removed multiple files and unified + modularized

This commit is contained in:
tcsenpai 2024-09-17 09:59:02 +02:00
parent 35ae853d7c
commit d838d55334
12 changed files with 271 additions and 791 deletions

View File

@ -7,6 +7,7 @@
- [x] Using Llama-3.1 70b on Groq to create o1-like reasoning chains - [x] Using Llama-3.1 70b on Groq to create o1-like reasoning chains
- [x] Using Ollama to create o1-like reasoning chains - [x] Using Ollama to create o1-like reasoning chains
- [x] Using Perplexity to create o1-like reasoning chains - [x] Using Perplexity to create o1-like reasoning chains
- [x] Using an unified interface to try out different providers
## Work in progress ## Work in progress
@ -82,55 +83,14 @@ To use the launcher, follow these instructions:
3. Edit the .env file with your API keys / models preferences. 3. Edit the .env file with your API keys / models preferences.
4. Run the launcher: 4. Run the main interface
``` ```
python launcher.py streamlit run main.py
``` ```
5. Use the arrow keys to navigate the menu, Enter to select an option, and 'q' to quit.
The launcher allows you to:
- Run the Ollama-based chat application (ol1.py)
- Run the Perplexity-based chat application (p1.py)
- Run the Groq-based chat application (g1.py)
- Edit the .env file
- Exit the launcher
When running a chat application, you can press 'q' at any time to stop the application and return to the launcher.
--- ---
Alternatively, if you prefer to run the applications directly without the launcher:
```
streamlit run app.py
```
Where 'app.py' is the app you want to run and can be:
- g1.py (Groq)
- ol1.py (Ollama)
- p1.py (Perplexity)
---
If you prefer to use the Gradio UI, follow these additional instructions (only works with Groq at the moment):
~~~
cd gradio
~~~
~~~
pip3 install -r requirements.txt
~~~
~~~
python3 app.py
~~~
### Prompting Strategy ### Prompting Strategy
The prompt is as follows: The prompt is as follows:

Binary file not shown.

Binary file not shown.

124
api_handlers.py Normal file
View File

@ -0,0 +1,124 @@
import json
import requests
import groq
import time
class OllamaHandler:
def __init__(self, url, model):
self.url = url
self.model = model
def make_api_call(self, messages, max_tokens, is_final_answer=False):
for attempt in range(3):
try:
response = requests.post(
f"{self.url}/api/chat",
json={
"model": self.model,
"messages": messages,
"stream": False,
"format": "json",
"options": {
"num_predict": max_tokens,
"temperature": 0.2
}
}
)
response.raise_for_status()
return json.loads(response.json()["message"]["content"])
except Exception as e:
if attempt == 2:
return self._error_response(str(e), is_final_answer)
time.sleep(1)
def _error_response(self, error_msg, is_final_answer):
if is_final_answer:
return {"title": "Error", "content": f"Failed to generate final answer after 3 attempts. Error: {error_msg}"}
else:
return {"title": "Error", "content": f"Failed to generate step after 3 attempts. Error: {error_msg}", "next_action": "final_answer"}
class PerplexityHandler:
def __init__(self, api_key, model):
self.api_key = api_key
self.model = model
def make_api_call(self, messages, max_tokens, is_final_answer=False):
# Quick dirty fix for API calls in perplexity that removes the assistant message
#messages[0]["content"] = messages[0]["content"] + " You will always respond ONLY with JSON with the following format: {'title': 'Title of the step', 'content': 'Content of the step', 'next_action': 'continue' or 'final_answer'}. You are not allowed to respond with anything else or any additional text. "
if not is_final_answer:
for i in range(len(messages)):
if messages[i]["role"] == "assistant":
messages.pop(i)
for attempt in range(3):
try:
url = "https://api.perplexity.ai/chat/completions"
payload = {"model": self.model, "messages": messages}
headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
}
response = requests.post(url, json=payload, headers=headers)
# Add specific handling for 400 error
if response.status_code == 400:
error_content = response.json()
print(f"HTTP 400 Error: {error_content}")
return self._error_response(f"HTTP 400 Error: {error_content}", is_final_answer)
response.raise_for_status()
content = response.json()["choices"][0]["message"]["content"]
print("Content: ", content)
return json.loads(content)
except json.JSONDecodeError:
print("Warning: content is not a valid JSON, returning raw response")
# Better detection of final answer in the raw response for Perplexity
forced_final_answer = False
if '"next_action": "final_answer"' in content.lower().strip():
forced_final_answer = True
print("Forced final answer: ", forced_final_answer)
return {
"title": "Raw Response",
"content": content,
"next_action": "final_answer" if (is_final_answer|forced_final_answer) else "continue"
}
except requests.exceptions.RequestException as e:
print(f"Request failed: {e}")
if attempt == 2:
return self._error_response(str(e), is_final_answer)
time.sleep(1)
def _error_response(self, error_msg, is_final_answer):
return {
"title": "Error",
"content": f"API request failed after 3 attempts. Error: {error_msg}",
"next_action": "final_answer",
}
class GroqHandler:
def __init__(self):
self.client = groq.Groq()
def make_api_call(self, messages, max_tokens, is_final_answer=False):
for attempt in range(3):
try:
response = self.client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=messages,
max_tokens=max_tokens,
temperature=0.2,
response_format={"type": "json_object"}
)
return json.loads(response.choices[0].message.content)
except Exception as e:
if attempt == 2:
return self._error_response(str(e), is_final_answer)
time.sleep(1)
def _error_response(self, error_msg, is_final_answer):
if is_final_answer:
return {"title": "Error", "content": f"Failed to generate final answer after 3 attempts. Error: {error_msg}"}
else:
return {"title": "Error", "content": f"Failed to generate step after 3 attempts. Error: {error_msg}", "next_action": "final_answer"}

