agenticSeek/sources/agents/planner_agent.py
2025-05-04 21:54:01 +02:00

279 lines
13 KiB
Python

import json
from typing import List, Tuple, Type, Dict
from sources.utility import pretty_print, animate_thinking
from sources.agents.agent import Agent
from sources.agents.code_agent import CoderAgent
from sources.agents.file_agent import FileAgent
from sources.agents.browser_agent import BrowserAgent
from sources.agents.casual_agent import CasualAgent
from sources.text_to_speech import Speech
from sources.tools.tools import Tools
from sources.logger import Logger
from sources.memory import Memory
class PlannerAgent(Agent):
def __init__(self, name, prompt_path, provider, verbose=False, browser=None):
"""
The planner agent is a special agent that divides and conquers the task.
"""
super().__init__(name, prompt_path, provider, verbose, None)
self.tools = {
"json": Tools()
}
self.tools['json'].tag = "json"
self.browser = browser
self.agents = {
"coder": CoderAgent(name, "prompts/base/coder_agent.txt", provider, verbose=False),
"file": FileAgent(name, "prompts/base/file_agent.txt", provider, verbose=False),
"web": BrowserAgent(name, "prompts/base/browser_agent.txt", provider, verbose=False, browser=browser),
"casual": CasualAgent(name, "prompts/base/casual_agent.txt", provider, verbose=False)
}
self.role = "planification"
self.type = "planner_agent"
self.memory = Memory(self.load_prompt(prompt_path),
recover_last_session=False, # session recovery in handled by the interaction class
memory_compression=False,
model_provider=provider.get_model_name())
self.logger = Logger("planner_agent.log")
def get_task_names(self, text: str) -> List[str]:
"""
Extracts task names from the given text.
This method processes a multi-line string, where each line may represent a task name.
containing '##' or starting with a digit. The valid task names are collected and returned.
Args:
text (str): A string containing potential task titles (eg: Task 1: I will...).
Returns:
List[str]: A list of extracted task names that meet the specified criteria.
"""
tasks_names = []
lines = text.strip().split('\n')
for line in lines:
if line is None:
continue
line = line.strip()
if len(line) == 0:
continue
if '##' in line or line[0].isdigit():
tasks_names.append(line)
continue
self.logger.info(f"Found {len(tasks_names)} tasks names.")
return tasks_names
def parse_agent_tasks(self, text: str) -> List[Tuple[str, str]]:
"""
Parses agent tasks from the given LLM text.
This method extracts task information from a JSON. It identifies task names and their details.
Args:
text (str): The input text containing task information in a JSON-like format.
Returns:
List[Tuple[str, str]]: A list of tuples containing task names and their details.
"""
tasks = []
tasks_names = self.get_task_names(text)
blocks, _ = self.tools["json"].load_exec_block(text)
if blocks == None:
return []
for block in blocks:
line_json = json.loads(block)
if 'plan' in line_json:
for task in line_json['plan']:
if task['agent'].lower() not in [ag_name.lower() for ag_name in self.agents.keys()]:
self.logger.warning(f"Agent {task['agent']} does not exist.")
pretty_print(f"Agent {task['agent']} does not exist.", color="warning")
return []
agent = {
'agent': task['agent'],
'id': task['id'],
'task': task['task']
}
self.logger.info(f"Created agent {task['agent']} with task: {task['task']}")
if 'need' in task:
self.logger.info(f"Agent {task['agent']} was given info:\n {task['need']}")
agent['need'] = task['need']
tasks.append(agent)
if len(tasks_names) != len(tasks):
names = [task['task'] for task in tasks]
return list(map(list, zip(names, tasks)))
return list(map(list, zip(tasks_names, tasks)))
def make_prompt(self, task: str, agent_infos_dict: dict) -> str:
"""
Generates a prompt for the agent based on the task and previous agents work information.
Args:
task (str): The task to be performed.
agent_infos_dict (dict): A dictionary containing information from other agents.
Returns:
str: The formatted prompt for the agent.
"""
infos = ""
if agent_infos_dict is None or len(agent_infos_dict) == 0:
infos = "No needed informations."
else:
for agent_id, info in agent_infos_dict.items():
infos += f"\t- According to agent {agent_id}:\n{info}\n\n"
prompt = f"""
You are given informations from your AI friends work:
{infos}
Your task is:
{task}
"""
self.logger.info(f"Prompt for agent:\n{prompt}")
return prompt
def show_plan(self, agents_tasks: List[dict], answer: str) -> None:
"""
Displays the plan made by the agent.
Args:
agents_tasks (dict): The tasks assigned to each agent.
answer (str): The answer from the LLM.
"""
if agents_tasks == []:
pretty_print(answer, color="warning")
pretty_print("Failed to make a plan. This can happen with (too) small LLM. Clarify your request and insist on it making a plan within ```json.", color="failure")
return
pretty_print("\n▂▘ P L A N ▝▂", color="status")
for task_name, task in agents_tasks:
pretty_print(f"{task['agent']} -> {task['task']}", color="info")
pretty_print("▔▗ E N D ▖▔", color="status")
async def make_plan(self, prompt: str) -> str:
"""
Asks the LLM to make a plan.
Args:
prompt (str): The prompt to be sent to the LLM.
Returns:
str: The plan made by the LLM.
