diff --git a/llama/cmd/main.go b/llama/cmd/main.go new file mode 100644 index 00000000..383d8075 --- /dev/null +++ b/llama/cmd/main.go @@ -0,0 +1,11 @@ +package main + +import ( + "fmt" + + "github.com/ollama/ollama/llama" +) + +func main() { + fmt.Println(llama.SystemInfo()) +} diff --git a/llama/ggml-alloc.c b/llama/ggml-alloc.c new file mode 100644 index 00000000..7ceafec3 --- /dev/null +++ b/llama/ggml-alloc.c @@ -0,0 +1,985 @@ +#include "ggml-alloc.h" +#include "ggml-backend-impl.h" +#include "ggml.h" +#include "ggml-impl.h" +#include +#include +#include +#include +#include +#include + +#define MAX(a, b) ((a) > (b) ? (a) : (b)) +#define MAX_FREE_BLOCKS 256 + +//#define GGML_ALLOCATOR_DEBUG + +//#define AT_PRINTF(...) fprintf(stderr, __VA_ARGS__) +#define AT_PRINTF(...) + + +static bool ggml_is_view(const struct ggml_tensor * t) { + return t->view_src != NULL; +} + +static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { + if (a->type != b->type) { + return false; + } + for (int i = 0; i < GGML_MAX_DIMS; i++) { + if (a->ne[i] != b->ne[i]) { + return false; + } + if (a->nb[i] != b->nb[i]) { + return false; + } + } + return true; +} + +static bool ggml_op_can_inplace(enum ggml_op op) { + switch (op) { + case GGML_OP_SCALE: + case GGML_OP_DIAG_MASK_ZERO: + case GGML_OP_DIAG_MASK_INF: + case GGML_OP_ADD: + case GGML_OP_ADD1: + case GGML_OP_SUB: + case GGML_OP_MUL: + case GGML_OP_DIV: + case GGML_OP_SQR: + case GGML_OP_SQRT: + case GGML_OP_LOG: + case GGML_OP_UNARY: + case GGML_OP_ROPE: + case GGML_OP_RMS_NORM: + case GGML_OP_SOFT_MAX: + return true; + + default: + return false; + } +} + +static size_t aligned_offset(const void * buffer, size_t offset, size_t alignment) { + assert(alignment && !(alignment & (alignment - 1))); // power of 2 + size_t align = (alignment - (((uintptr_t)buffer + offset) % alignment)) % alignment; + return offset + align; +} + +// tallocr + +struct ggml_tallocr ggml_tallocr_new(ggml_backend_buffer_t buffer) { + void * base = ggml_backend_buffer_get_base(buffer); + size_t align = ggml_backend_buffer_get_alignment(buffer); + + assert(align && !(align & (align - 1))); // power of 2 + + struct ggml_tallocr talloc = (struct ggml_tallocr) { + /*.buffer = */ buffer, + /*.base = */ base, + /*.alignment = */ align, + /*.offset = */ aligned_offset(base, 0, align), + }; + return talloc; +} + +void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor) { + size_t size = ggml_backend_buffer_get_alloc_size(talloc->buffer, tensor); + size = GGML_PAD(size, talloc->alignment); + + if (talloc->offset + size > ggml_backend_buffer_get_size(talloc->buffer)) { + fprintf(stderr, "%s: not enough space in the buffer to allocate %s (needed %zu, available %zu)\n", + __func__, tensor->name, size, ggml_backend_buffer_get_size(talloc->buffer) - talloc->offset); + GGML_ASSERT(!"not enough space in the buffer"); + return; + } + + void * addr = (char *)ggml_backend_buffer_get_base(talloc->buffer) + talloc->offset; + talloc->offset += size; + + assert(((uintptr_t)addr % talloc->alignment) == 0); + + ggml_backend_tensor_alloc(talloc->buffer, tensor, addr); +} + +// dynamic tensor allocator + +struct free_block { + size_t offset; + size_t size; +}; + +struct ggml_dyn_tallocr { + size_t alignment; + int n_free_blocks; + struct free_block free_blocks[MAX_FREE_BLOCKS]; + size_t max_size; + +#ifdef GGML_ALLOCATOR_DEBUG + struct { + const struct ggml_tensor * tensor; + size_t offset; + } allocated_tensors[1024]; +#endif +}; + +#ifdef GGML_ALLOCATOR_DEBUG +static void add_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) { + for (int i = 0; i < 1024; i++) { + if (alloc->allocated_tensors[i].tensor == NULL) { + alloc->allocated_tensors[i].tensor = tensor; + alloc->allocated_tensors[i].offset = offset; + return; + } + } + GGML_ASSERT(!"out of allocated_tensors"); +} +static void remove_allocated_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, const struct ggml_tensor * tensor) { + for (int i = 0; i < 1024; i++) { + if (alloc->allocated_tensors[i].offset == offset) { + alloc->allocated_tensors[i].tensor = NULL; + return; + } + } + fprintf(stderr, "tried to free tensor %s not found\n", tensor->name); + GGML_ASSERT(!"tensor not found"); +} +#endif + +static size_t ggml_dyn_tallocr_alloc(struct ggml_dyn_tallocr * alloc, size_t size, const struct ggml_tensor * tensor) { + size = aligned_offset(NULL, size, alloc->alignment); + + AT_PRINTF("%s: allocating %s (%zu bytes) - ", __func__, tensor->name, size); + + size_t max_avail = 0; + + // find the best fitting free block besides the last block + int best_fit_block = -1; + size_t best_fit_size = SIZE_MAX; + for (int i = 0; i < alloc->n_free_blocks - 1; i++) { + struct free_block * block = &alloc->free_blocks[i]; + max_avail = MAX(max_avail, block->size); + if (block->size >= size && block->size <= best_fit_size) { + best_fit_block = i; + best_fit_size = block->size; + } + } + + if (best_fit_block == -1) { + // the last block is our last resort + struct free_block * block = &alloc->free_blocks[alloc->n_free_blocks - 1]; + max_avail = MAX(max_avail, block->size); + if (block->size >= size) { + best_fit_block = alloc->n_free_blocks - 1; + } else { + // this should never happen + fprintf(stderr, "%s: not enough space in the buffer to allocate %zu bytes, largest block available %zu bytes\n", + __func__, size, max_avail); + GGML_ASSERT(!"not enough space in the buffer"); + GGML_UNREACHABLE(); + } + } + + struct free_block * block = &alloc->free_blocks[best_fit_block]; + size_t offset = block->offset; + block->offset = offset + size; + block->size -= size; + if (block->size == 0) { + // remove block if empty + alloc->n_free_blocks--; + for (int j = best_fit_block; j < alloc->n_free_blocks; j++) { + alloc->free_blocks[j] = alloc->free_blocks[j+1]; + } + } + + AT_PRINTF("block %d, offset %zu\n", best_fit_block, offset); + +#ifdef GGML_ALLOCATOR_DEBUG + add_allocated_tensor(alloc, offset, tensor); + size_t cur_max = offset + size; + if (cur_max > alloc->max_size) { + // sort allocated_tensors by offset + for (int i = 0; i < 1024; i++) { + for (int j = i + 1; j < 1024; j++) { + if (alloc->allocated_tensors[i].offset > alloc->allocated_tensors[j].offset) { + const struct ggml_tensor * tmp_tensor = alloc->allocated_tensors[i].tensor; + size_t tmp_offset = alloc->allocated_tensors[i].offset; + alloc->allocated_tensors[i].tensor = alloc->allocated_tensors[j].tensor; + alloc->allocated_tensors[i].offset = alloc->allocated_tensors[j].offset; + alloc->allocated_tensors[j].tensor = tmp_tensor; + alloc->allocated_tensors[j].offset = tmp_offset; + } + } + } + fprintf(stderr, "max_size = %.2f MB: tensors: ", cur_max / 1024.0 / 1024.0); + for (int i = 0; i < 1024; i++) { + if (alloc->allocated_tensors[i].tensor) { + fprintf(stderr, "%s [%zx-%zx] (%.2f MB) ", alloc->allocated_tensors[i].tensor->name, + alloc->allocated_tensors[i].offset, + alloc->allocated_tensors[i].offset + ggml_nbytes(alloc->allocated_tensors[i].tensor), + ggml_nbytes(alloc->allocated_tensors[i].tensor) / 1024.0 / 1024.0); + } + } + fprintf(stderr, "\n"); + } +#endif + + alloc->max_size = MAX(alloc->max_size, offset + size); + + return offset; + + GGML_UNUSED(tensor); +} + +// this is a very naive implementation, but for our case the number of free blocks should be very small +static void ggml_dyn_tallocr_free_tensor(struct ggml_dyn_tallocr * alloc, size_t offset, size_t size, const struct ggml_tensor * tensor) { + size = aligned_offset(NULL, size, alloc->alignment); + + AT_PRINTF("%s: freeing %s at %zu (%zu bytes) - n_free_blocks = %d\n", __func__, tensor->name, offset, size, alloc->n_free_blocks); + +#ifdef GGML_ALLOCATOR_DEBUG + remove_allocated_tensor(alloc, offset, tensor); +#endif + + // see if we can merge with an existing block + for (int i = 0; i < alloc->n_free_blocks; i++) { + struct free_block * block = &alloc->free_blocks[i]; + // check if ptr is at the end of the block + if (block->offset + block->size == offset) { + block->size += size; + // check if we can merge with the next block + if (i < alloc->n_free_blocks - 1 && block->offset + block->size == alloc->free_blocks[i+1].offset) { + block->size += alloc->free_blocks[i+1].size; + alloc->n_free_blocks--; + for (int j = i+1; j < alloc->n_free_blocks; j++) { + alloc->free_blocks[j] = alloc->free_blocks[j+1]; + } + } + return; + } + // check if ptr is at the beginning of the block + if (offset + size == block->offset) { + block->offset = offset; + block->size += size; + // check if we can merge with the previous block + if (i > 0 && alloc->free_blocks[i-1].offset + alloc->free_blocks[i-1].size == block->offset) { + alloc->free_blocks[i-1].size += block->size; + alloc->n_free_blocks--; + for (int j = i; j < alloc->n_free_blocks; j++) { + alloc->free_blocks[j] = alloc->free_blocks[j+1]; + } + } + return; + } + } + // otherwise, add a new block + GGML_ASSERT(alloc->n_free_blocks < MAX_FREE_BLOCKS && "out of free blocks"); + // insert the new block in the correct position to keep the array sorted by address (to make merging blocks faster) + int insert_pos = 0; + while (insert_pos < alloc->n_free_blocks && alloc->free_blocks[insert_pos].offset < offset) { + insert_pos++; + } + // shift all blocks from insert_pos onward to make room for the new block + for (int i = alloc->n_free_blocks; i > insert_pos; i--) { + alloc->free_blocks[i] = alloc->free_blocks[i-1]; + } + // insert the new block + alloc->free_blocks[insert_pos].offset = offset; + alloc->free_blocks[insert_pos].size = size; + alloc->n_free_blocks++; + + GGML_UNUSED(tensor); +} + +static void ggml_dyn_tallocr_reset(struct ggml_dyn_tallocr * alloc) { + alloc->n_free_blocks = 1; + alloc->free_blocks[0].offset = 0; + alloc->free_blocks[0].size = SIZE_MAX/2; // restrict maximum size of a measure allocator to half size_t max to avoid overflows + alloc->max_size = 0; +} + +static struct ggml_dyn_tallocr * ggml_dyn_tallocr_new(size_t alignment) { + struct ggml_dyn_tallocr * alloc = (struct ggml_dyn_tallocr *)malloc(sizeof(struct ggml_dyn_tallocr)); + + *alloc = (struct ggml_dyn_tallocr) { + /*.alignment = */ alignment, + /*.n_free_blocks = */ 0, + /*.free_blocks = */ {{0}}, + /*.max_size = */ 0, +#ifdef GGML_ALLOCATOR_DEBUG + /*.allocated_tensors = */ {{0}}, +#endif + }; + + ggml_dyn_tallocr_reset(alloc); + + return alloc; +} + +static void ggml_dyn_tallocr_free(struct ggml_dyn_tallocr * alloc) { + free(alloc); +} + +static size_t ggml_dyn_tallocr_max_size(struct ggml_dyn_tallocr * alloc) { + return alloc->max_size; +} + + +///////////////////////////////////// + +// graph allocator + +struct hash_node { + int n_children; + int n_views; + int buffer_id; + size_t offset; // offset within the buffer + bool allocated; +}; + +struct tensor_alloc { + size_t offset; + size_t size_max; // 0 = pre-allocated, unused, or view +}; + +struct leaf_alloc { + int buffer_id; + struct tensor_alloc leaf; +}; + +struct node_alloc { + int buffer_id; + struct tensor_alloc dst; + struct tensor_alloc src[GGML_MAX_SRC]; +}; + +struct ggml_gallocr { + ggml_backend_buffer_type_t * bufts; // [n_buffers] + ggml_backend_buffer_t * buffers; // [n_buffers] + struct ggml_dyn_tallocr ** buf_tallocs; // [n_buffers] + int n_buffers; + + struct ggml_hash_set hash_set; + struct hash_node * hash_values; // [hash_set.size] + + struct node_alloc * node_allocs; // [n_nodes] + int n_nodes; + + struct leaf_alloc * leaf_allocs; // [n_leafs] + int n_leafs; +}; + +ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs) { + ggml_gallocr_t galloc = (ggml_gallocr_t)calloc(sizeof(struct ggml_gallocr), 1); + GGML_ASSERT(galloc != NULL); + + galloc->bufts = calloc(sizeof(ggml_backend_buffer_type_t) * n_bufs, 1); + GGML_ASSERT(galloc->bufts != NULL); + + galloc->buffers = calloc(sizeof(ggml_backend_buffer_t) * n_bufs, 1); + GGML_ASSERT(galloc->buffers != NULL); + + galloc->buf_tallocs = calloc(sizeof(struct ggml_dyn_tallocr *) * n_bufs, 1); + GGML_ASSERT(galloc->buf_tallocs != NULL); + + for (int i = 0; i < n_bufs; i++) { + galloc->bufts[i] = bufts[i]; + galloc->buffers[i] = NULL; + size_t alignment = ggml_backend_buft_get_alignment(bufts[i]); + galloc->buf_tallocs[i] = ggml_dyn_tallocr_new(alignment); + } + galloc->n_buffers = n_bufs; + + return galloc; +} + +ggml_gallocr_t ggml_gallocr_new(ggml_backend_buffer_type_t buft) { + return ggml_gallocr_new_n(&buft, 1); +} + +void ggml_gallocr_free(ggml_gallocr_t galloc) { + if (galloc == NULL) { + return; + } + + for (int i = 0; i < galloc->n_buffers; i++) { + if (galloc->buffers != NULL) { + ggml_backend_buffer_free(galloc->buffers[i]); + } + if (galloc->buf_tallocs != NULL) { + ggml_dyn_tallocr_free(galloc->buf_tallocs[i]); + } + } + + free(galloc->hash_set.keys); + free(galloc->hash_values); + free(galloc->bufts); + free(galloc->buffers); + free(galloc->buf_tallocs); + free(galloc->node_allocs); + free(galloc->leaf_allocs); + free(galloc); +} + +typedef struct ggml_gallocr * ggml_gallocr_t; + +static struct hash_node * ggml_gallocr_hash_get(ggml_gallocr_t galloc, struct ggml_tensor * t) { + size_t i = ggml_hash_find_or_insert(galloc->hash_set, t); + return &galloc->hash_values[i]; +} + +static bool ggml_gallocr_is_own(ggml_gallocr_t galloc, struct ggml_tensor * t) { + return ggml_gallocr_hash_get(galloc, t)->allocated; +} + +static void ggml_gallocr_set_node_offset(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id, size_t offset) { + struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); + hn->buffer_id = buffer_id; + hn->offset = offset; + hn->allocated = true; +} + +static bool ggml_gallocr_is_allocated(ggml_gallocr_t galloc, struct ggml_tensor * t) { + return t->data != NULL || ggml_gallocr_hash_get(galloc, t)->allocated; +} + +static void ggml_gallocr_allocate_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) { + struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); + + if (!ggml_gallocr_is_allocated(galloc, node) && !ggml_is_view(node)) { + hn->allocated = true; + assert(hn->offset == 0); + + // try to reuse a parent's buffer (inplace) + if (ggml_op_can_inplace(node->op)) { + for (int i = 0; i < GGML_MAX_SRC; i++) { + struct ggml_tensor * parent = node->src[i]; + if (parent == NULL) { + continue; + } + + // if the node's data is external, then we cannot re-use it + if (!ggml_gallocr_is_own(galloc, parent)) { + AT_PRINTF("not reusing parent %s for %s as %p is external\n", parent->name, node->name, parent->data); + continue; + } + + // outputs cannot be reused + if (parent->flags & GGML_TENSOR_FLAG_OUTPUT || (parent->view_src != NULL && parent->view_src->flags & GGML_TENSOR_FLAG_OUTPUT)) { + AT_PRINTF("not reusing parent %s for %s as it is an output\n", parent->name, node->name); + continue; + } + + if (!ggml_are_same_layout(node, parent)) { + AT_PRINTF("not reusing parent %s for %s as layouts are different\n", parent->name, node->name); + continue; + } + + struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent); + if (p_hn->n_children == 1 && p_hn->n_views == 0) { + if (ggml_is_view(parent)) { + struct ggml_tensor * view_src = parent->view_src; + struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src); + if (view_src_hn->n_views == 1 && view_src_hn->n_children == 0 && view_src->data == parent->data) { + AT_PRINTF("reusing view parent %s (%s) for %s\n", parent->name, view_src->name, node->name); + assert(view_src_hn->offset == p_hn->offset); + hn->buffer_id = p_hn->buffer_id; + hn->offset = p_hn->offset; + p_hn->allocated = false; // avoid freeing the parent + view_src_hn->allocated = false; + return; + } + } else { + AT_PRINTF("reusing parent %s for %s\n", parent->name, node->name); + hn->buffer_id = p_hn->buffer_id; + hn->offset = p_hn->offset; + p_hn->allocated = false; // avoid freeing the parent + return; + } + } + } + } + // allocate tensor from the buffer + struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id]; + ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id]; + size_t size = ggml_backend_buft_get_alloc_size(buft, node); + size_t offset = ggml_dyn_tallocr_alloc(alloc, size, node); + hn->buffer_id = buffer_id; + hn->offset = offset; + return; + } +} + +static void ggml_gallocr_free_node(ggml_gallocr_t galloc, struct ggml_tensor * node, int buffer_id) { + // graph outputs are never freed + if (node->flags & GGML_TENSOR_FLAG_OUTPUT) { + AT_PRINTF("not freeing output %s\n", node->name); + return; + } + + struct ggml_dyn_tallocr * alloc = galloc->buf_tallocs[buffer_id]; + ggml_backend_buffer_type_t buft = galloc->bufts[buffer_id]; + struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); + size_t offset = hn->offset; + size_t size = ggml_backend_buft_get_alloc_size(buft, node); + ggml_dyn_tallocr_free_tensor(alloc, offset, size, node); + hn->allocated = false; +} + +static int get_node_buffer_id(const int * node_buffer_ids, int i) { + return node_buffer_ids ? node_buffer_ids[i] : 0; +} + +static void ggml_gallocr_alloc_graph_impl(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) { + // clear hash tables + memset(galloc->hash_set.keys, 0, galloc->hash_set.size * sizeof(struct ggml_tensor *)); + memset(galloc->hash_values, 0, galloc->hash_set.size * sizeof(struct hash_node)); + + // allocate leafs + // these may be tensors that the application is not using in the graph, but may still want to allocate for other purposes + for (int i = 0; i < graph->n_leafs; i++) { + struct ggml_tensor * leaf = graph->leafs[i]; + ggml_gallocr_allocate_node(galloc, leaf, get_node_buffer_id(leaf_buffer_ids, i)); + } + + // count number of children and views + // allocate other graph inputs and leafs first to avoid overwriting them + for (int i = 0; i < graph->n_nodes; i++) { + struct ggml_tensor * node = graph->nodes[i]; + + // TODO: better way to add external dependencies + // GGML_OP_NONE does not appear normally in the graph nodes, but is used by ggml-backend to add dependencies to + // control when some tensors are allocated and freed. in this case, the dependencies are in `src`, but the node + // itself is never used and should not be considered a dependency + if (ggml_is_view(node) && node->op != GGML_OP_NONE) { + struct ggml_tensor * view_src = node->view_src; + ggml_gallocr_hash_get(galloc, view_src)->n_views += 1; + } + + if (node->flags & GGML_TENSOR_FLAG_INPUT) { + ggml_gallocr_allocate_node(galloc, graph->nodes[i], get_node_buffer_id(node_buffer_ids, i)); + } + + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * src = node->src[j]; + if (src == NULL) { + continue; + } + + ggml_gallocr_hash_get(galloc, src)->n_children += 1; + + // allocate explicit inputs + if (src->flags & GGML_TENSOR_FLAG_INPUT) { + ggml_gallocr_allocate_node(galloc, src, get_node_buffer_id(node_buffer_ids, i)); + } + } + } + + // allocate tensors + for (int i = 0; i < graph->n_nodes; i++) { + struct ggml_tensor * node = graph->nodes[i]; + int buffer_id = get_node_buffer_id(node_buffer_ids, i); + + // allocate parents (only leafs need to be allocated at this point) + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * parent = node->src[j]; + if (parent == NULL) { + continue; + } + ggml_gallocr_allocate_node(galloc, parent, buffer_id); + } + + // allocate node + ggml_gallocr_allocate_node(galloc, node, buffer_id); + + AT_PRINTF("exec: %s (%s) <= ", ggml_op_desc(node), node->name); + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * parent = node->src[j]; + if (parent == NULL) { + continue; + } + AT_PRINTF("%s", parent->name); + if (j < GGML_MAX_SRC - 1 && node->src[j + 1] != NULL) { + AT_PRINTF(", "); + } + } + AT_PRINTF("\n"); + + // update parents + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * parent = node->src[j]; + if (parent == NULL) { + continue; + } + struct hash_node * p_hn = ggml_gallocr_hash_get(galloc, parent); + p_hn->n_children -= 1; + + AT_PRINTF("parent %s: %d children, %d views, allocated: %d\n", + parent->name, p_hn->n_children, p_hn->n_views, p_hn->allocated); + + if (p_hn->n_children == 0 && p_hn->n_views == 0) { + if (ggml_is_view(parent)) { + struct ggml_tensor * view_src = parent->view_src; + struct hash_node * view_src_hn = ggml_gallocr_hash_get(galloc, view_src); + view_src_hn->n_views -= 1; + AT_PRINTF("view_src %s: %d children, %d views\n", + view_src->name, view_src_hn->n_children, view_src_hn->n_views); + if (view_src_hn->n_views == 0 && view_src_hn->n_children == 0 && view_src_hn->allocated) { + ggml_gallocr_free_node(galloc, view_src, buffer_id); + } + } + else if (p_hn->allocated) { + ggml_gallocr_free_node(galloc, parent, buffer_id); + } + } + AT_PRINTF("\n"); + } + } +} + +bool ggml_gallocr_reserve_n(ggml_gallocr_t galloc, struct ggml_cgraph * graph, const int * node_buffer_ids, const int * leaf_buffer_ids) { + size_t hash_size = graph->visited_hash_table.size; + + // initialize hash table + if (galloc->hash_set.size < hash_size) { + free(galloc->hash_set.keys); + free(galloc->hash_values); + galloc->hash_set.size = hash_size; + galloc->hash_set.keys = calloc(sizeof(struct ggml_tensor *), hash_size); + galloc->hash_values = calloc(sizeof(struct hash_node), hash_size); + GGML_ASSERT(galloc->hash_set.keys != NULL); + GGML_ASSERT(galloc->hash_values != NULL); + } else { + // reset hash table + memset(galloc->hash_set.keys, 0, sizeof(struct ggml_tensor *) * galloc->hash_set.size); + memset(galloc->hash_values, 0, sizeof(struct hash_node) * galloc->hash_set.size); + } + + // reset allocators + for (int i = 0; i < galloc->n_buffers; i++) { + ggml_dyn_tallocr_reset(galloc->buf_tallocs[i]); + } + + // allocate in hash table + ggml_gallocr_alloc_graph_impl(galloc, graph, node_buffer_ids, leaf_buffer_ids); + + // set the node_allocs from the hash table + if (galloc->n_nodes < graph->n_nodes) { + free(galloc->node_allocs); + galloc->node_allocs = calloc(sizeof(struct node_alloc), graph->n_nodes); + GGML_ASSERT(galloc->node_allocs != NULL); + } + galloc->n_nodes = graph->n_nodes; + for (int i = 0; i < graph->n_nodes; i++) { + struct ggml_tensor * node = graph->nodes[i]; + struct node_alloc * node_alloc = &galloc->node_allocs[i]; + node_alloc->buffer_id = get_node_buffer_id(node_buffer_ids, i); + if (node->view_src || node->data) { + node_alloc->dst.offset = SIZE_MAX; + node_alloc->dst.size_max = 0; + } else { + struct hash_node * hn = ggml_gallocr_hash_get(galloc, node); + node_alloc->dst.offset = hn->offset; + node_alloc->dst.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], node); + } + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * src = node->src[j]; + if (!src || src->view_src || src->data) { + node_alloc->src[j].offset = SIZE_MAX; + node_alloc->src[j].size_max = 0; + } else { + struct hash_node * hn = ggml_gallocr_hash_get(galloc, src); + node_alloc->src[j].offset = hn->offset; + node_alloc->src[j].size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], src); + } + } + } + if (galloc->n_leafs < graph->n_leafs) { + free(galloc->leaf_allocs); + galloc->leaf_allocs = calloc(sizeof(galloc->leaf_allocs[0]), graph->n_leafs); + GGML_ASSERT(galloc->leaf_allocs != NULL); + } + galloc->n_leafs = graph->n_leafs; + for (int i = 0; i < graph->n_leafs; i++) { + struct ggml_tensor * leaf = graph->leafs[i]; + struct hash_node * hn = ggml_gallocr_hash_get(galloc, leaf); + galloc->leaf_allocs[i].buffer_id = hn->buffer_id; + if (leaf->view_src || leaf->data) { + galloc->leaf_allocs[i].leaf.offset = SIZE_MAX; + galloc->leaf_allocs[i].leaf.size_max = 0; + } else { + galloc->leaf_allocs[i].leaf.offset = hn->offset; + galloc->leaf_allocs[i].leaf.size_max = ggml_backend_buft_get_alloc_size(galloc->bufts[hn->buffer_id], leaf); + } + } + + // reallocate buffers if needed + for (int i = 0; i < galloc->n_buffers; i++) { + size_t cur_size = galloc->buffers[i] ? ggml_backend_buffer_get_size(galloc->buffers[i]) : 0; + size_t new_size = ggml_dyn_tallocr_max_size(galloc->buf_tallocs[i]); + + // even if there are no tensors allocated in this buffer, we still need to allocate it to initialize views + if (new_size > cur_size || galloc->buffers[i] == NULL) { +#ifndef NDEBUG + fprintf(stderr, "%s: reallocating %s buffer from size %.02f MiB to %.02f MiB\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), cur_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0); +#endif + ggml_backend_buffer_free(galloc->buffers[i]); + galloc->buffers[i] = ggml_backend_buft_alloc_buffer(galloc->bufts[i], new_size); + if (galloc->buffers[i] == NULL) { + fprintf(stderr, "%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(galloc->bufts[i]), new_size); + return false; + } + } + } + + return true; +} + +bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph *graph) { + return ggml_gallocr_reserve_n(galloc, graph, NULL, NULL); +} + +static void ggml_gallocr_init_tensor(ggml_gallocr_t galloc, struct ggml_tensor * tensor, int buffer_id, struct tensor_alloc * tensor_alloc) { + assert(tensor->data || tensor->view_src || ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max); + + if (tensor->view_src != NULL) { + if (tensor->buffer == NULL) { + assert(tensor_alloc->offset == SIZE_MAX); + if (tensor->view_src->buffer == NULL) { + // this tensor was allocated without ggml-backend + return; + } + ggml_backend_view_init(galloc->buffers[buffer_id], tensor); + } + } else { + if (tensor->data == NULL) { + assert(tensor_alloc->offset != SIZE_MAX); + assert(ggml_backend_buffer_get_alloc_size(galloc->buffers[buffer_id], tensor) <= tensor_alloc->size_max); + void * base = ggml_backend_buffer_get_base(galloc->buffers[buffer_id]); + void * addr = (char *)base + tensor_alloc->offset; + ggml_backend_tensor_alloc(galloc->buffers[buffer_id], tensor, addr); + } else { + if (tensor->buffer == NULL) { + // this tensor was allocated without ggml-backend + return; + } + } + } +} + +static bool ggml_gallocr_node_needs_realloc(ggml_gallocr_t galloc, struct ggml_tensor * node, struct node_alloc * nalloc, struct tensor_alloc * talloc) { + ggml_backend_buffer_type_t buft = galloc->bufts[nalloc->buffer_id]; + size_t node_size = (node->data || node->view_src) ? 0 : ggml_backend_buft_get_alloc_size(buft, node); + return talloc->size_max >= node_size; +} + +static bool ggml_gallocr_needs_realloc(ggml_gallocr_t galloc, struct ggml_cgraph * graph) { + if (galloc->n_nodes != graph->n_nodes) { +#ifndef NDEBUG + fprintf(stderr, "%s: graph has different number of nodes\n", __func__); +#endif + return true; + } + + if (galloc->n_leafs != graph->n_leafs) { +#ifndef NDEBUG + fprintf(stderr, "%s: graph has different number of leafs\n", __func__); +#endif + return true; + } + + for (int i = 0; i < graph->n_nodes; i++) { + struct ggml_tensor * node = graph->nodes[i]; + struct node_alloc * node_alloc = &galloc->node_allocs[i]; + + if (!ggml_gallocr_node_needs_realloc(galloc, node, node_alloc, &node_alloc->dst)) { +#ifndef NDEBUG + fprintf(stderr, "%s: node %s is not valid\n", __func__, node->name); +#endif + return true; + } + + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * src = node->src[j]; + if (src == NULL) { + continue; + } + if (!ggml_gallocr_node_needs_realloc(galloc, src, node_alloc, &node_alloc->src[j])) { +#ifndef NDEBUG + fprintf(stderr, "%s: src %d (%s) of node %s is not valid\n", __func__, j, src->name, node->name); +#endif + return true; + } + } + } + + return false; +} + +bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph) { + if (ggml_gallocr_needs_realloc(galloc, graph)) { + if (galloc->n_buffers == 1) { +#ifndef NDEBUG + fprintf(stderr, "%s: reallocating buffers automatically\n", __func__); +#endif + if (!ggml_gallocr_reserve(galloc, graph)) { + return false; + } + } else { +#ifndef NDEBUG + fprintf(stderr, "%s: cannot reallocate multi buffer graph automatically, call reserve\n", __func__); +#endif + return false; + } + } + + // reset buffers + for (int i = 0; i < galloc->n_buffers; i++) { + if (galloc->buffers[i] != NULL) { + ggml_backend_buffer_reset(galloc->buffers[i]); + } + } + + // allocate the graph tensors from the previous assignments + // leafs + for (int i = 0; i < graph->n_leafs; i++) { + struct ggml_tensor * leaf = graph->leafs[i]; + struct leaf_alloc * leaf_alloc = &galloc->leaf_allocs[i]; + ggml_gallocr_init_tensor(galloc, leaf, leaf_alloc->buffer_id, &leaf_alloc->leaf); + } + // nodes + for (int i = 0; i < graph->n_nodes; i++) { + struct ggml_tensor * node = graph->nodes[i]; + struct node_alloc * node_alloc = &galloc->node_allocs[i]; + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * src = node->src[j]; + if (src == NULL) { + continue; + } + ggml_gallocr_init_tensor(galloc, src, node_alloc->buffer_id, &node_alloc->src[j]); + } + ggml_gallocr_init_tensor(galloc, node, node_alloc->buffer_id, &node_alloc->dst); + } + + return true; +} + +size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id) { + GGML_ASSERT(buffer_id >= 0 && buffer_id < galloc->n_buffers); + + if (galloc->buffers[buffer_id] == NULL) { + return 0; + } + return ggml_backend_buffer_get_size(galloc->buffers[buffer_id]); +} + +// utils + +static bool alloc_tensor_range(struct ggml_context * ctx, + struct ggml_tensor * first, struct ggml_tensor * last, + ggml_backend_buffer_type_t buft, size_t size, + ggml_backend_buffer_t ** buffers, size_t * n_buffers) { + ggml_backend_buffer_t buffer = ggml_backend_buft_alloc_buffer(buft, size); + if (buffer == NULL) { +#ifndef NDEBUG + fprintf(stderr, "%s: failed to allocate %s buffer of size %zu\n", __func__, ggml_backend_buft_name(buft), size); +#endif + for (size_t i = 0; i < *n_buffers; i++) { + ggml_backend_buffer_free(*buffers[i]); + } + free(*buffers); + return false; + } + + struct ggml_tallocr tallocr = ggml_tallocr_new(buffer); + + for (struct ggml_tensor * t = first; t != last; t = ggml_get_next_tensor(ctx, t)) { + if (t->data == NULL) { + if (t->view_src == NULL) { + ggml_tallocr_alloc(&tallocr, t); + } else if (t->buffer == NULL) { + ggml_backend_view_init(buffer, t); + } + } else { + if (t->view_src != NULL && t->buffer == NULL) { + // view of a pre-allocated tensor + ggml_backend_view_init(buffer, t); + } + } + } + + *buffers = realloc(*buffers, sizeof(ggml_backend_buffer_t) * (*n_buffers + 1)); + (*buffers)[(*n_buffers)++] = buffer; + + return true; +} + +ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft) { + GGML_ASSERT(ggml_get_no_alloc(ctx) == true); + + size_t alignment = ggml_backend_buft_get_alignment(buft); + size_t max_size = ggml_backend_buft_get_max_size(buft); + + ggml_backend_buffer_t * buffers = NULL; + size_t n_buffers = 0; + + size_t cur_buf_size = 0; + struct ggml_tensor * first = ggml_get_first_tensor(ctx); + for (struct ggml_tensor * t = first; t != NULL; t = ggml_get_next_tensor(ctx, t)) { + size_t this_size = 0; + if (t->data == NULL && t->view_src == NULL) { + this_size = GGML_PAD(ggml_backend_buft_get_alloc_size(buft, t), alignment); + } + + if (this_size > max_size) { + fprintf(stderr, "%s: tensor %s is too large to fit in a %s buffer (tensor size: %zu, max buffer size: %zu)\n", + __func__, t->name, + ggml_backend_buft_name(buft), + this_size, max_size); + for (size_t i = 0; i < n_buffers; i++) { + ggml_backend_buffer_free(buffers[i]); + } + free(buffers); + return NULL; + } + + if ((cur_buf_size + this_size) > max_size) { + // allocate tensors in the current buffer + if (!alloc_tensor_range(ctx, first, t, buft, cur_buf_size, &buffers, &n_buffers)) { + return NULL; + } + first = t; + cur_buf_size = this_size; + } else { + cur_buf_size += this_size; + } + } + + // allocate remaining tensors + if (cur_buf_size > 0) { + if (!alloc_tensor_range(ctx, first, NULL, buft, cur_buf_size, &buffers, &n_buffers)) { + return NULL; + } + } + + if (n_buffers == 0) { +#ifndef NDEBUG + fprintf(stderr, "%s: all tensors in the context are already allocated\n", __func__); +#endif + return NULL; + } + + ggml_backend_buffer_t buffer; + if (n_buffers == 1) { + buffer = buffers[0]; + } else { + buffer = ggml_backend_multi_buffer_alloc_buffer(buffers, n_buffers); + } + free(buffers); + return buffer; +} + +ggml_backend_buffer_t ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, ggml_backend_t backend) { + return ggml_backend_alloc_ctx_tensors_from_buft(ctx, ggml_backend_get_default_buffer_type(backend)); +} diff --git a/llama/ggml-alloc.h b/llama/ggml-alloc.h new file mode 100644 index 00000000..434c13b3 --- /dev/null +++ b/llama/ggml-alloc.h @@ -0,0 +1,76 @@ +#pragma once + +#include "ggml.h" + +#ifdef __cplusplus +extern "C" { +#endif + +typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t; +typedef struct ggml_backend_buffer * ggml_backend_buffer_t; +typedef struct ggml_backend * ggml_backend_t; + +// Tensor allocator +struct ggml_tallocr { + ggml_backend_buffer_t buffer; + void * base; + size_t alignment; + size_t offset; +}; + +GGML_API struct ggml_tallocr ggml_tallocr_new(ggml_backend_buffer_t buffer); +GGML_API void ggml_tallocr_alloc(struct ggml_tallocr * talloc, struct ggml_tensor * tensor); + +// Graph allocator +/* + Example usage: + ggml_gallocr_t galloc = ggml_gallocr_new(ggml_bacckend_cpu_buffer_type()); + + // optional: create