mirror of
https://github.com/tcsenpai/agenticSeek.git
synced 2025-06-06 11:05:26 +00:00
feat : frontend message streaming
This commit is contained in:
parent
3a9514629a
commit
83c595144b
46
api.py
46
api.py
@ -20,8 +20,6 @@ from sources.utility import pretty_print
|
||||
from sources.logger import Logger
|
||||
from sources.schemas import QueryRequest, QueryResponse
|
||||
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
|
||||
from celery import Celery
|
||||
|
||||
api = FastAPI(title="AgenticSeek API", version="0.1.0")
|
||||
@ -43,8 +41,6 @@ if not os.path.exists(".screenshots"):
|
||||
os.makedirs(".screenshots")
|
||||
api.mount("/screenshots", StaticFiles(directory=".screenshots"), name="screenshots")
|
||||
|
||||
executor = ThreadPoolExecutor(max_workers=1)
|
||||
|
||||
def initialize_system():
|
||||
stealth_mode = config.getboolean('BROWSER', 'stealth_mode')
|
||||
personality_folder = "jarvis" if config.getboolean('MAIN', 'jarvis_personality') else "base"
|
||||
@ -105,6 +101,7 @@ def initialize_system():
|
||||
|
||||
interaction = initialize_system()
|
||||
is_generating = False
|
||||
query_resp_history = []
|
||||
|
||||
@api.get("/screenshot")
|
||||
async def get_screenshot():
|
||||
@ -128,12 +125,31 @@ async def is_active():
|
||||
logger.info("Is active endpoint called")
|
||||
return {"is_active": interaction.is_active}
|
||||
|
||||
def think_wrapper(interaction, query, tts_enabled):
|
||||
@api.get("/latest_answer")
|
||||
async def get_latest_answer():
|
||||
global query_resp_history
|
||||
if interaction.current_agent is None:
|
||||
return JSONResponse(status_code=404, content={"error": "No agent available"})
|
||||
if interaction.current_agent.last_answer not in [q["answer"] for q in query_resp_history]:
|
||||
query_resp = {
|
||||
"done": "false",
|
||||
"answer": interaction.current_agent.last_answer,
|
||||
"agent_name": interaction.current_agent.agent_name if interaction.current_agent else "None",
|
||||
"success": "false",
|
||||
"blocks": {f'{i}': block.jsonify() for i, block in enumerate(interaction.current_agent.get_blocks_result())} if interaction.current_agent else {}
|
||||
}
|
||||
query_resp_history.append(query_resp)
|
||||
return JSONResponse(status_code=200, content=query_resp)
|
||||
if query_resp_history:
|
||||
return JSONResponse(status_code=200, content=query_resp_history[-1])
|
||||
return JSONResponse(status_code=404, content={"error": "No answer available"})
|
||||
|
||||
async def think_wrapper(interaction, query, tts_enabled):
|
||||
try:
|
||||
interaction.tts_enabled = tts_enabled
|
||||
interaction.last_query = query
|
||||
logger.info("Agents request is being processed")
|
||||
success = interaction.think()
|
||||
success = await interaction.think()
|
||||
if not success:
|
||||
interaction.last_answer = "Error: No answer from agent"
|
||||
interaction.last_success = False
|
||||
@ -148,7 +164,7 @@ def think_wrapper(interaction, query, tts_enabled):
|
||||
|
||||
@api.post("/query", response_model=QueryResponse)
|
||||
async def process_query(request: QueryRequest):
|
||||
global is_generating
|
||||
global is_generating, query_resp_history
|
||||
logger.info(f"Processing query: {request.query}")
|
||||
query_resp = QueryResponse(
|
