maglore9900 ec07b096dc added fallback on features
added fallback on spotify
added subprocess to app launcher so it releases max while the app is open
2024-08-29 10:56:54 -04:00

242 lines
8.9 KiB
Python

from typing import TypedDict, Annotated, List, Union
import operator
from modules import adapter, spotify, app_launcher, windows_focus
from langchain_core.agents import AgentAction, AgentFinish
from langchain.agents import create_openai_tools_agent
from langchain import hub
from langchain_core.tools import tool
from langgraph.graph import StateGraph, END
import asyncio
class Agent:
def __init__(self):
self.ad = adapter.Adapter()
self.sp = spotify.Spotify()
self.ap = app_launcher.AppLauncher()
self.wf = windows_focus.WindowFocusManager()
self.llm = self.ad.llm_chat
# self.final_answer_llm = self.llm.bind_tools(
# [self.rag_final_answer_tool], tool_choice="rag_final_answer"
# )
self.prompt = hub.pull("hwchase17/openai-functions-agent")
self.query_agent_runnable = create_openai_tools_agent(
llm=self.llm,
tools=[
# self.rag_final_answer_tool,
self.spotify,
self.app_launcher,
self.windows_focus
],
prompt=self.prompt,
)
self.graph = StateGraph(self.AgentState)
self.runnable = None
self.filename = None
self.file_path = None
self.doc = None
class AgentState(TypedDict):
input: str
agent_out: Union[AgentAction, AgentFinish, None]
intermediate_steps: Annotated[List[tuple[AgentAction, str]], operator.add]
#! Tools
@tool("respond")
async def respond(self, answer: str):
"""Returns a natural language response to the user in `answer`"""
return ""
@tool("spotify")
async def spotify(self, command: str):
"""Use this tool to control spotify, commands include: play, pause, stop, next, previous, favorite, search
Only use this tool if the user says Spotify in their query"""
return ""
@tool("app_launcher")
async def app_launcher(self, app_name: str):
"""Use this tool to launch an app or application on your computer.
The user query will contain the app name, as well as open, launch, start, or similar type words
pass the name of the app to this tool as app_name
"""
@tool("windows_focus")
async def windows_focus(self, app_name: str):
"""Use this tool to focus on a window on your computer.
The user query will contain the app name, as well as focus, switch, show, or similar type words
pass the name of the app to this tool as app_name
"""
return ""
# @tool("rag_final_answer")
# async def rag_final_answer_tool(self, answer: str, source: str):
# """Returns a natural language response to the user in `answer`, and a
# `source` which provides citations for where this information came from.
# """
# return ""
def setup_graph(self):
self.graph.add_node("query_agent", self.run_query_agent)
self.graph.add_node("spotify", self.spotify_tool)
self.graph.add_node("app_launcher", self.app_launcher_tool)
self.graph.add_node("windows_focus", self.windows_focus_tool)
# self.graph.add_node("rag_final_answer", self.rag_final_answer)
# self.graph.add_node("error", self.rag_final_answer)
self.graph.add_node("respond", self.respond)
self.graph.set_entry_point("query_agent")
self.graph.add_conditional_edges(
start_key="query_agent",
condition=self.router,
conditional_edge_mapping={
"spotify": "spotify",
# "rag_final_answer": "rag_final_answer",
# "error": "error",
"respond": "respond",
"app_launcher": "app_launcher",
"windows_focus": "windows_focus"
},
)
self.graph.add_edge("spotify", END)
self.graph.add_edge("app_launcher", END)
self.graph.add_edge("windows_focus", END)
# self.graph.add_edge("error", END)
# self.graph.add_edge("rag_final_answer", END)
# self.graph.add_edge("query_agent", END)
self.graph.add_edge("respond", END)
self.runnable = self.graph.compile()
async def run_query_agent(self, state: list):
print("> run_query_agent")
print(f"state: {state}")
agent_out = self.query_agent_runnable.invoke(state)
print(agent_out)
return {"agent_out": agent_out}
async def spotify_tool(self, state: str):
try:
print("> spotify_tool")
print(f"state: {state}")
tool_action = state['agent_out'][0]
# Inline lambda to get 'command' or 'self' from tool_input
command = (lambda x: x.get('command') or x.get('self'))(tool_action.tool_input)
if not command:
raise ValueError("No valid command found in tool_input")
print(f"command: {command}")
# Handling the command
if command == "play":
self.sp.play()
elif command == "pause":
self.sp.pause()
elif command == "stop":
self.sp.pause()
elif command == "next":
self.sp.next_track()
elif command == "previous":
self.sp.previous_track()
elif command == "favorite":
self.sp.favorite_current_song()
else:
print("Invalid command")
except Exception as e:
print(f"An error occurred: {e}")
async def app_launcher_tool(self, state: str):
print("> app_launcher_tool")
print(f"state: {state}")
tool_action = state['agent_out'][0]
app_name = tool_action.tool_input['app_name']
print(f"app_name: {app_name}")
self.ap.find_and_open_app(app_name)
async def windows_focus_tool(self, state: str):
print("> windows_focus_tool")
print(f"state: {state}")
tool_action = state['agent_out'][0]
app_name = tool_action.tool_input['app_name']
print(f"app_name: {app_name}")
self.wf.bring_specific_instance_to_front(app_name)
async def respond(self, answer: str):
print("> respond")
print(f"answer: {answer}")
agent_out = answer.get('agent_out')
output_value = agent_out.return_values.get('output', None)
return {"agent_out": output_value}
async def rag_final_answer(self, state: list):
print("> rag final_answer")
print(f"state: {state}")
try:
#! if AgentFinish and no intermediate steps then return the answer without rag_final_answer (need to develop)
context = state.get("agent_out").return_values['output']
if not context:
context = state.get("agent_out")['answer']
if not context:
context = state.get("intermediate_steps")[-1]
except:
context = ""
if "return_values" in str(state.get("agent_out")) and state["intermediate_steps"] == []:
print("bypassing rag_final_answer")
print(f"context: {context}")
return {"agent_out": {"answer":context, "source": "Quick Response"}}
else:
prompt = f"You are a helpful assistant, Ensure the answer to user's question is in natural language, using the context provided.\n\nCONTEXT: {context}\nQUESTION: {state['input']}"
loop = asyncio.get_running_loop()
# Run the synchronous method in an executor
out = await loop.run_in_executor(None, self.final_answer_llm.invoke, prompt)
function_call = out.additional_kwargs["tool_calls"][-1]["function"]["arguments"]
return {"agent_out": function_call}
async def router(self, state):
print("> router")
print(f"----router agent state: {state}")
if isinstance(state["agent_out"], list):
return state["agent_out"][-1].tool
else:
print("---router error")
return "respond"
async def invoke_agent(self, input_data):
if not self.runnable:
loop = asyncio.get_running_loop()
await loop.run_in_executor(None, self.setup_graph)
result = await self.runnable.ainvoke(
{"input": input_data, "chat_history": [], "intermediate_steps": []}
)
print("-----")
print(result)
print("-----")
try:
# Directly access the 'agent_out' key since it is a string
agent_out = result["agent_out"]
except KeyError:
print("Error: 'agent_out' key not found in the result.")
agent_out = "I'm sorry, I don't have an answer to that question."
# 'agent_out' is already the answer in this case
answer = agent_out
print(f"answer: {answer}")
if "ToolAgentAction" not in str(agent_out):
return answer