Added token count and trimmer

This commit is contained in:
tcsenpai 2024-10-06 22:59:55 +02:00
parent 5324358e37
commit 648e03ae28
4 changed files with 95 additions and 63 deletions

View File

@ -86,7 +86,6 @@ The appearance of the Streamlit interface can be customized by modifying the `st
- `main.py`: Entry point of the application
- `ai_conversation.py`: Core logic for AI conversations
- `ollama_client.py`: Client for interacting with the Ollama API
- `streamlit_app.py`: Streamlit web interface implementation
- `style/custom.css`: Custom styles for the web interface
- `run_cli.sh`: Shell script to run the CLI version

View File

@ -1,9 +1,19 @@
import ollama
from termcolor import colored
import datetime
import tiktoken # Used for token counting
class AIConversation:
def __init__(self, model_1, model_2, system_prompt_1, system_prompt_2, ollama_endpoint):
def __init__(
self,
model_1,
model_2,
system_prompt_1,
system_prompt_2,
ollama_endpoint,
max_tokens=4000,
):
# Initialize conversation parameters and Ollama client
self.model_1 = model_1
self.model_2 = model_2
self.system_prompt_1 = system_prompt_1
@ -13,14 +23,31 @@ class AIConversation:
self.messages_2 = [{"role": "system", "content": system_prompt_2}]
self.client = ollama.Client(ollama_endpoint)
self.ollama_endpoint = ollama_endpoint
self.tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo")
self.max_tokens = max_tokens
def count_tokens(self, messages):
# Count the total number of tokens in the messages
return sum(len(self.tokenizer.encode(msg["content"])) for msg in messages)
def trim_messages(self, messages):
# Trim messages to stay within the token limit
if self.count_tokens(messages) > self.max_tokens:
print(colored(f"[SYSTEM] Max tokens reached. Trimming messages...", "magenta"))
while self.count_tokens(messages) > self.max_tokens:
if len(messages) > 1:
messages.pop(1) # Remove the oldest non-system message
else:
break # Avoid removing the system message
return messages
def start_conversation(self, initial_message, num_exchanges=0):
# Main conversation loop
current_message = initial_message
color_1 = "cyan"
color_2 = "yellow"
color_1, color_2 = "cyan", "yellow"
conversation_log = []
# Appending the initial message to the conversation log in the system prompt
# Add initial message to system prompts
self.messages_1[0]["content"] += f"\n\nInitial message: {current_message}"
self.messages_2[0]["content"] += f"\n\nInitial message: {current_message}"
@ -30,56 +57,59 @@ class AIConversation:
try:
i = 0
active_ai = 1 # Starting with AI 1
active_ai = 1 # Starting with AI 1
while num_exchanges == 0 or i < num_exchanges:
if active_ai == 0:
name = "AI 1"
messages = self.messages_1
other_messages = self.messages_2
color = color_1
else:
name = "AI 2"
messages = self.messages_2
other_messages = self.messages_1
color = color_2
# Set up current AI's parameters
name = "AI 1" if active_ai == 0 else "AI 2"
messages = self.messages_1 if active_ai == 0 else self.messages_2
other_messages = self.messages_2 if active_ai == 0 else self.messages_1
color = color_1 if active_ai == 0 else color_2
# Add user message to conversation history
messages.append({"role": "user", "content": current_message})
other_messages.append({"role": "assistant", "content": current_message})
#print(colored(f"Conversation with {name} ({self.current_model})", "blue"))
# Trim messages and get token count
messages = self.trim_messages(messages)
token_count = self.count_tokens(messages)
print(colored(f"Context token count: {token_count}", "magenta"))
# Generate AI response
response = self.client.chat(
model=self.current_model,
model=self.current_model,
messages=messages,
options={
"temperature": 0.7, # Adjust this value to control randomness
"temperature": 0.7, # Control randomness
"repeat_penalty": 1.2, # Penalize repetition
}
},
)
response_content = response['message']['content']
response_content = response["message"]["content"]
# Post-process to remove repetition
response_content = self.remove_repetition(response_content)
# Format and print the response
model_name = f"{self.current_model.upper()} ({name}):"
formatted_response = f"{model_name}\n{response_content}\n"
print(colored(formatted_response, color))
conversation_log.append({"role": "assistant", "content": formatted_response})
conversation_log.append(
{"role": "assistant", "content": formatted_response}
)
# Update conversation history
messages.append({"role": "assistant", "content": response_content})
other_messages.append({"role": "user", "content": response_content})
current_message = response_content
# Switching the AI
# Switch to the other AI for the next turn
self.current_model = self.model_2 if active_ai == 1 else self.model_1
active_ai = 1 if active_ai == 0 else 0
print(colored("---", "magenta"))
print()
# Check for conversation end condition
if current_message.strip().endswith("{{end_conversation}}"):
print(colored("Conversation ended by the AI.", "green"))
break
@ -92,8 +122,8 @@ class AIConversation:
print(colored("Conversation ended.", "green"))
self.save_conversation_log(conversation_log)
def save_conversation_log(self, messages, filename=None):
# Save the conversation log to a file
if filename is None:
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"conversation_log_{timestamp}.txt"
@ -115,7 +145,7 @@ class AIConversation:
print(f"Conversation log saved to {filename}")
def remove_repetition(self, text):
# Split the text into sentences
# Remove repeated sentences while preserving order
split_tokens = [".", "!", "?"]
sentences = []
current_sentence = ""
@ -134,4 +164,4 @@ class AIConversation:
unique_sentences.append(sentence)
# Join the sentences back together
return ' '.join(unique_sentences)
return " ".join(unique_sentences)

