mirror of
https://github.com/tcsenpai/multi1.git
synced 2025-06-06 19:15:23 +00:00
213 lines
8.0 KiB
Python
213 lines
8.0 KiB
Python
import streamlit as st
|
|
import json
|
|
import time
|
|
import requests # Add this import for making HTTP requests to Ollama
|
|
from dotenv import load_dotenv
|
|
import os
|
|
|
|
# Load environment variables
|
|
load_dotenv()
|
|
|
|
# Get configuration from .env file
|
|
PERPLEXITY_API_KEY = os.getenv("PERPLEXITY_API_KEY")
|
|
PERPLEXITY_MODEL = os.getenv("PERPLEXITY_MODEL", "llama-3.1-sonar-small-128k-online")
|
|
|
|
if not PERPLEXITY_API_KEY:
|
|
raise ValueError("PERPLEXITY_API_KEY is not set in the .env file")
|
|
|
|
|
|
def make_api_call(messages, max_tokens, is_final_answer=False):
|
|
for attempt in range(3):
|
|
try:
|
|
url = "https://api.perplexity.ai/chat/completions"
|
|
|
|
payload = {"model": PERPLEXITY_MODEL, "messages": messages}
|
|
headers = {
|
|
"Authorization": f"Bearer {PERPLEXITY_API_KEY}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
|
|
print(f"payload: {payload}")
|
|
|
|
response = requests.request("POST", url, json=payload, headers=headers)
|
|
|
|
print(f"Response status code: {response.status_code}")
|
|
print(f"Response content: {response.text}")
|
|
|
|
response.raise_for_status()
|
|
response_json = response.json()
|
|
content = response_json["choices"][0]["message"]["content"]
|
|
|
|
# Try to parse the content as JSON
|
|
try:
|
|
return json.loads(content)
|
|
except json.JSONDecodeError:
|
|
# If parsing fails, return the content as is
|
|
return {
|
|
"title": "Raw Response",
|
|
"content": content,
|
|
"next_action": "final_answer" if is_final_answer else "continue"
|
|
}
|
|
|
|
except requests.exceptions.HTTPError as e:
|
|
if response.status_code == 400:
|
|
error_message = f"400 Bad Request: {response.text}"
|
|
print(error_message)
|
|
if attempt == 2:
|
|
return {
|
|
"title": "Error",
|
|
"content": error_message,
|
|
"next_action": "final_answer",
|
|
}
|
|
else:
|
|
# Handle other HTTP errors
|
|
if attempt == 2:
|
|
error_message = f"HTTP error occurred: {str(e)}"
|
|
return {
|
|
"title": "Error",
|
|
"content": error_message,
|
|
"next_action": "final_answer",
|
|
}
|
|
except json.JSONDecodeError:
|
|
if attempt == 2:
|
|
return {
|
|
"title": "Error",
|
|
"content": f"Failed to parse API response: {response.text}",
|
|
"next_action": "final_answer",
|
|
}
|
|
except requests.exceptions.RequestException as e:
|
|
if attempt == 2:
|
|
error_message = f"API request failed after 3 attempts. Error: {str(e)}"
|
|
return {
|
|
"title": "Error",
|
|
"content": error_message,
|
|
"next_action": "final_answer",
|
|
}
|
|
time.sleep(1) # Wait for 1 second before retrying
|
|
|
|
|
|
def generate_response(prompt):
|
|
|
|
messages = [
|
|
{
|
|
"role": "system",
|
|
"content": """You are an expert AI assistant that explains your reasoning step by step. For each step, provide a title that describes what you're doing in that step, along with the content. Decide if you need another step or if you're ready to give the final answer. Respond in JSON format with 'title', 'content', and 'next_action' (either 'continue' or 'final_answer') keys. USE AS MANY REASONING STEPS AS POSSIBLE. AT LEAST 3. BE AWARE OF YOUR LIMITATIONS AS AN LLM AND WHAT YOU CAN AND CANNOT DO. IN YOUR REASONING, INCLUDE EXPLORATION OF ALTERNATIVE ANSWERS. CONSIDER YOU MAY BE WRONG, AND IF YOU ARE WRONG IN YOUR REASONING, WHERE IT WOULD BE. FULLY TEST ALL OTHER POSSIBILITIES. YOU CAN BE WRONG. WHEN YOU SAY YOU ARE RE-EXAMINING, ACTUALLY RE-EXAMINE, AND USE ANOTHER APPROACH TO DO SO. DO NOT JUST SAY YOU ARE RE-EXAMINING. USE AT LEAST 3 METHODS TO DERIVE THE ANSWER. USE BEST PRACTICES.
