mirror of
https://github.com/maglore9900/max_headroom.git
synced 2025-06-06 03:25:34 +00:00
218 lines
8.5 KiB
Python
218 lines
8.5 KiB
Python
import noisereduce as nr
|
|
import numpy as np
|
|
import pyaudio
|
|
from vosk import Model, KaldiRecognizer
|
|
from faster_whisper import WhisperModel
|
|
import speech_recognition as sr
|
|
import pyttsx3
|
|
import os
|
|
import random
|
|
from pydub import AudioSegment
|
|
import urllib.parse
|
|
import requests
|
|
import json
|
|
# from numpy import frombuffer, int16
|
|
|
|
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
|
|
|
|
class Speak:
|
|
def __init__(self, model="whisper"):
|
|
self.url = "http://127.0.0.1:7851/api/tts-generate"
|
|
|
|
self.microphone = sr.Microphone()
|
|
self.engine = pyttsx3.init()
|
|
self.engine.setProperty('rate', 150)
|
|
self.model_name = model
|
|
self.sample_rate = 16000
|
|
self.chunk_size = 1024
|
|
|
|
self.noise_threshold = 500 # Threshold to detect ambient noise
|
|
|
|
# Initialize Vosk and Whisper models
|
|
if self.model_name == "vosk":
|
|
self.model_path = os.path.join(os.path.dirname(__file__), "../models/vosk-model-en-us-0.42-gigaspeech")
|
|
self.model = Model(self.model_path)
|
|
self.recognizer = KaldiRecognizer(self.model, 16000)
|
|
elif self.model_name == "whisper":
|
|
self.whisper_model_path = "large-v2"
|
|
self.recognizer = WhisperModel(self.whisper_model_path, device="cuda") # Adjust if you don't have a CUDA-compatible GPU
|
|
# self.recognizer = None
|
|
else:
|
|
self.recognizer = sr.Recognizer()
|
|
|
|
def listen3(self, time_listen=10):
|
|
"""
|
|
Streams audio from the microphone and applies noise cancellation.
|
|
"""
|
|
counter = 0
|
|
p = pyaudio.PyAudio()
|
|
stream = p.open(format=pyaudio.paInt16, channels=1, rate=self.sample_rate, input=True, frames_per_buffer=self.chunk_size)
|
|
stream.start_stream()
|
|
print("Listening...")
|
|
|
|
try:
|
|
while counter < time_listen:
|
|
# Read audio data from the stream
|
|
audio_data = stream.read(8000, exception_on_overflow=False)
|
|
# Convert the audio data to a numpy array of int16
|
|
audio_np = np.frombuffer(audio_data, dtype=np.int16)
|
|
# Apply noise reduction
|
|
reduced_noise = nr.reduce_noise(y=audio_np, sr=self.sample_rate)
|
|
# Calculate RMS to detect ambient noise levels
|
|
rms_value = np.sqrt(np.mean(np.square(reduced_noise)))
|
|
if rms_value < self.noise_threshold:
|
|
# Pass the reduced noise (still in numpy format) to the transcoder
|
|
self.transcoder(reduced_noise.tobytes())
|
|
else:
|
|
print(f"Ambient noise detected: RMS {rms_value} exceeds threshold {self.noise_threshold}")
|
|
counter += 1
|
|
except KeyboardInterrupt:
|
|
print("Stopping...")
|
|
finally:
|
|
# Clean up the stream resources
|
|
stream.stop_stream()
|
|
stream.close()
|
|
p.terminate()
|
|
|
|
def transcoder(self, audio_data):
|
|
"""
|
|
Transcodes audio data to text using the specified model.
|
|
"""
|
|
if self.model_name == "vosk":
|
|
if self.recognizer.AcceptWaveform(audio_data):
|
|
result = json.loads(self.recognizer.Result())
|
|
if result["text"]:
|
|
print(f"Recognized: {result['text']}")
|
|
return result['text']
|
|
return result
|
|
elif self.model_name == "whisper":
|
|
|
|
result, _ = self.recognizer.transcribe(audio_data, beam_size=5)
|
|
return result['text']
|
|
else:
|
|
result = self.recognizer.recognize_google(audio_data)