||||
done="false",
|
||||
@ -163,10 +179,7 @@ async def process_query(request: QueryRequest):
|
||||
|
||||
try:
|
||||
is_generating = True
|
||||
loop = asyncio.get_running_loop()
|
||||
success = await loop.run_in_executor(
|
||||
executor, think_wrapper, interaction, request.query, request.tts_enabled
|
||||
)
|
||||
success = await think_wrapper(interaction, request.query, request.tts_enabled)
|
||||
is_generating = False
|
||||
|
||||
if not success:
|
||||
@ -188,6 +201,17 @@ async def process_query(request: QueryRequest):
|
||||
query_resp.agent_name = interaction.current_agent.agent_name
|
||||
query_resp.success = str(interaction.last_success)
|
||||
query_resp.blocks = blocks_json
|
||||
|
||||
# Store the raw dictionary representation
|
||||
query_resp_dict = {
|
||||
"done": query_resp.done,
|
||||
"answer": query_resp.answer,
|
||||
"agent_name": query_resp.agent_name,
|
||||
"success": query_resp.success,
|
||||
"blocks": query_resp.blocks
|
||||
}
|
||||
query_resp_history.append(query_resp_dict)
|
||||
|
||||
logger.info("Query processed successfully")
|
||||
return JSONResponse(status_code=200, content=query_resp.jsonify())
|
||||
except Exception as e:
|
||||
|
8
cli.py
8
cli.py
@ -3,6 +3,7 @@
|
||||
import sys
|
||||
import argparse
|
||||
import configparser
|
||||
import asyncio
|
||||
|
||||
from sources.llm_provider import Provider
|
||||
from sources.interaction import Interaction
|
||||
@ -16,7 +17,7 @@ warnings.filterwarnings("ignore")
|
||||
config = configparser.ConfigParser()
|
||||
config.read('config.ini')
|
||||
|
||||
def main():
|
||||
async def main():
|
||||
pretty_print("Initializing...", color="status")
|
||||
stealth_mode = config.getboolean('BROWSER', 'stealth_mode')
|
||||
personality_folder = "jarvis" if config.getboolean('MAIN', 'jarvis_personality') else "base"
|
||||
@ -59,7 +60,7 @@ def main():
|
||||
try:
|
||||
while interaction.is_active:
|
||||
interaction.get_user()
|
||||
if interaction.think():
|
||||
if await interaction.think():
|
||||
interaction.show_answer()
|
||||
except Exception as e:
|
||||
if config.getboolean('MAIN', 'save_session'):
|
||||
@ -69,6 +70,5 @@ def main():
|
||||
if config.getboolean('MAIN', 'save_session'):
|
||||
interaction.save_session()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
asyncio.run(main())
|
@ -10,11 +10,24 @@ function App() {
|
||||
const [currentView, setCurrentView] = useState('blocks');
|
||||
const [responseData, setResponseData] = useState(null);
|
||||
const [isOnline, setIsOnline] = useState(false);
|
||||
const [isMounted, setIsMounted] = useState(true);
|
||||
const messagesEndRef = useRef(null);
|
||||
|
||||
useEffect(() => {
|
||||
scrollToBottom();
|
||||
checkHealth();
|
||||
const intervalId = setInterval(() => {
|
||||
checkHealth();
|
||||
fetchLatestAnswer();
|
||||
fetchScreenshot();
|
||||
}, 1500);
|
||||
return () => clearInterval(intervalId);
|
||||
}, [messages]);
|
||||
|
||||
useEffect(() => {
|
||||
const intervalId = setInterval(() => {
|
||||
scrollToBottom();
|
||||
}, 7000);
|
||||
|
||||
return () => clearInterval(intervalId);
|
||||
}, [messages]);
|
||||
|
||||
const checkHealth = async () => {
|
||||
@ -32,54 +45,58 @@ function App() {
|
||||