68
main.py
View File

@ -4,57 +4,59 @@ from dotenv import load_dotenv, set_key
from ai_conversation import AIConversation
def load_system_prompt(filename):
with open(filename, 'r') as file:
"""Load the system prompt from a file."""
with open(filename, "r") as file:
return file.read().strip()
def main():
# Load environment variables
load_dotenv()
# Retrieve configuration from environment variables
ollama_endpoint = os.getenv("OLLAMA_ENDPOINT")
model_1 = os.getenv("MODEL_1")
model_2 = os.getenv("MODEL_2")
system_prompt_1 = load_system_prompt("system_prompt_1.txt")
system_prompt_2 = load_system_prompt("system_prompt_2.txt")
initial_prompt = os.getenv(
"INITIAL_PROMPT",
"Let's discuss the future of AI. What are your thoughts on its potential impact on society?",
)
max_tokens = int(os.getenv("MAX_TOKENS", 4000))
print(f"Max tokens: {max_tokens}")
# Initialize the AI conversation object
conversation = AIConversation(
model_1, model_2, system_prompt_1, system_prompt_2, ollama_endpoint, max_tokens
)
# Set up command-line argument parser
parser = argparse.ArgumentParser(description="AI Conversation")
parser.add_argument("--cli", action="store_true", help="Run in CLI mode")
parser.add_argument("--streamlit", action="store_true", help="Run in Streamlit mode")
parser.add_argument(
"--streamlit", action="store_true", help="Run in Streamlit mode"
)
args = parser.parse_args()
# Run the appropriate interface based on command-line arguments
if args.cli:
run_cli()
run_cli(conversation, initial_prompt)
elif args.streamlit:
run_streamlit()
run_streamlit(conversation, initial_prompt)
else:
print("Please specify either --cli or --streamlit mode.")
def run_cli():
def run_cli(conversation, initial_prompt):
"""Run the conversation in command-line interface mode."""
load_dotenv()
ollama_endpoint = os.getenv("OLLAMA_ENDPOINT")
model_1 = os.getenv("MODEL_1")
model_2 = os.getenv("MODEL_2")
system_prompt_1_file = os.getenv("CUSTOM_SYSTEM_PROMPT_1", "system_prompt_1.txt")
system_prompt_2_file = os.getenv("CUSTOM_SYSTEM_PROMPT_2", "system_prompt_2.txt")
system_prompt_1 = load_system_prompt(system_prompt_1_file)
system_prompt_2 = load_system_prompt(system_prompt_2_file)
initial_prompt = os.getenv("INITIAL_PROMPT", "Let's discuss the future of AI. What are your thoughts on its potential impact on society?")
conversation = AIConversation(model_1, model_2, system_prompt_1, system_prompt_2, ollama_endpoint)
conversation.start_conversation(initial_prompt, num_exchanges=0)
def run_streamlit():
def run_streamlit(conversation, initial_prompt):
"""Run the conversation in Streamlit interface mode."""
import streamlit as st
from streamlit_app import streamlit_interface
load_dotenv()
ollama_endpoint = os.getenv("OLLAMA_ENDPOINT")
model_1 = os.getenv("MODEL_1")
model_2 = os.getenv("MODEL_2")
system_prompt_1 = load_system_prompt("system_prompt_1.txt")
system_prompt_2 = load_system_prompt("system_prompt_2.txt")
initial_prompt = os.getenv("INITIAL_PROMPT", "Let's discuss the future of AI. What are your thoughts on its potential impact on society?")
conversation = AIConversation(ollama_endpoint, model_1, model_2, system_prompt_1, system_prompt_2)
streamlit_interface(conversation, initial_prompt)
if __name__ == "__main__":
main()
main()

View File

@ -2,4 +2,5 @@ python-dotenv
requests
termcolor
streamlit
Pillow
Pillow
tiktoken