agenticSeek/sources/llm_provider.py

341 lines
14 KiB
Python

import os
import time
import ollama
from ollama import chat
import requests
import subprocess
import ipaddress
import httpx
import socket
import platform
from urllib.parse import urlparse
from dotenv import load_dotenv, set_key
from openai import OpenAI
from huggingface_hub import InferenceClient
from typing import List, Tuple, Type, Dict
from sources.utility import pretty_print, animate_thinking
from sources.logger import Logger
class Provider:
def __init__(self, provider_name, model, server_address = "127.0.0.1:5000", is_local=False):
self.provider_name = provider_name.lower()
self.model = model
self.is_local = is_local
self.server_ip = self.check_address_format(server_address)
self.available_providers = {
"ollama": self.ollama_fn,
"server": self.server_fn,
"openai": self.openai_fn,
"lm-studio": self.lm_studio_fn,
"huggingface": self.huggingface_fn,
"deepseek": self.deepseek_fn,
"together": self.together_fn,
"dsk_deepseek": self.dsk_deepseek,
"test": self.test_fn
}
self.logger = Logger("provider.log")
self.api_key = None
self.unsafe_providers = ["openai", "deepseek", "dsk_deepseek", "together"]
if self.provider_name not in self.available_providers:
raise ValueError(f"Unknown provider: {provider_name}")
if self.provider_name in self.unsafe_providers:
pretty_print("Warning: you are using an API provider. You data will be sent to the cloud.", color="warning")
self.api_key = self.get_api_key(self.provider_name)
elif self.provider_name != "ollama":
pretty_print(f"Provider: {provider_name} initialized at {self.server_ip}", color="success")
self.check_address_format(self.server_ip)
if not self.is_ip_online(self.server_ip.split(':')[0]):
raise Exception(f"Server at {self.server_ip} is offline.")
def get_api_key(self, provider):
load_dotenv()
api_key_var = f"{provider.upper()}_API_KEY"
api_key = os.getenv(api_key_var)
if not api_key:
pretty_print(f"API key {api_key_var} not found in .env file. Please add it", color="warning")
exit(1)
return api_key
def check_address_format(self, address):
"""
Validate if the address is valid IP.
"""
try:
address = address.replace('http://', '')
ip, port = address.rsplit(":", 1)
if all(c.lower() in ".:abcdef0123456789" for c in ip):
ipaddress.ip_address(ip)
if not port.isdigit() or not (0 <= int(port) <= 65535):
raise ValueError("Port must be a number between 0 and 65535.")
except ValueError as e:
raise Exception(f"Invalid address format: {e}. Is port specified?")
return address
def respond(self, history, verbose = True):
"""
Use the choosen provider to generate text.
"""
llm = self.available_providers[self.provider_name]
self.logger.info(f"Using provider: {self.provider_name} at {self.server_ip}")
try:
thought = llm(history, verbose)
except KeyboardInterrupt:
self.logger.warning("User interrupted the operation with Ctrl+C")
return "Operation interrupted by user. REQUEST_EXIT"
except ConnectionError as e:
raise ConnectionError(f"{str(e)}\nConnection to {self.server_ip} failed.")
except AttributeError as e:
raise NotImplementedError(f"{str(e)}\nIs {self.provider_name} implemented ?")
except ModuleNotFoundError as e:
raise ModuleNotFoundError(f"{str(e)}\nA import related to provider {self.provider_name} was not found. Is it installed ?")
except Exception as e:
if "refused" in str(e):
return f"Server {self.server_ip} seem offline. Unable to answer."
raise Exception(f"Provider {self.provider_name} failed: {str(e)}") from e
return thought
def is_ip_online(self, address: str, timeout: int = 10) -> bool:
"""
Check if an address is online by sending a ping request.