117
g1.py
View File

@ -1,117 +0,0 @@
import streamlit as st
import groq
import os
import json
import time
client = groq.Groq()
def make_api_call(messages, max_tokens, is_final_answer=False):
for attempt in range(3):
try:
response = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=messages,
max_tokens=max_tokens,
temperature=0.2,
response_format={"type": "json_object"}
)
return json.loads(response.choices[0].message.content)
except Exception as e:
if attempt == 2:
if is_final_answer:
return {"title": "Error", "content": f"Failed to generate final answer after 3 attempts. Error: {str(e)}"}
else:
return {"title": "Error", "content": f"Failed to generate step after 3 attempts. Error: {str(e)}", "next_action": "final_answer"}
time.sleep(1) # Wait for 1 second before retrying
def generate_response(prompt):
messages = [
{"role": "system", "content": """You are an expert AI assistant that explains your reasoning step by step. For each step, provide a title that describes what you're doing in that step, along with the content. Decide if you need another step or if you're ready to give the final answer. Respond in JSON format with 'title', 'content', and 'next_action' (either 'continue' or 'final_answer') keys. USE AS MANY REASONING STEPS AS POSSIBLE. AT LEAST 3. BE AWARE OF YOUR LIMITATIONS AS AN LLM AND WHAT YOU CAN AND CANNOT DO. IN YOUR REASONING, INCLUDE EXPLORATION OF ALTERNATIVE ANSWERS. CONSIDER YOU MAY BE WRONG, AND IF YOU ARE WRONG IN YOUR REASONING, WHERE IT WOULD BE. FULLY TEST ALL OTHER POSSIBILITIES. YOU CAN BE WRONG. WHEN YOU SAY YOU ARE RE-EXAMINING, ACTUALLY RE-EXAMINE, AND USE ANOTHER APPROACH TO DO SO. DO NOT JUST SAY YOU ARE RE-EXAMINING. USE AT LEAST 3 METHODS TO DERIVE THE ANSWER. USE BEST PRACTICES.
Example of a valid JSON response:
```json
{
"title": "Identifying Key Information",
"content": "To begin solving this problem, we need to carefully examine the given information and identify the crucial elements that will guide our solution process. This involves...",
"next_action": "continue"
}```
"""},
{"role": "user", "content": prompt},
{"role": "assistant", "content": "Thank you! I will now think step by step following my instructions, starting at the beginning after decomposing the problem."}
]
steps = []
step_count = 1
total_thinking_time = 0
while True:
start_time = time.time()
step_data = make_api_call(messages, 300)
end_time = time.time()
thinking_time = end_time - start_time
total_thinking_time += thinking_time
steps.append((f"Step {step_count}: {step_data['title']}", step_data['content'], thinking_time))
messages.append({"role": "assistant", "content": json.dumps(step_data)})
if step_data['next_action'] == 'final_answer':
break
step_count += 1
# Yield after each step for Streamlit to update
yield steps, None # We're not yielding the total time until the end
# Generate final answer
messages.append({"role": "user", "content": "Please provide the final answer based on your reasoning above."})
start_time = time.time()
final_data = make_api_call(messages, 200, is_final_answer=True)
end_time = time.time()
thinking_time = end_time - start_time
total_thinking_time += thinking_time
steps.append(("Final Answer", final_data['content'], thinking_time))
yield steps, total_thinking_time
def main():
st.set_page_config(page_title="g1 prototype", page_icon="🧠", layout="wide")
st.title("g1: Using Llama-3.1 70b on Groq to create o1-like reasoning chains")
st.markdown("""
This is an early prototype of using prompting to create o1-like reasoning chains to improve output accuracy. It is not perfect and accuracy has yet to be formally evaluated. It is powered by Groq so that the reasoning step is fast!
Open source [repository here](https://github.com/bklieger-groq)
""")
# Text input for user query
user_query = st.text_input("Enter your query:", placeholder="e.g., How many 'R's are in the word strawberry?")
if user_query:
st.write("Generating response...")
# Create empty elements to hold the generated text and total time
response_container = st.empty()
time_container = st.empty()
# Generate and display the response
for steps, total_thinking_time in generate_response(user_query):
with response_container.container():
for i, (title, content, thinking_time) in enumerate(steps):
if title.startswith("Final Answer"):
st.markdown(f"### {title}")
st.markdown(content.replace('\n', '<br>'), unsafe_allow_html=True)
else:
with st.expander(title, expanded=True):
st.markdown(content.replace('\n', '<br>'), unsafe_allow_html=True)
# Only show total time when it's available at the end
if total_thinking_time is not None:
time_container.markdown(f"**Total thinking time: {total_thinking_time:.2f} seconds**")
if __name__ == "__main__":
main()

View File

@ -1,156 +0,0 @@
import gradio as gr
import groq
import os
import json
import time
def make_api_call(client, messages, max_tokens, is_final_answer=False):
for attempt in range(3):
try:
response = client.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=messages,
max_tokens=max_tokens,
temperature=0.2,
response_format={"type": "json_object"}
)
return json.loads(response.choices[0].message.content)
except Exception as e:
if attempt == 2:
if is_final_answer:
return {"title": "Error", "content": f"Failed to generate final answer after 3 attempts. Error: {str(e)}"}
else:
return {"title": "Error", "content": f"Failed to generate step after 3 attempts. Error: {str(e)}", "next_action": "final_answer"}
time.sleep(1) # Wait for 1 second before retrying
def generate_response(client, prompt):
messages = [
{"role": "system", "content": """You are an expert AI assistant that explains your reasoning step by step. For each step, provide a title that describes what you're doing in that step, along with the content. Decide if you need another step or if you're ready to give the final answer. Respond in JSON format with 'title', 'content', and 'next_action' (either 'continue' or 'final_answer') keys. USE AS MANY REASONING STEPS AS POSSIBLE. AT LEAST 3. BE AWARE OF YOUR LIMITATIONS AS AN LLM AND WHAT YOU CAN AND CANNOT DO. IN YOUR REASONING, INCLUDE EXPLORATION OF ALTERNATIVE ANSWERS. CONSIDER YOU MAY BE WRONG, AND IF YOU ARE WRONG IN YOUR REASONING, WHERE IT WOULD BE. FULLY TEST ALL OTHER POSSIBILITIES. YOU CAN BE WRONG. WHEN YOU SAY YOU ARE RE-EXAMINING, ACTUALLY RE-EXAMINE, AND USE ANOTHER APPROACH TO DO SO. DO NOT JUST SAY YOU ARE RE-EXAMINING. USE AT LEAST 3 METHODS TO DERIVE THE ANSWER. USE BEST PRACTICES.
Example of a valid JSON response:
```json
{
"title": "Identifying Key Information",
"content": "To begin solving this problem, we need to carefully examine the given information and identify the crucial elements that will guide our solution process. This involves...",
"next_action": "continue"
}```
""" },
{"role": "user", "content": prompt},
{"role": "assistant", "content": "Thank you! I will now think step by step following my instructions, starting at the beginning after decomposing the problem."}
]
steps = []
step_count = 1
total_thinking_time = 0
while True:
start_time = time.time()
step_data = make_api_call(client, messages, 300)
end_time = time.time()
thinking_time = end_time - start_time
total_thinking_time += thinking_time
# Handle potential errors
if step_data.get('title') == "Error":
steps.append((f"Step {step_count}: {step_data.get('title')}", step_data.get('content'), thinking_time))
break
step_title = f"Step {step_count}: {step_data.get('title', 'No Title')}"
step_content = step_data.get('content', 'No Content')
steps.append((step_title, step_content, thinking_time))
messages.append({"role": "assistant", "content": json.dumps(step_data)})
if step_data.get('next_action') == 'final_answer':
break
step_count += 1
# Generate final answer
messages.append({"role": "user", "content": "Please provide the final answer based on your reasoning above."})
start_time = time.time()
final_data = make_api_call(client, messages, 200, is_final_answer=True)
end_time = time.time()
thinking_time = end_time - start_time
total_thinking_time += thinking_time
if final_data.get('title') == "Error":
steps.append(("Final Answer", final_data.get('content'), thinking_time))
else:
steps.append(("Final Answer", final_data.get('content', 'No Content'), thinking_time))
return steps, total_thinking_time
def format_steps(steps, total_time):
html_content = ""
for title, content, thinking_time in steps:
if title == "Final Answer":
html_content += "<h3>{}</h3>".format(title)
html_content += "<p>{}</p>".format(content.replace('\n', '<br>'))
else:
html_content += """
<details>
<summary><strong>{}</strong></summary>
<p>{}</p>
<p><em>Thinking time for this step: {:.2f} seconds</em></p>
</details>
<br>
""".format(title, content.replace('\n', '<br>'), thinking_time)
html_content += "<strong>Total thinking time: {:.2f} seconds</strong>".format(total_time)
return html_content
def main(api_key, user_query):
if not api_key:
return "Please enter your Groq API key to proceed.", ""
if not user_query:
return "Please enter a query to get started.", ""
try:
# Initialize the Groq client with the provided API key
client = groq.Groq(api_key=api_key)
except Exception as e:
return f"Failed to initialize Groq client. Error: {str(e)}", ""
try:
steps, total_time = generate_response(client, user_query)
formatted_steps = format_steps(steps, total_time)
except Exception as e:
return f"An error occurred during processing. Error: {str(e)}", ""
return formatted_steps, ""
# Define the Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# 🧠 g1: Using Llama-3.1 70b on Groq to Create O1-like Reasoning Chains")
gr.Markdown("""
This is an early prototype of using prompting to create O1-like reasoning chains to improve output accuracy. It is not perfect and accuracy has yet to be formally evaluated. It is powered by Groq so that the reasoning step is fast!
Open source [repository here](https://github.com/bklieger-groq)
""")
with gr.Row():
with gr.Column():
api_input = gr.Textbox(
label="Enter your Groq API Key:",
placeholder="Your Groq API Key",
type="password"
)
user_input = gr.Textbox(
label="Enter your query:",
placeholder="e.g., How many 'R's are in the word strawberry?",
lines=2
)
submit_btn = gr.Button("Generate Response")
with gr.Row():
with gr.Column():
output_html = gr.HTML()
submit_btn.click(fn=main, inputs=[api_input, user_input], outputs=output_html)
# Launch the Gradio app
if __name__ == "__main__":
demo.launch()