messagesEndRef.current?.scrollIntoView({ behavior: 'smooth' });
|
||||
};
|
||||
|
||||
useEffect(() => {
|
||||
if (currentView === 'screenshot') {
|
||||
let isMounted = true;
|
||||
|
||||
const fetchScreenshot = async () => {
|
||||
try {
|
||||
const timestamp = new Date().getTime();
|
||||
const res = await axios.get(`http://0.0.0.0:8000/screenshots/updated_screen.png?timestamp=${timestamp}`, {
|
||||
responseType: 'blob'
|
||||
});
|
||||
if (isMounted) {
|
||||
console.log('Screenshot fetched successfully');
|
||||
const imageUrl = URL.createObjectURL(res.data);
|
||||
setResponseData((prev) => {
|
||||
if (prev?.screenshot && prev.screenshot !== 'placeholder.png') {
|
||||
URL.revokeObjectURL(prev.screenshot);
|
||||
}
|
||||
return {
|
||||
...prev,
|
||||
screenshot: imageUrl,
|
||||
screenshotTimestamp: new Date().getTime()
|
||||
};
|
||||
});
|
||||
const fetchScreenshot = async () => {
|
||||
try {
|
||||
const timestamp = new Date().getTime();
|
||||
const res = await axios.get(`http://0.0.0.0:8000/screenshots/updated_screen.png?timestamp=${timestamp}`, {
|
||||
responseType: 'blob'
|
||||
});
|
||||
if (isMounted) {
|
||||
console.log('Screenshot fetched successfully');
|
||||
const imageUrl = URL.createObjectURL(res.data);
|
||||
setResponseData((prev) => {
|
||||
if (prev?.screenshot && prev.screenshot !== 'placeholder.png') {
|
||||
URL.revokeObjectURL(prev.screenshot);
|
||||
}
|
||||
} catch (err) {
|
||||
console.error('Error fetching screenshot:', err);
|
||||
if (isMounted) {
|
||||
setResponseData((prev) => ({
|
||||
...prev,
|
||||
screenshot: 'placeholder.png',
|
||||
screenshotTimestamp: new Date().getTime()
|
||||
}));
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
fetchScreenshot();
|
||||
const interval = setInterval(fetchScreenshot, 1000);
|
||||
|
||||
return () => {
|
||||
isMounted = false;
|
||||
clearInterval(interval);
|
||||
if (responseData?.screenshot && responseData.screenshot !== 'placeholder.png') {
|
||||
URL.revokeObjectURL(responseData.screenshot);
|
||||
}
|
||||
};
|
||||
return {
|
||||
...prev,
|
||||
screenshot: imageUrl,
|
||||
screenshotTimestamp: new Date().getTime()
|
||||
};
|
||||
});
|
||||
}
|
||||
} catch (err) {
|
||||
console.error('Error fetching screenshot:', err);
|
||||
if (isMounted) {
|
||||
setResponseData((prev) => ({
|
||||
...prev,
|
||||
screenshot: 'placeholder.png',
|
||||
screenshotTimestamp: new Date().getTime()
|
||||
}));
|
||||
}
|
||||
}
|
||||
}, [currentView]);
|
||||
};
|
||||
|
||||
const normalizeAnswer = (answer) => answer.trim().toLowerCase();
|
||||
|
||||
const fetchLatestAnswer = async () => {
|
||||
try {
|
||||
const res = await axios.get('http://0.0.0.0:8000/latest_answer');
|
||||
const data = res.data;
|
||||
const normalizedAnswer = normalizeAnswer(data.answer);
|
||||
const answerExists = messages.some(
|
||||
(msg) => normalizeAnswer(msg.content) === normalizedAnswer && data.answer != undefined
|
||||
);
|
||||
if (!answerExists) {
|
||||
setMessages((prev) => [
|
||||
...prev,
|
||||
{ type: 'agent', content: data.answer, agentName: data.agent_name },
|
||||
]);
|
||||
}
|
||||
} catch (error) {
|
||||
console.error("Error fetching latest answer:", error);
|
||||
}
|
||||
};
|
||||
|
||||
const handleSubmit = async (e) => {
