mirror of
https://github.com/maglore9900/max_headroom.git
synced 2025-06-04 10:30:24 +00:00
290 lines
11 KiB
Python
290 lines
11 KiB
Python
import noisereduce as nr
|
|
import numpy as np
|
|
import pyaudio
|
|
import speech_recognition as sr
|
|
import pyttsx3
|
|
import os
|
|
import random
|
|
import urllib.parse
|
|
import requests
|
|
from pydub import AudioSegment
|
|
import io
|
|
import wave
|
|
|
|
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
|
|
|
|
class Speak:
|
|
def __init__(self, env):
|
|
self.url = env("STREAM_SPEAK_URL")
|
|
self.microphone = sr.Microphone()
|
|
self.engine = pyttsx3.init()
|
|
self.engine.setProperty('rate', 150)
|
|
self.model_name = env("LISTEN_MODEL".lower(), default="whisper")
|
|
self.sample_rate = 16000
|
|
self.chunk_size = 1024
|
|
self.noise_threshold = 500
|
|
|
|
|
|
# Initialize transcription models
|
|
if self.model_name == "whisper":
|
|
from faster_whisper import WhisperModel
|
|
self.whisper_model_path = "large-v2"
|
|
self.whisper_model = WhisperModel(self.whisper_model_path, device="cuda") # Mvidia GPU mode
|
|
# self.whisper_model = WhisperModel(self.whisper_model_path, device="cpu") # CPU mode
|
|
else:
|
|
self.recognizer = sr.Recognizer()
|
|
|
|
def listen_to_microphone(self, time_listen=10):
|
|
"""Function to listen to the microphone input and return raw audio data."""
|
|
p = pyaudio.PyAudio()
|
|
stream = p.open(format=pyaudio.paInt16, channels=1, rate=self.sample_rate, input=True, frames_per_buffer=self.chunk_size)
|
|
stream.start_stream()
|
|
print("Listening...")
|
|
|
|
audio_data = b""
|
|
ambient_noise_data = b""
|
|
|
|
try:
|
|
for i in range(int(self.sample_rate / self.chunk_size * time_listen)):
|
|
audio_chunk = stream.read(self.chunk_size)
|
|
audio_data += audio_chunk
|
|
|
|
# Capture ambient noise in the first 2 seconds
|
|
if i < int(self.sample_rate / self.chunk_size * 1): # First 1 seconds
|
|
ambient_noise_data += audio_chunk
|
|
|
|
finally:
|
|
stream.stop_stream()
|
|
stream.close()
|
|
p.terminate()
|
|
|
|
return audio_data, ambient_noise_data
|
|
|
|
def apply_noise_cancellation(self, audio_data, ambient_noise):
|
|
"""Apply noise cancellation to the given audio data, using ambient noise from the first 2 seconds."""
|
|
# Convert to NumPy array (normalize to [-1, 1])
|
|
audio_np = np.frombuffer(audio_data, np.int16).astype(np.float32) / 32768.0
|
|
ambient_noise_np = np.frombuffer(ambient_noise, np.int16).astype(np.float32) / 32768.0
|
|
|
|
# Use ambient noise as noise profile
|
|
reduced_noise = nr.reduce_noise(y=audio_np, sr=self.sample_rate, y_noise=ambient_noise_np)
|
|
|
|
# Convert back to int16 after noise reduction for compatibility with Whisper
|
|
reduced_noise_int16 = (reduced_noise * 32768).astype(np.int16)
|
|
|
|
return reduced_noise_int16.tobytes() # Return as bytes
|
|
|
|
def transcribe(self, audio_data):
|
|
"""Transcribe the audio data using the selected model."""