"""
ok = False
answer = None
while not ok:
animate_thinking("Thinking...", color="status")
self.memory.push('user', prompt)
answer, reasoning = await self.llm_request()
if "NO_UPDATE" in answer:
return []
agents_tasks = self.parse_agent_tasks(answer)
if agents_tasks == []:
prompt = f"Failed to parse the tasks. Please write down your task followed by a json plan within ```json. Do not ask for clarification.\n"
pretty_print("Failed to make plan. Retrying...", color="warning")
continue
self.show_plan(agents_tasks, answer)
ok = True
self.logger.info(f"Plan made:\n{answer}")
return self.parse_agent_tasks(answer)
async def update_plan(self, goal: str, agents_tasks: List[dict], agents_work_result: dict, id: str, success: bool) -> dict:
"""
Updates the plan with the results of the agents work.
Args:
goal (str): The goal to be achieved.
agents_tasks (list): The tasks assigned to each agent.
agents_work_result (dict): The results of the agents work.
Returns:
dict: The updated plan.
"""
self.status_message = "Updating plan..."
last_agent_work = agents_work_result[id]
tool_success_str = "success" if success else "failure"
pretty_print(f"Agent {id} work {tool_success_str}.", color="success" if success else "failure")
if int(id) == len(agents_tasks):
next_task = "No task follow, this was the last step. If it failed add a task to recover."
else:
next_task = f"Next task is: {agents_tasks[int(id)][0]}."
#if success:
# return agents_tasks # we only update the plan if last task failed, for now
update_prompt = f"""
Your goal is : {goal}
You previously made a plan, agents are currently working on it.
The last agent working on task: {id}, did the following work:
{last_agent_work}
Agent {id} work was a {tool_success_str} according to system interpreter.
{next_task}
Is the work done for task {id} leading to sucess or failure ? Did an agent fail with a task?
If agent work was good: answer "NO_UPDATE"
If agent work is leading to failure: update the plan.
If a task failed add a task to try again or recover from failure. You might have near identical task twice.
plan should be within ```json like before.
You need to rewrite the whole plan, but only change the tasks after task {id}.
Make the plan the same length as the original one or with only one additional step.
Do not change past tasks. Change next tasks.
"""
pretty_print("Updating plan...", color="status")
plan = await self.make_plan(update_prompt)
if plan == []:
pretty_print("No plan update required.", color="info")
return agents_tasks
self.logger.info(f"Plan updated:\n{plan}")
return plan
async def start_agent_process(self, task: dict, required_infos: dict | None) -> str:
"""
Starts the agent process for a given task.
Args:
task (dict): The task to be performed.
required_infos (dict | None): The required information for the task.
Returns:
str: The result of the agent process.
"""
self.status_message = f"Starting task {task['task']}..."
agent_prompt = self.make_prompt(task['task'], required_infos)
pretty_print(f"Agent {task['agent']} started working...", color="status")
self.logger.info(f"Agent {task['agent']} started working on {task['task']}.")
answer, _ = await self.agents[task['agent'].lower()].process(agent_prompt, None)
self.last_answer = answer
self.blocks_result = self.agents[task['agent'].lower()].blocks_result
agent_answer = self.agents[task['agent'].lower()].raw_answer_blocks(answer)
success = self.agents[task['agent'].lower()].get_success
self.agents[task['agent'].lower()].show_answer()
pretty_print(f"Agent {task['agent']} completed task.", color="status")
self.logger.info(f"Agent {task['agent']} finished working on {task['task']}. Success: {success}")
agent_answer += "\nAgent succeeded with task." if success else "\nAgent failed with task (Error detected)."
return agent_answer, success
def get_work_result_agent(self, task_needs, agents_work_result):
res = {k: agents_work_result[k] for k in task_needs if k in agents_work_result}
self.logger.info(f"Next agent needs: {task_needs}.\n Match previous agent result: {res}")
return res
async def process(self, goal: str, speech_module: Speech) -> Tuple[str, str]:
"""
Process the goal by dividing it into tasks and assigning them to agents.
Args:
goal (str): The goal to be achieved (user prompt).
speech_module (Speech): The speech module for text-to-speech.
Returns:
Tuple[str, str]: The result of the agent process and empty reasoning string.
"""
agents_tasks = []
required_infos = None
agents_work_result = dict()
self.status_message = "Making a plan..."
agents_tasks = await self.make_plan(goal)
if agents_tasks == []:
return "Failed to parse the tasks.", ""
i = 0
steps = len(agents_tasks)
while i < steps:
task_name, task = agents_tasks[i][0], agents_tasks[i][1]
self.status_message = "Starting agents..."
pretty_print(f"I will {task_name}.", color="info")
self.last_answer = f"I will {task_name.lower()}."
pretty_print(f"Assigned agent {task['agent']} to {task_name}", color="info")
if speech_module: speech_module.speak(f"I will {task_name}. I assigned the {task['agent']} agent to the task.")
if agents_work_result is not None:
required_infos = self.get_work_result_agent(task['need'], agents_work_result)
try:
answer, success = await self.start_agent_process(task, required_infos)
except Exception as e:
raise e
agents_work_result[task['id']] = answer
agents_tasks = await self.update_plan(goal, agents_tasks, agents_work_result, task['id'], success)
steps = len(agents_tasks)
i += 1
return answer, ""