|
||||
e.preventDefault();
|
||||
@ -101,10 +118,7 @@ function App() {
|
||||
console.log('Response:', res.data);
|
||||
const data = res.data;
|
||||
setResponseData(data);
|
||||
setMessages((prev) => [
|
||||
...prev,
|
||||
{ type: 'agent', content: data.answer, agentName: data.agent_name },
|
||||
]);
|
||||
fetchLatestAnswer();
|
||||
} catch (err) {
|
||||
console.error('Error:', err);
|
||||
setError('Failed to process query.');
|
||||
|
@ -5,6 +5,9 @@ import os
|
||||
import random
|
||||
import time
|
||||
|
||||
import asyncio
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
|
||||
from sources.memory import Memory
|
||||
from sources.utility import pretty_print
|
||||
from sources.schemas import executorResult
|
||||
@ -43,6 +46,27 @@ class Agent():
|
||||
self.blocks_result = []
|
||||
self.last_answer = ""
|
||||
self.verbose = verbose
|
||||
self.executor = ThreadPoolExecutor(max_workers=1)
|
||||
|
||||
@property
|
||||
def get_agent_name(self) -> str:
|
||||
return self.agent_name
|
||||
|
||||
@property
|
||||
def get_agent_type(self) -> str:
|
||||
return self.type
|
||||
|
||||
@property
|
||||
def get_agent_role(self) -> str:
|
||||
return self.role
|
||||
|
||||
@property
|
||||
def get_last_answer(self) -> str:
|
||||
return self.last_answer
|
||||
|
||||
@property
|
||||
def get_blocks(self) -> list:
|
||||
return self.blocks_result
|
||||
|
||||
@property
|
||||
def get_tools(self) -> dict:
|
||||
@ -90,7 +114,14 @@ class Agent():
|
||||
end_idx = text.rfind(end_tag)+8
|
||||
return text[start_idx:end_idx]
|
||||
|
||||
def llm_request(self) -> Tuple[str, str]:
|
||||
async def llm_request(self) -> Tuple[str, str]:
|
||||
"""
|
||||
Asynchronously ask the LLM to process the prompt.
|
||||
"""
|
||||
loop = asyncio.get_event_loop()
|
||||
return await loop.run_in_executor(self.executor, self.sync_llm_request)
|
||||
|
||||
def sync_llm_request(self) -> Tuple[str, str]:
|
||||
"""
|
||||
Ask the LLM to process the prompt and return the answer and the reasoning.
|
||||
"""
|
||||
@ -102,14 +133,15 @@ class Agent():
|
||||
self.memory.push('assistant', answer)
|
||||
return answer, reasoning
|
||||
|
||||
def wait_message(self, speech_module):
|
||||
async def wait_message(self, speech_module):
|
||||
if speech_module is None:
|
||||
return
|
||||
messages = ["Please be patient, I am working on it.",
|
||||
"Computing... I recommand you have a coffee while I work.",
|
||||
"Hold on, I’m crunching numbers.",
|
||||
"Working on it, please let me think."]
|
||||
if speech_module: speech_module.speak(messages[random.randint(0, len(messages)-1)])
|
||||
loop = asyncio.get_event_loop()
|
||||
return await loop.run_in_executor(self.executor, lambda: speech_module.speak(messages[random.randint(0, len(messages)-1)]))
|
||||
|
||||
def get_blocks_result(self) -> list:
|
||||
return self.blocks_result
|
||||
|
@ -3,6 +3,7 @@ import time
|
||||
from datetime import date
|
||||
from typing import List, Tuple, Type, Dict
|
||||
from enum import Enum
|
||||
import asyncio
|
||||
|
||||
from sources.utility import pretty_print, animate_thinking
|
||||
from sources.agents.agent import Agent
|
||||
@ -166,10 +167,10 @@ class BrowserAgent(Agent):
|
||||
You must always take notes.