|
|
if self.model_name == "whisper":
|
|
# Whisper expects float32 audio data
|
|
energy_threshold = 0.0001
|
|
# Convert int16 PCM audio data to float32
|
|
audio_np = np.frombuffer(audio_data, np.int16).astype(np.float32) / 32768.0
|
|
|
|
# Calculate energy of the audio to determine if it should be transcribed
|
|
energy = np.mean(np.abs(audio_np))
|
|
|
|
# Only transcribe if energy exceeds the threshold
|
|
if energy > energy_threshold:
|
|
# Transcribe using Whisper model (assumed to be already loaded in self.whisper_model)
|
|
segments, _ = self.whisper_model.transcribe(audio_np, beam_size=5)
|
|
transcription = " ".join([segment.text for segment in segments])
|
|
print(f"Whisper Transcription: {transcription}")
|
|
return transcription
|
|
else:
|
|
print("Audio energy below threshold; no transcription performed.")
|
|
return ""
|
|
else:
|
|
# Google SpeechRecognition code (no changes here)
|
|
recognizer = sr.Recognizer()
|
|
audio_buffer = io.BytesIO()
|
|
|
|
with wave.open(audio_buffer, 'wb') as wav_file:
|
|
wav_file.setnchannels(1) # Assuming mono audio
|
|
wav_file.setsampwidth(2) # Assuming 16-bit audio
|
|
wav_file.setframerate(16000) # Assuming 16kHz sample rate
|
|
wav_file.writeframes(audio_data) # Write raw PCM data
|
|
|
|
# Reset the buffer's position to the start
|
|
audio_buffer.seek(0)
|
|
|
|
# Use SpeechRecognition's AudioFile to handle the in-memory WAV file
|
|
with sr.AudioFile(audio_buffer) as source:
|
|
audio = recognizer.record(source)
|
|
try:
|
|
transcription = recognizer.recognize_google(audio)
|
|
print(f"Google Transcription: {transcription}")
|
|
return transcription
|
|
except sr.UnknownValueError:
|
|
print("Google could not understand audio")
|
|
return ""
|
|
except sr.RequestError as e:
|
|
print(f"Could not request results; {e}")
|
|
return ""
|
|
|
|
|
|
def listen(self, time_listen=8):
|
|
"""Main transcoder function that handles listening, noise cancellation, and transcription."""
|
|
# Listen to the microphone and get both raw audio and ambient noise
|
|
raw_audio, ambient_noise = self.listen_to_microphone(time_listen)
|
|
|
|
# Apply noise cancellation using the ambient noise from the first 2 seconds
|
|
clean_audio = self.apply_noise_cancellation(raw_audio, ambient_noise=ambient_noise)
|
|
|
|
# Transcribe the clean audio
|
|
transcription = self.transcribe(clean_audio)
|
|
|
|
return transcription
|
|
|
|
def glitch_stream_output(self, text):
|
|
def change_pitch(sound, octaves):
|
|
val = random.randint(0, 10)
|
|
if val == 1:
|
|
new_sample_rate = int(sound.frame_rate * (2.0 ** octaves))
|
|
return sound._spawn(sound.raw_data, overrides={'frame_rate': new_sample_rate}).set_frame_rate(sound.frame_rate)
|
|
else:
|
|
return sound
|
|
|
|
def convert_audio_format(sound, target_sample_rate=16000):
|
|
# Ensure the audio is in PCM16 format
|
|
sound = sound.set_sample_width(2) # PCM16 = 2 bytes per sample
|
|
# Resample the audio to the target sample rate
|
|
sound = sound.set_frame_rate(target_sample_rate)
|
|
return sound
|
|
|
|
# Example parameters
|
|
voice = "maxheadroom_00000045.wav"
|
|
language = "en"
|
|
output_file = "stream_output.wav"
|
|
|
|
# Encode the text for URL
|
|
encoded_text = urllib.parse.quote(text)
|
|
|
|
# Create the streaming URL
|
|
streaming_url = f"http://localhost:7851/api/tts-generate-streaming?text={encoded_text}&voice={voice}&language={language}&output_file={output_file}"
