mirror of
https://github.com/stenzek/duckstation.git
synced 2025-06-04 18:45:35 +00:00
249 lines
8.3 KiB
GLSL
249 lines
8.3 KiB
GLSL
#version 460 core
|
|
|
|
layout(location = 0) in VertexData {
|
|
vec2 v_tex0;
|
|
};
|
|
|
|
layout(location = 0) out vec4 dest;
|
|
|
|
TEXTURE_LAYOUT(0) uniform sampler2D samp0;
|
|
|
|
vec4 SrcGet(vec2 uv)
|
|
{
|
|
return texelFetch(samp0, ivec2(uv), 0);
|
|
}
|
|
|
|
// XBR.pix
|
|
// Copyright 2020 Morgan McGuire & Mara Gagiu,
|
|
// provided under the Open Source MIT license https://opensource.org/licenses/MIT
|
|
|
|
#define XBR_Y_WEIGHT 48.0
|
|
#define XBR_EQ_THRESHOLD 15.0
|
|
#define XBR_LV1_COEFFICIENT 0.5
|
|
#define XBR_LV2_COEFFICIENT 2.0
|
|
// END PARAMETERS //
|
|
|
|
|
|
// XBR GLSL implementation source:
|
|
// https://github.com/libretro/glsl-shaders/blob/master/xbr/shaders/xbr-lv2.glsl
|
|
/*
|
|
Hyllian's xBR-lv2 Shader
|
|
Copyright (C) 2011-2015 Hyllian - sergiogdb@gmail.com
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE.
|
|
|
|
Incorporates some of the ideas from SABR shader. Thanks to Joshua Street.
|
|
|
|
*/
|
|
|
|
// Uncomment just one of the three params below to choose the corner detection
|
|
#define CORNER_A
|
|
//#define CORNER_B
|
|
//#define CORNER_C
|
|
//#define CORNER_D
|
|
|
|
#ifndef CORNER_A
|
|
#define SMOOTH_TIPS
|
|
#endif
|
|
|
|
#define XBR_SCALE 2.0
|
|
#define lv2_cf XBR_LV2_COEFFICIENT
|
|
//=================================================================================
|
|
// XBR Helper Functions
|
|
//=================================================================================
|
|
const float coef = 2.0;
|
|
const vec3 rgbw = vec3(14.352, 28.176, 5.472);
|
|
const vec4 eq_threshold = vec4(15.0, 15.0, 15.0, 15.0);
|
|
|
|
const vec4 delta = vec4(1.0/XBR_SCALE, 1.0/XBR_SCALE, 1.0/XBR_SCALE, 1.0/XBR_SCALE);
|
|
const vec4 delta_l = vec4(0.5/XBR_SCALE, 1.0/XBR_SCALE, 0.5/XBR_SCALE, 1.0/XBR_SCALE);
|
|
const vec4 delta_u = delta_l.yxwz;
|
|
|
|
const vec4 Ao = vec4( 1.0, -1.0, -1.0, 1.0 );
|
|
const vec4 Bo = vec4( 1.0, 1.0, -1.0,-1.0 );
|
|
const vec4 Co = vec4( 1.5, 0.5, -0.5, 0.5 );
|
|
const vec4 Ax = vec4( 1.0, -1.0, -1.0, 1.0 );
|
|
const vec4 Bx = vec4( 0.5, 2.0, -0.5,-2.0 );
|
|
const vec4 Cx = vec4( 1.0, 1.0, -0.5, 0.0 );
|
|
const vec4 Ay = vec4( 1.0, -1.0, -1.0, 1.0 );
|
|
const vec4 By = vec4( 2.0, 0.5, -2.0,-0.5 );
|
|
const vec4 Cy = vec4( 2.0, 0.0, -1.0, 0.5 );
|
|
const vec4 Ci = vec4(0.25, 0.25, 0.25, 0.25);
|
|
|
|
// Difference between vector components.
|
|
vec4 df(vec4 A, vec4 B)
|
|
{
|
|
return vec4(abs(A-B));
|
|
}
|
|
|
|
// Compare two vectors and return their components are different.
|
|
vec4 diff(vec4 A, vec4 B)
|
|
{
|
|
return vec4(notEqual(A, B));
|
|
}
|
|
|
|
// Determine if two vector components are equal based on a threshold.
|
|
vec4 eq(vec4 A, vec4 B)
|
|
{
|
|
return (step(df(A, B), vec4(XBR_EQ_THRESHOLD)));
|
|
}
|
|
|
|
// Determine if two vector components are NOT equal based on a threshold.