|
||||
"""
|
||||
|
||||
def llm_decide(self, prompt: str, show_reasoning: bool = False) -> Tuple[str, str]:
|
||||
async def llm_decide(self, prompt: str, show_reasoning: bool = False) -> Tuple[str, str]:
|
||||
animate_thinking("Thinking...", color="status")
|
||||
self.memory.push('user', prompt)
|
||||
answer, reasoning = self.llm_request()
|
||||
answer, reasoning = await self.llm_request()
|
||||
if show_reasoning:
|
||||
pretty_print(reasoning, color="failure")
|
||||
pretty_print(answer, color="output")
|
||||
@ -287,7 +288,7 @@ class BrowserAgent(Agent):
|
||||
pretty_print(f"Title: {res['title']} - ", color="info", no_newline=True)
|
||||
pretty_print(f"Link: {res['link']}", color="status")
|
||||
|
||||
def process(self, user_prompt: str, speech_module: type) -> Tuple[str, str]:
|
||||
async def process(self, user_prompt: str, speech_module: type) -> Tuple[str, str]:
|
||||
"""
|
||||
Process the user prompt to conduct an autonomous web search.
|
||||
Start with a google search with searxng using web_search tool.
|
||||
@ -302,7 +303,7 @@ class BrowserAgent(Agent):
|
||||
|
||||
animate_thinking(f"Thinking...", color="status")
|
||||
mem_begin_idx = self.memory.push('user', self.search_prompt(user_prompt))
|
||||
ai_prompt, reasoning = self.llm_request()
|
||||
ai_prompt, reasoning = await self.llm_request()
|
||||
if Action.REQUEST_EXIT.value in ai_prompt:
|
||||
pretty_print(f"Web agent requested exit.\n{reasoning}\n\n{ai_prompt}", color="failure")
|
||||
return ai_prompt, ""
|
||||
@ -315,7 +316,8 @@ class BrowserAgent(Agent):
|
||||
while not complete and len(unvisited) > 0:
|
||||
|
||||
self.memory.clear()
|
||||
answer, reasoning = self.llm_decide(prompt, show_reasoning = False)
|
||||
answer, reasoning = await self.llm_decide(prompt, show_reasoning = False)
|
||||
self.last_answer = answer
|
||||
pretty_print('▂'*32, color="status")
|
||||
|
||||
extracted_form = self.extract_form(answer)
|
||||
@ -324,7 +326,7 @@ class BrowserAgent(Agent):
|
||||
fill_success = self.browser.fill_form(extracted_form)
|
||||
page_text = self.browser.get_text()
|
||||
answer = self.handle_update_prompt(user_prompt, page_text, fill_success)
|
||||
answer, reasoning = self.llm_decide(prompt)
|
||||
answer, reasoning = await self.llm_decide(prompt)
|
||||
|
||||
if Action.FORM_FILLED.value in answer:
|
||||
pretty_print(f"Filled form. Handling page update.", color="status")
|
||||
@ -355,11 +357,12 @@ class BrowserAgent(Agent):
|
||||
page_text = self.browser.get_text()
|
||||
self.navigable_links = self.browser.get_navigable()
|
||||
prompt = self.make_navigation_prompt(user_prompt, page_text)
|
||||
self.browser.screenshot()
|
||||
|
||||
pretty_print("Exited navigation, starting to summarize finding...", color="status")
|
||||
prompt = self.conclude_prompt(user_prompt)
|
||||
mem_last_idx = self.memory.push('user', prompt)
|
||||
answer, reasoning = self.llm_request()
|
||||
answer, reasoning = await self.llm_request()
|
||||
pretty_print(answer, color="output")
|
||||
return answer, reasoning
|
||||
|
||||
|
@ -1,3 +1,4 @@
|
||||
import asyncio
|
||||
|
||||
from sources.utility import pretty_print, animate_thinking
|
||||
from sources.agents.agent import Agent
|
||||
@ -17,10 +18,10 @@ class CasualAgent(Agent):
|
||||
self.role = "talk"
|
||||
self.type = "casual_agent"
|
||||
|
||||
def process(self, prompt, speech_module) -> str:
|
||||
async def process(self, prompt, speech_module) -> str:
|
||||
self.memory.push('user', prompt)
|
||||
animate_thinking("Thinking...", color="status")
|
||||
answer, reasoning = self.llm_request()
|
||||
answer, reasoning = await self.llm_request()
|
||||
self.last_answer = answer
|
||||
return answer, reasoning
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
import platform, os
|
||||
import asyncio
|
||||
|
||||
from sources.utility import pretty_print, animate_thinking
|
||||
from sources.agents.agent import Agent, executorResult
|
||||
@ -27,7 +28,6 @@ class CoderAgent(Agent):
|
||||
self.role = "code"
|
||||
self.type = "code_agent"
|
||||
|
||||
|
||||
def add_sys_info_prompt(self, prompt):
|
||||
"""Add system information to the prompt."""
