member : info.member_list)
member_types.push_back(convert_type(member.type));
// Afterwards define the actual struct type
add_location(loc, _types_and_constants);
const id res = info.id =
add_instruction(spv::OpTypeStruct, 0, _types_and_constants)
.add(member_types.begin(), member_types.end());
if (!info.unique_name.empty())
add_name(res, info.unique_name.c_str());
for (uint32_t index = 0; index < info.member_list.size(); ++index)
{
const member_type &member = info.member_list[index];
add_member_name(res, index, member.name.c_str());
if (!_enable_16bit_types && member.type.is_numeric() && member.type.precision() < 32)
add_member_decoration(res, index, spv::DecorationRelaxedPrecision);
}
_structs.push_back(info);
return res;
}
id define_texture(const location &, texture &info) override
{
const id res = info.id = make_id(); // Need to create an unique ID here too, so that the symbol lookup for textures works
_module.textures.push_back(info);
return res;
}
id define_sampler(const location &loc, const texture &, sampler &info) override
{
const id res = info.id = define_variable(loc, info.type, info.unique_name.c_str(), spv::StorageClassUniformConstant);
// Default to a binding index equivalent to the entry in the sampler list (this is later overwritten in 'finalize_code_for_entry_point' to a more optimal placement)
const uint32_t default_binding = static_cast<uint32_t>(_module.samplers.size());
add_decoration(res, spv::DecorationBinding, { default_binding });
add_decoration(res, spv::DecorationDescriptorSet, { 1 });
_module.samplers.push_back(info);
return res;
}
id define_storage(const location &loc, const texture &tex_info, storage &info) override
{
const id res = info.id = define_variable(loc, info.type, info.unique_name.c_str(), spv::StorageClassUniformConstant, format_to_image_format(tex_info.format));
// Default to a binding index equivalent to the entry in the storage list (this is later overwritten in 'finalize_code_for_entry_point' to a more optimal placement)
const uint32_t default_binding = static_cast<uint32_t>(_module.storages.size());
add_decoration(res, spv::DecorationBinding, { default_binding });
add_decoration(res, spv::DecorationDescriptorSet, { 2 });
_module.storages.push_back(info);
return res;
}
id define_uniform(const location &, uniform &info) override
{
if (_uniforms_to_spec_constants && info.has_initializer_value)
{
const id res = emit_constant(info.type, info.initializer_value, true);
add_name(res, info.name.c_str());
const auto add_spec_constant = [this](const spirv_instruction &inst, const uniform &info, const constant &initializer_value, size_t initializer_offset) {
assert(inst.op == spv::OpSpecConstant || inst.op == spv::OpSpecConstantTrue || inst.op == spv::OpSpecConstantFalse);
const uint32_t spec_id = static_cast<uint32_t>(_module.spec_constants.size());
add_decoration(inst, spv::DecorationSpecId, { spec_id });
uniform scalar_info = info;
scalar_info.type.rows = 1;
scalar_info.type.cols = 1;
scalar_info.size = 4;
scalar_info.offset = static_cast<uint32_t>(initializer_offset);
scalar_info.initializer_value = {};
scalar_info.initializer_value.as_uint[0] = initializer_value.as_uint[initializer_offset];
_module.spec_constants.push_back(std::move(scalar_info));
};
const spirv_instruction &base_inst = _types_and_constants.instructions.back();
assert(base_inst == res);
// External specialization constants need to be scalars
if (info.type.is_scalar())
{
add_spec_constant(base_inst, info, info.initializer_value, 0);
}
else
{
assert(base_inst.op == spv::OpSpecConstantComposite);
// Add each individual scalar component of the constant as a separate external specialization constant
for (size_t i = 0; i < (info.type.is_array() ? base_inst.operands.size() : 1); ++i)
{
constant initializer_value = info.initializer_value;
spirv_instruction elem_inst = base_inst;
if (info.type.is_array())
{
elem_inst = *std::find_if(_types_and_constants.instructions.rbegin(), _types_and_constants.instructions.rend(),
[operand_id = base_inst.operands[i]](const spirv_instruction &inst) { return inst == operand_id; });
assert(initializer_value.array_data.size() == base_inst.operands.size());
initializer_value = initializer_value.array_data[i];
}
for (size_t row = 0; row < elem_inst.operands.size(); ++row)
{
const spirv_instruction &row_inst = *std::find_if(_types_and_constants.instructions.rbegin(), _types_and_constants.instructions.rend(),
[operand_id = elem_inst.operands[row]](const spirv_instruction &inst) { return inst == operand_id; });
if (row_inst.op != spv::OpSpecConstantComposite)
{
add_spec_constant(row_inst, info, initializer_value, row);
continue;
}
for (size_t col = 0; col < row_inst.operands.size(); ++col)
{
const spirv_instruction &col_inst = *std::find_if(_types_and_constants.instructions.rbegin(), _types_and_constants.instructions.rend(),
[operand_id = row_inst.operands[col]](const spirv_instruction &inst) { return inst == operand_id; });
add_spec_constant(col_inst, info, initializer_value, row * info.type.cols + col);
}
}
}
}
return res;
}
else
{
// Create global uniform buffer variable on demand
if (_global_ubo_type == 0)
{
_global_ubo_type = make_id();
make_id(); // Pointer type for '_global_ubo_type'
add_decoration(_global_ubo_type, spv::DecorationBlock);
}
if (_global_ubo_variable == 0)
{
_global_ubo_variable = make_id();
add_decoration(_global_ubo_variable, spv::DecorationDescriptorSet, { 0 });
add_decoration(_global_ubo_variable, spv::DecorationBinding, { 0 });
}
uint32_t alignment = (info.type.rows == 3 ? 4 : info.type.rows) * 4;
info.size = info.type.rows * 4;
uint32_t array_stride = 16;
const uint32_t matrix_stride = 16;
if (info.type.is_matrix())
{
alignment = matrix_stride;
info.size = info.type.rows * matrix_stride;
}
if (info.type.is_array())
{
alignment = array_stride;
array_stride = align_up(info.size, array_stride);
// Uniform block rules do not permit anything in the padding of an array
info.size = array_stride * info.type.array_length;
}
info.offset = _module.total_uniform_size;
info.offset = align_up(info.offset, alignment);
_module.total_uniform_size = info.offset + info.size;
type ubo_type = info.type;
// Convert boolean uniform variables to integer type so that they have a defined size
if (info.type.is_boolean())
ubo_type.base = type::t_uint;
const uint32_t member_index = static_cast<uint32_t>(_global_ubo_types.size());
// Composite objects in the uniform storage class must be explicitly laid out, which includes array types requiring a stride decoration
_global_ubo_types.push_back(
convert_type(ubo_type, false, spv::StorageClassUniform, spv::ImageFormatUnknown, info.type.is_array() ? array_stride : 0u));
add_member_name(_global_ubo_type, member_index, info.name.c_str());
add_member_decoration(_global_ubo_type, member_index, spv::DecorationOffset, { info.offset });
if (info.type.is_matrix())
{
// Read matrices in column major layout, even though they are actually row major, to avoid transposing them on every access (since SPIR-V uses column matrices)
// TODO: This technically only works with square matrices
add_member_decoration(_global_ubo_type, member_index, spv::DecorationColMajor);
add_member_decoration(_global_ubo_type, member_index, spv::DecorationMatrixStride, { matrix_stride });
}
_module.uniforms.push_back(info);
return 0xF0000000 | member_index;
}
}
id define_variable(const location &loc, const type &type, std::string name, bool global, id initializer_value) override
{
spv::StorageClass storage = spv::StorageClassFunction;
if (type.has(type::q_groupshared))
storage = spv::StorageClassWorkgroup;
else if (global)
storage = spv::StorageClassPrivate;
return define_variable(loc, type, name.c_str(), storage, spv::ImageFormatUnknown, initializer_value);
}
id define_variable(const location &loc, const type &type, const char *name, spv::StorageClass storage, spv::ImageFormat format = spv::ImageFormatUnknown, id initializer_value = 0)
{
assert(storage != spv::StorageClassFunction || (_current_function_blocks != nullptr && _current_function != nullptr && !_current_function->unique_name.empty() && (_current_function->unique_name[0] == 'F' || _current_function->unique_name[0] == 'E')));
spirv_basic_block &block = (storage != spv::StorageClassFunction) ?