|
|
return result
|
|
|
|
|
|
# def vosk_transcription(self):
|
|
# """
|
|
# Handles Vosk-based transcription of streamed audio with noise cancellation.
|
|
# """
|
|
# recognizer = KaldiRecognizer(self.vosk_model, self.sample_rate)
|
|
# stream = self.stream_with_noise_cancellation()
|
|
|
|
# for audio_chunk in stream:
|
|
# if recognizer.AcceptWaveform(audio_chunk):
|
|
# result = recognizer.Result()
|
|
# print(result) # Handle or process the transcription result
|
|
|
|
# def whisper_transcription(self):
|
|
# """
|
|
# Handles Faster-Whisper-based transcription of streamed audio with noise cancellation.
|
|
# """
|
|
# stream = self.stream_with_noise_cancellation()
|
|
|
|
# for audio_chunk in stream:
|
|
# # Transcribe the cleaned audio using faster-whisper
|
|
# result, _ = self.whisper_model.transcribe(audio_chunk, beam_size=5)
|
|
# print(result['text']) # Handle or process the transcription result
|
|
|
|
# def listen(self):
|
|
# if self.model == "vosk":
|
|
# self.vosk_transcription()
|
|
# elif self.model == "whisper":
|
|
# self.whisper_transcription()
|
|
# else:
|
|
# raise ValueError("Invalid model specified. Please specify either 'vosk' or 'whisper'.")
|
|
|
|
def glitch_stream_output(self, text):
|
|
def change_pitch(sound, octaves):
|
|
val = random.randint(0, 10)
|
|
if val == 1:
|
|
new_sample_rate = int(sound.frame_rate * (2.0 ** octaves))
|
|
return sound._spawn(sound.raw_data, overrides={'frame_rate': new_sample_rate}).set_frame_rate(sound.frame_rate)
|
|
else:
|
|
return sound
|
|
|
|
def convert_audio_format(sound, target_sample_rate=16000):
|
|
# Ensure the audio is in PCM16 format
|
|
sound = sound.set_sample_width(2) # PCM16 = 2 bytes per sample
|
|
# Resample the audio to the target sample rate
|
|
sound = sound.set_frame_rate(target_sample_rate)
|
|
return sound
|
|
|
|
# Example parameters
|
|
voice = "maxheadroom_00000045.wav"
|
|
language = "en"
|
|
output_file = "stream_output.wav"
|
|
|
|
# Encode the text for URL
|
|
encoded_text = urllib.parse.quote(text)
|
|
|
|
# Create the streaming URL
|
|
streaming_url = f"http://localhost:7851/api/tts-generate-streaming?text={encoded_text}&voice={voice}&language={language}&output_file={output_file}"
|
|
try:
|
|
# Stream the audio data
|
|
response = requests.get(streaming_url, stream=True)
|
|
|
|
# Initialize PyAudio
|
|
p = pyaudio.PyAudio()
|
|
stream = None
|
|
|
|
# Process the audio stream in chunks
|
|
chunk_size = 1024 * 6 # Adjust chunk size if needed
|
|
audio_buffer = b''
|
|
|
|
for chunk in response.iter_content(chunk_size=chunk_size):
|
|
audio_buffer += chunk
|
|
|
|
if len(audio_buffer) < chunk_size:
|
|
continue
|
|
|
|
audio_segment = AudioSegment(
|
|
data=audio_buffer,
|
|
sample_width=2, # 2 bytes for 16-bit audio
|
|
frame_rate=24000, # Assumed frame rate, adjust as necessary
|
|
channels=1 # Assuming mono audio
|
|
)
|
|
|
|
# Randomly adjust pitch
|
|
octaves = random.uniform(-0.1, 1.5)
|
|
modified_chunk = change_pitch(audio_segment, octaves)
|
|
|
|
if random.random() < 0.001: # 1% chance to trigger stutter
|
|
repeat_times = random.randint(2, 5) # Repeat 2 to 5 times
|
|
for _ in range(repeat_times):
|
|
stream.write(modified_chunk.raw_data)
|
|
|
|
# Convert to PCM16 and 16kHz sample rate after the stutter effect
|
|
modified_chunk = convert_audio_format(modified_chunk, target_sample_rate=16000)
|
|
|
|
if stream is None:
|
|
# Define stream parameters
|
|
stream = p.open(format=pyaudio.paInt16,
|
|
channels=1,
|
|
rate=modified_chunk.frame_rate,
|
|
output=True)
|
|
|
|
# Play the modified chunk
|
|
stream.write(modified_chunk.raw_data)
|
|
|
|
# Reset buffer
|
|
audio_buffer = b''
|
|
|
|
# Final cleanup
|
|
if stream:
|
|
stream.stop_stream()
|
|
stream.close()
|
|
p.terminate()
|
|
except:
|
|
self.engine.say(text)
|
|
self.engine.runAndWait()
|
|
# Example usage:
|
|
# sp = Speak(vosk_model_path="path_to_vosk_model", whisper_model_path="large-v2")
|
|
# sp.vosk_transcription() # To start Vosk transcription
|
|
# sp.whisper_transcription() # To start Faster-Whisper transcription
|
|
sp = Speak()
|
|
# sp.glitch_stream_output("Hello, world!")
|
|
sp.listen3() |