View File

@ -1,2 +0,0 @@
groq
gradio

View File

@ -1,123 +0,0 @@
import blessed
import subprocess
import os
import sys
import time
from contextlib import contextmanager
term = blessed.Terminal()
MENU_ITEMS = [
("Ollama", "ol1.py", "Launch Ollama-based chat application"),
("Perplexity", "p1.py", "Launch Perplexity-based chat application"),
("Groq", "g1.py", "Launch Groq-based chat application"),
("Edit .env", "edit_env", "Edit environment variables"),
("Exit", None, "Exit the launcher")
]
@contextmanager
def fullscreen():
with term.fullscreen(), term.cbreak(), term.hidden_cursor():
yield
def draw_3d_box(y, x, height, width, color):
shadow_color = term.color_rgb(50, 50, 50)
# Draw shadow
print(term.move(y+1, x+2) + shadow_color + '' * (width-1) + term.normal)
for i in range(height-1):
print(term.move(y+2+i, x+width) + shadow_color + '' + term.normal)
# Draw main box
print(term.move(y, x) + color + '' + '' * (width - 2) + '' + term.normal)
for i in range(height - 2):
print(term.move(y + i + 1, x) + color + '' + ' ' * (width - 2) + '' + term.normal)
print(term.move(y + height - 1, x) + color + '' + '' * (width - 2) + '' + term.normal)
def draw_menu(current_option):
menu_width = 50
menu_height = len(MENU_ITEMS) * 3 + 5
start_y = (term.height - menu_height) // 2
start_x = (term.width - menu_width) // 2
main_color = term.cornflower_blue
draw_3d_box(start_y, start_x, menu_height, menu_width, main_color)
title = '🚀 Launcher Menu 🚀'
print(term.move(start_y + 1, start_x + (menu_width - len(title)) // 2) + term.bold + term.yellow(title))
for i, (option, _, _) in enumerate(MENU_ITEMS):
y = start_y + i * 3 + 4
if i == current_option:
item_color = term.black_on_yellow
draw_3d_box(y-1, start_x+3, 3, menu_width-6, item_color)
print(term.move(y, start_x + 5) + item_color + term.bold(f" {option:<{menu_width - 10}} ") + term.normal)
else:
item_color = term.white_on_blue
draw_3d_box(y-1, start_x+3, 3, menu_width-6, item_color)
print(term.move(y, start_x + 5) + item_color + term.bold(f" {option:<{menu_width - 10}} ") + term.normal)
description = MENU_ITEMS[current_option][2]
print(term.move(start_y + menu_height, start_x) + term.center(term.italic(description), menu_width))
def run_script(script):
with fullscreen():
print(term.clear + term.move_y(term.height // 2) + term.bold_green(term.center(f"Running {script}...")))
time.sleep(1)
process = subprocess.Popen(["streamlit", "run", script], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True)
with term.cbreak():
print(term.clear)
try:
while True:
output = process.stdout.readline()
if output == '' and process.poll() is not None:
break
if output:
print(output.strip())
if term.inkey(timeout=0.1) == 'q':
process.terminate()
print(term.bold_red("\nScript terminated. Press any key to return to the launcher..."))
term.inkey()
return
except KeyboardInterrupt:
process.terminate()
print(term.bold_red("\nScript terminated. Press any key to return to the launcher..."))
term.inkey()
return
print(term.bold_green("\nScript finished. Press any key to return to the launcher..."))
term.inkey()
def edit_env():
os.system('clear')
os.system("nano .env")
def main_menu():
current_option = 0
while True:
with fullscreen():
print(term.clear)
draw_menu(current_option)
key = term.inkey()
if key.name == 'KEY_UP' and current_option > 0:
current_option -= 1
elif key.name == 'KEY_DOWN' and current_option < len(MENU_ITEMS) - 1:
current_option += 1
elif key.name == 'KEY_ENTER':
selected_option = MENU_ITEMS[current_option][1]
if selected_option is None:
return
elif selected_option == "edit_env":
edit_env()
else:
run_script(selected_option)
elif key == 'q':
return
if __name__ == "__main__":
main_menu()