_variables : _current_function_blocks->variables;
add_location(loc, block);
// https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html#OpVariable
spirv_instruction &inst = add_instruction(spv::OpVariable, convert_type(type, true, storage, format), block);
inst.add(storage);
const id res = inst.result;
if (initializer_value != 0)
{
if (storage != spv::StorageClassFunction || /* is_entry_point = */ _current_function->unique_name[0] == 'E')
{
// The initializer for variables must be a constant
inst.add(initializer_value);
}
else
{
// Only use the variable initializer on global variables, since local variables for e.g. "for" statements need to be assigned in their respective scope and not their declaration
expression variable;
variable.reset_to_lvalue(loc, res, type);
emit_store(variable, initializer_value);
}
}
if (name != nullptr && *name != '\0')
add_name(res, name);
if (!_enable_16bit_types && type.is_numeric() && type.precision() < 32)
add_decoration(res, spv::DecorationRelaxedPrecision);
_storage_lookup[res] = { storage, format };
return res;
}
id define_function(const location &loc, function &info) override
{
assert(!is_in_function());
function_blocks &func = _functions_blocks.emplace_back();
func.return_type = info.return_type;
for (const member_type &param : info.parameter_list)
func.param_types.push_back(param.type);
add_location(loc, func.declaration);
// https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html#OpFunction
const id res = info.id =
add_instruction(spv::OpFunction, convert_type(info.return_type), func.declaration)
.add(spv::FunctionControlMaskNone)
.add(convert_type(func));
if (!info.name.empty())
add_name(res, info.name.c_str());
for (member_type &param : info.parameter_list)
{
add_location(param.location, func.declaration);
param.id = add_instruction(spv::OpFunctionParameter, convert_type(param.type, true), func.declaration);
add_name(param.id, param.name.c_str());
}
_functions.push_back(std::make_unique<function>(info));
_current_function = _functions.back().get();
_current_function_blocks = &func;
return res;
}
void define_entry_point(function &func) override
{
assert(!func.unique_name.empty() && func.unique_name[0] == 'F');
func.unique_name[0] = 'E';
// Modify entry point name so each thread configuration is made separate
if (func.type == shader_type::compute)
func.unique_name +=
'_' + std::to_string(func.num_threads[0]) +
'_' + std::to_string(func.num_threads[1]) +
'_' + std::to_string(func.num_threads[2]);
if (std::find_if(_module.entry_points.begin(), _module.entry_points.end(),
[&func](const std::pair<std::string, shader_type> &entry_point) {
return entry_point.first == func.unique_name;
}) != _module.entry_points.end())
return;
_module.entry_points.emplace_back(func.unique_name, func.type);
spv::Id position_variable = 0;
spv::Id point_size_variable = 0;
std::vector<spv::Id> inputs_and_outputs;
std::vector<expression> call_params;
// Generate the glue entry point function
function entry_point = func;
entry_point.referenced_functions.push_back(func.id);
// Change function signature to 'void main()'
entry_point.return_type = { type::t_void };
entry_point.return_semantic.clear();
entry_point.parameter_list.clear();
const id entry_point_definition = define_function({}, entry_point);
enter_block(create_block());
const auto create_varying_param = [this, &call_params](const member_type &param) {
// Initialize all output variables with zero
const spv::Id variable = define_variable({}, param.type, nullptr, spv::StorageClassFunction, spv::ImageFormatUnknown, emit_constant(param.type, 0u));
expression &call_param = call_params.emplace_back();
call_param.reset_to_lvalue({}, variable, param.type);
return variable;
};
const auto create_varying_variable = [this, &inputs_and_outputs, &position_variable, &point_size_variable, stype = func.type](const type &param_type, const std::string &semantic, spv::StorageClass storage, int a = 0) {
const spv::Id variable = define_variable({}, param_type, nullptr, storage);
if (const spv::BuiltIn builtin = semantic_to_builtin(semantic, stype);
builtin != spv::BuiltInMax)
{
assert(a == 0); // Built-in variables cannot be arrays
add_builtin(variable, builtin);
if (builtin == spv::BuiltInPosition && storage == spv::StorageClassOutput)
position_variable = variable;
if (builtin == spv::BuiltInPointSize && storage == spv::StorageClassOutput)
point_size_variable = variable;
}
else
{
assert(stype != shader_type::compute); // Compute shaders cannot have custom inputs or outputs
const uint32_t location = semantic_to_location(semantic, std::max(1u, param_type.array_length));
add_decoration(variable, spv::DecorationLocation, { location + a });
}
if (param_type.has(type::q_noperspective))
add_decoration(variable, spv::DecorationNoPerspective);
if (param_type.has(type::q_centroid))
add_decoration(variable, spv::DecorationCentroid);
if (param_type.has(type::q_nointerpolation))
add_decoration(variable, spv::DecorationFlat);
inputs_and_outputs.push_back(variable);
return variable;
};
// Translate function parameters to input/output variables
for (const member_type &param : func.parameter_list)
{
spv::Id param_var = create_varying_param(param);
// Create separate input/output variables for "inout" parameters
if (param.type.has(type::q_in))
{
spv::Id param_value = 0;
// Flatten structure parameters
if (param.type.is_struct())
{
const struct_type &struct_definition = get_struct(param.type.struct_definition);
type struct_type = param.type;
const auto array_length = std::max(1u, param.type.array_length);
struct_type.array_length = 0;
// Struct arrays need to be flattened into individual elements as well
std::vector<spv::Id> array_element_ids;
array_element_ids.reserve(array_length);
for (unsigned int a = 0; a < array_length; a++)
{
std::vector<spv::Id> struct_element_ids;
