mirror of
https://github.com/tcsenpai/agenticSeek.git
synced 2025-06-03 01:30:11 +00:00
279 lines
13 KiB
Python
279 lines
13 KiB
Python
import json
|
|
from typing import List, Tuple, Type, Dict
|
|
from sources.utility import pretty_print, animate_thinking
|
|
from sources.agents.agent import Agent
|
|
from sources.agents.code_agent import CoderAgent
|
|
from sources.agents.file_agent import FileAgent
|
|
from sources.agents.browser_agent import BrowserAgent
|
|
from sources.agents.casual_agent import CasualAgent
|
|
from sources.text_to_speech import Speech
|
|
from sources.tools.tools import Tools
|
|
from sources.logger import Logger
|
|
from sources.memory import Memory
|
|
|
|
class PlannerAgent(Agent):
|
|
def __init__(self, name, prompt_path, provider, verbose=False, browser=None):
|
|
"""
|
|
The planner agent is a special agent that divides and conquers the task.
|
|
"""
|
|
super().__init__(name, prompt_path, provider, verbose, None)
|
|
self.tools = {
|
|
"json": Tools()
|
|
}
|
|
self.tools['json'].tag = "json"
|
|
self.browser = browser
|
|
self.agents = {
|
|
"coder": CoderAgent(name, "prompts/base/coder_agent.txt", provider, verbose=False),
|
|
"file": FileAgent(name, "prompts/base/file_agent.txt", provider, verbose=False),
|
|
"web": BrowserAgent(name, "prompts/base/browser_agent.txt", provider, verbose=False, browser=browser),
|
|
"casual": CasualAgent(name, "prompts/base/casual_agent.txt", provider, verbose=False)
|
|
}
|
|
self.role = "planification"
|
|
self.type = "planner_agent"
|
|
self.memory = Memory(self.load_prompt(prompt_path),
|
|
recover_last_session=False, # session recovery in handled by the interaction class
|
|
memory_compression=False,
|
|
model_provider=provider.get_model_name())
|
|
self.logger = Logger("planner_agent.log")
|
|
|
|
def get_task_names(self, text: str) -> List[str]:
|
|
"""
|
|
Extracts task names from the given text.
|
|
This method processes a multi-line string, where each line may represent a task name.
|
|
containing '##' or starting with a digit. The valid task names are collected and returned.
|
|
Args:
|
|
text (str): A string containing potential task titles (eg: Task 1: I will...).
|
|
Returns:
|
|
List[str]: A list of extracted task names that meet the specified criteria.
|
|
"""
|
|
tasks_names = []
|
|
lines = text.strip().split('\n')
|
|
for line in lines:
|
|
if line is None:
|
|
continue
|
|
line = line.strip()
|
|
if len(line) == 0:
|
|
continue
|
|
if '##' in line or line[0].isdigit():
|
|
tasks_names.append(line)
|
|
continue
|
|
self.logger.info(f"Found {len(tasks_names)} tasks names.")
|
|
return tasks_names
|
|
|
|
def parse_agent_tasks(self, text: str) -> List[Tuple[str, str]]:
|
|
"""
|
|
Parses agent tasks from the given LLM text.
|
|
This method extracts task information from a JSON. It identifies task names and their details.
|
|
Args:
|
|
text (str): The input text containing task information in a JSON-like format.
|
|
Returns:
|
|
List[Tuple[str, str]]: A list of tuples containing task names and their details.
|
|
"""
|
|
tasks = []
|
|
tasks_names = self.get_task_names(text)
|
|
|
|
blocks, _ = self.tools["json"].load_exec_block(text)
|
|
if blocks == None:
|
|
return []
|
|
for block in blocks:
|
|
line_json = json.loads(block)
|
|
if 'plan' in line_json:
|
|
for task in line_json['plan']:
|
|
if task['agent'].lower() not in [ag_name.lower() for ag_name in self.agents.keys()]:
|
|
self.logger.warning(f"Agent {task['agent']} does not exist.")
|
|
pretty_print(f"Agent {task['agent']} does not exist.", color="warning")
|
|
return []
|
|
agent = {
|
|
'agent': task['agent'],
|
|
'id': task['id'],
|
|
'task': task['task']
|
|
}
|
|
self.logger.info(f"Created agent {task['agent']} with task: {task['task']}")
|
|
if 'need' in task:
|
|
self.logger.info(f"Agent {task['agent']} was given info:\n {task['need']}")
|
|
agent['need'] = task['need']
|
|
tasks.append(agent)
|
|
if len(tasks_names) != len(tasks):
|
|
names = [task['task'] for task in tasks]
|
|
return list(map(list, zip(names, tasks)))
|
|
return list(map(list, zip(tasks_names, tasks)))
|
|
|
|
def make_prompt(self, task: str, agent_infos_dict: dict) -> str:
|
|
"""
|
|
Generates a prompt for the agent based on the task and previous agents work information.