|
|
vec4 neq(vec4 A, vec4 B)
|
|
{
|
|
return (vec4(1.0, 1.0, 1.0, 1.0) - eq(A, B));
|
|
}
|
|
|
|
// Weighted distance.
|
|
vec4 wd(vec4 a, vec4 b, vec4 c, vec4 d, vec4 e, vec4 f, vec4 g, vec4 h)
|
|
{
|
|
return (df(a,b) + df(a,c) + df(d,e) + df(d,f) + 4.0*df(g,h));
|
|
}
|
|
|
|
float c_df(vec3 c1, vec3 c2)
|
|
{
|
|
vec3 df = abs(c1 - c2);
|
|
return df.r + df.g + df.b;
|
|
}
|
|
|
|
vec4 XBR()
|
|
{
|
|
vec4 proxy_dest = vec4(0, 0, 0, 1);
|
|
ivec2 tex_fetch_coords = ivec2(gl_FragCoord.xy / 2.0);
|
|
ivec2 tex_coords = ivec2(gl_FragCoord.xy);
|
|
|
|
|
|
|
|
vec4 edri, edr, edr_l, edr_u, px; // px = pixel, edr = edge detection rule
|
|
vec4 irlv0, irlv1, irlv2l, irlv2u, block_3d;
|
|
vec4 fx, fx_l, fx_u; // inequations of straight lines.
|
|
|
|
vec2 fp = fract(gl_FragCoord.xy / 2.0);
|
|
|
|
vec3 A1 = SrcGet(tex_fetch_coords + ivec2(-1, -2)).xyz;
|
|
vec3 B1 = SrcGet(tex_fetch_coords + ivec2( 0, -2)).xyz;
|
|
vec3 C1 = SrcGet(tex_fetch_coords + ivec2(+1, -2)).xyz;
|
|
vec3 A = SrcGet(tex_fetch_coords + ivec2(-1, -1)).xyz;
|
|
vec3 B = SrcGet(tex_fetch_coords + ivec2( 0, -1)).xyz;
|
|
vec3 C = SrcGet(tex_fetch_coords + ivec2(+1, -1)).xyz;
|
|
vec3 D = SrcGet(tex_fetch_coords + ivec2(-1, 0)).xyz;
|
|
vec4 Eo = SrcGet(tex_fetch_coords);
|
|
vec3 E = Eo.xyz;
|
|
vec3 F = SrcGet(tex_fetch_coords + ivec2(+1, 0)).xyz;
|
|
vec3 G = SrcGet(tex_fetch_coords + ivec2(-1, +1)).xyz;
|
|
vec3 H = SrcGet(tex_fetch_coords + ivec2( 0, +1)).xyz;
|
|
vec3 I = SrcGet(tex_fetch_coords + ivec2(+1, +1)).xyz;
|
|
vec3 G5 = SrcGet(tex_fetch_coords + ivec2(-1, +2)).xyz;
|
|
vec3 H5 = SrcGet(tex_fetch_coords + ivec2( 0, +2) ).xyz;
|
|
vec3 I5 = SrcGet(tex_fetch_coords + ivec2(+1, +2)).xyz;
|
|
vec3 A0 = SrcGet(tex_fetch_coords + ivec2(-2, -1)).xyz;
|
|
vec3 D0 = SrcGet(tex_fetch_coords + ivec2(-2, 0)).xyz;
|
|
vec3 G0 = SrcGet(tex_fetch_coords + ivec2(-2, +1)).xyz;
|
|
vec3 C4 = SrcGet(tex_fetch_coords + ivec2(+2, -1)).xyz;
|
|
vec3 F4 = SrcGet(tex_fetch_coords + ivec2(+2, 0)).xyz;
|
|
vec3 I4 = SrcGet(tex_fetch_coords + ivec2(+2, +1)).xyz;
|
|
|
|
vec4 b = vec4(dot(B ,rgbw), dot(D ,rgbw), dot(H ,rgbw), dot(F ,rgbw));
|
|
vec4 c = vec4(dot(C ,rgbw), dot(A ,rgbw), dot(G ,rgbw), dot(I ,rgbw));
|
|
vec4 d = b.yzwx;
|
|
vec4 e = vec4(dot(E,rgbw));
|
|
vec4 f = b.wxyz;
|
|
vec4 g = c.zwxy;
|
|
vec4 h = b.zwxy;
|
|
vec4 i = c.wxyz;
|
|
vec4 i4 = vec4(dot(I4,rgbw), dot(C1,rgbw), dot(A0,rgbw), dot(G5,rgbw));
|
|
vec4 i5 = vec4(dot(I5,rgbw), dot(C4,rgbw), dot(A1,rgbw), dot(G0,rgbw));
|
|
vec4 h5 = vec4(dot(H5,rgbw), dot(F4,rgbw), dot(B1,rgbw), dot(D0,rgbw));
|
|
vec4 f4 = h5.yzwx;
|
|
|
|
// These inequations define the line below which interpolation occurs.