struct_element_ids.reserve(struct_definition.member_list.size());
for (const member_type &member : struct_definition.member_list)
{
const spv::Id input_var = create_varying_variable(member.type, member.semantic, spv::StorageClassInput, a);
param_value =
add_instruction(spv::OpLoad, convert_type(member.type))
.add(input_var);
struct_element_ids.push_back(param_value);
}
param_value =
add_instruction(spv::OpCompositeConstruct, convert_type(struct_type))
.add(struct_element_ids.begin(), struct_element_ids.end());
array_element_ids.push_back(param_value);
}
if (param.type.is_array())
{
// Build the array from all constructed struct elements
param_value =
add_instruction(spv::OpCompositeConstruct, convert_type(param.type))
.add(array_element_ids.begin(), array_element_ids.end());
}
}
else
{
const spv::Id input_var = create_varying_variable(param.type, param.semantic, spv::StorageClassInput);
param_value =
add_instruction(spv::OpLoad, convert_type(param.type))
.add(input_var);
}
add_instruction_without_result(spv::OpStore)
.add(param_var)
.add(param_value);
}
if (param.type.has(type::q_out))
{
if (param.type.is_struct())
{
const struct_type &struct_definition = get_struct(param.type.struct_definition);
for (unsigned int a = 0, array_length = std::max(1u, param.type.array_length); a < array_length; a++)
{
for (const member_type &member : struct_definition.member_list)
{
create_varying_variable(member.type, member.semantic, spv::StorageClassOutput, a);
}
}
}
else
{
create_varying_variable(param.type, param.semantic, spv::StorageClassOutput);
}
}
}
const id call_result = emit_call({}, func.id, func.return_type, call_params);
for (size_t i = 0, inputs_and_outputs_index = 0; i < func.parameter_list.size(); ++i)
{
const member_type &param = func.parameter_list[i];
if (param.type.has(type::q_out))
{
const spv::Id value =
add_instruction(spv::OpLoad, convert_type(param.type))
.add(call_params[i].base);
if (param.type.is_struct())
{
const struct_type &struct_definition = get_struct(param.type.struct_definition);
type struct_type = param.type;
const auto array_length = std::max(1u, param.type.array_length);
struct_type.array_length = 0;
// Skip input variables if this is an "inout" parameter
if (param.type.has(type::q_in))
inputs_and_outputs_index += struct_definition.member_list.size() * array_length;
// Split up struct array into individual struct elements again
for (unsigned int a = 0; a < array_length; a++)
{
spv::Id element_value = value;
if (param.type.is_array())
{
element_value =
add_instruction(spv::OpCompositeExtract, convert_type(struct_type))
.add(value)
.add(a);
}
// Split out struct fields into separate output variables again
for (uint32_t member_index = 0; member_index < struct_definition.member_list.size(); ++member_index)
{
const spv::Id member_value =
add_instruction(spv::OpCompositeExtract, convert_type(struct_definition.member_list[member_index].type))
.add(element_value)
.add(member_index);
add_instruction_without_result(spv::OpStore)
.add(inputs_and_outputs[inputs_and_outputs_index++])
.add(member_value);
}
}
}
else
{
// Skip input variable if this is an "inout" parameter (see loop above)
if (param.type.has(type::q_in))
inputs_and_outputs_index += 1;
add_instruction_without_result(spv::OpStore)
.add(inputs_and_outputs[inputs_and_outputs_index++])
.add(value);
}
}
else
{
// Input parameters do not need to store anything, but increase the input/output variable index
if (param.type.is_struct())
{
const struct_type &struct_definition = get_struct(param.type.struct_definition);
inputs_and_outputs_index += struct_definition.member_list.size() * std::max(1u, param.type.array_length);
}
else
{
inputs_and_outputs_index += 1;
}
}
}
if (func.return_type.is_struct())
{
const struct_type &struct_definition = get_struct(func.return_type.struct_definition);
for (uint32_t member_index = 0; member_index < struct_definition.member_list.size(); ++member_index)
{
const member_type &member = struct_definition.member_list[member_index];
const spv::Id result_var = create_varying_variable(member.type, member.semantic, spv::StorageClassOutput);
const spv::Id member_result =
add_instruction(spv::OpCompositeExtract, convert_type(member.type))
.add(call_result)
.add(member_index);
add_instruction_without_result(spv::OpStore)
.add(result_var)
.add(member_result);
}
}
else if (!func.return_type.is_void())
{
const spv::Id result_var = create_varying_variable(func.return_type, func.return_semantic, spv::StorageClassOutput);
add_instruction_without_result(spv::OpStore)
.add(result_var)
.add(call_result);
}
// Add code to flip the output vertically
if (_flip_vert_y && position_variable != 0 && func.type == shader_type::vertex)
{
expression position;
position.reset_to_lvalue({}, position_variable, { type::t_float, 4, 1 });
position.add_constant_index_access(1); // Y component
// gl_Position.y = -gl_Position.y
emit_store(position,
emit_unary_op({}, tokenid::minus, { type::t_float, 1, 1 },
emit_load(position, false)));
}
// Add code that sets the point size to a default value (in case this vertex shader is used with point primitives)
if (point_size_variable == 0 && func.type == shader_type::vertex)
{
create_varying_variable({ type::t_float, 1, 1 }, "SV_POINTSIZE", spv::StorageClassOutput);
expression point_size;
point_size.reset_to_lvalue({}, point_size_variable, { type::t_float, 1, 1 });
// gl_PointSize = 1.0
emit_store(point_size, emit_constant({ type::t_float, 1, 1 }, 1));
}
leave_block_and_return(0);
leave_function();
spv::ExecutionModel model;
switch (func.type)
{
case shader_type::vertex:
model = spv::ExecutionModelVertex;
break;
case shader_type::pixel:
model = spv::ExecutionModelFragment;
add_instruction_without_result(spv::OpExecutionMode, _execution_modes)
.add(entry_point_definition)
.add(_vulkan_semantics ? spv::ExecutionModeOriginUpperLeft : spv::ExecutionModeOriginLowerLeft);
break;