|
|
Args:
|
|
task (str): The task to be performed.
|
|
agent_infos_dict (dict): A dictionary containing information from other agents.
|
|
Returns:
|
|
str: The formatted prompt for the agent.
|
|
"""
|
|
infos = ""
|
|
if agent_infos_dict is None or len(agent_infos_dict) == 0:
|
|
infos = "No needed informations."
|
|
else:
|
|
for agent_id, info in agent_infos_dict.items():
|
|
infos += f"\t- According to agent {agent_id}:\n{info}\n\n"
|
|
prompt = f"""
|
|
You are given informations from your AI friends work:
|
|
{infos}
|
|
Your task is:
|
|
{task}
|
|
"""
|
|
self.logger.info(f"Prompt for agent:\n{prompt}")
|
|
return prompt
|
|
|
|
def show_plan(self, agents_tasks: List[dict], answer: str) -> None:
|
|
"""
|
|
Displays the plan made by the agent.
|
|
Args:
|
|
agents_tasks (dict): The tasks assigned to each agent.
|
|
answer (str): The answer from the LLM.
|
|
"""
|
|
if agents_tasks == []:
|
|
pretty_print(answer, color="warning")
|
|
pretty_print("Failed to make a plan. This can happen with (too) small LLM. Clarify your request and insist on it making a plan within ```json.", color="failure")
|
|
return
|
|
pretty_print("\n▂▘ P L A N ▝▂", color="status")
|
|
for task_name, task in agents_tasks:
|
|
pretty_print(f"{task['agent']} -> {task['task']}", color="info")
|
|
pretty_print("▔▗ E N D ▖▔", color="status")
|
|
|
|
async def make_plan(self, prompt: str) -> str:
|
|
"""
|
|
Asks the LLM to make a plan.
|
|
Args:
|
|
prompt (str): The prompt to be sent to the LLM.
|
|
Returns:
|
|
str: The plan made by the LLM.
|
|
"""
|
|
ok = False
|
|
answer = None
|
|
while not ok:
|
|
animate_thinking("Thinking...", color="status")
|
|
self.memory.push('user', prompt)
|
|
answer, reasoning = await self.llm_request()
|
|
if "NO_UPDATE" in answer:
|
|
return []
|
|
agents_tasks = self.parse_agent_tasks(answer)
|
|
if agents_tasks == []:
|
|
prompt = f"Failed to parse the tasks. Please write down your task followed by a json plan within ```json. Do not ask for clarification.\n"
|
|
pretty_print("Failed to make plan. Retrying...", color="warning")
|
|
continue
|
|
self.show_plan(agents_tasks, answer)
|
|
ok = True
|
|
self.logger.info(f"Plan made:\n{answer}")
|
|
return self.parse_agent_tasks(answer)
|
|
|
|
async def update_plan(self, goal: str, agents_tasks: List[dict], agents_work_result: dict, id: str, success: bool) -> dict:
|
|
"""
|
|
Updates the plan with the results of the agents work.
|
|
Args:
|
|
goal (str): The goal to be achieved.
|
|
agents_tasks (list): The tasks assigned to each agent.
|
|
agents_work_result (dict): The results of the agents work.
|
|
Returns:
|
|
dict: The updated plan.
|
|
"""
|
|
self.status_message = "Updating plan..."
|
|
last_agent_work = agents_work_result[id]
|
|
tool_success_str = "success" if success else "failure"
|
|
pretty_print(f"Agent {id} work {tool_success_str}.", color="success" if success else "failure")
|
|
if int(id) == len(agents_tasks):
|
|
next_task = "No task follow, this was the last step. If it failed add a task to recover."
|
|
else:
|
|
next_task = f"Next task is: {agents_tasks[int(id)][0]}."
|
|
#if success:
|
|
# return agents_tasks # we only update the plan if last task failed, for now
|
|
update_prompt = f"""
|
|
Your goal is : {goal}
|
|
You previously made a plan, agents are currently working on it.
|
|
The last agent working on task: {id}, did the following work:
|
|
{last_agent_work}
|
|
Agent {id} work was a {tool_success_str} according to system interpreter.