|
||||
info = f"System Info:\n" \
|
||||
@ -36,7 +36,7 @@ class CoderAgent(Agent):
|
||||
f"\nYou must save file in work directory: {self.work_dir}"
|
||||
return f"{prompt}\n\n{info}"
|
||||
|
||||
def process(self, prompt, speech_module) -> str:
|
||||
async def process(self, prompt, speech_module) -> str:
|
||||
answer = ""
|
||||
attempt = 0
|
||||
max_attempts = 4
|
||||
@ -46,20 +46,22 @@ class CoderAgent(Agent):
|
||||
|
||||
while attempt < max_attempts:
|
||||
animate_thinking("Thinking...", color="status")
|
||||
self.wait_message(speech_module)
|
||||
answer, reasoning = self.llm_request()
|
||||
await self.wait_message(speech_module)
|
||||
answer, reasoning = await self.llm_request()
|
||||
if clarify_trigger in answer:
|
||||
self.last_answer = answer
|
||||
await asyncio.sleep(0)
|
||||
return answer, reasoning
|
||||
if not "```" in answer:
|
||||
self.last_answer = answer
|
||||
await asyncio.sleep(0)
|
||||
break
|
||||
animate_thinking("Executing code...", color="status")
|
||||
exec_success, _ = self.execute_modules(answer)
|
||||
answer = self.remove_blocks(answer)
|
||||
self.last_answer = answer
|
||||
if self.get_last_tool_type() == "bash":
|
||||
continue
|
||||
if exec_success:
|
||||
await asyncio.sleep(0)
|
||||
if exec_success and self.get_last_tool_type() != "bash":
|
||||
break
|
||||
pretty_print("Execution failure", color="failure")
|
||||
pretty_print("Correcting code...", color="status")
|
||||
|
@ -1,3 +1,4 @@
|
||||
import asyncio
|
||||
|
||||
from sources.utility import pretty_print, animate_thinking
|
||||
from sources.agents.agent import Agent
|
||||
@ -18,14 +19,14 @@ class FileAgent(Agent):
|
||||
self.role = "files"
|
||||
self.type = "file_agent"
|
||||
|
||||
def process(self, prompt, speech_module) -> str:
|
||||
async def process(self, prompt, speech_module) -> str:
|
||||
exec_success = False
|
||||
prompt += f"\nYou must work in directory: {self.work_dir}"
|
||||
self.memory.push('user', prompt)
|
||||
while exec_success is False:
|
||||
self.wait_message(speech_module)
|
||||
await self.wait_message(speech_module)
|
||||
animate_thinking("Thinking...", color="status")
|
||||
answer, reasoning = self.llm_request()
|
||||
answer, reasoning = await self.llm_request()
|
||||
exec_success, _ = self.execute_modules(answer)
|
||||
answer = self.remove_blocks(answer)
|
||||
self.last_answer = answer
|
||||
|
@ -86,13 +86,13 @@ class PlannerAgent(Agent):
|
||||
pretty_print(f"{task['agent']} -> {task['task']}", color="info")
|
||||
pretty_print("▔▗ E N D ▖▔", color="status")
|
||||
|
||||
def make_plan(self, prompt: str) -> str:
|
||||
async def make_plan(self, prompt: str) -> str:
|
||||
ok = False
|
||||
answer = None
|
||||
while not ok:
|
||||
animate_thinking("Thinking...", color="status")
|
||||
self.memory.push('user', prompt)
|
||||
answer, _ = self.llm_request()
|
||||
answer, _ = await self.llm_request()
|
||||
agents_tasks = self.parse_agent_tasks(answer)
|
||||
if agents_tasks == (None, None):
|
||||
prompt = f"Failed to parse the tasks. Please make a plan within ```json.\n"
|
||||
@ -102,10 +102,10 @@ class PlannerAgent(Agent):
|
||||
ok = True
|
||||
return answer
|
||||
|
||||