case shader_type::compute:
model = spv::ExecutionModelGLCompute;
add_instruction_without_result(spv::OpExecutionMode, _execution_modes)
.add(entry_point_definition)
.add(spv::ExecutionModeLocalSize)
.add(func.num_threads[0])
.add(func.num_threads[1])
.add(func.num_threads[2]);
break;
default:
assert(false);
return;
}
add_instruction_without_result(spv::OpEntryPoint, _entries)
.add(model)
.add(entry_point_definition)
.add_string(func.unique_name.c_str())
.add(inputs_and_outputs.begin(), inputs_and_outputs.end());
}
id emit_load(const expression &exp, bool) override
{
if (exp.is_constant) // Constant expressions do not have a complex access chain
return emit_constant(exp.type, exp.constant);
size_t i = 0;
spv::Id result = exp.base;
type base_type = exp.type;
bool is_uniform_bool = false;
if (exp.is_lvalue || !exp.chain.empty())
add_location(exp.location, *_current_block_data);
// If a variable is referenced, load the value first
if (exp.is_lvalue && _spec_constants.find(exp.base) == _spec_constants.end())
{
if (!exp.chain.empty())
base_type = exp.chain[0].from;
std::pair<spv::StorageClass, spv::ImageFormat> storage = { spv::StorageClassFunction, spv::ImageFormatUnknown };
if (const auto it = _storage_lookup.find(exp.base);
it != _storage_lookup.end())
storage = it->second;
spirv_instruction *access_chain = nullptr;
// Check if this is a uniform variable (see 'define_uniform' function above) and dereference it
if (result & 0xF0000000)
{
const uint32_t member_index = result ^ 0xF0000000;
storage.first = spv::StorageClassUniform;
is_uniform_bool = base_type.is_boolean();
if (is_uniform_bool)
base_type.base = type::t_uint;
access_chain = &add_instruction(spv::OpAccessChain)
.add(_global_ubo_variable)
.add(emit_constant(member_index));
}
// Any indexing expressions can be resolved during load with an 'OpAccessChain' already
if (!exp.chain.empty() && (
exp.chain[0].op == expression::operation::op_member ||
exp.chain[0].op == expression::operation::op_dynamic_index ||
exp.chain[0].op == expression::operation::op_constant_index))
{
// Ensure that 'access_chain' cannot get invalidated by calls to 'emit_constant' or 'convert_type'
assert(_current_block_data != &_types_and_constants);
// Use access chain from uniform if possible, otherwise create new one
if (access_chain == nullptr) access_chain =
&add_instruction(spv::OpAccessChain).add(result); // Base
// Ignore first index into 1xN matrices, since they were translated to a vector type in SPIR-V
if (exp.chain[0].from.rows == 1 && exp.chain[0].from.cols > 1)
i = 1;
for (; i < exp.chain.size() && (
exp.chain[i].op == expression::operation::op_member ||
exp.chain[i].op == expression::operation::op_dynamic_index ||
exp.chain[i].op == expression::operation::op_constant_index); ++i)
access_chain->add(exp.chain[i].op == expression::operation::op_dynamic_index ?
exp.chain[i].index :
emit_constant(exp.chain[i].index)); // Indexes
base_type = exp.chain[i - 1].to;
access_chain->type = convert_type(base_type, true, storage.first, storage.second); // Last type is the result
result = access_chain->result;
}
else if (access_chain != nullptr)
{
access_chain->type = convert_type(base_type, true, storage.first, storage.second, base_type.is_array() ? 16u : 0u);
result = access_chain->result;
}
result =
add_instruction(spv::OpLoad, convert_type(base_type, false, spv::StorageClassFunction, storage.second))
.add(result); // Pointer
}
// Need to convert boolean uniforms which are actually integers in SPIR-V
if (is_uniform_bool)
{
base_type.base = type::t_bool;
result =
add_instruction(spv::OpINotEqual, convert_type(base_type))
.add(result)
.add(emit_constant(0));
}
// Work through all remaining operations in the access chain and apply them to the value
for (; i < exp.chain.size(); ++i)
{
assert(result != 0);
const expression::operation &op = exp.chain[i];
switch (op.op)
{
case expression::operation::op_cast:
if (op.from.is_scalar() && !op.to.is_scalar())
{
type cast_type = op.to;
cast_type.base = op.from.base;
std::vector<expression> args;
args.reserve(op.to.components());
for (unsigned int c = 0; c < op.to.components(); ++c)
args.emplace_back().reset_to_rvalue(exp.location, result, op.from);
result = emit_construct(exp.location, cast_type, args);
}
if (op.from.is_boolean())
{
const spv::Id true_constant = emit_constant(op.to, 1);
const spv::Id false_constant = emit_constant(op.to, 0);
result =
add_instruction(spv::OpSelect, convert_type(op.to))
.add(result) // Condition
.add(true_constant)
.add(false_constant);
}
else
{
spv::Op spv_op = spv::OpNop;
switch (op.to.base)
{
case type::t_bool:
if (op.from.is_floating_point())
spv_op = spv::OpFOrdNotEqual;
else
spv_op = spv::OpINotEqual;
// Add instruction to compare value against zero instead of casting
result =
add_instruction(spv_op, convert_type(op.to))
.add(result)
.add(emit_constant(op.from, 0));
continue;
case type::t_min16int:
case type::t_int:
if (op.from.is_floating_point())
spv_op = spv::OpConvertFToS;
else if (op.from.precision() == op.to.precision())
spv_op = spv::OpBitcast;
else if (_enable_16bit_types)
spv_op = spv::OpSConvert;
else
continue; // Do not have to add conversion instruction between min16int/int if 16-bit types are not enabled
break;
case type::t_min16uint:
case type::t_uint:
if (op.from.is_floating_point())
spv_op = spv::OpConvertFToU;
else if (op.from.precision() == op.to.precision())
spv_op = spv::OpBitcast;
else if (_enable_16bit_types)
spv_op = spv::OpUConvert;
else
continue;
break;
case type::t_min16float:
case type::t_float:
if (op.from.is_floating_point() && !_enable_16bit_types)
continue; // Do not have to add conversion instruction between min16float/float if 16-bit types are not enabled
else if (op.from.is_floating_point())
spv_op = spv::OpFConvert;
else if (op.from.is_signed())
spv_op = spv::OpConvertSToF;
else
spv_op = spv::OpConvertUToF;
break;