71
main.py Normal file
View File

@ -0,0 +1,71 @@
import streamlit as st
from dotenv import load_dotenv
from api_handlers import OllamaHandler, PerplexityHandler, GroqHandler
from utils import generate_response, load_env_vars
# Load environment variables and configuration
load_dotenv()
config = load_env_vars()
def setup_page():
st.set_page_config(page_title="multi1 - Unified AI Reasoning Chains", page_icon="🧠", layout="wide")
st.markdown("""
<h1 style='text-align: center; font-family: -apple-system, BlinkMacSystemFont, sans-serif;'>
🧠 multi1 - Unified AI Reasoning Chains
</h1>
""", unsafe_allow_html=True)
st.markdown("""
<p style='text-align: center; font-family: -apple-system, BlinkMacSystemFont, sans-serif; font-size: 1.1em;'>
This app demonstrates AI reasoning chains using different backends: Ollama, Perplexity AI, and Groq.
Choose a backend and enter your query to see the step-by-step reasoning process.
</p>
""", unsafe_allow_html=True)
def get_api_handler(backend):
if backend == "Ollama":
return OllamaHandler(config['OLLAMA_URL'], config['OLLAMA_MODEL'])
elif backend == "Perplexity AI":
return PerplexityHandler(config['PERPLEXITY_API_KEY'], config['PERPLEXITY_MODEL'])
else: # Groq
return GroqHandler()
def display_config(backend):
st.sidebar.markdown("## 🛠️ Current Configuration")
if backend == "Ollama":
st.sidebar.markdown(f"- 🖥️ Ollama URL: `{config['OLLAMA_URL']}`")
st.sidebar.markdown(f"- 🤖 Ollama Model: `{config['OLLAMA_MODEL']}`")
elif backend == "Perplexity AI":
st.sidebar.markdown(f"- 🧠 Perplexity AI Model: `{config['PERPLEXITY_MODEL']}`")
else: # Groq
st.sidebar.markdown("- ⚡ Using Groq API")
def main():
setup_page()
st.sidebar.markdown("<h3 style='font-family: -apple-system, BlinkMacSystemFont, sans-serif;'>⚙️ Settings</h3>", unsafe_allow_html=True)
backend = st.sidebar.selectbox("Choose AI Backend", ["Ollama", "Perplexity AI", "Groq"])
display_config(backend)
api_handler = get_api_handler(backend)
user_query = st.text_input("💬 Enter your query:", placeholder="e.g., How many 'R's are in the word strawberry?")
if user_query:
st.write("🔍 Generating response...")
response_container = st.empty()
time_container = st.empty()
for steps, total_thinking_time in generate_response(user_query, api_handler):
with response_container.container():
for title, content, _ in steps:
if title.startswith("Final Answer"):
st.markdown(f"<h3 style='font-family: -apple-system, BlinkMacSystemFont, sans-serif;'>🎯 {title}</h3>", unsafe_allow_html=True)
st.markdown(f"<div style='font-family: -apple-system, BlinkMacSystemFont, sans-serif;'>{content}</div>", unsafe_allow_html=True)
else:
with st.expander(f"📝 {title}", expanded=True):
st.markdown(f"<div style='font-family: -apple-system, BlinkMacSystemFont, sans-serif;'>{content}</div>", unsafe_allow_html=True)
if total_thinking_time is not None:
time_container.markdown(f"<p style='font-family: -apple-system, BlinkMacSystemFont, sans-serif;'><strong>⏱️ Total thinking time: {total_thinking_time:.2f} seconds</strong></p>", unsafe_allow_html=True)
if __name__ == "__main__":
main()

