2025-04-01 18:49:37 +02:00

197 lines
6.9 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

from typing import Tuple, Callable
from abc import abstractmethod
import os
import random
import time
from sources.memory import Memory
from sources.utility import pretty_print
random.seed(time.time())
class executorResult:
"""
A class to store the result of a tool execution.
"""
def __init__(self, block, feedback, success):
self.block = block
self.feedback = feedback
self.success = success
def show(self):
pretty_print("-"*100, color="output")
pretty_print(self.block, color="code" if self.success else "failure")
pretty_print("-"*100, color="output")
pretty_print(self.feedback, color="success" if self.success else "failure")
class Agent():
"""
An abstract class for all agents.
"""
def __init__(self, name: str,
prompt_path:str,
provider,
verbose=False,
browser=None) -> None:
"""
Args:
name (str): Name of the agent.
prompt_path (str): Path to the prompt file for the agent.
provider: The provider for the LLM.
recover_last_session (bool, optional): Whether to recover the last conversation.
verbose (bool, optional): Enable verbose logging if True. Defaults to False.
browser: The browser class for web navigation (only for browser agent).
"""
self.agent_name = name
self.browser = browser
self.role = None
self.type = None
self.current_directory = os.getcwd()
self.llm = provider
self.memory = Memory(self.load_prompt(prompt_path),
recover_last_session=False, # session recovery in handled by the interaction class
memory_compression=False)
self.tools = {}
self.blocks_result = []
self.last_answer = ""
self.verbose = verbose
@property
def get_tools(self) -> dict:
return self.tools
def add_tool(self, name: str, tool: Callable) -> None:
if tool is not Callable:
raise TypeError("Tool must be a callable object (a method)")
self.tools[name] = tool
def load_prompt(self, file_path: str) -> str:
try:
with open(file_path, 'r', encoding="utf-8") as f:
return f.read()
except FileNotFoundError:
raise FileNotFoundError(f"Prompt file not found at path: {file_path}")
except PermissionError:
raise PermissionError(f"Permission denied to read prompt file at path: {file_path}")
except Exception as e:
raise e
@abstractmethod
def process(self, prompt, speech_module) -> str:
"""
abstract method, implementation in child class.
Process the prompt and return the answer of the agent.
"""
pass
def remove_reasoning_text(self, text: str) -> None:
"""
Remove the reasoning block of reasoning model like deepseek.
"""
end_tag = "</think>"
end_idx = text.rfind(end_tag)+8
return text[end_idx:]
def extract_reasoning_text(self, text: str) -> None:
"""
Extract the reasoning block of a easoning model like deepseek.
"""
start_tag = "<think>"
end_tag = "</think>"
start_idx = text.find(start_tag)
end_idx = text.rfind(end_tag)+8
return text[start_idx:end_idx]
def llm_request(self) -> Tuple[str, str]:
"""
Ask the LLM to process the prompt and return the answer and the reasoning.
"""
memory = self.memory.get()
thought = self.llm.respond(memory, self.verbose)
reasoning = self.extract_reasoning_text(thought)
answer = self.remove_reasoning_text(thought)
self.memory.push('assistant', answer)
return answer, reasoning
def wait_message(self, speech_module):
if speech_module is None:
return
messages = ["Please be patient, I am working on it.",
"Computing... I recommand you have a coffee while I work.",
"Hold on, Im crunching numbers.",
"Working on it, please let me think."]
if speech_module: speech_module.speak(messages[random.randint(0, len(messages)-1)])
def get_blocks_result(self) -> list:
return self.blocks_result
def show_answer(self):
"""
Show the answer in a pretty way.
Show code blocks and their respective feedback by inserting them in the ressponse.
"""
if self.last_answer is None:
return
lines = self.last_answer.split("\n")
for line in lines:
if "block:" in line:
block_idx = int(line.split(":")[1])
if block_idx < len(self.blocks_result):
self.blocks_result[block_idx].show()
else:
pretty_print(line, color="output")
self.blocks_result = []
def remove_blocks(self, text: str) -> str:
"""
Remove all code/query blocks within a tag from the answer text.
"""
tag = f'```'
lines = text.split('\n')
post_lines = []
in_block = False
block_idx = 0
for line in lines:
if tag in line and not in_block:
in_block = True
continue
if not in_block:
post_lines.append(line)
if tag in line:
in_block = False
post_lines.append(f"block:{block_idx}")
block_idx += 1
return "\n".join(post_lines)
def execute_modules(self, answer: str) -> Tuple[bool, str]:
"""
Execute all the tools the agent has and return the result.
"""
feedback = ""
success = False
blocks = None
if answer.startswith("```"):
answer = "I will execute:\n" + answer # there should always be a text before blocks for the function that display answer
for name, tool in self.tools.items():
feedback = ""
blocks, save_path = tool.load_exec_block(answer)
if blocks != None:
for block in blocks:
output = tool.execute([block])
feedback = tool.interpreter_feedback(output) # tool interpreter feedback
success = not tool.execution_failure_check(output)
self.blocks_result.append(executorResult(block, feedback, success))
if not success:
self.memory.push('user', feedback)
return False, feedback
self.memory.push('user', feedback)
if save_path != None:
tool.save_block(blocks, save_path)
self.blocks_result = self.blocks_result
return True, feedback