default:
assert(false);
}
result =
add_instruction(spv_op, convert_type(op.to))
.add(result);
}
break;
case expression::operation::op_dynamic_index:
assert(op.from.is_vector() && op.to.is_scalar());
result =
add_instruction(spv::OpVectorExtractDynamic, convert_type(op.to))
.add(result) // Vector
.add(op.index); // Index
break;
case expression::operation::op_member: // In case of struct return values, which are r-values
case expression::operation::op_constant_index:
assert(op.from.is_vector() || op.from.is_matrix() || op.from.is_struct());
result =
add_instruction(spv::OpCompositeExtract, convert_type(op.to))
.add(result)
.add(op.index); // Literal Index
break;
case expression::operation::op_swizzle:
if (op.to.is_vector())
{
if (op.from.is_matrix())
{
spv::Id components[4];
for (int c = 0; c < 4 && op.swizzle[c] >= 0; ++c)
{
const unsigned int row = op.swizzle[c] / 4;
const unsigned int column = op.swizzle[c] - row * 4;
type scalar_type = op.to;
scalar_type.rows = 1;
scalar_type.cols = 1;
spirv_instruction &inst = add_instruction(spv::OpCompositeExtract, convert_type(scalar_type));
inst.add(result);
if (op.from.rows > 1) // Matrix types with a single row are actually vectors, so they don't need the extra index
inst.add(row);
inst.add(column);
components[c] = inst;
}
spirv_instruction &inst = add_instruction(spv::OpCompositeConstruct, convert_type(op.to));
for (int c = 0; c < 4 && op.swizzle[c] >= 0; ++c)
inst.add(components[c]);
result = inst;
}
else if (op.from.is_vector())
{
spirv_instruction &inst = add_instruction(spv::OpVectorShuffle, convert_type(op.to));
inst.add(result); // Vector 1
inst.add(result); // Vector 2
for (int c = 0; c < 4 && op.swizzle[c] >= 0; ++c)
inst.add(op.swizzle[c]);
result = inst;
}
else
{
spirv_instruction &inst = add_instruction(spv::OpCompositeConstruct, convert_type(op.to));
for (unsigned int c = 0; c < op.to.rows; ++c)
inst.add(result);
result = inst;
}
break;
}
else if (op.from.is_matrix() && op.to.is_scalar())
{
assert(op.swizzle[1] < 0);
spirv_instruction &inst = add_instruction(spv::OpCompositeExtract, convert_type(op.to));
inst.add(result); // Composite
if (op.from.rows > 1)
{
const unsigned int row = op.swizzle[0] / 4;
const unsigned int column = op.swizzle[0] - row * 4;
inst.add(row);
inst.add(column);
}
else
{
inst.add(op.swizzle[0]);
}
result = inst;
break;
}
else
{
assert(false);
break;
}
}
}
return result;
}
void emit_store(const expression &exp, id value) override
{
assert(value != 0 && exp.is_lvalue && !exp.is_constant && !exp.type.is_sampler());
add_location(exp.location, *_current_block_data);
size_t i = 0;
// Any indexing expressions can be resolved with an 'OpAccessChain' already
spv::Id target = emit_access_chain(exp, i);
type base_type = exp.chain.empty() ? exp.type : i == 0 ? exp.chain[0].from : exp.chain[i - 1].to;
// TODO: Complex access chains like float4x4[0].m00m10[0] = 0;
// Work through all remaining operations in the access chain and apply them to the value
for (; i < exp.chain.size(); ++i)
{
const expression::operation &op = exp.chain[i];
switch (op.op)
{
case expression::operation::op_cast:
case expression::operation::op_member:
// These should have been handled above already (and casting does not make sense for a store operation)
break;
case expression::operation::op_dynamic_index:
case expression::operation::op_constant_index:
assert(false);
break;
case expression::operation::op_swizzle:
{
spv::Id result =
add_instruction(spv::OpLoad, convert_type(base_type))
.add(target); // Pointer
if (base_type.is_vector())
{
spirv_instruction &inst = add_instruction(spv::OpVectorShuffle, convert_type(base_type));
inst.add(result); // Vector 1
inst.add(value); // Vector 2
unsigned int shuffle[4] = { 0, 1, 2, 3 };
for (unsigned int c = 0; c < base_type.rows; ++c)
if (op.swizzle[c] >= 0)
shuffle[op.swizzle[c]] = base_type.rows + c;
for (unsigned int c = 0; c < base_type.rows; ++c)
inst.add(shuffle[c]);
value = inst;
}
else if (op.to.is_scalar())
{
assert(op.swizzle[1] < 0);
spirv_instruction &inst = add_instruction(spv::OpCompositeInsert, convert_type(base_type));
inst.add(value); // Object
inst.add(result); // Composite
if (op.from.is_matrix() && op.from.rows > 1)
{
const unsigned int row = op.swizzle[0] / 4;
const unsigned int column = op.swizzle[0] - row * 4;
inst.add(row);
inst.add(column);
}
else
{
inst.add(op.swizzle[0]);
}
value = inst;
}
else
{
// TODO: Implement matrix to vector swizzles
assert(false);
}
break;
}
}
}
add_instruction_without_result(spv::OpStore)
.add(target)
.add(value);
}
id emit_access_chain(const expression &exp, size_t &i) override
{
// This function cannot create access chains for uniform variables
assert((exp.base & 0xF0000000) == 0);
i = 0;
if (exp.chain.empty() || (
exp.chain[0].op != expression::operation::op_member &&
exp.chain[0].op != expression::operation::op_dynamic_index &&
exp.chain[0].op != expression::operation::op_constant_index))
return exp.base;
std::pair<spv::StorageClass, spv::ImageFormat> storage = { spv::StorageClassFunction, spv::ImageFormatUnknown };
if (const auto it = _storage_lookup.find(exp.base);
it != _storage_lookup.end())
storage = it->second;
// Ensure that 'access_chain' cannot get invalidated by calls to 'emit_constant' or 'convert_type'
assert(_current_block_data != &_types_and_constants);
spirv_instruction *access_chain =
&add_instruction(spv::OpAccessChain).add(exp.base); // Base
// Ignore first index into 1xN matrices, since they were translated to a vector type in SPIR-V
if (exp.chain[0].from.rows == 1 && exp.chain[0].from.cols > 1)
i = 1;
for (; i < exp.chain.size() && (
exp.chain[i].op == expression::operation::op_member ||
exp.chain[i].op == expression::operation::op_dynamic_index ||
exp.chain[i].op == expression::operation::op_constant_index); ++i)
access_chain->add(exp.chain[i].op == expression::operation::op_dynamic_index ?
