easy-web-summarizer/yt_summarizer.py
2024-04-27 18:27:06 +03:00

41 lines
1.4 KiB
Python

from langchain_community.document_loaders import YoutubeLoader
from langchain.text_splitter import TokenTextSplitter
from langchain_community.chat_models import ChatOllama
from langchain.chains.summarize import load_summarize_chain
import re
def check_link(link):
yt_regex = r"(https?://)?(www\.)?(youtube\.com/watch\?v=|youtu\.be/)[\w-]+"
return re.match(yt_regex, link) is not None
def get_transcript(video_link):
# Get video transcript
if check_link(video_link):
loader = YoutubeLoader.from_youtube_url(video_link, language=["en", "en-US"])
transcript = loader.load()
return transcript
return "Invalid YouTube URL."
def split_chunks(transcript):
# Split the transcript into chunks
# Llama 3 model takes up to 8192 input tokens, so I set chunk size to 7500 for leaving some space to model.
splitter = TokenTextSplitter(chunk_size = 7500, chunk_overlap = 100)
chunks = splitter.split_documents(transcript)
return chunks
def yt_summarization_chain():
llm = ChatOllama(model="llama3")
summarize_chain = load_summarize_chain(llm=llm, chain_type="refine", verbose=True)
return summarize_chain
def summarize_video(video_link):
transcript = get_transcript(video_link)
chunks = split_chunks(transcript)
sum_chain = yt_summarization_chain()
result = sum_chain.run(chunks)
return result
if __name__ == "__main__":
#summarize_video()