def start_agent_process(self, task: str, required_infos: dict | None) -> str:
|
||||
async def start_agent_process(self, task: str, required_infos: dict | None) -> str:
|
||||
agent_prompt = self.make_prompt(task['task'], required_infos)
|
||||
pretty_print(f"Agent {task['agent']} started working...", color="status")
|
||||
agent_answer, _ = self.agents[task['agent'].lower()].process(agent_prompt, None)
|
||||
agent_answer, _ = await self.agents[task['agent'].lower()].process(agent_prompt, None)
|
||||
self.agents[task['agent'].lower()].show_answer()
|
||||
pretty_print(f"Agent {task['agent']} completed task.", color="status")
|
||||
return agent_answer
|
||||
@ -113,11 +113,11 @@ class PlannerAgent(Agent):
|
||||
def get_work_result_agent(self, task_needs, agents_work_result):
|
||||
return {k: agents_work_result[k] for k in task_needs if k in agents_work_result}
|
||||
|
||||
def process(self, prompt: str, speech_module: Speech) -> Tuple[str, str]:
|
||||
async def process(self, prompt: str, speech_module: Speech) -> Tuple[str, str]:
|
||||
agents_tasks = (None, None)
|
||||
agents_work_result = dict()
|
||||
|
||||
answer = self.make_plan(prompt)
|
||||
answer = await self.make_plan(prompt)
|
||||
agents_tasks = self.parse_agent_tasks(answer)
|
||||
|
||||
if agents_tasks == (None, None):
|
||||
@ -130,7 +130,7 @@ class PlannerAgent(Agent):
|
||||
if agents_work_result is not None:
|
||||
required_infos = self.get_work_result_agent(task['need'], agents_work_result)
|
||||
try:
|
||||
self.last_answer = self.start_agent_process(task, required_infos)
|
||||
self.last_answer = await self.start_agent_process(task, required_infos)
|
||||
except Exception as e:
|
||||
raise e
|
||||
agents_work_result[task['id']] = self.last_answer
|
||||
|
@ -172,8 +172,6 @@ class Browser:
|
||||
)
|
||||
self.apply_web_safety()
|
||||
self.logger.log(f"Navigated to: {url}")
|
||||
self.logger.info(f"Navigated to: {self.get_page_title()}")
|
||||
self.screenshot()
|
||||
return True
|
||||
except TimeoutException as e:
|
||||
self.logger.error(f"Timeout waiting for {url} to load: {str(e)}")
|
||||
@ -297,7 +295,6 @@ class Browser:
|
||||
time.sleep(0.1)
|
||||
element.click()
|
||||
self.logger.info(f"Clicked element at {xpath}")
|
||||
self.screenshot()
|
||||
return True
|
||||
except ElementClickInterceptedException as e:
|
||||
self.logger.error(f"Error click_element: {str(e)}")
|
||||
@ -540,7 +537,6 @@ class Browser:
|
||||
if self.find_and_click_submission():
|
||||
if self.wait_for_submission_outcome():
|
||||
self.logger.info("Submission outcome detected")
|
||||
self.screenshot()
|
||||
return True
|
||||
else:
|
||||
self.logger.warning("No submission outcome detected")
|
||||
@ -564,8 +560,7 @@ class Browser:
|
||||
self.driver.execute_script(
|
||||
"window.scrollTo(0, document.body.scrollHeight);"
|
||||
)
|
||||
time.sleep(1)
|
||||
self.screenshot()
|
||||
time.sleep(0.5)
|
||||
return True
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error scrolling: {str(e)}")
|
||||
@ -577,6 +572,7 @@ class Browser:
|
||||
def screenshot(self, filename:str = 'updated_screen.png') -> bool:
|
||||
"""Take a screenshot of the current page."""