exp.chain[i].index :
emit_constant(exp.chain[i].index)); // Indexes
access_chain->type = convert_type(exp.chain[i - 1].to, true, storage.first, storage.second); // Last type is the result
return access_chain->result;
}
using codegen::emit_constant;
id emit_constant(uint32_t value)
{
return emit_constant({ type::t_uint, 1, 1 }, value);
}
id emit_constant(const type &data_type, const constant &data) override
{
return emit_constant(data_type, data, false);
}
id emit_constant(const type &data_type, const constant &data, bool spec_constant)
{
if (!spec_constant) // Specialization constants cannot reuse other constants
{
if (const auto it = std::find_if(_constant_lookup.begin(), _constant_lookup.end(),
[&data_type, &data](std::tuple<type, constant, spv::Id> &x) {
if (!(std::get<0>(x) == data_type && std::memcmp(&std::get<1>(x).as_uint[0], &data.as_uint[0], sizeof(uint32_t) * 16) == 0 && std::get<1>(x).array_data.size() == data.array_data.size()))
return false;
for (size_t i = 0; i < data.array_data.size(); ++i)
if (std::memcmp(&std::get<1>(x).array_data[i].as_uint[0], &data.array_data[i].as_uint[0], sizeof(uint32_t) * 16) != 0)
return false;
return true;
});
it != _constant_lookup.end())
return std::get<2>(*it); // Reuse existing constant instead of duplicating the definition
}
spv::Id result;
if (data_type.is_array())
{
assert(data_type.is_bounded_array()); // Unbounded arrays cannot be constants
type elem_type = data_type;
elem_type.array_length = 0;
std::vector<spv::Id> elements;
elements.reserve(data_type.array_length);
// Fill up elements with constant array data
for (const constant &elem : data.array_data)
elements.push_back(emit_constant(elem_type, elem, spec_constant));
// Fill up any remaining elements with a default value (when the array data did not specify them)
for (size_t i = elements.size(); i < static_cast<size_t>(data_type.array_length); ++i)
elements.push_back(emit_constant(elem_type, {}, spec_constant));
result =
add_instruction(spec_constant ? spv::OpSpecConstantComposite : spv::OpConstantComposite, convert_type(data_type), _types_and_constants)
.add(elements.begin(), elements.end());
}
else if (data_type.is_struct())
{
assert(!spec_constant); // Structures cannot be specialization constants
result = add_instruction(spv::OpConstantNull, convert_type(data_type), _types_and_constants);
}
else if (data_type.is_vector() || data_type.is_matrix())
{
type elem_type = data_type;
elem_type.rows = data_type.cols;
elem_type.cols = 1;
spv::Id rows[4] = {};
// Construct matrix constant out of row vector constants
// Construct vector constant out of scalar constants for each element
for (unsigned int i = 0; i < data_type.rows; ++i)
{
constant row_data = {};
for (unsigned int k = 0; k < data_type.cols; ++k)
row_data.as_uint[k] = data.as_uint[i * data_type.cols + k];
rows[i] = emit_constant(elem_type, row_data, spec_constant);
}
if (data_type.rows == 1)
{
result = rows[0];
}
else
{
spirv_instruction &inst = add_instruction(spec_constant ? spv::OpSpecConstantComposite : spv::OpConstantComposite, convert_type(data_type), _types_and_constants);
for (unsigned int i = 0; i < data_type.rows; ++i)
inst.add(rows[i]);
result = inst;
}
}
else if (data_type.is_boolean())
{
result = add_instruction(data.as_uint[0] ?
(spec_constant ? spv::OpSpecConstantTrue : spv::OpConstantTrue) :
(spec_constant ? spv::OpSpecConstantFalse : spv::OpConstantFalse), convert_type(data_type), _types_and_constants);
}
else
{
assert(data_type.is_scalar());
result =
add_instruction(spec_constant ? spv::OpSpecConstant : spv::OpConstant, convert_type(data_type), _types_and_constants)
.add(data.as_uint[0]);
}
if (spec_constant) // Keep track of all specialization constants
_spec_constants.insert(result);
else
_constant_lookup.push_back({ data_type, data, result });
return result;
}
id emit_unary_op(const location &loc, tokenid op, const type &res_type, id val) override
{
spv::Op spv_op = spv::OpNop;
switch (op)
{
case tokenid::minus:
spv_op = res_type.is_floating_point() ? spv::OpFNegate : spv::OpSNegate;
break;
case tokenid::tilde:
spv_op = spv::OpNot;
break;
case tokenid::exclaim:
spv_op = spv::OpLogicalNot;
break;
default:
return assert(false), 0;
}
add_location(loc, *_current_block_data);
spirv_instruction &inst = add_instruction(spv_op, convert_type(res_type));
inst.add(val); // Operand
return inst;
}
id emit_binary_op(const location &loc, tokenid op, const type &res_type, const type &exp_type, id lhs, id rhs) override
{
spv::Op spv_op = spv::OpNop;
switch (op)
{
case tokenid::plus:
case tokenid::plus_plus:
case tokenid::plus_equal:
spv_op = exp_type.is_floating_point() ? spv::OpFAdd : spv::OpIAdd;
break;
case tokenid::minus:
case tokenid::minus_minus:
case tokenid::minus_equal:
spv_op = exp_type.is_floating_point() ? spv::OpFSub : spv::OpISub;
break;
case tokenid::star:
case tokenid::star_equal:
spv_op = exp_type.is_floating_point() ? spv::OpFMul : spv::OpIMul;
break;
case tokenid::slash:
case tokenid::slash_equal:
spv_op = exp_type.is_floating_point() ? spv::OpFDiv : exp_type.is_signed() ? spv::OpSDiv : spv::OpUDiv;
break;
case tokenid::percent:
case tokenid::percent_equal:
spv_op = exp_type.is_floating_point() ? spv::OpFRem : exp_type.is_signed() ? spv::OpSRem : spv::OpUMod;
break;
case tokenid::caret:
case tokenid::caret_equal:
spv_op = spv::OpBitwiseXor;
break;
case tokenid::pipe:
case tokenid::pipe_equal:
spv_op = spv::OpBitwiseOr;
break;
case tokenid::ampersand:
case tokenid::ampersand_equal:
spv_op = spv::OpBitwiseAnd;
break;
case tokenid::less_less:
case tokenid::less_less_equal:
spv_op = spv::OpShiftLeftLogical;
break;
case tokenid::greater_greater:
case tokenid::greater_greater_equal:
spv_op = exp_type.is_signed() ? spv::OpShiftRightArithmetic : spv::OpShiftRightLogical;
break;
case tokenid::pipe_pipe:
spv_op = spv::OpLogicalOr;
break;
case tokenid::ampersand_ampersand:
spv_op = spv::OpLogicalAnd;
break;
case tokenid::less:
spv_op = exp_type.is_floating_point() ? spv::OpFOrdLessThan :
exp_type.is_signed() ? spv::OpSLessThan : spv::OpULessThan;
break;
case tokenid::less_equal:
spv_op = exp_type.is_floating_point() ? spv::OpFOrdLessThanEqual :
exp_type.is_signed() ? spv::OpSLessThanEqual : spv::OpULessThanEqual;
break;
case tokenid::greater:
spv_op = exp_type.is_floating_point() ? spv::OpFOrdGreaterThan :
exp_type.is_signed() ? spv::OpSGreaterThan : spv::OpUGreaterThan;
break;
case tokenid::greater_equal:
spv_op = exp_type.is_floating_point() ? spv::OpFOrdGreaterThanEqual :
