agenticSeek/sources/agents/planner_agent.py
2025-04-07 14:55:41 +02:00

144 lines
5.8 KiB
Python

import json
from typing import List, Tuple, Type, Dict
from sources.utility import pretty_print, animate_thinking
from sources.agents.agent import Agent
from sources.agents.code_agent import CoderAgent
from sources.agents.file_agent import FileAgent
from sources.agents.browser_agent import BrowserAgent
from sources.text_to_speech import Speech
from sources.tools.tools import Tools
class PlannerAgent(Agent):
def __init__(self, name, prompt_path, provider, verbose=False, browser=None):
"""
The planner agent is a special agent that divides and conquers the task.
"""
super().__init__(name, prompt_path, provider, verbose, None)
self.tools = {
"json": Tools()
}
self.tools['json'].tag = "json"
self.browser = browser
self.agents = {
"coder": CoderAgent(name, "prompts/base/coder_agent.txt", provider, verbose=False),
"file": FileAgent(name, "prompts/base/file_agent.txt", provider, verbose=False),
"web": BrowserAgent(name, "prompts/base/browser_agent.txt", provider, verbose=False, browser=browser)
}
self.role = {
"en": "Complex Task",
"fr": "Tache complexe",
"zh": "复杂任务",
}
self.type = "planner_agent"
def parse_agent_tasks(self, text):
tasks = []
tasks_names = []
lines = text.strip().split('\n')
for line in lines:
if line is None:
continue
line = line.strip()
if len(line) == 0:
continue
if '##' in line or line[0].isdigit():
tasks_names.append(line)
continue
blocks, _ = self.tools["json"].load_exec_block(text)
if blocks == None:
return (None, None)
for block in blocks:
line_json = json.loads(block)
if 'plan' in line_json:
for task in line_json['plan']:
agent = {
'agent': task['agent'],
'id': task['id'],
'task': task['task']
}
if 'need' in task:
agent['need'] = task['need']
tasks.append(agent)
if len(tasks_names) != len(tasks):
names = [task['task'] for task in tasks]
return zip(names, tasks)
return zip(tasks_names, tasks)
def make_prompt(self, task: dict, agent_infos_dict: dict):
infos = ""
if agent_infos_dict is None or len(agent_infos_dict) == 0:
infos = "No needed informations."
else:
for agent_id, info in agent_infos_dict.items():
infos += f"\t- According to agent {agent_id}:\n{info}\n\n"
prompt = f"""
You are given informations from your AI friends work:
{infos}
Your task is:
{task}
"""
return prompt
def show_plan(self, json_plan: dict) -> None:
agents_tasks = self.parse_agent_tasks(json_plan)
if agents_tasks == (None, None):
pretty_print("Failed to make a plan. This can happen with (too) small LLM. Clarify your request and insist on it making a plan.", color="failure")
return
pretty_print("\n▂▘ P L A N ▝▂", color="status")
for task_name, task in agents_tasks:
pretty_print(f"{task['agent']} -> {task['task']}", color="info")
pretty_print("▔▗ E N D ▖▔", color="status")
def make_plan(self, prompt: str) -> str:
ok = False
answer = None
while not ok:
animate_thinking("Thinking...", color="status")
self.memory.push('user', prompt)
answer, _ = self.llm_request()
for line in answer.split('\n'):
if "```json" in line:
break
pretty_print(line, color="output")
self.show_plan(answer)
ok_str = input("Is the plan ok? (y/n): ")
if ok_str == 'y':
ok = True
else:
prompt = input("Please reformulate: ")
return answer
def start_agent_process(self, task: str, required_infos: dict | None) -> str:
agent_prompt = self.make_prompt(task['task'], required_infos)
pretty_print(f"Agent {task['agent']} started working...", color="status")
agent_answer, _ = self.agents[task['agent'].lower()].process(agent_prompt, None)
self.agents[task['agent'].lower()].show_answer()
pretty_print(f"Agent {task['agent']} completed task.", color="status")
return agent_answer
def get_work_result_agent(self, task_needs, agents_work_result):
return {k: agents_work_result[k] for k in task_needs if k in agents_work_result}
def process(self, prompt: str, speech_module: Speech) -> Tuple[str, str]:
agents_tasks = (None, None)
agents_work_result = dict()
answer = self.make_plan(prompt)
agents_tasks = self.parse_agent_tasks(answer)
if agents_tasks == (None, None):
return "Failed to parse the tasks.", ""
for task_name, task in agents_tasks:
pretty_print(f"I will {task_name}.", color="info")
pretty_print(f"Assigned agent {task['agent']} to {task_name}", color="info")
if speech_module: speech_module.speak(f"I will {task_name}. I assigned the {task['agent']} agent to the task.")
if agents_work_result is not None:
required_infos = self.get_work_result_agent(task['need'], agents_work_result)
try:
self.last_answer = self.start_agent_process(task, required_infos)
except Exception as e:
raise e
agents_work_result[task['id']] = self.last_answer
return self.last_answer, ""