a worst-case graph and reserve the buffers to avoid reallocations + ggml_gallocr_reserve(galloc, build_graph(max_batch)); + + // allocate the graph + struct ggml_cgraph * graph = build_graph(batch); + ggml_gallocr_alloc_graph(galloc, graph); + + printf("compute buffer size: %zu bytes\n", ggml_gallocr_get_buffer_size(galloc, 0)); + + // evaluate the graph + ggml_backend_graph_compute(backend, graph); +*/ + +// special tensor flags for use with the graph allocator: +// ggml_set_input(): all input tensors are allocated at the beginning of the graph in non-overlapping addresses +// ggml_set_output(): output tensors are never freed and never overwritten + +typedef struct ggml_gallocr * ggml_gallocr_t; + +GGML_API ggml_gallocr_t ggml_gallocr_new(ggml_backend_buffer_type_t buft); +GGML_API ggml_gallocr_t ggml_gallocr_new_n(ggml_backend_buffer_type_t * bufts, int n_bufs); +GGML_API void ggml_gallocr_free(ggml_gallocr_t galloc); + +// pre-allocate buffers from a measure graph - does not allocate or modify the graph +// call with a worst-case graph to avoid buffer reallocations +// not strictly required for single buffer usage: ggml_gallocr_alloc_graph will reallocate the buffers automatically if needed +// returns false if the buffer allocation failed +GGML_API bool ggml_gallocr_reserve(ggml_gallocr_t galloc, struct ggml_cgraph * graph); +GGML_API bool ggml_gallocr_reserve_n( + ggml_gallocr_t galloc, + struct ggml_cgraph * graph, + const int * node_buffer_ids, + const int * leaf_buffer_ids); + +// automatic reallocation if the topology changes when using a single buffer +// returns false if using multiple buffers and a re-allocation is needed (call ggml_gallocr_reserve_n first to set the node buffers) +GGML_API bool ggml_gallocr_alloc_graph(ggml_gallocr_t galloc, struct ggml_cgraph * graph); + +GGML_API size_t ggml_gallocr_get_buffer_size(ggml_gallocr_t galloc, int buffer_id); + +// Utils +// Create a buffer and allocate all the tensors in a ggml_context +GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors_from_buft(struct ggml_context * ctx, ggml_backend_buffer_type_t buft); +GGML_API struct ggml_backend_buffer * ggml_backend_alloc_ctx_tensors(struct ggml_context * ctx, ggml_backend_t backend); + +#ifdef __cplusplus +} +#endif diff --git a/llama/ggml-backend-impl.h b/llama/ggml-backend-impl.h new file mode 100644 index 00000000..f121e1de --- /dev/null +++ b/llama/ggml-backend-impl.h @@ -0,0 +1,141 @@ +#pragma once + +// ggml-backend internal header + +#include "ggml-backend.h" + +#ifdef __cplusplus +extern "C" { +#endif + + // + // Backend buffer + // + + // buffer type + typedef void * ggml_backend_buffer_type_context_t; + + struct ggml_backend_buffer_type_i { + const char * (*GGML_CALL get_name) (ggml_backend_buffer_type_t buft); + ggml_backend_buffer_t (*GGML_CALL alloc_buffer) (ggml_backend_buffer_type_t buft, size_t size); + size_t (*GGML_CALL get_alignment) (ggml_backend_buffer_type_t buft); // tensor alignment + size_t (*GGML_CALL get_max_size) (ggml_backend_buffer_type_t buft); // allocation max size + size_t (*GGML_CALL get_alloc_size) (ggml_backend_buffer_type_t buft, const struct ggml_tensor * tensor); // data size needed to allocate the tensor, including padding + bool (*GGML_CALL supports_backend)(ggml_backend_buffer_type_t buft, ggml_backend_t backend); // check if the buffer type is usable by the backend + // check if tensor data is in host memory + // should be equivalent to supports_backend(buft, ggml_backend_cpu_init()) + bool (*GGML_CALL is_host) (ggml_backend_buffer_type_t buft); + }; + + struct ggml_backend_buffer_type { + struct ggml_backend_buffer_type_i iface; + ggml_backend_buffer_type_context_t context; + }; + + // buffer + typedef void * ggml_backend_buffer_context_t; + + struct ggml_backend_buffer_i { + const char * (*GGML_CALL get_name) (ggml_backend_buffer_t buffer); + void (*GGML_CALL free_buffer)(ggml_backend_buffer_t buffer); + void * (*GGML_CALL get_base) (ggml_backend_buffer_t buffer); + void (*GGML_CALL init_tensor)(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); + void (*GGML_CALL set_tensor) (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); + void (*GGML_CALL get_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); + bool (*GGML_CALL cpy_tensor) (ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst); // dst is in the buffer, src may be in any buffer + void (*GGML_CALL clear) (ggml_backend_buffer_t buffer, uint8_t value); + void (*GGML_CALL reset) (ggml_backend_buffer_t buffer); // reset any internal state due to tensor initialization, such as tensor extras + }; + + struct ggml_backend_buffer { + struct ggml_backend_buffer_i iface; + ggml_backend_buffer_type_t buft; + ggml_backend_buffer_context_t context; + size_t size; + enum ggml_backend_buffer_usage usage; + }; + + GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init( + ggml_backend_buffer_type_t buft, + struct ggml_backend_buffer_i iface, + ggml_backend_buffer_context_t context, + size_t size); + + // do not use directly, use ggml_backend_tensor_copy instead + bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst); + + // buffer that contains a collection of buffers + GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers); + GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer); + GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage); + + // + // Backend + // + + typedef void * ggml_backend_context_t; + + struct ggml_backend_i { + const char * (*GGML_CALL get_name)(ggml_backend_t backend); + + void (*GGML_CALL free)(ggml_backend_t backend); + + // buffer allocation + ggml_backend_buffer_type_t (*GGML_CALL get_default_buffer_type)(ggml_backend_t backend); + + // (optional) asynchronous tensor data access + void (*GGML_CALL set_tensor_async)(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); + void (*GGML_CALL get_tensor_async)(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); + bool (*GGML_CALL cpy_tensor_async)(ggml_backend_t backend_src, ggml_backend_t backend_dst, const struct ggml_tensor * src, struct ggml_tensor * dst); + + // (optional) complete all pending operations + void (*GGML_CALL synchronize)(ggml_backend_t backend); + + // compute graph with a plan (not used currently) + ggml_backend_graph_plan_t (*GGML_CALL graph_plan_create) (ggml_backend_t backend, const struct ggml_cgraph * cgraph); + void (*GGML_CALL graph_plan_free) (ggml_backend_t backend, ggml_backend_graph_plan_t plan); + + // compute graph with a plan + enum ggml_status (*GGML_CALL graph_plan_compute)(ggml_backend_t backend, ggml_backend_graph_plan_t plan); + // compute graph without a plan (async) + enum ggml_status (*GGML_CALL graph_compute) (ggml_backend_t backend, struct ggml_cgraph * cgraph); + + // check if the backend supports an operation + bool (*GGML_CALL supports_op)(ggml_backend_t backend, const struct ggml_tensor * op); + + // check if the backend wants to run an operation, even if the weights are allocated in a CPU buffer + // these should be expensive operations with large batch sizes that may benefit from running on this backend + // even if the weight has to be copied from the CPU temporarily + bool (*GGML_CALL offload_op)(ggml_backend_t backend, const struct ggml_tensor * op); + + // (optional) event synchronization + ggml_backend_event_t (*GGML_CALL event_new) (ggml_backend_t backend); + void (*GGML_CALL event_free) (ggml_backend_event_t event); + void (*GGML_CALL event_record) (ggml_backend_event_t event); + void (*GGML_CALL event_wait) (ggml_backend_t backend, ggml_backend_event_t event); + void (*GGML_CALL event_synchronize) (ggml_backend_event_t event); + }; + + struct ggml_backend { + ggml_guid_t guid; + + struct ggml_backend_i iface; + ggml_backend_context_t context; + }; + + struct ggml_backend_event { + ggml_backend_t backend; + void * context; + }; + + // + // Backend registry + // + + typedef ggml_backend_t (*GGML_CALL ggml_backend_init_fn)(const char * params, void * user_data); + + GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data); + +#ifdef __cplusplus +} +#endif diff --git a/llama/ggml-backend.c b/llama/ggml-backend.c new file mode 100644 index 00000000..402d86ef --- /dev/null +++ b/llama/ggml-backend.c @@ -0,0 +1,2095 @@ +#include "ggml-backend-impl.h" +#include "ggml-alloc.h" +#include "ggml-impl.h" + +#include +#include +#include +#include +#include +#include + + +#define MAX(a, b) ((a) > (b) ? (a) : (b)) + +// backend buffer type + +const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) { + return buft->iface.get_name(buft); +} + +GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { + return buft->iface.alloc_buffer(buft, size); +} + +size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) { + return buft->iface.get_alignment(buft); +} + +size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) { + // get_max_size is optional, defaults to SIZE_MAX + if (buft->iface.get_max_size) { + return buft->iface.get_max_size(buft); + } + return SIZE_MAX; +} + +GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) { + // get_alloc_size is optional, defaults to ggml_nbytes + if (buft->iface.get_alloc_size) { + size_t size = buft->iface.get_alloc_size(buft, tensor); + assert(size >= ggml_nbytes(tensor)); + return size; + } + return ggml_nbytes(tensor); +} + +bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { + return buft->iface.supports_backend(buft, backend); +} + +bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) { + if (buft->iface.is_host) { + return buft->iface.is_host(buft); + } + return false; +} + +// backend buffer + +GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init( + ggml_backend_buffer_type_t buft, + struct ggml_backend_buffer_i iface, + ggml_backend_buffer_context_t context, + size_t size) { + ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer)); + + (*buffer) = (struct ggml_backend_buffer) { + /* .interface = */ iface, + /* .buft = */ buft, + /* .context = */ context, + /* .size = */ size, + /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY + }; + + return buffer; +} + +const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) { + return buffer->iface.get_name(buffer); +} + +void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) { + if (buffer == NULL) { + return; + } + + if (buffer->iface.free_buffer != NULL) { + buffer->iface.free_buffer(buffer); + } + free(buffer); +} + +size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) { + return buffer->size; +} + +void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) { + void * base = buffer->iface.get_base(buffer); + + GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL"); + + return base; +} + +GGML_CALL void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { + // init_tensor is optional + if (buffer->iface.init_tensor) { + buffer->iface.init_tensor(buffer, tensor); + } +} + +size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) { + return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer)); +} + +size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) { + return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer)); +} + +size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { + return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor); +} + +void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { + buffer->iface.clear(buffer, value); +} + +bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) { + return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer)); +} + +void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) { + buffer->usage = usage; + + // FIXME: add a generic callback to the buffer interface + if (ggml_backend_buffer_is_multi_buffer(buffer)) { + ggml_backend_multi_buffer_set_usage(buffer, usage); + } +} + +ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) { + return buffer->buft; +} + +void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) { + if (buffer->iface.reset) { + buffer->iface.reset(buffer); + } +} + +bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) { + ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer; + if (dst_buf->iface.cpy_tensor) { + return src->buffer->iface.cpy_tensor(dst_buf, src, dst); + } + return false; +} + +// backend + +ggml_guid_t ggml_backend_guid(ggml_backend_t backend) { + if (backend == NULL) { + return NULL; + } + return backend->guid; +} + +const char * ggml_backend_name(ggml_backend_t backend) { + if (backend == NULL) { + return "NULL"; + } + return backend->iface.get_name(backend); +} + +void ggml_backend_free(ggml_backend_t backend) { + if (backend == NULL) { + return; + } + + backend->iface.free(backend); +} + +ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) { + return backend->iface.get_default_buffer_type(backend); +} + +ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) { + return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size); +} + +size_t ggml_backend_get_alignment(ggml_backend_t backend) { + return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend)); +} + +size_t ggml_backend_get_max_size(ggml_backend_t backend) { + return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend)); +} + +void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); + GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds"); + + if (backend->iface.set_tensor_async == NULL) { + ggml_backend_tensor_set(tensor, data, offset, size); + } else { + backend->iface.set_tensor_async(backend, tensor, data, offset, size); + } +} + +void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { + GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); + GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds"); + + if (backend->iface.get_tensor_async == NULL) { + ggml_backend_tensor_get(tensor, data, offset, size); + } else { + backend->iface.get_tensor_async(backend, tensor, data, offset, size); + } +} + +GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; + + GGML_ASSERT(buf != NULL && "tensor buffer not set"); + GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); + GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds"); + + if (!size) { + return; + } + + buf->iface.set_tensor(buf, tensor, data, offset, size); +} + +GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { + ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; + + GGML_ASSERT(buf != NULL && "tensor buffer not set"); + GGML_ASSERT(tensor->data != NULL && "tensor not allocated"); + GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds"); + + if (!size) { + return; + } + + buf->iface.get_tensor(buf, tensor, data, offset, size); +} + +void ggml_backend_synchronize(ggml_backend_t backend) { + if (backend->iface.synchronize == NULL) { + return; + } + + backend->iface.synchronize(backend); +} + +ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) { + GGML_ASSERT(backend->iface.graph_plan_create != NULL); + + return backend->iface.graph_plan_create(backend, cgraph); +} + +void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { + GGML_ASSERT(backend->iface.graph_plan_free != NULL); + + backend->iface.graph_plan_free(backend, plan); +} + +enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { + GGML_ASSERT(backend->iface.graph_plan_compute != NULL); + + return backend->iface.graph_plan_compute(backend, plan); +} + +enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { + enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph); + ggml_backend_synchronize(backend); + return err; +} + +enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) { + return backend->iface.graph_compute(backend, cgraph); +} + +bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { + return backend->iface.supports_op(backend, op); +} + +bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) { + if (backend->iface.offload_op != NULL) { + return backend->iface.offload_op(backend, op); + } + return false; +} + +// backend copy + +static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) { + if (a->type != b->type) { + return false; + } + for (int i = 0; i < GGML_MAX_DIMS; i++) { + if (a->ne[i] != b->ne[i]) { + return false; + } + if (a->nb[i] != b->nb[i]) { + return false; + } + } + return true; +} + +void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) { + GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts"); + + if (src == dst) { + return; + } + + if (ggml_backend_buffer_is_host(src->buffer)) { + ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src)); + } else if (ggml_backend_buffer_is_host(dst->buffer)) { + ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src)); + } else if (!ggml_backend_buffer_copy_tensor(src, dst)) { +#ifndef NDEBUG + fprintf(stderr, "%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer)); +#endif + size_t nbytes = ggml_nbytes(src); + void * data = malloc(nbytes); + ggml_backend_tensor_get(src, data, 0, nbytes); + ggml_backend_tensor_set(dst, data, 0, nbytes); + free(data); + } +} + +void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) { + GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts"); + + if (src == dst) { + return; + } + + if (backend_dst->iface.cpy_tensor_async != NULL) { + if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) { + return; + } + } + + // an async copy would normally happen after all the queued operations on both backends are completed + // sync src, set_async dst + if (ggml_backend_buffer_is_host(src->buffer)) { + ggml_backend_synchronize(backend_src); + ggml_backend_tensor_set_async(backend_dst, dst, src->data, 0, ggml_nbytes(src)); + } else { + ggml_backend_synchronize(backend_src); + ggml_backend_tensor_copy(src, dst); + ggml_backend_synchronize(backend_dst); + } +} + +// events + +ggml_backend_event_t ggml_backend_event_new(ggml_backend_t backend) { + if (backend->iface.event_new == NULL) { + return NULL; + } + return backend->iface.event_new(backend); +} + +void ggml_backend_event_free(ggml_backend_event_t event) { + if (event == NULL) { + return; + } + event->backend->iface.event_free(event); +} + +void ggml_backend_event_record(ggml_backend_event_t event) { + GGML_ASSERT(event->backend->iface.event_record != NULL); + + event->backend->iface.event_record(event); +} + +void ggml_backend_event_synchronize(ggml_backend_event_t event) { + GGML_ASSERT(event->backend->iface.event_synchronize != NULL); + + event->backend->iface.event_synchronize(event); +} + +void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) { + GGML_ASSERT(backend->iface.event_wait != NULL); + + backend->iface.event_wait(backend, event); +} + +// backend registry + +#define GGML_REG_MAX_BACKENDS 16 + +struct ggml_backend_reg { + char name[128]; + ggml_backend_init_fn init_fn; + ggml_backend_buffer_type_t default_buffer_type; + void * user_data; +}; + +static struct ggml_backend_reg ggml_backend_registry[GGML_REG_MAX_BACKENDS]; +static size_t ggml_backend_registry_count = 0; + +GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data); + +GGML_CALL static void ggml_backend_registry_init(void) { + static bool initialized = false; + + if (initialized) { + return; + } + + initialized = true; + + ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL); + + // add forward decls here to avoid including the backend headers +#ifdef GGML_USE_CUDA + extern GGML_CALL void ggml_backend_cuda_reg_devices(void); + ggml_backend_cuda_reg_devices(); +#endif + +#ifdef GGML_USE_SYCL + extern void ggml_backend_sycl_reg_devices(void); + ggml_backend_sycl_reg_devices(); +#endif + +#ifdef GGML_USE_METAL + extern GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data); + extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void); + ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL); +#endif + +#ifdef GGML_USE_VULKAN + extern GGML_CALL int ggml_backend_vk_reg_devices(void); + ggml_backend_vk_reg_devices(); +#endif + +#ifdef GGML_USE_KOMPUTE + extern GGML_CALL void ggml_backend_kompute_reg_devices(void); + ggml_backend_kompute_reg_devices(); +#endif +} + +GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) { + GGML_ASSERT(ggml_backend_registry_count < GGML_REG_MAX_BACKENDS); + + size_t id = ggml_backend_registry_count; + + ggml_backend_registry[id] = (struct ggml_backend_reg) { + /* .name = */ {0}, + /* .fn = */ init_fn, + /* .default_buffer_type = */ default_buffer_type, + /* .user_data = */ user_data, + }; + + snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name); + +#ifndef NDEBUG + fprintf(stderr, "%s: registered backend %s\n", __func__, name); +#endif + + ggml_backend_registry_count++; +} + +size_t ggml_backend_reg_get_count(void) { + ggml_backend_registry_init(); + + return ggml_backend_registry_count; +} + +size_t ggml_backend_reg_find_by_name(const char * name) { + ggml_backend_registry_init(); + + for (size_t i = 0; i < ggml_backend_registry_count; i++) { + // TODO: case insensitive in a portable way + if (strcmp(ggml_backend_registry[i].name, name) == 0) { + return i; + } + } + + // not found + return SIZE_MAX; +} + +// init from backend:params string +ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) { + ggml_backend_registry_init(); + + const char * params = strchr(backend_str, ':'); + char backend_name[128]; + if (params == NULL) { + snprintf(backend_name, sizeof(backend_name), "%s", backend_str); + params = ""; + } else { + snprintf(backend_name, sizeof(backend_name), "%.*s", (int)(params - backend_str), backend_str); + params++; + } + + size_t backend_i = ggml_backend_reg_find_by_name(backend_name); + + if (backend_i == SIZE_MAX) { + fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name); + return NULL; + } + + return ggml_backend_reg_init_backend(backend_i, params); +} + +const char * ggml_backend_reg_get_name(size_t i) { + ggml_backend_registry_init(); + + GGML_ASSERT(i < ggml_backend_registry_count); + return ggml_backend_registry[i].name; +} + +ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) { + ggml_backend_registry_init(); + + GGML_ASSERT(i < ggml_backend_registry_count); + return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data); +} + +ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) { + ggml_backend_registry_init(); + + GGML_ASSERT(i < ggml_backend_registry_count); + return ggml_backend_registry[i].default_buffer_type; +} + +ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) { + ggml_backend_registry_init(); + + GGML_ASSERT(i < ggml_backend_registry_count); + return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size); +} + +// backend CPU + +static const size_t TENSOR_ALIGNMENT = 32; // required for mmap as gguf only guarantees 32-byte alignment + +GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) { + return "CPU"; + + GGML_UNUSED(buffer); +} + +GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) { + uintptr_t data = (uintptr_t)buffer->context; + + // align the buffer + if (data % TENSOR_ALIGNMENT != 0) { + data = GGML_PAD(data, TENSOR_ALIGNMENT); + } + + return (void *)data; +} + +GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) { + free(buffer->context); +} + +GGML_CALL static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + memcpy((char *)tensor->data + offset, data, size); + + GGML_UNUSED(buffer); +} + +GGML_CALL static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { + memcpy(data, (const char *)tensor->data + offset, size); + + GGML_UNUSED(buffer); +} + +GGML_CALL static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) { + if (ggml_backend_buffer_is_host(src->buffer)) { + memcpy(dst->data, src->data, ggml_nbytes(src)); + return true; + } + return false; + + GGML_UNUSED(buffer); +} + +GGML_CALL static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { + memset(buffer->context, value, buffer->size); +} + +static struct ggml_backend_buffer_i cpu_backend_buffer_i = { + /* .get_name = */ ggml_backend_cpu_buffer_name, + /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer, + /* .get_base = */ ggml_backend_cpu_buffer_get_base, + /* .init_tensor = */ NULL, // no initialization required + /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor, + /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor, + /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor, + /* .clear = */ ggml_backend_cpu_buffer_clear, + /* .reset = */ NULL, +}; + +// for buffers from ptr, free is not called +static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = { + /* .get_name = */ ggml_backend_cpu_buffer_name, + /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed + /* .get_base = */ ggml_backend_cpu_buffer_get_base, + /* .init_tensor = */ NULL, // no initialization required + /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor, + /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor, + /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor, + /* .clear = */ ggml_backend_cpu_buffer_clear, + /* .reset = */ NULL, +}; + +GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) { + return "CPU"; + + GGML_UNUSED(buft); +} + +GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { + size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned + void * data = malloc(size); // TODO: use GGML_ALIGNED_MALLOC (move to ggml-impl.h) + if (data == NULL) { + fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size); + return NULL; + } + + return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size); +} + +GGML_CALL static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { + return TENSOR_ALIGNMENT; + + GGML_UNUSED(buft); +} + +GGML_CALL static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { + return ggml_backend_is_cpu(backend); + + GGML_UNUSED(buft); +} + +GGML_CALL static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) { + return true; + + GGML_UNUSED(buft); +} + +GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) { + static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = { + /* .iface = */ { + /* .get_name = */ ggml_backend_cpu_buffer_type_get_name, + /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer, + /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment, + /* .get_max_size = */ NULL, // defaults to SIZE_MAX + /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes + /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend, + /* .is_host = */ ggml_backend_cpu_buffer_type_is_host, + }, + /* .context = */ NULL, + }; + + return &ggml_backend_cpu_buffer_type; +} + +#ifdef GGML_USE_CPU_HBM + +// buffer type HBM + +#include + +GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) { + return "CPU_HBM"; + + GGML_UNUSED(buft); +} + +GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) { + return "CPU_HBM"; + + GGML_UNUSED(buf); +} + +GGML_CALL static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) { + hbw_free(buffer->context); +} + +GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { + //void * ptr = hbw_malloc(size); + void * ptr; + int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size); + if (result != 0) { + fprintf(stderr, "failed to allocate HBM buffer of size %zu\n", size); + return NULL; + } + + ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size); + buffer->buft = buft; + buffer->iface.get_name = ggml_backend_cpu_hbm_buffer_get_name; + buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer; + + return buffer; +} + +ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) { + static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = { + /* .iface = */ { + /* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name, + /* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer, + /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment, + /* .get_max_size = */ NULL, // defaults to SIZE_MAX + /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes + /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend, + /* .is_host = */ ggml_backend_cpu_buffer_type_is_host, + }, + /* .context = */ NULL, + }; + + return &ggml_backend_cpu_buffer_type_hbm; +} +#endif + +struct ggml_backend_cpu_context { + int n_threads; + void * work_data; + size_t work_size; + + ggml_abort_callback abort_callback; + void * abort_callback_data; +}; + +GGML_CALL static const char * ggml_backend_cpu_name(ggml_backend_t backend) { + return "CPU"; + + GGML_UNUSED(backend); +} + +GGML_CALL static void ggml_backend_cpu_free(ggml_backend_t backend) { + struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; + free(cpu_ctx->work_data); + free(cpu_ctx); + free(backend); +} + +GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) { + return ggml_backend_cpu_buffer_type(); + + GGML_UNUSED(backend); +} + +struct ggml_backend_plan_cpu { + struct ggml_cplan cplan; + struct ggml_cgraph cgraph; +}; + +GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) { + struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; + + struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu)); + + cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads); + cpu_plan->cgraph = *cgraph; // FIXME: deep copy + + if (cpu_plan->cplan.work_size > 0) { + cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size); + if (cpu_plan->cplan.work_data == NULL) { + free(cpu_plan); + return NULL; + } + } + + cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback; + cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data; + + return cpu_plan; +} + +GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { + struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan; + + free(cpu_plan->cplan.work_data); + free(cpu_plan); + + GGML_UNUSED(backend); +} + +GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) { + struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan; + + return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan); + + GGML_UNUSED(backend); +} + +GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { + struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context; + + struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads); + + if (cpu_ctx->work_size < cplan.work_size) { + free(cpu_ctx->work_data); + cpu_ctx->work_data = malloc(cplan.work_size); + if (cpu_ctx->work_data == NULL) { + cpu_ctx->work_size = 0; + return GGML_STATUS_ALLOC_FAILED; + } + cpu_ctx->work_size = cplan.work_size; + } + cplan.work_data = cpu_ctx->work_data; + + cplan.abort_callback = cpu_ctx->abort_callback; + cplan.abort_callback_data = cpu_ctx->abort_callback_data; + + return ggml_graph_compute(cgraph, &cplan); +} + +GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { + switch (op->op) { + case GGML_OP_CPY: + return op->type != GGML_TYPE_IQ2_XXS && op->type != GGML_TYPE_IQ2_XS && op->type != GGML_TYPE_IQ1_S; // missing type_traits.from_float + case GGML_OP_MUL_MAT: + return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type; + default: + return true; + } + + GGML_UNUSED(backend); +} + +static struct ggml_backend_i cpu_backend_i = { + /* .get_name = */ ggml_backend_cpu_name, + /* .free = */ ggml_backend_cpu_free, + /* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type, + /* .set_tensor_async = */ NULL, + /* .get_tensor_async = */ NULL, + /* .cpy_tensor_async = */ NULL, + /* .synchronize = */ NULL, + /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create, + /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free, + /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute, + /* .graph_compute = */ ggml_backend_cpu_graph_compute, + /* .supports_op = */ ggml_backend_cpu_supports_op, + /* .offload_op = */ NULL, + /* .event_new = */ NULL, + /* .event_free = */ NULL, + /* .event_record = */ NULL, + /* .event_wait = */ NULL, + /* .event_synchronize = */ NULL, +}; + +static ggml_guid_t ggml_backend_cpu_guid(void) { + static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 }; + return &guid; +} + +ggml_backend_t ggml_backend_cpu_init(void) { + struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context)); + if (ctx == NULL) { + return NULL; + } + + ctx->n_threads = GGML_DEFAULT_N_THREADS; + ctx->work_data = NULL; + ctx->work_size = 0; + ctx->abort_callback = NULL; + ctx->abort_callback_data = NULL; + + ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend)); + if (cpu_backend == NULL) { + free(ctx); + return NULL; + } + + *cpu_backend = (struct ggml_backend) { + /* .guid = */ ggml_backend_cpu_guid(), + /* .interface = */ cpu_backend_i, + /* .context = */ ctx + }; + return cpu_backend; +} + +GGML_CALL bool ggml_backend_is_cpu(ggml_backend_t backend) { + return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid()); +} + +void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) { + GGML_ASSERT(ggml_backend_is_cpu(backend_cpu)); + + struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context; + ctx->n_threads = n_threads; +} + +void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) { + GGML_ASSERT(ggml_backend_is_cpu(backend_cpu)); + + struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context; + ctx->abort_callback = abort_callback; + ctx->abort_callback_data = abort_callback_data; +} + +GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) { + GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned"); + return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size); +} + +GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) { + return ggml_backend_cpu_init(); + + GGML_UNUSED(params); + GGML_UNUSED(user_data); +} + +// multi-buffer buffer + +struct ggml_backend_multi_buffer_context { + ggml_backend_buffer_t * buffers; + size_t n_buffers; +}; + +typedef struct ggml_backend_multi_buffer_context * ggml_backend_multi_buffer_context_t; + +GGML_CALL static const char * ggml_backend_multi_buffer_get_name(ggml_backend_buffer_t buffer) { + ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context; + + return ctx->buffers[0]->iface.get_name(ctx->buffers[0]); +} + +GGML_CALL static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) { + ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context; + for (size_t i = 0; i < ctx->n_buffers; i++) { + ggml_backend_buffer_free(ctx->buffers[i]); + } + + free(ctx->buffers); + free(ctx); +} + +GGML_CALL static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { + ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context; + for (size_t i = 0; i < ctx->n_buffers; i++) { + ggml_backend_buffer_clear(ctx->buffers[i], value); + } +} + +static struct ggml_backend_buffer_i ggml_backend_multi_buffer_context_interface(void) { + static struct ggml_backend_buffer_i multi_backend_buffer_i = { + /* .get_name = */ ggml_backend_multi_buffer_get_name, + /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer, + /* .get_base = */ NULL, + /* .init_tensor = */ NULL, + /* .set_tensor = */ NULL, + /* .get_tensor = */ NULL, + /* .cpy_tensor = */ NULL, + /* .clear = */ ggml_backend_multi_buffer_clear, + /* .reset = */ NULL, + }; + + return multi_backend_buffer_i; +} + +GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) { + ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) malloc(sizeof(struct ggml_backend_multi_buffer_context)); + ctx->n_buffers = n_buffers; + ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t)); + + GGML_ASSERT(ctx->buffers != NULL); + + size_t total_size = 0; + for (size_t i = 0; i < n_buffers; i++) { + ctx->buffers[i] = buffers[i]; + total_size += ggml_backend_buffer_get_size(buffers[i]); + } + + return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_context_interface(), ctx, total_size); +} + +GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) { + return buffer->iface.get_name == ggml_backend_multi_buffer_get_name; +} + +GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) { + GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer)); + ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context; + for (size_t i = 0; i < ctx->n_buffers; i++) { + ggml_backend_buffer_set_usage(ctx->buffers[i], usage); + } +} + +// creates a copy of the tensor with the same memory layout +static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) { + struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor); + for (int i = 0; i < GGML_MAX_DIMS; i++) { + dup->nb[i] = tensor->nb[i]; + } + return dup; +} + +static bool ggml_is_view_op(enum ggml_op op) { + return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE; +} + +// scheduler + +#ifndef GGML_SCHED_MAX_BACKENDS +#define GGML_SCHED_MAX_BACKENDS 16 +#endif + +#ifndef GGML_SCHED_MAX_SPLITS +#define GGML_SCHED_MAX_SPLITS 2048 +#endif + +#ifndef GGML_SCHED_MAX_SPLIT_INPUTS +#define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC +#endif + +#ifndef GGML_SCHED_MAX_COPIES +#define GGML_SCHED_MAX_COPIES 4 +#endif + +struct ggml_backend_sched_split { + int backend_id; + int i_start; + int i_end; + struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS]; + int n_inputs; + // graph view of this split + struct ggml_cgraph graph; +}; + +struct ggml_backend_sched { + bool is_reset; // true if the scheduler has been reset since the last graph split + bool is_alloc; + + int n_backends; + + ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS]; + ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS]; + ggml_gallocr_t galloc; + + // hash keys of the nodes in the graph + struct ggml_hash_set hash_set; + // hash values + int * tensor_backend_id; + struct ggml_tensor * (* tensor_copies)[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES]; + + int * node_backend_ids; // [graph_size] + int * leaf_backend_ids; // [graph_size] + + // copy of the graph with modified inputs + struct ggml_cgraph * graph; + + // graph splits + struct ggml_backend_sched_split * splits; + int n_splits; + int splits_capacity; + + // pipeline parallelism support + int n_copies; + int cur_copy; + ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES]; + struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS]; + int n_graph_inputs; + + struct ggml_context * ctx; + + ggml_backend_sched_eval_callback callback_eval; + void * callback_eval_user_data; + + // align context_buffer to GGML_MEM_ALIGN +#ifdef _MSC_VER + __declspec(align(GGML_MEM_ALIGN)) +#else + __attribute__((aligned(GGML_MEM_ALIGN))) +#endif + char context_buffer[GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)]; +}; + +#define hash_id(tensor) ggml_hash_find_or_insert(sched->hash_set, tensor) +#define tensor_backend_id(tensor) sched->tensor_backend_id[hash_id(tensor)] + +// returns the priority of the backend, lower id is higher priority +static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) { + for (int i = 0; i < sched->n_backends; i++) { + if (sched->backends[i] == backend) { + return i; + } + } + return -1; +} + +static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor) { + ggml_backend_buffer_t buffer = tensor->buffer; + if (buffer == NULL) { + return -1; + } + + // find highest prio backend that supports the buffer type + for (int i = 0; i < sched->n_backends; i++) { + if (ggml_backend_buft_supports_backend(buffer->buft, sched->backends[i])) { + return i; + } + } + + fprintf(stderr, "%s: error: no backend supports buffer type %s used in tensor %s\n", + __func__, ggml_backend_buffer_name(buffer), tensor->name); + GGML_ASSERT(false); + + return -1; +} + +#if 0 +static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only +#define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__) +#define GET_CAUSE(node) causes[hash_id(node)] +#else +#define SET_CAUSE(node, ...) +#define GET_CAUSE(node) "" +#endif + +// returns the backend that should be used for the node based on the current locations +static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) { + // TODO: use supports_op to check if the backend supports the op + + // assign pre-allocated nodes to their backend + int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor); + if (cur_backend_id != -1) { + SET_CAUSE(tensor, "1.dst"); + return cur_backend_id; + } + + // view_src + if (tensor->view_src != NULL) { + cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src); + if (cur_backend_id != -1) { + SET_CAUSE(tensor, "1.vsrc"); + return cur_backend_id; + } + } + + // graph input + if (tensor->flags & GGML_TENSOR_FLAG_INPUT) { + cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU) + SET_CAUSE(tensor, "1.inp"); + return cur_backend_id; + } + + // assign nodes that use weights to the backend of the weights + // operations with weights are preferably run on the same backend as the weights + for (int i = 0; i < GGML_MAX_SRC; i++) { + const struct ggml_tensor * src = tensor->src[i]; + if (src == NULL) { + continue; + } + if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) { + int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src); + // check if a backend with higher prio wants to offload the op + if (src_backend_id == sched->n_backends - 1) { + for (int b = 0; b < src_backend_id; b++) { + if (ggml_backend_offload_op(sched->backends[b], tensor)) { + SET_CAUSE(tensor, "1.off"); + return b; + } + } + } + SET_CAUSE(tensor, "1.wgt%d", i); + return src_backend_id; + } + } + + return -1; +} + +static char * fmt_size(size_t size) { + static char buffer[128]; + if (size >= 1024*1024) { + sprintf(buffer, "%zuM", size/1024/1024); + } else { + sprintf(buffer, "%zuK", size/1024); + } + return buffer; +} + +static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { + int cur_split = 0; + for (int i = 0; i < graph->n_nodes; i++) { + if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) { + ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id]; + fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend), + sched->splits[cur_split].n_inputs); + for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) { + fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name, + fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j]))); + } + fprintf(stderr, "\n"); + cur_split++; + } + struct ggml_tensor * node = graph->nodes[i]; + if (ggml_is_view_op(node->op)) { + continue; + } + ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node); + fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name, + fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node)); + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * src = node->src[j]; + if (src == NULL) { + continue; + } + ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src); + fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name, + fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src)); + } + fprintf(stderr, "\n"); + } +} + +//#define DEBUG_PASS1 +//#define DEBUG_PASS2 +//#define DEBUG_PASS3 +//#define DEBUG_PASS4 + +// assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend +static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { + // reset splits + sched->n_splits = 0; + sched->n_graph_inputs = 0; + sched->is_reset = false; + + struct ggml_init_params params = { + /* .mem_size = */ sizeof(sched->context_buffer), + /* .mem_buffer = */ sched->context_buffer, + /* .no_alloc = */ true + }; + + ggml_free(sched->ctx); + + sched->ctx = ggml_init(params); + if (sched->ctx == NULL) { + fprintf(stderr, "%s: failed to initialize context\n", __func__); + GGML_ASSERT(false); + } + + // pass 1: assign backends to ops with pre-allocated inputs + for (int i = 0; i < graph->n_leafs; i++) { + struct ggml_tensor * leaf = graph->leafs[i]; + int * leaf_backend_id = &tensor_backend_id(leaf); + if (*leaf_backend_id != -1) { + // do not overwrite user assignments + continue; + } + *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf); + } + + for (int i = 0; i < graph->n_nodes; i++) { + struct ggml_tensor * node = graph->nodes[i]; + int * node_backend_id = &tensor_backend_id(node); + if (*node_backend_id != -1) { + // do not overwrite user assignments + continue; + } + *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node); + // src + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * src = node->src[j]; + if (src == NULL) { + continue; + } + int * src_backend_id = &tensor_backend_id(src); + if (*src_backend_id == -1) { + *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src); + } + } + } +#ifdef DEBUG_PASS1 + fprintf(stderr, "PASS 1 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph); +#endif + + // pass 2: expand current backend assignments + // assign the same backend to adjacent nodes + // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend) + // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops + + + // pass 2.2 expand gpu down + { + int cur_backend_id = -1; + for (int i = 0; i < graph->n_nodes; i++) { + struct ggml_tensor * node = graph->nodes[i]; + if (ggml_is_view_op(node->op)) { + continue; + } + int * node_backend_id = &tensor_backend_id(node); + if (*node_backend_id != -1) { + if (*node_backend_id == sched->n_backends - 1) { + // skip cpu (lowest prio backend) + cur_backend_id = -1; + } else { + cur_backend_id = *node_backend_id; + } + } else { + *node_backend_id = cur_backend_id; + SET_CAUSE(node, "2.2"); + } + } + } + // pass 2.1 expand gpu up + { + int cur_backend_id = -1; + for (int i = graph->n_nodes - 1; i >= 0; i--) { + struct ggml_tensor * node = graph->nodes[i]; + if (ggml_is_view_op(node->op)) { + continue; + } + int * node_backend_id = &tensor_backend_id(node); + if (*node_backend_id != -1) { + if (*node_backend_id == sched->n_backends - 1) { + // skip cpu (lowest prio backend) + cur_backend_id = -1; + } else { + cur_backend_id = *node_backend_id; + } + } else { + *node_backend_id = cur_backend_id; + SET_CAUSE(node, "2.1"); + } + } + } + // pass 2.4 expand rest down + { + int cur_backend_id = -1; + for (int i = 0; i < graph->n_nodes; i++) { + struct ggml_tensor * node = graph->nodes[i]; + if (ggml_is_view_op(node->op)) { + continue; + } + int * node_backend_id = &tensor_backend_id(node); + if (*node_backend_id != -1) { + cur_backend_id = *node_backend_id; + } else { + *node_backend_id = cur_backend_id; + SET_CAUSE(node, "2.4"); + } + } + } + // pass 2.3 expand rest up + { + int cur_backend_id = -1; + for (int i = graph->n_nodes - 1; i >= 0; i--) { + struct ggml_tensor * node = graph->nodes[i]; + if (ggml_is_view_op(node->op)) { + continue; + } + int * node_backend_id = &tensor_backend_id(node); + if (*node_backend_id != -1) { + cur_backend_id = *node_backend_id; + } else { + *node_backend_id = cur_backend_id; + SET_CAUSE(node, "2.3"); + } + } + } + +#ifdef DEBUG_PASS2 + fprintf(stderr, "PASS 2 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph); +#endif + + // pass 3: assign backends to remaining src from dst and view_src + for (int i = 0; i < graph->n_nodes; i++) { + struct ggml_tensor * node = graph->nodes[i]; + int * cur_backend_id = &tensor_backend_id(node); + if (node->view_src != NULL && *cur_backend_id == -1) { + *cur_backend_id = tensor_backend_id(node->view_src); + SET_CAUSE(node, "3.vsrc"); + } + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * src = node->src[j]; + if (src == NULL) { + continue; + } + int * src_backend_id = &tensor_backend_id(src); + if (*src_backend_id == -1) { + if (src->view_src != NULL) { + // views are always on the same backend as the source + *src_backend_id = tensor_backend_id(src->view_src); + SET_CAUSE(src, "3.vsrc"); + } else { + *src_backend_id = *cur_backend_id; + SET_CAUSE(src, "3.cur"); + } + } + } + } +#ifdef DEBUG_PASS3 + fprintf(stderr, "PASS 3 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph); +#endif + + // pass 4: split graph, find tensors that need to be copied + { + int i_split = 0; + struct ggml_backend_sched_split * split = &sched->splits[0]; + // find the backend of the first split, skipping view ops + for (int i = 0; i < graph->n_nodes; i++) { + struct ggml_tensor * node = graph->nodes[i]; + if (!ggml_is_view_op(node->op)) { + split->backend_id = tensor_backend_id(node); + break; + } + } + split->i_start = 0; + split->n_inputs = 0; + memset(split->inputs, 0, sizeof(split->inputs)); //HACK + int cur_backend_id = split->backend_id; + for (int i = 0; i < graph->n_nodes; i++) { + struct ggml_tensor * node = graph->nodes[i]; + + if (ggml_is_view_op(node->op)) { + continue; + } + + const int node_backend_id = tensor_backend_id(node); + + GGML_ASSERT(node_backend_id != -1); // all nodes should be assigned by now + + // check if we should start a new split based on the sources of the current node + bool need_new_split = false; + if (node_backend_id == cur_backend_id && split->n_inputs > 0) { + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * src = node->src[j]; + if (src == NULL) { + continue; + } + // check if a weight is on a different backend + // by starting a new split, the memory of the previously offloaded weights can be reused + if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) { + int src_backend_id = tensor_backend_id(src); + if (src_backend_id != -1 && src_backend_id != cur_backend_id) { + need_new_split = true; + break; + } + } + // check if the split has too many inputs + if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) { + const size_t id = hash_id(src); + int src_backend_id = sched->tensor_backend_id[id]; + if (src_backend_id != cur_backend_id && sched->tensor_copies[hash_id(src)][cur_backend_id][0] == NULL) { + //printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name); + need_new_split = true; + break; + } + } + } + } + + if (node_backend_id != cur_backend_id || need_new_split) { + split->i_end = i; + i_split++; + if (i_split >= sched->splits_capacity) { + sched->splits_capacity *= 2; + sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split)); + GGML_ASSERT(sched->splits != NULL); + } + GGML_ASSERT(i_split < GGML_SCHED_MAX_SPLITS); + split = &sched->splits[i_split]; + split->backend_id = node_backend_id; + split->i_start = i; + split->n_inputs = 0; + cur_backend_id = node_backend_id; + } + + // find inputs that are not on the same backend + for (int j = 0; j < GGML_MAX_SRC; j++) { + struct ggml_tensor * src = node->src[j]; + if (src == NULL) { + continue; + } + + const int src_backend_id = tensor_backend_id(src); + assert(src_backend_id != -1); // all inputs should be assigned by now + + if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) { + size_t id = hash_id(src); + if (sched->tensor_copies[id][src_backend_id][0] == NULL) { + ggml_backend_t backend = sched->backends[src_backend_id]; + for (int c = 0; c < sched->n_copies; c++) { + struct ggml_tensor * tensor_copy; + if (c == sched->cur_copy) { + tensor_copy = src; // use the original tensor as the current copy + } else { + tensor_copy = ggml_dup_tensor_layout(sched->ctx, src); + ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c); + } + if (sched->n_copies > 1) { + ggml_set_input(tensor_copy); + ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor + } + sched->tensor_copies[id][src_backend_id][c] = tensor_copy; + SET_CAUSE(tensor_copy, "4.cpy"); + } + int n_graph_inputs = sched->n_graph_inputs++; + GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS); + sched->graph_inputs[n_graph_inputs] = src; + } + } + + if (src_backend_id != node_backend_id) { + // create a copy of the input in the split's backend + const size_t id = hash_id(src); + if (sched->tensor_copies[id][cur_backend_id][0] == NULL) { + ggml_backend_t backend = sched->backends[cur_backend_id]; + for (int c = 0; c < sched->n_copies; c++) { + struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src); + ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c); + if (sched->n_copies > 1) { + ggml_set_input(tensor_copy); + ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor + } + sched->tensor_copies[id][cur_backend_id][c] = tensor_copy; + SET_CAUSE(tensor_copy, "4.cpy"); + } + int n_inputs = split->n_inputs++; + GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS); + split->inputs[n_inputs] = src; + } + node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy]; + } + } + } + split->i_end = graph->n_nodes; + sched->n_splits = i_split + 1; + } +#ifdef DEBUG_PASS4 + fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph); +#endif + + // create copies of the graph for each split + // TODO: avoid this copy + struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2, false); + for (int i = 0; i < sched->n_splits; i++) { + struct ggml_backend_sched_split * split = &sched->splits[i]; + split->graph = ggml_graph_view(graph, split->i_start, split->i_end); + + // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split + for (int j = 0; j < split->n_inputs; j++) { + assert(graph_copy->size > (graph_copy->n_nodes + 1)); + + struct ggml_tensor * input = split->inputs[j]; + const size_t input_id = hash_id(input); + struct ggml_tensor * input_cpy = sched->tensor_copies[input_id][split->backend_id][sched->cur_copy]; + + // add a dependency to the input source so that it is not freed before the copy is done + struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input); + input_dep->src[0] = input; + sched->node_backend_ids[graph_copy->n_nodes] = sched->tensor_backend_id[input_id]; + graph_copy->nodes[graph_copy->n_nodes++] = input_dep; + + // add a dependency to the input copy so that it is allocated at the start of the split + sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id; + graph_copy->nodes[graph_copy->n_nodes++] = input_cpy; + } + + for (int j = split->i_start; j < split->i_end; j++) { + assert(graph_copy->size > graph_copy->n_nodes); + sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]); + graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j]; + } + } + + if (sched->n_copies > 1) { + // add input copies as leafs so that they are allocated first + for (int i = 0; i < sched->n_graph_inputs; i++) { + struct ggml_tensor * input = sched->graph_inputs[i]; + size_t id = hash_id(input); + int backend_id = tensor_backend_id(input); + for (int c = 0; c < sched->n_copies; c++) { + struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c]; + sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id; + graph_copy->leafs[graph_copy->n_leafs++] = input_cpy; + } + } + + for (int i = 0; i < sched->n_splits; i++) { + struct ggml_backend_sched_split * split = &sched->splits[i]; + int backend_id = split->backend_id; + for (int j = 0; j < split->n_inputs; j++) { + struct ggml_tensor * input = split->inputs[j]; + size_t id = hash_id(input); + for (int c = 0; c < sched->n_copies; c++) { + struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c]; + sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id; + graph_copy->leafs[graph_copy->n_leafs++] = input_cpy; + } + } + } + } + + // add leafs from the original graph + for (int i = 0; i < graph->n_leafs; i++) { + struct ggml_tensor * leaf = graph->leafs[i]; + sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf); + graph_copy->leafs[graph_copy->n_leafs++] = leaf; + } + + sched->graph = graph_copy; +} + +static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) { + // allocate graph + if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) { + // the re-allocation may cause the split inputs to be moved to a different address + ggml_backend_sched_synchronize(sched); +#ifndef NDEBUG + fprintf(stderr, "%s: failed to allocate graph, reserving\n", __func__); +#endif + ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids); + if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) { + fprintf(stderr, "%s: failed to allocate graph\n", __func__); + return false; + } + } + + return true; +} + +static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) { + struct ggml_backend_sched_split * splits = sched->splits; + + for (int i = 0; i < sched->n_splits; i++) { + struct ggml_backend_sched_split * split = &splits[i]; + int split_backend_id = split->backend_id; + ggml_backend_t split_backend = sched->backends[split_backend_id]; + + // copy the input tensors to the split backend + for (int j = 0; j < split->n_inputs; j++) { + ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]); + struct ggml_tensor * input = split->inputs[j]; + struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id][sched->cur_copy]; + + if (input->flags & GGML_TENSOR_FLAG_INPUT) { + // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done + if (sched->events[split_backend_id][sched->cur_copy] != NULL) { + ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]); + } else { + ggml_backend_synchronize(split_backend); + } + ggml_backend_tensor_copy(input, input_cpy); + } else { + // wait for the split backend to finish using the input before overwriting it + if (sched->events[split_backend_id][sched->cur_copy] != NULL) { + ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]); + } else { + ggml_backend_synchronize(split_backend); + } + ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy); + } + } + + if (!sched->callback_eval) { + enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph); + if (ec != GGML_STATUS_SUCCESS) { + return ec; + } + } else { + // similar to ggml_backend_compare_graph_backend + for (int j0 = 0; j0 < split->graph.n_nodes; j0++) { + struct ggml_tensor * t = split->graph.nodes[j0]; + + // check if the user needs data from this node + bool need = sched->callback_eval(t, true, sched->callback_eval_user_data); + + int j1 = j0; + + // determine the range [j0, j1] of nodes that can be computed together + while (!need && j1 < split->graph.n_nodes - 1) { + t = split->graph.nodes[++j1]; + need = sched->callback_eval(t, true, sched->callback_eval_user_data); + } + + struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1); + + enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv); + if (ec != GGML_STATUS_SUCCESS) { + return ec; + } + + // TODO: pass backend to the callback, then the user can decide if they want to synchronize + ggml_backend_synchronize(split_backend); + + if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) { + break; + } + + j0 = j1; + } + } + + // record the event of this copy + if (split->n_inputs > 0) { + if (sched->events[split_backend_id][sched->cur_copy] != NULL) { + ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy]); + } + } + } + + sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies; + + return GGML_STATUS_SUCCESS; +} + +ggml_backend_sched_t ggml_backend_sched_new( + ggml_backend_t * backends, + ggml_backend_buffer_type_t * bufts, + int n_backends, + size_t graph_size, + bool parallel) { + GGML_ASSERT(n_backends > 0); + GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS); + GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU + + struct ggml_backend_sched * sched = calloc(sizeof(struct ggml_backend_sched), 1); + + // initialize hash table + sched->hash_set = ggml_hash_set_new(graph_size); + sched->tensor_backend_id = calloc(sizeof(sched->tensor_backend_id[0]), sched->hash_set.size); + sched->tensor_copies = calloc(sizeof(sched->tensor_copies[0]), sched->hash_set.size); + + const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2; + sched->node_backend_ids = calloc(sizeof(sched->node_backend_ids[0]), nodes_size); + sched->leaf_backend_ids = calloc(sizeof(sched->leaf_backend_ids[0]), nodes_size); + + sched->n_backends = n_backends; + + sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1; + + const int initial_splits_capacity = 16; + sched->splits = calloc(sizeof(sched->splits[0]), initial_splits_capacity); + sched->splits_capacity = initial_splits_capacity; + + for (int b = 0; b < n_backends; b++) { + sched->backends[b] = backends[b]; + sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]); + GGML_ASSERT(ggml_backend_buft_supports_backend(sched->bufts[b], backends[b])); + if (sched->n_copies > 1) { + for (int c = 0; c < sched->n_copies; c++) { + sched->events[b][c] = ggml_backend_event_new(backends[b]); + } + } + } + + sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends); + + ggml_backend_sched_reset(sched); + + return sched; +} + +void ggml_backend_sched_free(ggml_backend_sched_t sched) { + if (sched == NULL) { + return; + } + for (int b = 0; b < sched->n_backends; b++) { + for (int c = 0; c < sched->n_copies; c++) { + ggml_backend_event_free(sched->events[b][c]); + } + } + ggml_gallocr_free(sched->galloc); + ggml_free(sched->ctx); + free(sched->splits); + free(sched->hash_set.keys); + free(sched->tensor_backend_id); + free(sched->tensor_copies); + free(sched->node_backend_ids); + free(sched->leaf_backend_ids); + free(sched); +} + +void ggml_backend_sched_reset(ggml_backend_sched_t sched) { + // reset state for the next run + size_t hash_size = sched->hash_set.size; + memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT + memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size); + memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size); + + sched->is_reset = true; + sched->is_alloc = false; +} + +bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) { + GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes); + + ggml_backend_sched_split_graph(sched, measure_graph); + + // TODO: extract this to a separate function + if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) { + return false; + } + + ggml_backend_sched_reset(sched); + ggml_backend_sched_synchronize(sched); + + return true; +} + +bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { + GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes); + + ggml_backend_sched_split_graph(sched, graph); + + if (!ggml_backend_sched_alloc_splits(sched)) { + return false; + } + + sched->is_alloc = true; + + return true; +} + +enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { + enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph); + ggml_backend_sched_synchronize(sched); + return err; +} + +enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) { + if (!sched->is_reset && !sched->is_alloc) { + ggml_backend_sched_reset(sched); + } + + if (!sched->is_alloc) { + if (!ggml_backend_sched_alloc_graph(sched, graph)) { + return GGML_STATUS_ALLOC_FAILED; + } + } + + return ggml_backend_sched_compute_splits(sched); +} + +void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) { + for (int i = 0; i < sched->n_backends; i++) { + ggml_backend_synchronize(sched->backends[i]); + } +} + +void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) { + sched->callback_eval = callback; + sched->callback_eval_user_data = user_data; +} + +int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) { + return sched->n_splits; +} + +int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) { + return sched->n_copies; +} + +size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) { + int backend_index = ggml_backend_sched_backend_id(sched, backend); + GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends); + + return ggml_gallocr_get_buffer_size(sched->galloc, backend_index); +} + +void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) { + int backend_index = ggml_backend_sched_backend_id(sched, backend); + GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends); + tensor_backend_id(node) = backend_index; +} + +ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) { + int backend_index = tensor_backend_id(node); + if (backend_index == -1) { + return NULL; + } + return sched->backends[backend_index]; +} + +// utils + +void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) { + GGML_ASSERT(tensor->buffer == NULL); + GGML_ASSERT(tensor->view_src != NULL); + GGML_ASSERT(tensor->view_src->buffer != NULL); + GGML_ASSERT(tensor->view_src->data != NULL); + + tensor->buffer = buffer; + tensor->data = (char *)tensor->view_src->data + tensor->view_offs; + tensor->backend = tensor->view_src->backend; + ggml_backend_buffer_init_tensor(buffer, tensor); +} + +void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) { + GGML_ASSERT(tensor->buffer == NULL); + GGML_ASSERT(tensor->data == NULL); + GGML_ASSERT(tensor->view_src == NULL); + GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer)); + GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <= + (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer)); + + tensor->buffer = buffer; + tensor->data = addr; + ggml_backend_buffer_init_tensor(buffer, tensor); +} + +static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, + struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) { + + GGML_ASSERT(src != NULL); + GGML_ASSERT(src->data && "graph must be allocated"); + + size_t id = ggml_hash_insert(hash_set, src); + if (id == GGML_HASHTABLE_ALREADY_EXISTS) { + return node_copies[ggml_hash_find(hash_set, src)]; + } + + struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src); + if (src->view_src != NULL) { + dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src); + dst->view_offs = src->view_offs; + } + dst->op = src->op; + memcpy(dst->op_params, src->op_params, sizeof(dst->op_params)); + ggml_set_name(dst, src->name); + + // copy src + for (int i = 0; i < GGML_MAX_SRC; i++) { + struct ggml_tensor * s = src->src[i]; + if (s == NULL) { + continue; + } + dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s); + } + + node_copies[id] = dst; + return dst; +} + +static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) { + size_t id = ggml_hash_find(hash_set, src); + if (node_init[id]) { + return; + } + node_init[id] = true; + + struct ggml_tensor * dst = node_copies[id]; + if (dst->view_src != NULL) { + graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src); + ggml_backend_view_init(dst->view_src->buffer, dst); + } + else { + ggml_backend_tensor_copy(src, dst); + } + + // init src + for (int i = 0; i < GGML_MAX_SRC; i++) { + struct ggml_tensor * s = src->src[i]; + if (s == NULL) { + continue; + } + graph_copy_init_tensor(hash_set, node_copies, node_init, s); + } +} + +struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) { + struct ggml_hash_set hash_set = { + /* .size = */ graph->visited_hash_table.size, + /* .keys = */ calloc(sizeof(hash_set.keys[0]), graph->visited_hash_table.size) // NOLINT + }; + struct ggml_tensor ** node_copies = calloc(sizeof(node_copies[0]), hash_set.size); // NOLINT + bool * node_init = calloc(sizeof(node_init[0]), hash_set.size); + + struct ggml_init_params params = { + /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false), + /* .mem_buffer = */ NULL, + /* .no_alloc = */ true + }; + + struct