mirror of
https://github.com/tcsenpai/agenticSeek.git
synced 2025-06-06 11:05:26 +00:00
180 lines
5.8 KiB
Python
180 lines
5.8 KiB
Python
|
|
import time
|
|
import ollama
|
|
from ollama import chat
|
|
import requests
|
|
import subprocess
|
|
import ipaddress
|
|
import platform
|
|
from dotenv import load_dotenv, set_key
|
|
from openai import OpenAI
|
|
from huggingface_hub import InferenceClient
|
|
import os
|
|
|
|
class Provider:
|
|
def __init__(self, provider_name, model, server_address = "127.0.0.1:5000"):
|
|
self.provider_name = provider_name.lower()
|
|
self.model = model
|
|
self.server = self.check_address_format(server_address)
|
|
self.available_providers = {
|
|
"ollama": self.ollama_fn,
|
|
"server": self.server_fn,
|
|
"openai": self.openai_fn,
|
|
"huggingface": self.huggingface_fn
|
|
}
|
|
self.api_key = None
|
|
self.unsafe_providers = ["openai"]
|
|
if self.provider_name not in self.available_providers:
|
|
raise ValueError(f"Unknown provider: {provider_name}")
|
|
if self.provider_name in self.unsafe_providers:
|
|
print("Warning: you are using an API provider. You data will be sent to the cloud.")
|
|
self.get_api_key(self.provider_name)
|
|
elif self.server != "":
|
|
print("Provider initialized at ", self.server)
|
|
|
|
def get_api_key(self, provider):
|
|
load_dotenv()
|
|
api_key_var = f"{provider.upper()}_API_KEY"
|
|
api_key = os.getenv(api_key_var)
|
|
if not api_key:
|
|
api_key = input(f"Please enter your {provider} API key: ")
|
|
set_key(".env", api_key_var, api_key)
|
|
load_dotenv()
|
|
return api_key
|
|
|
|
def check_address_format(self, address):
|
|
"""
|
|
Validate if the address is valid IP.
|
|
"""
|
|
try:
|
|
ip, port = address.rsplit(":", 1)
|
|
ipaddress.ip_address(ip)
|
|
if not port.isdigit() or not (0 <= int(port) <= 65535):
|
|
raise ValueError("Port must be a number between 0 and 65535.")
|
|
except ValueError as e:
|
|
raise Exception(f"Invalid address format: {e}")
|
|
return address
|
|
|
|
def respond(self, history, verbose = True):
|
|
"""
|
|
Use the choosen provider to generate text.
|
|
"""
|
|
llm = self.available_providers[self.provider_name]
|
|
thought = llm(history, verbose)
|
|
return thought
|
|
|
|
def is_ip_online(self, ip_address):
|
|
"""
|
|
Check if an IP address is online by sending a ping request.
|
|
"""
|
|
param = '-n' if platform.system().lower() == 'windows' else '-c'
|
|
command = ['ping', param, '1', ip_address]
|
|
try:
|
|
output = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, timeout=5)
|
|
if output.returncode == 0:
|
|
return True
|
|
else:
|
|
return False
|
|
except subprocess.TimeoutExpired:
|
|
return True
|
|
except Exception as e:
|
|
print(f"An error occurred: {e}")
|
|
return False
|
|
|
|
def server_fn(self, history, verbose = False):
|
|
"""
|
|
Use a remote server wit LLM to generate text.
|
|
"""
|
|
thought = ""
|
|
route_start = f"http://{self.server}/generate"
|
|
|
|
if not self.is_ip_online(self.server.split(":")[0]):
|
|
raise Exception(f"Server is offline at {self.server}")
|
|
|
|
requests.post(route_start, json={"messages": history})
|
|
is_complete = False
|
|
while not is_complete:
|
|
response = requests.get(f"http://{self.server}/get_updated_sentence")
|
|
thought = response.json()["sentence"]
|
|
is_complete = bool(response.json()["is_complete"])
|
|
time.sleep(2)
|
|
return thought
|
|
|
|
def ollama_fn(self, history, verbose = False):
|
|
"""
|
|
Use local ollama server to generate text.
|
|
"""
|
|
thought = ""
|
|
try:
|
|
stream = chat(
|
|
model=self.model,
|
|
messages=history,
|
|
stream=True,
|
|
)
|
|
for chunk in stream:
|
|
if verbose:
|
|
print(chunk['message']['content'], end='', flush=True)
|
|
thought += chunk['message']['content']
|
|
except ollama.ResponseError as e:
|
|
if e.status_code == 404:
|
|
ollama.pull(self.model)
|
|
if "refused" in str(e):
|
|
raise Exception("Ollama connection failed. is the server running ?")
|
|
raise e
|
|
return thought
|
|
|
|
def huggingface_fn(self, history, verbose=False):
|
|
"""
|
|
Use huggingface to generate text.
|
|
"""
|
|
client = InferenceClient(
|
|
api_key=self.get_api_key("huggingface")
|
|
)
|
|
completion = client.chat.completions.create(
|
|
model=self.model,
|
|
messages=history,
|
|
max_tokens=1024,
|
|
)
|
|
thought = completion.choices[0].message
|
|
return thought.content
|
|
|
|
def openai_fn(self, history, verbose=False):
|
|
"""
|
|
Use openai to generate text.
|
|
"""
|
|
api_key = self.get_api_key("openai")
|
|
client = OpenAI(api_key=api_key)
|
|
try:
|
|
response = client.chat.completions.create(
|
|
model=self.model,
|
|
messages=history
|
|
)
|
|
thought = response.choices[0].message.content
|
|
if verbose:
|
|
print(thought)
|
|
return thought
|
|
except Exception as e:
|
|
raise Exception(f"OpenAI API error: {e}")
|
|
|
|
def test_fn(self, history, verbose = True):
|
|
"""
|
|
This function is used to conduct tests.
|
|
"""
|
|
thought = """
|
|
This is a test response from the test provider.
|
|
Change provider to 'ollama' or 'server' to get real responses.
|
|
|
|
```python
|
|
print("Hello world from python")
|
|
```
|
|
|
|
```bash
|
|
echo "Hello world from bash"
|
|
```
|
|
"""
|
|
return thought
|
|
|
|
if __name__ == "__main__":
|
|
provider = Provider("openai", "gpt-4o-mini")
|
|
print(provider.respond(["user", "Hello, how are you?"]))
|