mirror of
https://github.com/maglore9900/max_headroom.git
synced 2025-07-21 17:40:11 +00:00
clean up
This commit is contained in:
parent
70869b910d
commit
c244ccc04d
@ -10,6 +10,7 @@ written to work on Windows. Agent and logic will run on linux but some tools are
|
||||
|
||||
it currently will respond as an LLM like usual, but also has the following capabilities:
|
||||
|
||||
- custom prompt options
|
||||
- can also control spotify
|
||||
- can open applications on windows
|
||||
- can change the focused window
|
||||
@ -66,3 +67,7 @@ this tool will open an application. when you run max it will create an index of
|
||||
this tool will set a timer with a popup. you tell max to set a time for X time, it will convert it to seconds on the backend and create the timer.
|
||||
|
||||
the default timer will have a "clippy" popup, with potentially custom text
|
||||
|
||||
# Custom Prompt
|
||||
|
||||
Max Headroom is the default prompt. If you want to make a custom prompt look in modules/prompts.py and add it there. then set the name in .env
|
||||
|
2
main.py
2
main.py
@ -11,7 +11,6 @@ asyncio.set_event_loop(loop)
|
||||
|
||||
|
||||
if os.name == "nt":
|
||||
print("windows")
|
||||
op = "windows"
|
||||
elif os.name == "posix":
|
||||
# Further check to differentiate between Linux and macOS
|
||||
@ -38,4 +37,5 @@ while True:
|
||||
response = loop.run_until_complete(graph.invoke_agent(text))
|
||||
if response:
|
||||
graph.spk.glitch_stream_output(response)
|
||||
# graph.spk.stream(response)
|
||||
|
||||
|
@ -212,6 +212,67 @@ class Speak:
|
||||
self.engine.say(text)
|
||||
self.engine.runAndWait()
|
||||
|
||||
def stream(self, text):
|
||||
# Example parameters
|
||||
voice = ""
|
||||
language = "en"
|
||||
output_file = "stream_output.wav"
|
||||
|
||||
# Encode the text for URL
|
||||
encoded_text = urllib.parse.quote(text)
|
||||
|
||||
# Create the streaming URL
|
||||
streaming_url = f"http://localhost:7851/api/tts-generate-streaming?text={encoded_text}&voice={voice}&language={language}&output_file={output_file}"
|
||||
|
||||
try:
|
||||
# Stream the audio data
|
||||
response = requests.get(streaming_url, stream=True)
|
||||
|
||||
# Initialize PyAudio
|
||||
p = pyaudio.PyAudio()
|
||||
stream = None
|
||||
|
||||
# Process the audio stream in chunks
|
||||
chunk_size = 1024 * 6 # Adjust chunk size if needed
|
||||
audio_buffer = b''
|
||||
|
||||
for chunk in response.iter_content(chunk_size=chunk_size):
|
||||
audio_buffer += chunk
|
||||
|
||||
if len(audio_buffer) < chunk_size:
|
||||
continue
|
||||
|
||||
audio_segment = AudioSegment(
|
||||
data=audio_buffer,
|
||||
sample_width=2, # 2 bytes for 16-bit audio
|
||||
frame_rate=24000, # Assumed frame rate, adjust as necessary
|
||||
channels=1 # Assuming mono audio
|
||||
)
|
||||
|
||||
if stream is None:
|
||||
# Define stream parameters without any modifications
|
||||
stream = p.open(format=pyaudio.paInt16,
|
||||
channels=1,
|
||||
rate=audio_segment.frame_rate,
|
||||
output=True)
|
||||
|
||||
# Play the original chunk (without any modification)
|
||||
stream.write(audio_segment.raw_data)
|
||||
|
||||
# Reset buffer
|
||||
audio_buffer = b''
|
||||
|
||||
# Final cleanup
|
||||
if stream:
|
||||
stream.stop_stream()
|
||||
stream.close()
|
||||
p.terminate()
|
||||
|
||||
except:
|
||||
self.engine.say(text)
|
||||
self.engine.runAndWait()
|
||||
|
||||
|
||||
# Example usage:
|
||||
# sp = Speak(model="whisper") # or "whisper" or "google"
|
||||
# transcription = sp.transcoder(time_listen=10)
|
||||
|
@ -221,6 +221,67 @@ class Speak:
|
||||
self.engine.say(text)
|
||||
self.engine.runAndWait()
|
||||
|
||||
def stream(self, text):
|
||||
# Example parameters
|
||||
voice = ""
|
||||
language = "en"
|
||||
output_file = "stream_output.wav"
|
||||
|
||||
# Encode the text for URL
|
||||
encoded_text = urllib.parse.quote(text)
|
||||
|
||||
# Create the streaming URL
|
||||
streaming_url = f"http://localhost:7851/api/tts-generate-streaming?text={encoded_text}&voice={voice}&language={language}&output_file={output_file}"
|
||||
|
||||
try:
|
||||
# Stream the audio data
|
||||
response = requests.get(streaming_url, stream=True)
|
||||
|
||||
# Initialize PyAudio
|
||||
p = pyaudio.PyAudio()
|
||||
stream = None
|
||||
|
||||
# Process the audio stream in chunks
|
||||
chunk_size = 1024 * 6 # Adjust chunk size if needed
|
||||
audio_buffer = b''
|
||||
|
||||
for chunk in response.iter_content(chunk_size=chunk_size):
|
||||
audio_buffer += chunk
|
||||
|
||||
if len(audio_buffer) < chunk_size:
|
||||
continue
|
||||
|
||||
audio_segment = AudioSegment(
|
||||
data=audio_buffer,
|
||||
sample_width=2, # 2 bytes for 16-bit audio
|
||||
frame_rate=24000, # Assumed frame rate, adjust as necessary
|
||||
channels=1 # Assuming mono audio
|
||||
)
|
||||
|
||||
if stream is None:
|
||||
# Define stream parameters without any modifications
|
||||
stream = p.open(format=pyaudio.paInt16,
|
||||
channels=1,
|
||||
rate=audio_segment.frame_rate,
|
||||
output=True)
|
||||
|
||||
# Play the original chunk (without any modification)
|
||||
stream.write(audio_segment.raw_data)
|
||||
|
||||
# Reset buffer
|
||||
audio_buffer = b''
|
||||
|
||||
# Final cleanup
|
||||
if stream:
|
||||
stream.stop_stream()
|
||||
stream.close()
|
||||
p.terminate()
|
||||
|
||||
except:
|
||||
self.engine.say(text)
|
||||
self.engine.runAndWait()
|
||||
|
||||
|
||||
# Example usage:
|
||||
# sp = Speak(model="vosk") # or "vosk" or "google"
|
||||
# transcription = sp.transcoder(time_listen=10)
|
||||
|
Loading…
x
Reference in New Issue
Block a user