exp_type.is_signed() ? spv::OpSGreaterThanEqual : spv::OpUGreaterThanEqual;
break;
case tokenid::equal_equal:
spv_op = exp_type.is_floating_point() ? spv::OpFOrdEqual :
exp_type.is_boolean() ? spv::OpLogicalEqual : spv::OpIEqual;
break;
case tokenid::exclaim_equal:
spv_op = exp_type.is_floating_point() ? spv::OpFOrdNotEqual :
exp_type.is_boolean() ? spv::OpLogicalNotEqual : spv::OpINotEqual;
break;
default:
return assert(false), 0;
}
add_location(loc, *_current_block_data);
// Binary operators generally only work on scalars and vectors in SPIR-V, so need to apply them to matrices component-wise
if (exp_type.is_matrix() && exp_type.rows != 1)
{
std::vector<spv::Id> ids;
ids.reserve(exp_type.cols);
type vector_type = exp_type;
vector_type.rows = exp_type.cols;
vector_type.cols = 1;
for (unsigned int row = 0; row < exp_type.rows; ++row)
{
const spv::Id lhs_elem = add_instruction(spv::OpCompositeExtract, convert_type(vector_type))
.add(lhs)
.add(row);
const spv::Id rhs_elem = add_instruction(spv::OpCompositeExtract, convert_type(vector_type))
.add(rhs)
.add(row);
spirv_instruction &inst = add_instruction(spv_op, convert_type(vector_type));
inst.add(lhs_elem); // Operand 1
inst.add(rhs_elem); // Operand 2
if (res_type.has(type::q_precise))
add_decoration(inst, spv::DecorationNoContraction);
if (!_enable_16bit_types && res_type.precision() < 32)
add_decoration(inst, spv::DecorationRelaxedPrecision);
ids.push_back(inst);
}
spirv_instruction &inst = add_instruction(spv::OpCompositeConstruct, convert_type(res_type));
inst.add(ids.begin(), ids.end());
return inst;
}
else
{
spirv_instruction &inst = add_instruction(spv_op, convert_type(res_type));
inst.add(lhs); // Operand 1
inst.add(rhs); // Operand 2
if (res_type.has(type::q_precise))
add_decoration(inst, spv::DecorationNoContraction);
if (!_enable_16bit_types && res_type.precision() < 32)
add_decoration(inst, spv::DecorationRelaxedPrecision);
return inst;
}
}
id emit_ternary_op(const location &loc, tokenid op, const type &res_type, id condition, id true_value, id false_value) override
{
if (op != tokenid::question)
return assert(false), 0;
add_location(loc, *_current_block_data);
spirv_instruction &inst = add_instruction(spv::OpSelect, convert_type(res_type));
inst.add(condition); // Condition
inst.add(true_value); // Object 1
inst.add(false_value); // Object 2
return inst;
}
id emit_call(const location &loc, id function, const type &res_type, const std::vector<expression> &args) override
{
#ifndef NDEBUG
for (const expression &arg : args)
assert(arg.chain.empty() && arg.base != 0);
#endif
add_location(loc, *_current_block_data);
// https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html#OpFunctionCall
spirv_instruction &inst = add_instruction(spv::OpFunctionCall, convert_type(res_type));
inst.add(function); // Function
for (const expression &arg : args)
inst.add(arg.base); // Arguments
return inst;
}
id emit_call_intrinsic(const location &loc, id intrinsic, const type &res_type, const std::vector<expression> &args) override
{
#ifndef NDEBUG
for (const expression &arg : args)
assert(arg.chain.empty() && arg.base != 0);
#endif
add_location(loc, *_current_block_data);
enum
{
#define IMPLEMENT_INTRINSIC_SPIRV(name, i, code) name##i,
#include "effect_symbol_table_intrinsics.inl"
};
switch (intrinsic)
{
#define IMPLEMENT_INTRINSIC_SPIRV(name, i, code) case name##i: code
#include "effect_symbol_table_intrinsics.inl"
default:
return assert(false), 0;
}
}
id emit_construct(const location &loc, const type &res_type, const std::vector<expression> &args) override
{
#ifndef NDEBUG
for (const expression &arg : args)
assert((arg.type.is_scalar() || res_type.is_array()) && arg.chain.empty() && arg.base != 0);
#endif
add_location(loc, *_current_block_data);
std::vector<spv::Id> ids;
ids.reserve(args.size());
// There must be exactly one constituent for each top-level component of the result
if (res_type.is_matrix())
{
type vector_type = res_type;
vector_type.rows = res_type.cols;
vector_type.cols = 1;
// Turn the list of scalar arguments into a list of column vectors
for (size_t arg = 0; arg < args.size(); arg += vector_type.rows)
{
spirv_instruction &inst = add_instruction(spv::OpCompositeConstruct, convert_type(vector_type));
for (unsigned row = 0; row < vector_type.rows; ++row)
inst.add(args[arg + row].base);
ids.push_back(inst);
}
}
else
{
assert(res_type.is_vector() || res_type.is_array());
// The exception is that for constructing a vector, a contiguous subset of the scalars consumed can be represented by a vector operand instead
for (const expression &arg : args)
ids.push_back(arg.base);
}
spirv_instruction &inst = add_instruction(spv::OpCompositeConstruct, convert_type(res_type));
inst.add(ids.begin(), ids.end());
return inst;
}
void emit_if(const location &loc, id, id condition_block, id true_statement_block, id false_statement_block, unsigned int selection_control) override
{
spirv_instruction merge_label = _current_block_data->instructions.back();
assert(merge_label.op == spv::OpLabel);
_current_block_data->instructions.pop_back();
// Add previous block containing the condition value first
_current_block_data->append(_block_data[condition_block]);
spirv_instruction branch_inst = _current_block_data->instructions.back();
assert(branch_inst.op == spv::OpBranchConditional);
_current_block_data->instructions.pop_back();
// Add structured control flow instruction
add_location(loc, *_current_block_data);
add_instruction_without_result(spv::OpSelectionMerge)
.add(merge_label)
.add(selection_control & 0x3); // 'SelectionControl' happens to match the flags produced by the parser
// Append all blocks belonging to the branch
_current_block_data->instructions.push_back(branch_inst);
_current_block_data->append(_block_data[true_statement_block]);
_current_block_data->append(_block_data[false_statement_block]);
_current_block_data->instructions.push_back(merge_label);
}
id emit_phi(const location &loc, id, id condition_block, id true_value, id true_statement_block, id false_value, id false_statement_block, const type &res_type) override
{
spirv_instruction merge_label = _current_block_data->instructions.back();
assert(merge_label.op == spv::OpLabel);
_current_block_data->instructions.pop_back();
// Add previous block containing the condition value first
_current_block_data->append(_block_data[condition_block]);
if (true_statement_block != condition_block)
_current_block_data->append(_block_data[true_statement_block]);
if (false_statement_block != condition_block)