|
|
try:
|
|
# Stream the audio data
|
|
response = requests.get(streaming_url, stream=True)
|
|
|
|
# Initialize PyAudio
|
|
p = pyaudio.PyAudio()
|
|
stream = None
|
|
|
|
# Process the audio stream in chunks
|
|
chunk_size = 1024 * 6 # Adjust chunk size if needed
|
|
audio_buffer = b''
|
|
|
|
for chunk in response.iter_content(chunk_size=chunk_size):
|
|
audio_buffer += chunk
|
|
|
|
if len(audio_buffer) < chunk_size:
|
|
continue
|
|
|
|
audio_segment = AudioSegment(
|
|
data=audio_buffer,
|
|
sample_width=2, # 2 bytes for 16-bit audio
|
|
frame_rate=24000, # Assumed frame rate, adjust as necessary
|
|
channels=1 # Assuming mono audio
|
|
)
|
|
|
|
# Randomly adjust pitch
|
|
octaves = random.uniform(-0.1, 1.5)
|
|
modified_chunk = change_pitch(audio_segment, octaves)
|
|
|
|
if random.random() < 0.001: # 1% chance to trigger stutter
|
|
repeat_times = random.randint(2, 5) # Repeat 2 to 5 times
|
|
for _ in range(repeat_times):
|
|
stream.write(modified_chunk.raw_data)
|
|
|
|
# Convert to PCM16 and 16kHz sample rate after the stutter effect
|
|
modified_chunk = convert_audio_format(modified_chunk, target_sample_rate=16000)
|
|
|
|
if stream is None:
|
|
# Define stream parameters
|
|
stream = p.open(format=pyaudio.paInt16,
|
|
channels=1,
|
|
rate=modified_chunk.frame_rate,
|
|
output=True)
|
|
|
|
# Play the modified chunk
|
|
stream.write(modified_chunk.raw_data)
|
|
|
|
# Reset buffer
|
|
audio_buffer = b''
|
|
|
|
# Final cleanup
|
|
if stream:
|
|
stream.stop_stream()
|
|
stream.close()
|
|
p.terminate()
|
|
except:
|
|
self.engine.say(text)
|
|
self.engine.runAndWait()
|
|
|
|
def stream(self, text):
|
|
# Example parameters
|
|
voice = ""
|
|
language = "en"
|
|
output_file = "stream_output.wav"
|
|
|
|
# Encode the text for URL
|
|
encoded_text = urllib.parse.quote(text)
|
|
|
|
# Create the streaming URL
|
|
streaming_url = f"http://localhost:7851/api/tts-generate-streaming?text={encoded_text}&voice={voice}&language={language}&output_file={output_file}"
|
|
|
|
try:
|
|
# Stream the audio data
|
|
response = requests.get(streaming_url, stream=True)
|
|
|
|
# Initialize PyAudio
|
|
p = pyaudio.PyAudio()
|
|
stream = None
|
|
|
|
# Process the audio stream in chunks
|
|
chunk_size = 1024 * 6 # Adjust chunk size if needed
|
|
audio_buffer = b''
|
|
|
|
for chunk in response.iter_content(chunk_size=chunk_size):
|
|
audio_buffer += chunk
|
|
|
|
if len(audio_buffer) < chunk_size:
|
|
continue
|
|
|
|
audio_segment = AudioSegment(
|
|
data=audio_buffer,
|
|
sample_width=2, # 2 bytes for 16-bit audio
|
|
frame_rate=24000, # Assumed frame rate, adjust as necessary
|
|
channels=1 # Assuming mono audio
|
|
)
|
|
|
|
if stream is None:
|
|
# Define stream parameters without any modifications
|
|
stream = p.open(format=pyaudio.paInt16,
|
|
channels=1,
|
|
rate=audio_segment.frame_rate,
|
|
output=True)
|
|
|
|
# Play the original chunk (without any modification)
|
|
stream.write(audio_segment.raw_data)
|
|
|
|
# Reset buffer
|
|
audio_buffer = b''
|
|
|
|
# Final cleanup
|
|
if stream:
|
|
stream.stop_stream()
|
|
stream.close()
|
|
p.terminate()
|
|
|
|
except:
|
|
self.engine.say(text)
|
|
self.engine.runAndWait()
|
|
|
|
|
|
# Example usage:
|
|
# sp = Speak(model="whisper") # or "whisper" or "google"
|
|
# transcription = sp.transcoder(time_listen=10)
|
|
# print("Final Transcription:", transcription)
|