138
ol1.py
View File

@ -1,138 +0,0 @@
import streamlit as st
import json
import time
import requests # Add this import for making HTTP requests to Ollama
from dotenv import load_dotenv
import os
# Load environment variables
load_dotenv()
# Get configuration from .env file
OLLAMA_URL = os.getenv('OLLAMA_URL', 'http://localhost:11434')
OLLAMA_MODEL = os.getenv('OLLAMA_MODEL', 'llama3.1:70b')
def make_api_call(messages, max_tokens, is_final_answer=False):
for attempt in range(3):
try:
response = requests.post(
f"{OLLAMA_URL}/api/chat",
json={
"model": OLLAMA_MODEL,
"messages": messages,
"stream": False,
"format": "json", # important, or most of the time ollama does not generate valid json response
"options": {
"num_predict": max_tokens,
"temperature": 0.2
}
}
)
response.raise_for_status()
return json.loads(response.json()["message"]["content"])
except Exception as e:
if attempt == 2:
if is_final_answer:
return {"title": "Error", "content": f"Failed to generate final answer after 3 attempts. Error: {str(e)}"}
else:
return {"title": "Error", "content": f"Failed to generate step after 3 attempts. Error: {str(e)}", "next_action": "final_answer"}
time.sleep(1) # Wait for 1 second before retrying
def generate_response(prompt):
messages = [ # add two sentences to encourage json format response
{"role": "system", "content": """You are an expert AI assistant that explains your reasoning step by step. For each step, provide a title that describes what you're doing in that step, along with the content. Decide if you need another step or if you're ready to give the final answer. Respond in JSON format with 'title', 'content', and 'next_action' (either 'continue' or 'final_answer') keys. USE AS MANY REASONING STEPS AS POSSIBLE. AT LEAST 3. BE AWARE OF YOUR LIMITATIONS AS AN LLM AND WHAT YOU CAN AND CANNOT DO. IN YOUR REASONING, INCLUDE EXPLORATION OF ALTERNATIVE ANSWERS. CONSIDER YOU MAY BE WRONG, AND IF YOU ARE WRONG IN YOUR REASONING, WHERE IT WOULD BE. FULLY TEST ALL OTHER POSSIBILITIES. YOU CAN BE WRONG. WHEN YOU SAY YOU ARE RE-EXAMINING, ACTUALLY RE-EXAMINE, AND USE ANOTHER APPROACH TO DO SO. DO NOT JUST SAY YOU ARE RE-EXAMINING. USE AT LEAST 3 METHODS TO DERIVE THE ANSWER. USE BEST PRACTICES.
Example of a valid JSON response:
```json
{
"title": "Identifying Key Information",
"content": "To begin solving this problem, we need to carefully examine the given information and identify the crucial elements that will guide our solution process. This involves...",
"next_action": "continue"
}```.
You MUST response using the expected json schema, and your response must be valid json. This JSON response is essential for our job.
"""},
{"role": "user", "content": prompt},
{"role": "assistant", "content": "Thank you! I will now think step by step following my instructions, starting at the beginning after decomposing the problem."}
]
steps = []
step_count = 1
total_thinking_time = 0
while True:
start_time = time.time()
step_data = make_api_call(messages, 300)
end_time = time.time()
thinking_time = end_time - start_time
total_thinking_time += thinking_time
steps.append((f"Step {step_count}: {step_data['title']}", step_data['content'], thinking_time))
messages.append({"role": "assistant", "content": json.dumps(step_data)})
if step_data['next_action'] == 'final_answer':
break
step_count += 1
# Yield after each step for Streamlit to update
yield steps, None # We're not yielding the total time until the end
# Generate final answer
messages.append({"role": "user", "content": "Please provide the final answer based on your reasoning above."})
start_time = time.time()
final_data = make_api_call(messages, 200, is_final_answer=True)
end_time = time.time()
thinking_time = end_time - start_time
total_thinking_time += thinking_time
steps.append(("Final Answer", final_data['content'], thinking_time))
yield steps, total_thinking_time
def main():
st.set_page_config(page_title="ol1 prototype - Ollama version", page_icon="🧠", layout="wide")
st.title("ol1: Using Ollama to create o1-like reasoning chains")
st.markdown("""
This is an early prototype of using prompting to create o1-like reasoning chains to improve output accuracy. It is not perfect and accuracy has yet to be formally evaluated. It is powered by Ollama so that the reasoning step is local!
Forked from [bklieger-groq](https://github.com/bklieger-groq)
Open source [repository here](https://github.com/tcsenpai/ol1-p1)
""")
st.markdown(f"**Current Configuration:**")
st.markdown(f"- Ollama URL: `{OLLAMA_URL}`")
st.markdown(f"- Ollama Model: `{OLLAMA_MODEL}`")
# Text input for user query
user_query = st.text_input("Enter your query:", placeholder="e.g., How many 'R's are in the word strawberry?")
if user_query:
st.write("Generating response...")
# Create empty elements to hold the generated text and total time
response_container = st.empty()
time_container = st.empty()
# Generate and display the response
for steps, total_thinking_time in generate_response(user_query):
with response_container.container():
for i, (title, content, thinking_time) in enumerate(steps):
if title.startswith("Final Answer"):
st.markdown(f"### {title}")
# this will not work were there codes in the content
#st.markdown(content.replace('\n', '<br>'), unsafe_allow_html=True)
st.markdown(content, unsafe_allow_html=True)
else:
with st.expander(title, expanded=True):
st.markdown(content.replace('\n', '<br>'), unsafe_allow_html=True)
# Only show total time when it's available at the end
if total_thinking_time is not None:
time_container.markdown(f"**Total thinking time: {total_thinking_time:.2f} seconds**")
if __name__ == "__main__":
main()

212
p1.py
View File

@ -1,212 +0,0 @@
import streamlit as st
import json
import time
import requests # Add this import for making HTTP requests to Ollama
from dotenv import load_dotenv
import os
# Load environment variables
load_dotenv()
# Get configuration from .env file
PERPLEXITY_API_KEY = os.getenv("PERPLEXITY_API_KEY")