"""
if not address:
return False
if address.lower() in ["127.0.0.1", "localhost", "0.0.0.0"]:
return True
hostname = urlparse(f'http://{address}' if not address.startswith(('http://', 'https://')) else address).hostname or address
try:
ip_address = socket.gethostbyname(hostname)
except socket.gaierror:
self.logger.error(f"Cannot resolve: {hostname}")
return False
param = '-n' if platform.system().lower() == 'windows' else '-c'
command = ['ping', param, '1', ip_address]
try:
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, timeout=timeout)
return result.returncode == 0
except (subprocess.TimeoutExpired, subprocess.SubprocessError) as e:
return False
def server_fn(self, history, verbose = False):
"""
Use a remote server with LLM to generate text.
"""
thought = ""
route_setup = f"http://{self.server_ip}/setup"
route_gen = f"http://{self.server_ip}/generate"
if not self.is_ip_online(self.server_ip.split(":")[0]):
pretty_print(f"Server is offline at {self.server_ip}", color="failure")
try:
requests.post(route_setup, json={"model": self.model})
requests.post(route_gen, json={"messages": history})
is_complete = False
while not is_complete:
try:
response = requests.get(f"http://{self.server_ip}/get_updated_sentence")
if "error" in response.json():
pretty_print(response.json()["error"], color="failure")
break
thought = response.json()["sentence"]
is_complete = bool(response.json()["is_complete"])
time.sleep(2)
except requests.exceptions.RequestException as e:
pretty_print(f"HTTP request failed: {str(e)}", color="failure")
break
except ValueError as e:
pretty_print(f"Failed to parse JSON response: {str(e)}", color="failure")
break
except Exception as e:
pretty_print(f"An error occurred: {str(e)}", color="failure")
break
except KeyError as e:
raise Exception(f"{str(e)}\nError occured with server route. Are you using the correct address for the config.ini provider?") from e
except Exception as e:
raise e
return thought
def ollama_fn(self, history, verbose = False):
"""
Use local ollama server to generate text.
"""
thought = ""
try:
stream = chat(
model=self.model,
messages=history,
stream=True,
)
for chunk in stream:
if verbose:
print(chunk['message']['content'], end='', flush=True)
thought += chunk['message']['content']
except httpx.ConnectError as e:
raise Exception("\nOllama connection failed. provider should not be set to ollama if server address is not localhost") from e
except ollama.ResponseError as e:
if e.status_code == 404:
animate_thinking(f"Downloading {self.model}...")
ollama.pull(self.model)
self.ollama_fn(history, verbose)
if "refused" in str(e).lower():
raise Exception("Ollama connection failed. is the server running ?") from e
raise e
return thought
def huggingface_fn(self, history, verbose=False):
"""
Use huggingface to generate text.
"""
client = InferenceClient(
api_key=self.get_api_key("huggingface")
)
completion = client.chat.completions.create(
model=self.model,
messages=history,
max_tokens=1024,
)
thought = completion.choices[0].message
return thought.content
def openai_fn(self, history, verbose=False):
"""
Use openai to generate text.
"""
base_url = self.server_ip
if self.is_local:
client = OpenAI(api_key=self.api_key, base_url=f"http://{base_url}")
else:
client = OpenAI(api_key=self.api_key)
try:
response = client.chat.completions.create(
model=self.model,
messages=history,
)
if response is None:
raise Exception("OpenAI response is empty.")
thought = response.choices[0].message.content
if verbose:
print(thought)
return thought
except Exception as e:
raise Exception(f"OpenAI API error: {str(e)}") from e
def together_fn(self, history, verbose=False):
"""
Use together AI for completion
"""
from together import Together
client = Together(api_key=self.api_key)
try:
response = client.chat.completions.create(
model=self.model,
messages=history,
)
if response is None:
raise Exception("Together AI response is empty.")
thought = response.choices[0].message.content
if verbose:
print(thought)
return thought
except Exception as e:
raise Exception(f"Together AI API error: {str(e)}") from e
def deepseek_fn(self, history, verbose=False):
"""
Use deepseek api to generate text.
