mirror of
https://github.com/tcsenpai/agenticSeek.git
synced 2025-06-05 02:25:27 +00:00
Merge pull request #120 from Fosowl/dev
readme update + avoid asking for clarification multiple times
This commit is contained in:
commit
aad1b426f0
13
README.md
13
README.md
@ -321,7 +321,7 @@ Example config:
|
||||
[MAIN]
|
||||
is_local = True
|
||||
provider_name = ollama
|
||||
provider_model = deepseek-r1:1.5b
|
||||
provider_model = deepseek-r1:32b
|
||||
provider_server_address = 127.0.0.1:11434
|
||||
agent_name = Friday
|
||||
recover_last_session = False
|
||||
@ -339,7 +339,7 @@ stealth_mode = False
|
||||
|
||||
- is_local -> Runs the agent locally (True) or on a remote server (False).
|
||||
- provider_name -> The provider to use (one of: `ollama`, `server`, `lm-studio`, `deepseek-api`)
|
||||
- provider_model -> The model used, e.g., deepseek-r1:1.5b.
|
||||
- provider_model -> The model used, e.g., deepseek-r1:32b.
|
||||
- provider_server_address -> Server address, e.g., 127.0.0.1:11434 for local. Set to anything for non-local API.
|
||||
- agent_name -> Name of the agent, e.g., Friday. Used as a trigger word for TTS.
|
||||
- recover_last_session -> Restarts from last session (True) or not (False).
|
||||
@ -410,9 +410,12 @@ If this section is incomplete please raise an issue.
|
||||
|
||||
**Q: What hardware do I need?**
|
||||
|
||||
7B Model: GPU with 8GB VRAM.
|
||||
14B Model: 12GB GPU (e.g., RTX 3060).
|
||||
32B Model: 24GB+ VRAM.
|
||||
| Model Size | GPU | Comment |
|
||||
|-----------|--------|-----------------------------------------------------------|
|
||||
| 7B | 8GB Vram | ⚠️ Not recommended. Performance is poor, frequent hallucinations, and planner agents will likely fail. |
|
||||
| 14B | 12 GB VRAM (e.g. RTX 3060) | ✅ Usable for simple tasks. May struggle with web browsing and planning tasks. |
|
||||
| 32B | 24+ GB VRAM (e.g. RTX 4090) | 🚀 Success with most tasks, might still struggle with task planning |
|
||||
| 70B+ | 48+ GB Vram (eg. rtx 4090) | 💪 Excellent. Recommended for advanced use cases. |
|
||||
|
||||
**Q: Why Deepseek R1 over other models?**
|
||||
|
||||
|
@ -341,7 +341,7 @@ class BrowserAgent(Agent):
|
||||
complete = True
|
||||
break
|
||||
|
||||
if link == None or Action.GO_BACK.value in answer or link in self.search_history:
|
||||
if (link == None and not len(extracted_form)) or Action.GO_BACK.value in answer or link in self.search_history:
|
||||
pretty_print(f"Going back to results. Still {len(unvisited)}", color="status")
|
||||
unvisited = self.select_unvisited(search_result)
|
||||
prompt = self.make_newsearch_prompt(user_prompt, unvisited)
|
||||
|
@ -332,6 +332,6 @@ class Provider:
|
||||
return thought
|
||||
|
||||
if __name__ == "__main__":
|
||||
provider = Provider("server", "deepseek-r1:32b", " 172.81.127.6:8080")
|
||||
provider = Provider("server", "deepseek-r1:32b", " x.x.x.x:8080")
|
||||
res = provider.respond(["user", "Hello, how are you?"])
|
||||
print("Response:", res)
|
||||
|
@ -29,6 +29,7 @@ class AgentRouter:
|
||||
self.complexity_classifier = self.load_llm_router()
|
||||
self.learn_few_shots_tasks()
|
||||
self.learn_few_shots_complexity()
|
||||
self.asked_clarify = False
|
||||
|
||||
def load_pipelines(self) -> Dict[str, Type[pipeline]]:
|
||||
"""
|
||||
@ -439,9 +440,11 @@ class AgentRouter:
|
||||
text = self.lang_analysis.translate(text, lang)
|
||||
labels = [agent.role for agent in self.agents]
|
||||
complexity = self.estimate_complexity(text)
|
||||
if complexity == None:
|
||||
if complexity == None and self.asked_clarify == False:
|
||||
self.asked_clarify = True
|
||||
pretty_print(f"Humm, the task seem complex but you gave very little information. can you clarify?", color="info")
|
||||
return None
|
||||
self.asked_clarify = False
|
||||
if complexity == "HIGH":
|
||||
pretty_print(f"Complex task detected, routing to planner agent.", color="info")
|
||||
return self.find_planner_agent()
|
||||
|
Loading…
x
Reference in New Issue
Block a user