|
|
fx = (Ao*fp.y+Bo*fp.x);
|
|
fx_l = (Ax*fp.y+Bx*fp.x);
|
|
fx_u = (Ay*fp.y+By*fp.x);
|
|
|
|
irlv1 = irlv0 = diff(e,f) * diff(e,h);
|
|
|
|
#ifdef CORNER_B
|
|
|
|
// E1/K case (X odd, Y even)
|
|
irlv1 = (irlv0 * ( neq(f,b) * neq(h,d) + eq(e,i) * neq(f,i4) * neq(h,i5) + eq(e,g) + eq(e,c) ) );
|
|
|
|
#endif
|
|
#ifdef CORNER_D
|
|
|
|
// E3/M case (X odd, Y odd)
|
|
vec4 c1 = i4.yzwx;
|
|
vec4 g0 = i5.wxyz;
|
|
irlv1 = (irlv0 * ( neq(f,b) * neq(h,d) + eq(e,i) * neq(f,i4) * neq(h,i5) + eq(e,g) + eq(e,c) ) * (diff(f,f4) * diff(f,i) + diff(h,h5) * diff(h,i) + diff(h,g) + diff(f,c) + eq(b,c1) * eq(d,g0)));
|
|
|
|
#endif
|
|
#ifdef CORNER_C
|
|
|
|
irlv1 = (irlv0 * ( neq(f,b) * neq(f,c) + neq(h,d) * neq(h,g) + eq(e,i) * (neq(f,f4) * neq(f,i4) + neq(h,h5) * neq(h,i5)) + eq(e,g) + eq(e,c)) );
|
|
|
|
#endif
|
|
|
|
irlv2l = diff(e,g) * diff(d,g);
|
|
irlv2u = diff(e,c) * diff(b,c);
|
|
|
|
vec4 fx45i = clamp((fx + delta -Co - Ci)/(2.0*delta ), 0.0, 1.0);
|
|
vec4 fx45 = clamp((fx + delta -Co )/(2.0*delta ), 0.0, 1.0);
|
|
vec4 fx30 = clamp((fx_l + delta_l -Cx )/(2.0*delta_l), 0.0, 1.0);
|
|
vec4 fx60 = clamp((fx_u + delta_u -Cy )/(2.0*delta_u), 0.0, 1.0);
|
|
|
|
vec4 wd1 = wd( e, c, g, i, h5, f4, h, f);
|
|
vec4 wd2 = wd( h, d, i5, f, i4, b, e, i);
|
|
|
|
edri = step(wd1, wd2) * irlv0;
|
|
edr = step(wd1 + vec4(0.1, 0.1, 0.1, 0.1), wd2) * step(vec4(0.5, 0.5, 0.5, 0.5), irlv1);
|
|
edr_l = step( lv2_cf*df(f,g), df(h,c) ) * irlv2l * edr;
|
|
edr_u = step( lv2_cf*df(h,c), df(f,g) ) * irlv2u * edr;
|
|
|
|
fx45 = edr * fx45;
|
|
fx30 = edr_l * fx30;
|
|
fx60 = edr_u * fx60;
|
|
fx45i = edri * fx45i;
|
|
|
|
px = step(df(e,f), df(e,h));
|
|
|
|
#ifdef SMOOTH_TIPS
|
|
//vec4 maximos = max(max(fx30, fx60), max(fx45, fx45i));
|
|
#endif
|
|
#ifndef SMOOTH_TIPS
|
|
vec4 maximos = max(max(fx30, fx60), fx45);
|
|
#endif
|
|
|
|
vec3 res1 = E;
|
|
res1 = mix(res1, mix(H, F, px.x), maximos.x);
|
|
res1 = mix(res1, mix(B, D, px.z), maximos.z);
|
|
|
|
vec3 res2 = E;
|
|
res2 = mix(res2, mix(F, B, px.y), maximos.y);
|
|
res2 = mix(res2, mix(D, H, px.w), maximos.w);
|
|
|
|
vec3 res = mix(res1, res2, step(c_df(E, res1), c_df(E, res2)));
|
|
|
|
proxy_dest.rgb = res;
|
|
proxy_dest.a = Eo.a;
|
|
return proxy_dest;
|
|
}
|
|
|
|
void main () {
|
|
dest = XBR();
|
|
}
|