"""
client = OpenAI(api_key=self.api_key, base_url="https://api.deepseek.com")
try:
response = client.chat.completions.create(
model="deepseek-chat",
messages=history,
stream=False
)
thought = response.choices[0].message.content
if verbose:
print(thought)
return thought
except Exception as e:
raise Exception(f"Deepseek API error: {str(e)}") from e
def lm_studio_fn(self, history, verbose = False):
"""
Use local lm-studio server to generate text.
lm studio use endpoint /v1/chat/completions not /chat/completions like openai
"""
thought = ""
route_start = f"http://{self.server_ip}/v1/chat/completions"
payload = {
"messages": history,
"temperature": 0.7,
"max_tokens": 4096,
"model": self.model
}
if not self.is_ip_online(self.server_ip.split(":")[0]):
raise Exception(f"Server is offline at {self.server_ip}")
try:
response = requests.post(route_start, json=payload)
result = response.json()
if verbose:
print("Response from LM Studio:", result)
return result.get("choices", [{}])[0].get("message", {}).get("content", "")
except requests.exceptions.RequestException as e:
raise Exception(f"HTTP request failed: {str(e)}") from e
except Exception as e:
raise Exception(f"An error occurred: {str(e)}") from e
return thought
def dsk_deepseek(self, history, verbose = False):
"""
Use: xtekky/deepseek4free
For free api. Api key should be set to DSK_DEEPSEEK_API_KEY
This is an unofficial provider, you'll have to find how to set it up yourself.
"""
from dsk.api import (
DeepSeekAPI,
AuthenticationError,
RateLimitError,
NetworkError,
CloudflareError,
APIError
)
thought = ""
message = '\n---\n'.join([f"{msg['role']}: {msg['content']}" for msg in history])
try:
api = DeepSeekAPI(self.api_key)
chat_id = api.create_chat_session()
for chunk in api.chat_completion(chat_id, message):
if chunk['type'] == 'text':
thought += chunk['content']
return thought
except AuthenticationError:
raise AuthenticationError("Authentication failed. Please check your token.") from e
except RateLimitError:
raise RateLimitError("Rate limit exceeded. Please wait before making more requests.") from e
except CloudflareError as e:
raise CloudflareError(f"Cloudflare protection encountered: {str(e)}") from e
except NetworkError:
raise NetworkError("Network error occurred. Check your internet connection.") from e
except APIError as e:
raise APIError(f"API error occurred: {str(e)}") from e
return None
def test_fn(self, history, verbose = True):
"""
This function is used to conduct tests.
"""
thought = """
\n\n```json\n{\n \"plan\": [\n {\n \"agent\": \"Web\",\n \"id\": \"1\",\n \"need\": null,\n \"task\": \"Conduct a comprehensive web search to identify at least five AI startups located in Osaka. Use reliable sources and websites such as Crunchbase, TechCrunch, or local Japanese business directories. Capture the company names, their websites, areas of expertise, and any other relevant details.\"\n },\n {\n \"agent\": \"Web\",\n \"id\": \"2\",\n \"need\": null,\n \"task\": \"Perform a similar search to find at least five AI startups in Tokyo. Again, use trusted sources like Crunchbase, TechCrunch, or Japanese business news websites. Gather the same details as for Osaka: company names, websites, areas of focus, and additional information.\"\n },\n {\n \"agent\": \"File\",\n \"id\": \"3\",\n \"need\": [\"1\", \"2\"],\n \"task\": \"Create a new text file named research_japan.txt in the user's home directory. Organize the data collected from both searches into this file, ensuring it is well-structured and formatted for readability. Include headers for Osaka and Tokyo sections, followed by the details of each startup found.\"\n }\n ]\n}\n```
"""
return thought
if __name__ == "__main__":
provider = Provider("server", "deepseek-r1:32b", " x.x.x.x:8080")
res = provider.respond(["user", "Hello, how are you?"])
print("Response:", res)