|
|
|
|
Example of a valid JSON response:
|
|
```json
|
|
{
|
|
"title": "Identifying Key Information",
|
|
"content": "To begin solving this problem, we need to carefully examine the given information and identify the crucial elements that will guide our solution process. This involves...",
|
|
"next_action": "continue"
|
|
}```
|
|
""",
|
|
},
|
|
{"role": "user", "content": prompt},
|
|
]
|
|
|
|
steps = []
|
|
step_count = 1
|
|
total_thinking_time = 0
|
|
|
|
while True:
|
|
start_time = time.time()
|
|
step_data = make_api_call(messages, 300)
|
|
end_time = time.time()
|
|
thinking_time = end_time - start_time
|
|
total_thinking_time += thinking_time
|
|
|
|
steps.append(
|
|
(
|
|
f"Step {step_count}: {step_data['title']}",
|
|
step_data["content"],
|
|
thinking_time,
|
|
)
|
|
)
|
|
|
|
messages.append({"role": "assistant", "content": json.dumps(step_data)})
|
|
|
|
if step_data["next_action"] == "final_answer":
|
|
break
|
|
|
|
step_count += 1
|
|
|
|
# Add a user message to maintain alternation
|
|
messages.append({"role": "user", "content": "Continue with the next step."})
|
|
|
|
# Yield after each step for Streamlit to update
|
|
yield steps, None # We're not yielding the total time until the end
|
|
|
|
# Generate final answer
|
|
messages.append(
|
|
{
|
|
"role": "user",
|
|
"content": "Please provide the final answer based on your reasoning above.",
|
|
}
|
|
)
|
|
|
|
start_time = time.time()
|
|
final_data = make_api_call(messages, 200, is_final_answer=True)
|
|
end_time = time.time()
|
|
thinking_time = end_time - start_time
|
|
total_thinking_time += thinking_time
|
|
|
|
steps.append(("Final Answer", final_data["content"], thinking_time))
|
|
|
|
yield steps, total_thinking_time
|
|
|
|
|
|
def main():
|
|
st.set_page_config(page_title="g1 prototype", page_icon="🧠", layout="wide")
|
|
|
|
st.title("pl1: Using Perplexity AI to create o1-like reasoning chains")
|
|
|
|
st.markdown(
|
|
"""
|
|
This is an early prototype of using prompting to create o1-like reasoning chains to improve output accuracy. It is not perfect and accuracy has yet to be formally evaluated. It is powered by Perplexity AI API!
|
|
|
|
Forked from [bklieger-groq](https://github.com/bklieger-groq)
|
|
Open source [repository here](https://github.com/tcsenpai/ol1)
|
|
"""
|
|
)
|
|
|
|
st.markdown(f"**Current Configuration:**")
|
|
st.markdown(f"- Perplexity AI Model: `{PERPLEXITY_MODEL}`")
|
|
|
|
# Text input for user query
|
|
user_query = st.text_input(
|
|
"Enter your query:",
|
|
placeholder="e.g., How many 'R's are in the word strawberry?",
|
|
)
|
|
|
|
if user_query:
|
|
st.write("Generating response...")
|
|
|
|
# Create empty elements to hold the generated text and total time
|
|
response_container = st.empty()
|
|
time_container = st.empty()
|
|
|
|
# Generate and display the response
|
|
for steps, total_thinking_time in generate_response(user_query):
|
|
with response_container.container():
|
|
for i, (title, content, thinking_time) in enumerate(steps):
|
|
if title.startswith("Final Answer"):
|
|
st.markdown(f"### {title}")
|
|
st.markdown(
|
|
content.replace("\n", "<br>"), unsafe_allow_html=True
|
|
)
|
|
else:
|
|
with st.expander(title, expanded=True):
|
|
st.markdown(
|
|
content.replace("\n", "<br>"), unsafe_allow_html=True
|
|
)
|
|
|
|
# Only show total time when it's available at the end
|
|
if total_thinking_time is not None:
|
|
time_container.markdown(
|
|
f"**Total thinking time: {total_thinking_time:.2f} seconds**"
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|