_current_block_data->append(_block_data[false_statement_block]);
_current_block_data->instructions.push_back(merge_label);
add_location(loc, *_current_block_data);
// https://www.khronos.org/registry/spir-v/specs/unified1/SPIRV.html#OpPhi
spirv_instruction &inst = add_instruction(spv::OpPhi, convert_type(res_type))
.add(true_value) // Variable 0
.add(true_statement_block) // Parent 0
.add(false_value) // Variable 1
.add(false_statement_block); // Parent 1
return inst;
}
void emit_loop(const location &loc, id, id prev_block, id header_block, id condition_block, id loop_block, id continue_block, unsigned int loop_control) override
{
spirv_instruction merge_label = _current_block_data->instructions.back();
assert(merge_label.op == spv::OpLabel);
_current_block_data->instructions.pop_back();
// Add previous block first
_current_block_data->append(_block_data[prev_block]);
// Fill header block
assert(_block_data[header_block].instructions.size() == 2);
_current_block_data->instructions.push_back(_block_data[header_block].instructions[0]);
assert(_current_block_data->instructions.back().op == spv::OpLabel);
// Add structured control flow instruction
add_location(loc, *_current_block_data);
add_instruction_without_result(spv::OpLoopMerge)
.add(merge_label)
.add(continue_block)
.add(loop_control & 0x3); // 'LoopControl' happens to match the flags produced by the parser
_current_block_data->instructions.push_back(_block_data[header_block].instructions[1]);
assert(_current_block_data->instructions.back().op == spv::OpBranch);
// Add condition block if it exists
if (condition_block != 0)
_current_block_data->append(_block_data[condition_block]);
// Append loop body block before continue block
_current_block_data->append(_block_data[loop_block]);
_current_block_data->append(_block_data[continue_block]);
_current_block_data->instructions.push_back(merge_label);
}
void emit_switch(const location &loc, id, id selector_block, id default_label, id default_block, const std::vector<id> &case_literal_and_labels, const std::vector<id> &case_blocks, unsigned int selection_control) override
{
assert(case_blocks.size() == case_literal_and_labels.size() / 2);
spirv_instruction merge_label = _current_block_data->instructions.back();
assert(merge_label.op == spv::OpLabel);
_current_block_data->instructions.pop_back();
// Add previous block containing the selector value first
_current_block_data->append(_block_data[selector_block]);
spirv_instruction switch_inst = _current_block_data->instructions.back();
assert(switch_inst.op == spv::OpSwitch);
_current_block_data->instructions.pop_back();
// Add structured control flow instruction
add_location(loc, *_current_block_data);
add_instruction_without_result(spv::OpSelectionMerge)
.add(merge_label)
.add(selection_control & 0x3); // 'SelectionControl' happens to match the flags produced by the parser
// Update switch instruction to contain all case labels
switch_inst.operands[1] = default_label;
switch_inst.add(case_literal_and_labels.begin(), case_literal_and_labels.end());
// Append all blocks belonging to the switch
_current_block_data->instructions.push_back(switch_inst);
std::vector<id> blocks = case_blocks;
if (default_label != merge_label)
blocks.push_back(default_block);
// Eliminate duplicates (because of multiple case labels pointing to the same block)
std::sort(blocks.begin(), blocks.end());
blocks.erase(std::unique(blocks.begin(), blocks.end()), blocks.end());
for (const id case_block : blocks)
_current_block_data->append(_block_data[case_block]);
_current_block_data->instructions.push_back(merge_label);
}
bool is_in_function() const { return _current_function_blocks != nullptr; }
id set_block(id id) override
{
_last_block = _current_block;
_current_block = id;
_current_block_data = &_block_data[id];
return _last_block;
}
void enter_block(id id) override
{
assert(id != 0);
// Can only use labels inside functions and should never be in another basic block if creating a new one
assert(is_in_function() && !is_in_block());
set_block(id);
add_instruction_without_result(spv::OpLabel).result = id;
}
id leave_block_and_kill() override
{
assert(is_in_function()); // Can only discard inside functions
if (!is_in_block())
return 0;
add_instruction_without_result(spv::OpKill);
return set_block(0);
}
id leave_block_and_return(id value) override
{
assert(is_in_function()); // Can only return from inside functions
if (!is_in_block()) // Might already have left the last block in which case this has to be ignored
return 0;
if (_current_function_blocks->return_type.is_void())
{
add_instruction_without_result(spv::OpReturn);
}
else
{
if (0 == value) // The implicit return statement needs this
value = add_instruction(spv::OpUndef, convert_type(_current_function_blocks->return_type), _types_and_constants);
add_instruction_without_result(spv::OpReturnValue)
.add(value);
}
return set_block(0);
}
id leave_block_and_switch(id value, id default_target) override
{
assert(value != 0 && default_target != 0);
assert(is_in_function()); // Can only switch inside functions
if (!is_in_block())
return _last_block;
add_instruction_without_result(spv::OpSwitch)
.add(value)
.add(default_target);
return set_block(0);
}
id leave_block_and_branch(id target, unsigned int) override
{
assert(target != 0);
assert(is_in_function()); // Can only branch inside functions
if (!is_in_block())
return _last_block;
add_instruction_without_result(spv::OpBranch)
.add(target);
return set_block(0);
}
id leave_block_and_branch_conditional(id condition, id true_target, id false_target) override
{
assert(condition != 0 && true_target != 0 && false_target != 0);
assert(is_in_function()); // Can only branch inside functions
if (!is_in_block())
return _last_block;
add_instruction_without_result(spv::OpBranchConditional)
.add(condition)
.add(true_target)
.add(false_target);
return set_block(0);
}
void leave_function() override
{
assert(is_in_function()); // Can only leave if there was a function to begin with
_current_function_blocks->definition = _block_data[_last_block];
// Append function end instruction
add_instruction_without_result(spv::OpFunctionEnd, _current_function_blocks->definition);
_current_function = nullptr;
_current_function_blocks = nullptr;
}
};
codegen *reshadefx::create_codegen_spirv(bool vulkan_semantics, bool debug_info, bool uniforms_to_spec_constants, bool enable_16bit_types, bool flip_vert_y)
{
return new codegen_spirv(vulkan_semantics, debug_info, uniforms_to_spec_constants, enable_16bit_types, flip_vert_y);
}