|
||||
self.logger.info("Taking screenshot...")
|
||||
time.sleep(0.1)
|
||||
try:
|
||||
path = os.path.join(self.screenshot_folder, filename)
|
||||
if not os.path.exists(self.screenshot_folder):
|
||||
|
@ -124,7 +124,7 @@ class Interaction:
|
||||
self.last_query = query
|
||||
return query
|
||||
|
||||
def think(self) -> bool:
|
||||
async def think(self) -> bool:
|
||||
"""Request AI agents to process the user input."""
|
||||
push_last_agent_memory = False
|
||||
if self.last_query is None or len(self.last_query) == 0:
|
||||
@ -137,7 +137,7 @@ class Interaction:
|
||||
tmp = self.last_answer
|
||||
self.current_agent = agent
|
||||
self.is_generating = True
|
||||
self.last_answer, _ = agent.process(self.last_query, self.speech)
|
||||
self.last_answer, _ = await agent.process(self.last_query, self.speech)
|
||||
self.is_generating = False
|
||||
if push_last_agent_memory:
|
||||
self.current_agent.memory.push('user', self.last_query)
|
||||
@ -146,6 +146,18 @@ class Interaction:
|
||||
self.last_answer = None
|
||||
return True
|
||||
|
||||
def get_updated_process_answer(self) -> str:
|
||||
"""Get the answer from the last agent."""
|
||||
if self.current_agent is None:
|
||||
return None
|
||||
return self.current_agent.get_last_answer()
|
||||
|
||||
def get_updated_block_answer(self) -> str:
|
||||
"""Get the answer from the last agent."""
|
||||
if self.current_agent is None:
|
||||
return None
|
||||
return self.current_agent.get_last_block_answer()
|
||||
|
||||
def show_answer(self) -> None:
|
||||
"""Show the answer to the user."""
|
||||
if self.last_query is None:
|
||||
|
@ -362,6 +362,8 @@ class AgentRouter:
|
||||
Returns:
|
||||
str: The selected label
|
||||
"""
|
||||
if len(text) <= 8:
|
||||
return "talk"
|
||||
result_bart = self.pipelines['bart'](text, labels)
|
||||
result_llm_router = self.llm_router(text)
|
||||
bart, confidence_bart = result_bart['labels'][0], result_bart['scores'][0]
|
||||
|
@ -3,10 +3,6 @@
|
||||
REM Up the provider in windows
|
||||
start ollama serve
|
||||
|
||||
timeout /t 4 /nobreak >nul
|
||||
for /f "tokens=*" %%i in ('docker ps -a -q') do docker stop %%i
|
||||
echo All containers stopped
|
||||
|
||||
docker-compose up
|
||||
if %ERRORLEVEL% neq 0 (
|
||||
echo Error: Failed to start containers. Check Docker logs with 'docker compose logs'.
|
||||
|
Loading…
x
Reference in New Issue
Block a user