|
|
{next_task}
|
|
Is the work done for task {id} leading to sucess or failure ? Did an agent fail with a task?
|
|
If agent work was good: answer "NO_UPDATE"
|
|
If agent work is leading to failure: update the plan.
|
|
If a task failed add a task to try again or recover from failure. You might have near identical task twice.
|
|
plan should be within ```json like before.
|
|
You need to rewrite the whole plan, but only change the tasks after task {id}.
|
|
Make the plan the same length as the original one or with only one additional step.
|
|
Do not change past tasks. Change next tasks.
|
|
"""
|
|
pretty_print("Updating plan...", color="status")
|
|
plan = await self.make_plan(update_prompt)
|
|
if plan == []:
|
|
pretty_print("No plan update required.", color="info")
|
|
return agents_tasks
|
|
self.logger.info(f"Plan updated:\n{plan}")
|
|
return plan
|
|
|
|
async def start_agent_process(self, task: dict, required_infos: dict | None) -> str:
|
|
"""
|
|
Starts the agent process for a given task.
|
|
Args:
|
|
task (dict): The task to be performed.
|
|
required_infos (dict | None): The required information for the task.
|
|
Returns:
|
|
str: The result of the agent process.
|
|
"""
|
|
self.status_message = f"Starting task {task['task']}..."
|
|
agent_prompt = self.make_prompt(task['task'], required_infos)
|
|
pretty_print(f"Agent {task['agent']} started working...", color="status")
|
|
self.logger.info(f"Agent {task['agent']} started working on {task['task']}.")
|
|
answer, _ = await self.agents[task['agent'].lower()].process(agent_prompt, None)
|
|
self.last_answer = answer
|
|
self.blocks_result = self.agents[task['agent'].lower()].blocks_result
|
|
agent_answer = self.agents[task['agent'].lower()].raw_answer_blocks(answer)
|
|
success = self.agents[task['agent'].lower()].get_success
|
|
self.agents[task['agent'].lower()].show_answer()
|
|
pretty_print(f"Agent {task['agent']} completed task.", color="status")
|
|
self.logger.info(f"Agent {task['agent']} finished working on {task['task']}. Success: {success}")
|
|
agent_answer += "\nAgent succeeded with task." if success else "\nAgent failed with task (Error detected)."
|
|
return agent_answer, success
|
|
|
|
def get_work_result_agent(self, task_needs, agents_work_result):
|
|
res = {k: agents_work_result[k] for k in task_needs if k in agents_work_result}
|
|
self.logger.info(f"Next agent needs: {task_needs}.\n Match previous agent result: {res}")
|
|
return res
|
|
|
|
async def process(self, goal: str, speech_module: Speech) -> Tuple[str, str]:
|
|
"""
|
|
Process the goal by dividing it into tasks and assigning them to agents.
|
|
Args:
|
|
goal (str): The goal to be achieved (user prompt).
|
|
speech_module (Speech): The speech module for text-to-speech.
|
|
Returns:
|
|
Tuple[str, str]: The result of the agent process and empty reasoning string.
|
|
"""
|
|
agents_tasks = []
|
|
required_infos = None
|
|
agents_work_result = dict()
|
|
|
|
self.status_message = "Making a plan..."
|
|
agents_tasks = await self.make_plan(goal)
|
|
|
|
if agents_tasks == []:
|
|
return "Failed to parse the tasks.", ""
|
|
i = 0
|
|
steps = len(agents_tasks)
|
|
while i < steps:
|
|
task_name, task = agents_tasks[i][0], agents_tasks[i][1]
|
|
self.status_message = "Starting agents..."
|
|
pretty_print(f"I will {task_name}.", color="info")
|
|
self.last_answer = f"I will {task_name.lower()}."
|
|
pretty_print(f"Assigned agent {task['agent']} to {task_name}", color="info")
|
|
if speech_module: speech_module.speak(f"I will {task_name}. I assigned the {task['agent']} agent to the task.")
|
|
|
|
if agents_work_result is not None:
|
|
required_infos = self.get_work_result_agent(task['need'], agents_work_result)
|
|
try:
|
|
answer, success = await self.start_agent_process(task, required_infos)
|
|
except Exception as e:
|
|
raise e
|
|
agents_work_result[task['id']] = answer
|
|
agents_tasks = await self.update_plan(goal, agents_tasks, agents_work_result, task['id'], success)
|
|
steps = len(agents_tasks)
|
|
i += 1
|
|
|
|
return answer, "" |