PERPLEXITY_MODEL = os.getenv("PERPLEXITY_MODEL", "llama-3.1-sonar-small-128k-online")
if not PERPLEXITY_API_KEY:
raise ValueError("PERPLEXITY_API_KEY is not set in the .env file")
def make_api_call(messages, max_tokens, is_final_answer=False):
for attempt in range(3):
try:
url = "https://api.perplexity.ai/chat/completions"
payload = {"model": PERPLEXITY_MODEL, "messages": messages}
headers = {
"Authorization": f"Bearer {PERPLEXITY_API_KEY}",
"Content-Type": "application/json",
}
print(f"payload: {payload}")
response = requests.request("POST", url, json=payload, headers=headers)
print(f"Response status code: {response.status_code}")
print(f"Response content: {response.text}")
response.raise_for_status()
response_json = response.json()
content = response_json["choices"][0]["message"]["content"]
# Try to parse the content as JSON
try:
return json.loads(content)
except json.JSONDecodeError:
# If parsing fails, return the content as is
return {
"title": "Raw Response",
"content": content,
"next_action": "final_answer" if is_final_answer else "continue"
}
except requests.exceptions.HTTPError as e:
if response.status_code == 400:
error_message = f"400 Bad Request: {response.text}"
print(error_message)
if attempt == 2:
return {
"title": "Error",
"content": error_message,
"next_action": "final_answer",
}
else:
# Handle other HTTP errors
if attempt == 2:
error_message = f"HTTP error occurred: {str(e)}"
return {
"title": "Error",
"content": error_message,
"next_action": "final_answer",
}
except json.JSONDecodeError:
if attempt == 2:
return {
"title": "Error",
"content": f"Failed to parse API response: {response.text}",
"next_action": "final_answer",
}
except requests.exceptions.RequestException as e:
if attempt == 2:
error_message = f"API request failed after 3 attempts. Error: {str(e)}"
return {
"title": "Error",
"content": error_message,
"next_action": "final_answer",
}
time.sleep(1) # Wait for 1 second before retrying
def generate_response(prompt):
messages = [
{
"role": "system",
"content": """You are an expert AI assistant that explains your reasoning step by step. For each step, provide a title that describes what you're doing in that step, along with the content. Decide if you need another step or if you're ready to give the final answer. Respond in JSON format with 'title', 'content', and 'next_action' (either 'continue' or 'final_answer') keys. USE AS MANY REASONING STEPS AS POSSIBLE. AT LEAST 3. BE AWARE OF YOUR LIMITATIONS AS AN LLM AND WHAT YOU CAN AND CANNOT DO. IN YOUR REASONING, INCLUDE EXPLORATION OF ALTERNATIVE ANSWERS. CONSIDER YOU MAY BE WRONG, AND IF YOU ARE WRONG IN YOUR REASONING, WHERE IT WOULD BE. FULLY TEST ALL OTHER POSSIBILITIES. YOU CAN BE WRONG. WHEN YOU SAY YOU ARE RE-EXAMINING, ACTUALLY RE-EXAMINE, AND USE ANOTHER APPROACH TO DO SO. DO NOT JUST SAY YOU ARE RE-EXAMINING. USE AT LEAST 3 METHODS TO DERIVE THE ANSWER. USE BEST PRACTICES.
Example of a valid JSON response:
```json
{
"title": "Identifying Key Information",
"content": "To begin solving this problem, we need to carefully examine the given information and identify the crucial elements that will guide our solution process. This involves...",
"next_action": "continue"
}```
""",
},
{"role": "user", "content": prompt},
]
steps = []
step_count = 1
total_thinking_time = 0
while True:
start_time = time.time()
step_data = make_api_call(messages, 300)
end_time = time.time()
thinking_time = end_time - start_time
total_thinking_time += thinking_time
steps.append(
(
f"Step {step_count}: {step_data['title']}",
step_data["content"],
thinking_time,
)
)
messages.append({"role": "assistant", "content": json.dumps(step_data)})
if step_data["next_action"] == "final_answer":
break
step_count += 1
# Add a user message to maintain alternation
messages.append({"role": "user", "content": "Continue with the next step."})
# Yield after each step for Streamlit to update
yield steps, None # We're not yielding the total time until the end
# Generate final answer
messages.append(
{
"role": "user",
"content": "Please provide the final answer based on your reasoning above.",
}
)
start_time = time.time()
final_data = make_api_call(messages, 200, is_final_answer=True)
end_time = time.time()
thinking_time = end_time - start_time
total_thinking_time += thinking_time
steps.append(("Final Answer", final_data["content"], thinking_time))
yield steps, total_thinking_time
def main():
st.set_page_config(page_title="p1 prototype - Perplexity version", page_icon="🧠", layout="wide")
st.title("ol1: Using Perplexity AI to create o1-like reasoning chains")
st.markdown(
"""
This is an early prototype of using prompting to create o1-like reasoning chains to improve output accuracy. It is not perfect and accuracy has yet to be formally evaluated. It is powered by Perplexity AI API!
Forked from [bklieger-groq](https://github.com/bklieger-groq)
Open source [repository here](https://github.com/tcsenpai/ol1-p1)
"""
)
st.markdown(f"**Current Configuration:**")
st.markdown(f"- Perplexity AI Model: `{PERPLEXITY_MODEL}`")
# Text input for user query
user_query = st.text_input(
"Enter your query:",
placeholder="e.g., How many 'R's are in the word strawberry?",
)
if user_query:
st.write("Generating response...")
# Create empty elements to hold the generated text and total time
response_container = st.empty()
time_container = st.empty()
# Generate and display the response
for steps, total_thinking_time in generate_response(user_query):
with response_container.container():
for i, (title, content, thinking_time) in enumerate(steps):
if title.startswith("Final Answer"):
st.markdown(f"### {title}")
st.markdown(
content.replace("\n", "<br>"), unsafe_allow_html=True
)
else:
with st.expander(title, expanded=True):
st.markdown(
content.replace("\n", "<br>"), unsafe_allow_html=True
)
# Only show total time when it's available at the end
if total_thinking_time is not None:
time_container.markdown(
f"**Total thinking time: {total_thinking_time:.2f} seconds**"
)
if __name__ == "__main__":
main()

73
utils.py Normal file
View File

@ -0,0 +1,73 @@
import json
import time
import os
def generate_response(prompt, api_handler):
messages = [
{
"role": "system",
"content": """You are an expert AI assistant that explains your reasoning step by step. For each step, provide a title that describes what you're doing in that step, along with the content. Decide if you need another step or if you're ready to give the final answer. Respond in JSON format with 'title', 'content', and 'next_action' (either 'continue' or 'final_answer') keys. USE AS MANY REASONING STEPS AS POSSIBLE. AT LEAST 3. BE AWARE OF YOUR LIMITATIONS AS AN LLM AND WHAT YOU CAN AND CANNOT DO. IN YOUR REASONING, INCLUDE EXPLORATION OF ALTERNATIVE ANSWERS. CONSIDER YOU MAY BE WRONG, AND IF YOU ARE WRONG IN YOUR REASONING, WHERE IT WOULD BE. FULLY TEST ALL OTHER POSSIBILITIES. YOU CAN BE WRONG. WHEN YOU SAY YOU ARE RE-EXAMINING, ACTUALLY RE-EXAMINE, AND USE ANOTHER APPROACH TO DO SO. DO NOT JUST SAY YOU ARE RE-EXAMINING. USE AT LEAST 3 METHODS TO DERIVE THE ANSWER. USE BEST PRACTICES.""",
},
{"role": "user", "content": prompt},
{
"role": "assistant",
"content": "Thank you! I will now think step by step following my instructions, starting at the beginning after decomposing the problem.",
},
]
steps = []
step_count = 1
total_thinking_time = 0
while True:
start_time = time.time()
step_data = api_handler.make_api_call(messages, 300)
end_time = time.time()
thinking_time = end_time - start_time
total_thinking_time += thinking_time
steps.append(
(
f"Step {step_count}: {step_data['title']}",
step_data["content"],
thinking_time,
)
)
messages.append({"role": "assistant", "content": json.dumps(step_data)})
print("Next reasoning step: ", step_data["next_action"])
if step_data["next_action"].lower().strip() == "final_answer":
break
step_count += 1
yield steps, None
messages.append(
{
"role": "user",
"content": "Please provide the final answer based on your reasoning above.",
}
)
start_time = time.time()
final_data = api_handler.make_api_call(messages, 200, is_final_answer=True)
end_time = time.time()
thinking_time = end_time - start_time
total_thinking_time += thinking_time
steps.append(("Final Answer", final_data["content"], thinking_time))
yield steps, total_thinking_time
def load_env_vars():
return {
"OLLAMA_URL": os.getenv("OLLAMA_URL", "http://localhost:11434"),
"OLLAMA_MODEL": os.getenv("OLLAMA_MODEL", "llama3.1:70b"),
"PERPLEXITY_API_KEY": os.getenv("PERPLEXITY_API_KEY"),
"PERPLEXITY_MODEL": os.getenv(
"PERPLEXITY_MODEL", "llama-3.1-sonar-small-128k-online"
),
}