ggml_context * ctx_allocated = ggml_init(params); + struct ggml_context * ctx_unallocated = ggml_init(params); + + if (ctx_allocated == NULL || ctx_unallocated == NULL) { + fprintf(stderr, "failed to allocate context for graph copy\n"); + free(hash_set.keys); + free(node_copies); + free(node_init); + ggml_free(ctx_allocated); + ggml_free(ctx_unallocated); + return (struct ggml_backend_graph_copy) { + /* .buffer = */ NULL, + /* .ctx_allocated = */ NULL, + /* .ctx_unallocated = */ NULL, + /* .graph = */ NULL, + }; + } + + // dup nodes + for (int i = 0; i < graph->n_nodes; i++) { + struct ggml_tensor * node = graph->nodes[i]; + graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node); + } + + // allocate nodes + ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend); + if (buffer == NULL) { + fprintf(stderr, "failed to allocate buffer for graph copy\n"); + free(hash_set.keys); + free(node_copies); + free(node_init); + ggml_free(ctx_allocated); + ggml_free(ctx_unallocated); + return (struct ggml_backend_graph_copy) { + /* .buffer = */ NULL, + /* .ctx_allocated = */ NULL, + /* .ctx_unallocated = */ NULL, + /* .graph = */ NULL, + }; + } + + //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024); + + // copy data and init views + for (int i = 0; i < graph->n_nodes; i++) { + struct ggml_tensor * node = graph->nodes[i]; + graph_copy_init_tensor(hash_set, node_copies, node_init, node); + } + + // build graph copy + struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false); + for (int i = 0; i < graph->n_nodes; i++) { + struct ggml_tensor * node = graph->nodes[i]; + struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set, node)]; + graph_copy->nodes[i] = node_copy; + } + graph_copy->n_nodes = graph->n_nodes; + + free(hash_set.keys); + free(node_copies); + free(node_init); + + return (struct ggml_backend_graph_copy) { + /* .buffer = */ buffer, + /* .ctx_allocated = */ ctx_allocated, + /* .ctx_unallocated = */ ctx_unallocated, + /* .graph = */ graph_copy, + }; +} + +void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) { + ggml_backend_buffer_free(copy.buffer); + ggml_free(copy.ctx_allocated); + ggml_free(copy.ctx_unallocated); +} + +bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) { + struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph); + if (copy.buffer == NULL) { + return false; + } + + struct ggml_cgraph * g1 = graph; + struct ggml_cgraph * g2 = copy.graph; + + assert(g1->n_nodes == g2->n_nodes); + + for (int i = 0; i < g1->n_nodes; i++) { + //printf("eval %d/%d\n", i, g1->n_nodes); + struct ggml_tensor * t1 = g1->nodes[i]; + struct ggml_tensor * t2 = g2->nodes[i]; + + assert(t1->op == t2->op && ggml_are_same_layout(t1, t2)); + + struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1); + struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1); + + ggml_backend_graph_compute(backend1, &g1v); + ggml_backend_graph_compute(backend2, &g2v); + + if (ggml_is_view_op(t1->op)) { + continue; + } + + // compare results, calculate rms etc + if (!callback(i, t1, t2, user_data)) { + break; + } + } + + ggml_backend_graph_copy_free(copy); + + return true; +} diff --git a/llama/ggml-backend.h b/llama/ggml-backend.h new file mode 100644 index 00000000..744b6a77 --- /dev/null +++ b/llama/ggml-backend.h @@ -0,0 +1,233 @@ +#pragma once + +#include "ggml.h" +#include "ggml-alloc.h" + +#ifdef __cplusplus +extern "C" { +#endif + + typedef struct ggml_backend_buffer_type * ggml_backend_buffer_type_t; + typedef struct ggml_backend_buffer * ggml_backend_buffer_t; + typedef struct ggml_backend_event * ggml_backend_event_t; + typedef struct ggml_backend * ggml_backend_t; + typedef void * ggml_backend_graph_plan_t; + + // + // Backend buffer + // + + // buffer type + GGML_API const char * ggml_backend_buft_name (ggml_backend_buffer_type_t buft); + GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer (ggml_backend_buffer_type_t buft, size_t size); + GGML_API size_t ggml_backend_buft_get_alignment (ggml_backend_buffer_type_t buft); + GGML_API size_t ggml_backend_buft_get_max_size (ggml_backend_buffer_type_t buft); + GGML_API GGML_CALL size_t ggml_backend_buft_get_alloc_size (ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor); + GGML_API bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend); + GGML_API bool ggml_backend_buft_is_host (ggml_backend_buffer_type_t buft); + + // buffer + enum ggml_backend_buffer_usage { + GGML_BACKEND_BUFFER_USAGE_ANY = 0, + GGML_BACKEND_BUFFER_USAGE_WEIGHTS = 1, + }; + + GGML_API const char * ggml_backend_buffer_name (ggml_backend_buffer_t buffer); + GGML_API void ggml_backend_buffer_free (ggml_backend_buffer_t buffer); + GGML_API void * ggml_backend_buffer_get_base (ggml_backend_buffer_t buffer); + GGML_API size_t ggml_backend_buffer_get_size (ggml_backend_buffer_t buffer); + GGML_API GGML_CALL void ggml_backend_buffer_init_tensor (ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); + GGML_API size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer); + GGML_API size_t ggml_backend_buffer_get_max_size (ggml_backend_buffer_t buffer); + GGML_API size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); + GGML_API void ggml_backend_buffer_clear (ggml_backend_buffer_t buffer, uint8_t value); + GGML_API bool ggml_backend_buffer_is_host (ggml_backend_buffer_t buffer); + GGML_API void ggml_backend_buffer_set_usage (ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage); + GGML_API ggml_backend_buffer_type_t ggml_backend_buffer_get_type (ggml_backend_buffer_t buffer); + GGML_API void ggml_backend_buffer_reset (ggml_backend_buffer_t buffer); + + // + // Backend + // + + GGML_API ggml_guid_t ggml_backend_guid(ggml_backend_t backend); + GGML_API const char * ggml_backend_name(ggml_backend_t backend); + GGML_API void ggml_backend_free(ggml_backend_t backend); + + GGML_API ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend); + GGML_API ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size); + GGML_API size_t ggml_backend_get_alignment(ggml_backend_t backend); + GGML_API size_t ggml_backend_get_max_size(ggml_backend_t backend); + + GGML_API void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); + GGML_API void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); + + GGML_API GGML_CALL void ggml_backend_tensor_set( struct ggml_tensor * tensor, const void * data, size_t offset, size_t size); + GGML_API GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size); + + GGML_API void ggml_backend_synchronize(ggml_backend_t backend); + + GGML_API ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph); + GGML_API void ggml_backend_graph_plan_free (ggml_backend_t backend, ggml_backend_graph_plan_t plan); + + GGML_API enum ggml_status ggml_backend_graph_plan_compute (ggml_backend_t backend, ggml_backend_graph_plan_t plan); + GGML_API enum ggml_status ggml_backend_graph_compute (ggml_backend_t backend, struct ggml_cgraph * cgraph); + GGML_API enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph); + GGML_API bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op); + GGML_API bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op); + + // tensor copy between different backends + GGML_API void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst); + + // asynchronous copy + // the copy is performed after all the currently queued operations in backend_src + // backend_dst will wait for the copy to complete before performing other operations + // automatic fallback to sync copy if async is not supported + GGML_API void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst); + + // events + GGML_API ggml_backend_event_t ggml_backend_event_new (ggml_backend_t backend); + GGML_API void ggml_backend_event_free (ggml_backend_event_t event); + GGML_API void ggml_backend_event_record (ggml_backend_event_t event); + GGML_API void ggml_backend_event_synchronize(ggml_backend_event_t event); + GGML_API void ggml_backend_event_wait (ggml_backend_t backend, ggml_backend_event_t event); // wait async on event + + // + // CPU backend + // + + GGML_API ggml_backend_t ggml_backend_cpu_init(void); + + GGML_API GGML_CALL bool ggml_backend_is_cpu (ggml_backend_t backend); + GGML_API void ggml_backend_cpu_set_n_threads (ggml_backend_t backend_cpu, int n_threads); + GGML_API void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data); + + // Create a backend buffer from an existing pointer + GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size); + + GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void); + +#ifdef GGML_USE_CPU_HBM + GGML_API ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void); +#endif + + // + // Backend registry + // + + // The backend registry is a registry of all the available backends, and allows initializing backends in a generic way + + GGML_API size_t ggml_backend_reg_get_count(void); + GGML_API size_t ggml_backend_reg_find_by_name(const char * name); + GGML_API ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str); // str is name[:params] + GGML_API const char * ggml_backend_reg_get_name(size_t i); + GGML_API ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params); // params is backend-specific + GGML_API ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i); + GGML_API ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size); + + // + // Backend scheduler + // + + // The backend scheduler allows for multiple backends to be used together + // Handles compute buffer allocation, assignment of tensors to backends, and copying of tensors between backends + // The backends are selected based on: + // - the backend that supports the operation + // - the location of the pre-allocated tensors (e.g. the weights) + /* + Example usage: + + // operations that use tensors allocated in a buffer with USAGE_WEIGHTS will be assigned + // preferrably to run on the same backend as the buffer + ggml_backend_buffer_set_usage(buf_weights, GGML_BACKEND_BUFFER_USAGE_WEIGHTS); + + sched = ggml_backend_sched_new({backend_gpu, backend_gpu2, backend_cpu}, NULL, num_backends, GGML_DEFAULT_GRAPH_SIZE, false); + + // initialize buffers from a max size graph (optional) + reserve_graph = build_graph(sched, max_batch_size); + + // manually assign nodes to a backend (optional, should not be needed in most cases) + struct ggml_tensor * node = ggml_mul_mat(ctx, ...); + ggml_backend_sched_set_tensor_backend(sched, node, backend_gpu); + + ggml_backend_sched_reserve(sched, reserve_graph); + + // compute + graph = build_graph(sched); + ggml_backend_sched_graph_compute(sched, graph); + + // if there are graph inputs: + ggml_backend_sched_reset(sched); + ggml_backend_sched_alloc_graph(sched, graph); + ggml_backend_tensor_set(input_tensor, ...); + ggml_backend_sched_graph_compute(sched, graph); + } + */ + + struct ggml_backend_sched; + typedef struct ggml_backend_sched * ggml_backend_sched_t; + + // when ask == true, the scheduler wants to know if the user wants to observe this node + // this allows the scheduler to batch nodes together in order to evaluate them in a single call + // + // when ask == false, the scheduler is passing the node tensor to the user for observation + // if the user returns false, the scheduler will cancel the graph compute + // + typedef bool (*ggml_backend_sched_eval_callback)(struct ggml_tensor * t, bool ask, void * user_data); + + // Initialize a backend scheduler + GGML_API ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size, bool parallel); + GGML_API void ggml_backend_sched_free(ggml_backend_sched_t sched); + + // Initialize backend buffers from a measure graph + GGML_API bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph); + + // Get the number of splits of the last graph + GGML_API int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched); + GGML_API int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched); + + GGML_API size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend); + + GGML_API void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend); + GGML_API ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node); + + // Allocate and compute graph on the backend scheduler + GGML_API bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph); + GGML_API enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph); + GGML_API enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph); + GGML_API void ggml_backend_sched_synchronize(ggml_backend_sched_t sched); + + // Reset all assignments and allocators - must be called before changing the node backends + GGML_API void ggml_backend_sched_reset(ggml_backend_sched_t sched); + + // Set a callback to be called for each resulting node during graph compute + GGML_API void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data); + + // + // Utils + // + + struct ggml_backend_graph_copy { + ggml_backend_buffer_t buffer; + struct ggml_context * ctx_allocated; + struct ggml_context * ctx_unallocated; + struct ggml_cgraph * graph; + }; + + // Copy a graph to a different backend + GGML_API struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph); + GGML_API void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy); + + typedef bool (*GGML_CALL ggml_backend_eval_callback)(int node_index, struct ggml_tensor * t1, struct ggml_tensor * t2, void * user_data); + + // Compare the output of two backends + GGML_API bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data); + + // Tensor initialization + GGML_API void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr); + GGML_API void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor); + + +#ifdef __cplusplus +} +#endif diff --git a/llama/ggml-common.h b/llama/ggml-common.h new file mode 100644 index 00000000..43c7978a --- /dev/null +++ b/llama/ggml-common.h @@ -0,0 +1,1853 @@ +#ifndef GGML_COMMON_DECL + +#if defined(GGML_COMMON_DECL_C) +#include + +typedef uint16_t ggml_half; +typedef uint32_t ggml_half2; + +#define GGML_COMMON_AGGR + +#define GGML_COMMON_DECL +#elif defined(GGML_COMMON_DECL_METAL) +#include + +typedef half ggml_half; +typedef half2 ggml_half2; + +#define GGML_COMMON_AGGR + +#define GGML_COMMON_DECL +#elif defined(GGML_COMMON_DECL_CUDA) +#include +#include + +typedef half ggml_half; +typedef half2 ggml_half2; + +#define GGML_COMMON_AGGR data + +#define GGML_COMMON_DECL +#elif defined(GGML_COMMON_DECL_HIP) +#include +#include + +typedef half ggml_half; +typedef half2 ggml_half2; + +#define GGML_COMMON_AGGR data + +#define GGML_COMMON_DECL +#elif defined(GGML_COMMON_DECL_SYCL) +#include +#include + +typedef sycl::half ggml_half; +typedef sycl::half2 ggml_half2; + +#define GGML_COMMON_AGGR data + +#define GGML_COMMON_DECL +#endif + +#if defined(GGML_COMMON_DECL) + +#ifndef __cplusplus +#ifndef static_assert +#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L) +#define static_assert(cond, msg) _Static_assert(cond, msg) +#else +#define static_assert(cond, msg) struct global_scope_noop_trick +#endif +#endif +#endif // __cplusplus + +// QK = number of values after dequantization +// QK_K = super-block size + +#ifdef GGML_QKK_64 +#define QK_K 64 +#define K_SCALE_SIZE 4 +#else +#define QK_K 256 +#define K_SCALE_SIZE 12 +#endif // GGML_QKK_64 + +#if defined(GGML_COMMON_DECL_CUDA) || defined(GGML_COMMON_DECL_HIP) || defined(GGML_COMMON_DECL_SYCL) +// QR = QK / number of values before dequantization +// QI = number of 32 bit integers before dequantization + +#define QI4_0 (QK4_0 / (4 * QR4_0)) +#define QR4_0 2 + +#define QI4_1 (QK4_1 / (4 * QR4_1)) +#define QR4_1 2 + +#define QI5_0 (QK5_0 / (4 * QR5_0)) +#define QR5_0 2 + +#define QI5_1 (QK5_1 / (4 * QR5_1)) +#define QR5_1 2 + +#define QI8_0 (QK8_0 / (4 * QR8_0)) +#define QR8_0 1 + +#define QI8_1 (QK8_1 / (4 * QR8_1)) +#define QR8_1 1 + +#define QI2_K (QK_K / (4*QR2_K)) +#define QR2_K 4 + +#define QI3_K (QK_K / (4*QR3_K)) +#define QR3_K 4 + +#define QI4_K (QK_K / (4*QR4_K)) +#define QR4_K 2 + +#define QI5_K (QK_K / (4*QR5_K)) +#define QR5_K 2 + +#define QI6_K (QK_K / (4*QR6_K)) +#define QR6_K 2 + +#define QI2_XXS (QK_K / (4*QR2_XXS)) +#define QR2_XXS 8 + +#define QI2_XS (QK_K / (4*QR2_XS)) +#define QR2_XS 8 + +#define QI2_S (QK_K / (4*QR2_S)) +#define QR2_S 8 + +#define QI3_XXS (QK_K / (4*QR3_XXS)) +#define QR3_XXS 8 + +#define QI3_XS (QK_K / (4*QR3_XS)) +#define QR3_XS 8 + +#define QI1_S (QK_K / (4*QR1_S)) +#define QR1_S 8 + +#define QI4_NL (QK4_NL / (4*QR4_NL)) +#define QR4_NL 2 + +#if QK_K == 64 +#define QI4_XS QI4_NL +#define QR4_XS QR4_NL +#else +#define QI4_XS (QK_K / (4*QR4_XS)) +#define QR4_XS 8 +#endif + +#endif // GGML_COMMON_DECL_CUDA || GGML_COMMON_DECL_HIP + +#define QK4_0 32 +typedef struct { + ggml_half d; // delta + uint8_t qs[QK4_0 / 2]; // nibbles / quants +} block_q4_0; +static_assert(sizeof(block_q4_0) == sizeof(ggml_half) + QK4_0 / 2, "wrong q4_0 block size/padding"); + +#define QK4_1 32 +typedef struct { + union { + struct { + ggml_half d; // delta + ggml_half m; // min + } GGML_COMMON_AGGR; + ggml_half2 dm; + }; + uint8_t qs[QK4_1 / 2]; // nibbles / quants +} block_q4_1; +static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_half) + QK4_1 / 2, "wrong q4_1 block size/padding"); + +#define QK5_0 32 +typedef struct { + ggml_half d; // delta + uint8_t qh[4]; // 5-th bit of quants + uint8_t qs[QK5_0 / 2]; // nibbles / quants +} block_q5_0; +static_assert(sizeof(block_q5_0) == sizeof(ggml_half) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding"); + +#define QK5_1 32 +typedef struct { + union { + struct { + ggml_half d; // delta + ggml_half m; // min + } GGML_COMMON_AGGR; + ggml_half2 dm; + }; + uint8_t qh[4]; // 5-th bit of quants + uint8_t qs[QK5_1 / 2]; // nibbles / quants +} block_q5_1; +static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_half) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding"); + +#define QK8_0 32 +typedef struct { + ggml_half d; // delta + int8_t qs[QK8_0]; // quants +} block_q8_0; +static_assert(sizeof(block_q8_0) == sizeof(ggml_half) + QK8_0, "wrong q8_0 block size/padding"); + +#define QK8_1 32 +typedef struct { + union { + struct { + ggml_half d; // delta + ggml_half s; // d * sum(qs[i]) + } GGML_COMMON_AGGR; + ggml_half2 ds; + }; + int8_t qs[QK8_1]; // quants +} block_q8_1; +static_assert(sizeof(block_q8_1) == 2*sizeof(ggml_half) + QK8_1, "wrong q8_1 block size/padding"); + +// +// Super-block quantization structures +// + +// 2-bit quantization +// weight is represented as x = a * q + b +// 16 blocks of 16 elements each +// Effectively 2.625 bits per weight +typedef struct { + uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits + uint8_t qs[QK_K/4]; // quants + union { + struct { + ggml_half d; // super-block scale for quantized scales + ggml_half dmin; // super-block scale for quantized mins + } GGML_COMMON_AGGR; + ggml_half2 dm; + }; +} block_q2_K; +static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_half) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding"); + +// 3-bit quantization +// weight is represented as x = a * q +// 16 blocks of 16 elements each +// Effectively 3.4375 bits per weight +#ifdef GGML_QKK_64 +typedef struct { + uint8_t hmask[QK_K/8]; // quants - high bit + uint8_t qs[QK_K/4]; // quants - low 2 bits + uint8_t scales[2]; + ggml_half d; // super-block scale +} block_q3_K; +static_assert(sizeof(block_q3_K) == sizeof(ggml_half) + QK_K / 4 + QK_K / 8 + 2, "wrong q3_K block size/padding"); +#else +typedef struct { + uint8_t hmask[QK_K/8]; // quants - high bit + uint8_t qs[QK_K/4]; // quants - low 2 bits + uint8_t scales[12]; // scales, quantized with 6 bits + ggml_half d; // super-block scale +} block_q3_K; +static_assert(sizeof(block_q3_K) == sizeof(ggml_half) + QK_K / 4 + QK_K / 8 + 12, "wrong q3_K block size/padding"); +#endif + +// 4-bit quantization +// 8 blocks of 32 elements each +// weight is represented as x = a * q + b +// Effectively 4.5 bits per weight +#ifdef GGML_QKK_64 +typedef struct { + ggml_half d[2]; // super-block scales/mins + uint8_t scales[2]; // 4-bit block scales/mins + uint8_t qs[QK_K/2]; // 4--bit quants +} block_q4_K; +static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_half) + QK_K/2 + 2, "wrong q4_K block size/padding"); +#else +typedef struct { + union { + struct { + ggml_half d; // super-block scale for quantized scales + ggml_half dmin; // super-block scale for quantized mins + } GGML_COMMON_AGGR; + ggml_half2 dm; + }; + uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits + uint8_t qs[QK_K/2]; // 4--bit quants +} block_q4_K; +static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_half) + K_SCALE_SIZE + QK_K/2, "wrong q4_K block size/padding"); +#endif + +// 5-bit quantization +// 8 blocks of 32 elements each +// weight is represented as x = a * q + b +// Effectively 5.5 bits per weight +#ifdef GGML_QKK_64 +typedef struct { + ggml_half d; // super-block scale + int8_t scales[QK_K/16]; // 8-bit block scales + uint8_t qh[QK_K/8]; // quants, high bit + uint8_t qs[QK_K/2]; // quants, low 4 bits +} block_q5_K; +static_assert(sizeof(block_q5_K) == sizeof(ggml_half) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding"); +#else +typedef struct { + union { + struct { + ggml_half d; // super-block scale for quantized scales + ggml_half dmin; // super-block scale for quantized mins + } GGML_COMMON_AGGR; + ggml_half2 dm; + }; + uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits + uint8_t qh[QK_K/8]; // quants, high bit + uint8_t qs[QK_K/2]; // quants, low 4 bits +} block_q5_K; +static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_half) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding"); +#endif + +// 6-bit quantization +// weight is represented as x = a * q +// 16 blocks of 16 elements each +// Effectively 6.5625 bits per weight +typedef struct { + uint8_t ql[QK_K/2]; // quants, lower 4 bits + uint8_t qh[QK_K/4]; // quants, upper 2 bits + int8_t scales[QK_K/16]; // scales, quantized with 8 bits + ggml_half d; // super-block scale +} block_q6_K; +static_assert(sizeof(block_q6_K) == sizeof(ggml_half) + QK_K / 16 + 3*QK_K/4, "wrong q6_K block size/padding"); + +// This is only used for intermediate quantization and dot products +typedef struct { + float d; // delta + int8_t qs[QK_K]; // quants + int16_t bsums[QK_K/16]; // sum of quants in groups of 16 +} block_q8_K; +static_assert(sizeof(block_q8_K) == sizeof(float) + QK_K + QK_K/16*sizeof(int16_t), "wrong q8_K block size/padding"); + +// (Almost) "true" 2-bit quantization. +// Due to the need to use blocks as per ggml design, it ends up using +// 2.0625 bpw because of the 16-bit scale for each block of 256. +typedef struct { + ggml_half d; + uint16_t qs[QK_K/8]; +} block_iq2_xxs; +static_assert(sizeof(block_iq2_xxs) == sizeof(ggml_half) + QK_K/8*sizeof(uint16_t), "wrong iq2_xxs block size/padding"); + +// 2.3125 bpw quants +typedef struct { + ggml_half d; + uint16_t qs[QK_K/8]; + uint8_t scales[QK_K/32]; +} block_iq2_xs; +static_assert(sizeof(block_iq2_xs) == sizeof(ggml_half) + QK_K/8*sizeof(uint16_t) + QK_K/32, "wrong iq2_xs block size/padding"); + +// 2.5625 bpw quants +typedef struct { + ggml_half d; + uint8_t qs[QK_K/4]; + uint8_t qh[QK_K/32]; + uint8_t scales[QK_K/32]; +} block_iq2_s; +static_assert(sizeof(block_iq2_s) == sizeof(ggml_half) + QK_K/4 + QK_K/16, "wrong iq2_s block size/padding"); + +// (Almost) "true" 3-bit quantization. +// Due to the need to use blocks as per ggml design, it ends up using +// 3.0625 bpw because of the 16-bit scale for each block of 256. +typedef struct { + ggml_half d; + uint8_t qs[3*QK_K/8]; +} block_iq3_xxs; +static_assert(sizeof(block_iq3_xxs) == sizeof(ggml_half) + 3*(QK_K/8), "wrong iq3_xxs block size/padding"); + +// 3.4375 bpw +#if QK_K == 64 +#define IQ3S_N_SCALE 2 +#else +#define IQ3S_N_SCALE QK_K/64 +#endif +typedef struct { + ggml_half d; + uint8_t qs[QK_K/4]; + uint8_t qh[QK_K/32]; + uint8_t signs[QK_K/8]; + uint8_t scales[IQ3S_N_SCALE]; +} block_iq3_s; +static_assert(sizeof(block_iq3_s) == sizeof(ggml_half) + 13*(QK_K/32) + IQ3S_N_SCALE, "wrong iq3_s block size/padding"); + +typedef struct { + ggml_half d; + uint8_t qs[QK_K/8]; + uint16_t qh[QK_K/32]; +} block_iq1_s; +static_assert(sizeof(block_iq1_s) == sizeof(ggml_half) + QK_K/8 + QK_K/16, "wrong iq1_s block size/padding"); + +// 1.75 bpw +typedef struct { + uint8_t qs[QK_K/8]; // grid index, low 8 bits + uint8_t qh[QK_K/16]; // grid index, high 3 bits + grid shift bit (for two groups of 8) +#if QK_K == 64 + ggml_half d; +#endif + uint8_t scales[QK_K/32]; // 3-bit block scales (4-bit if QK_K == 64) +} block_iq1_m; +#if QK_K == 64 +static_assert(sizeof(block_iq1_m) == QK_K/8 + QK_K/16 + QK_K/32 + sizeof(ggml_half), "wrong iq1_m block size/padding"); +#else +static_assert(sizeof(block_iq1_m) == QK_K/8 + QK_K/16 + QK_K/32, "wrong iq1_m block size/padding"); +#endif + +// Used by IQ1_M quants +typedef union { + ggml_half f16; + uint16_t u16; +} iq1m_scale_t; + +// Non-linear quants +#define QK4_NL 32 +typedef struct { + ggml_half d; + uint8_t qs[QK4_NL/2]; +} block_iq4_nl; +static_assert(sizeof(block_iq4_nl) == sizeof(ggml_half) + QK4_NL/2, "wrong iq4_nl block size/padding"); + +#if QK_K == 64 +#define block_iq4_xs block_iq4_nl +#else +typedef struct { + ggml_half d; + uint16_t scales_h; + uint8_t scales_l[QK_K/64]; + uint8_t qs[QK_K/2]; +} block_iq4_xs; +static_assert(sizeof(block_iq4_xs) == sizeof(ggml_half) + sizeof(uint16_t) + QK_K/64 + QK_K/2, "wrong iq4_xs block size/padding"); +#endif + +#endif // GGML_COMMON_DECL +#endif // GGML_COMMON_DECL + +//////////////////////////////////////////////////////////////////////////////// + +#ifndef GGML_COMMON_IMPL + +#if defined(GGML_COMMON_IMPL_C) +#include + +#define GGML_TABLE_BEGIN(type, name, size) static const type name[size] = { +#define GGML_TABLE_END() }; + +#define GGML_COMMON_IMPL +#elif defined(GGML_COMMON_IMPL_METAL) +#include + +#define GGML_TABLE_BEGIN(type, name, size) static const constant type name[size] = { +#define GGML_TABLE_END() }; + +#define GGML_COMMON_IMPL +#elif defined(GGML_COMMON_IMPL_CUDA) || defined(GGML_COMMON_IMPL_HIP) +#include + +#define GGML_TABLE_BEGIN(type, name, size) static const __device__ type name[size] = { +#define GGML_TABLE_END() }; + +#define GGML_COMMON_IMPL +#elif defined(GGML_COMMON_IMPL_SYCL) + +#include + +#define GGML_TABLE_BEGIN(type, name, size) static const type name[size] = { +#define GGML_TABLE_END() }; + +#define GGML_COMMON_IMPL +#endif + +#if defined(GGML_COMMON_IMPL) + +GGML_TABLE_BEGIN(uint8_t, kmask_iq2xs, 8) + 1, 2, 4, 8, 16, 32, 64, 128 +GGML_TABLE_END() + +GGML_TABLE_BEGIN(uint8_t, ksigns_iq2xs, 128) + 0, 129, 130, 3, 132, 5, 6, 135, 136, 9, 10, 139, 12, 141, 142, 15, + 144, 17, 18, 147, 20, 149, 150, 23, 24, 153, 154, 27, 156, 29, 30, 159, + 160, 33, 34, 163, 36, 165, 166, 39, 40, 169, 170, 43, 172, 45, 46, 175, + 48, 177, 178, 51, 180, 53, 54, 183, 184, 57, 58, 187, 60, 189, 190, 63, + 192, 65, 66, 195, 68, 197, 198, 71, 72, 201, 202, 75, 204, 77, 78, 207, + 80, 209, 210, 83, 212, 85, 86, 215, 216, 89, 90, 219, 92, 221, 222, 95, + 96, 225, 226, 99, 228, 101, 102, 231, 232, 105, 106, 235, 108, 237, 238, 111, + 240, 113, 114, 243, 116, 245, 246, 119, 120, 249, 250, 123, 252, 125, 126, 255, +GGML_TABLE_END() + +//#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics +GGML_TABLE_BEGIN(uint64_t, ksigns64, 128) + 0x0000000000000000, 0xff000000000000ff, 0xff0000000000ff00, 0x000000000000ffff, + 0xff00000000ff0000, 0x0000000000ff00ff, 0x0000000000ffff00, 0xff00000000ffffff, + 0xff000000ff000000, 0x00000000ff0000ff, 0x00000000ff00ff00, 0xff000000ff00ffff, + 0x00000000ffff0000, 0xff000000ffff00ff, 0xff000000ffffff00, 0x00000000ffffffff, + 0xff0000ff00000000, 0x000000ff000000ff, 0x000000ff0000ff00, 0xff0000ff0000ffff, + 0x000000ff00ff0000, 0xff0000ff00ff00ff, 0xff0000ff00ffff00, 0x000000ff00ffffff, + 0x000000ffff000000, 0xff0000ffff0000ff, 0xff0000ffff00ff00, 0x000000ffff00ffff, + 0xff0000ffffff0000, 0x000000ffffff00ff, 0x000000ffffffff00, 0xff0000ffffffffff, + 0xff00ff0000000000, 0x0000ff00000000ff, 0x0000ff000000ff00, 0xff00ff000000ffff, + 0x0000ff0000ff0000, 0xff00ff0000ff00ff, 0xff00ff0000ffff00, 0x0000ff0000ffffff, + 0x0000ff00ff000000, 0xff00ff00ff0000ff, 0xff00ff00ff00ff00, 0x0000ff00ff00ffff, + 0xff00ff00ffff0000, 0x0000ff00ffff00ff, 0x0000ff00ffffff00, 0xff00ff00ffffffff, + 0x0000ffff00000000, 0xff00ffff000000ff, 0xff00ffff0000ff00, 0x0000ffff0000ffff, + 0xff00ffff00ff0000, 0x0000ffff00ff00ff, 0x0000ffff00ffff00, 0xff00ffff00ffffff, + 0xff00ffffff000000, 0x0000ffffff0000ff, 0x0000ffffff00ff00, 0xff00ffffff00ffff, + 0x0000ffffffff0000, 0xff00ffffffff00ff, 0xff00ffffffffff00, 0x0000ffffffffffff, + 0xffff000000000000, 0x00ff0000000000ff, 0x00ff00000000ff00, 0xffff00000000ffff, + 0x00ff000000ff0000, 0xffff000000ff00ff, 0xffff000000ffff00, 0x00ff000000ffffff, + 0x00ff0000ff000000, 0xffff0000ff0000ff, 0xffff0000ff00ff00, 0x00ff0000ff00ffff, + 0xffff0000ffff0000, 0x00ff0000ffff00ff, 0x00ff0000ffffff00, 0xffff0000ffffffff, + 0x00ff00ff00000000, 0xffff00ff000000ff, 0xffff00ff0000ff00, 0x00ff00ff0000ffff, + 0xffff00ff00ff0000, 0x00ff00ff00ff00ff, 0x00ff00ff00ffff00, 0xffff00ff00ffffff, + 0xffff00ffff000000, 0x00ff00ffff0000ff, 0x00ff00ffff00ff00, 0xffff00ffff00ffff, + 0x00ff00ffffff0000, 0xffff00ffffff00ff, 0xffff00ffffffff00, 0x00ff00ffffffffff, + 0x00ffff0000000000, 0xffffff00000000ff, 0xffffff000000ff00, 0x00ffff000000ffff, + 0xffffff0000ff0000, 0x00ffff0000ff00ff, 0x00ffff0000ffff00, 0xffffff0000ffffff, + 0xffffff00ff000000, 0x00ffff00ff0000ff, 0x00ffff00ff00ff00, 0xffffff00ff00ffff, + 0x00ffff00ffff0000, 0xffffff00ffff00ff, 0xffffff00ffffff00, 0x00ffff00ffffffff, + 0xffffffff00000000, 0x00ffffff000000ff, 0x00ffffff0000ff00, 0xffffffff0000ffff, + 0x00ffffff00ff0000, 0xffffffff00ff00ff, 0xffffffff00ffff00, 0x00ffffff00ffffff, + 0x00ffffffff000000, 0xffffffffff0000ff, 0xffffffffff00ff00, 0x00ffffffff00ffff, + 0xffffffffffff0000, 0x00ffffffffff00ff, 0x00ffffffffffff00, 0xffffffffffffffff, +GGML_TABLE_END() +//#endif + + +GGML_TABLE_BEGIN(uint64_t, iq2xxs_grid, 256) + 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08, + 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x08080808082b0808, + 0x08080808082b082b, 0x08080808082b2b08, 0x08080808082b2b2b, 0x0808080819080819, + 0x0808080819081908, 0x0808080819190808, 0x0808080819192b08, 0x08080808192b0819, + 0x08080808192b1908, 0x080808082b080808, 0x080808082b08082b, 0x080808082b082b2b, + 0x080808082b2b082b, 0x0808081908080819, 0x0808081908081908, 0x0808081908190808, + 0x0808081908191919, 0x0808081919080808, 0x080808192b081908, 0x080808192b192b08, + 0x0808082b08080808, 0x0808082b0808082b, 0x0808082b082b082b, 0x0808082b2b08082b, + 0x0808190808080819, 0x0808190808081908, 0x0808190808190808, 0x08081908082b0819, + 0x08081908082b1908, 0x0808190819080808, 0x080819081908082b, 0x0808190819082b08, + 0x08081908192b0808, 0x080819082b080819, 0x080819082b081908, 0x080819082b190808, + 0x080819082b2b1908, 0x0808191908080808, 0x080819190808082b, 0x0808191908082b08, + 0x08081919082b0808, 0x080819191908192b, 0x08081919192b2b19, 0x080819192b080808, + 0x080819192b190819, 0x0808192b08082b19, 0x0808192b08190808, 0x0808192b19080808, + 0x0808192b2b081908, 0x0808192b2b2b1908, 0x08082b0808080808, 0x08082b0808081919, + 0x08082b0808082b08, 0x08082b0808191908, 0x08082b08082b2b08, 0x08082b0819080819, + 0x08082b0819081908, 0x08082b0819190808, 0x08082b081919082b, 0x08082b082b082b08, + 0x08082b1908081908, 0x08082b1919080808, 0x08082b2b0808082b, 0x08082b2b08191908, + 0x0819080808080819, 0x0819080808081908, 0x0819080808190808, 0x08190808082b0819, + 0x0819080819080808, 0x08190808192b0808, 0x081908082b081908, 0x081908082b190808, + 0x081908082b191919, 0x0819081908080808, 0x0819081908082b08, 0x08190819082b0808, + 0x0819081919190808, 0x0819081919192b2b, 0x081908192b080808, 0x0819082b082b1908, + 0x0819082b19081919, 0x0819190808080808, 0x0819190808082b08, 0x08191908082b0808, + 0x08191908082b1919, 0x0819190819082b19, 0x081919082b080808, 0x0819191908192b08, + 0x08191919192b082b, 0x0819192b08080808, 0x0819192b0819192b, 0x08192b0808080819, + 0x08192b0808081908, 0x08192b0808190808, 0x08192b0819080808, 0x08192b082b080819, + 0x08192b1908080808, 0x08192b1908081919, 0x08192b192b2b0808, 0x08192b2b19190819, + 0x082b080808080808, 0x082b08080808082b, 0x082b080808082b2b, 0x082b080819081908, + 0x082b0808192b0819, 0x082b08082b080808, 0x082b08082b08082b, 0x082b0819082b2b19, + 0x082b081919082b08, 0x082b082b08080808, 0x082b082b0808082b, 0x082b190808080819, + 0x082b190808081908, 0x082b190808190808, 0x082b190819080808, 0x082b19081919192b, + 0x082b191908080808, 0x082b191919080819, 0x082b1919192b1908, 0x082b192b2b190808, + 0x082b2b0808082b08, 0x082b2b08082b0808, 0x082b2b082b191908, 0x082b2b2b19081908, + 0x1908080808080819, 0x1908080808081908, 0x1908080808190808, 0x1908080808192b08, + 0x19080808082b0819, 0x19080808082b1908, 0x1908080819080808, 0x1908080819082b08, + 0x190808081919192b, 0x19080808192b0808, 0x190808082b080819, 0x190808082b081908, + 0x190808082b190808, 0x1908081908080808, 0x19080819082b0808, 0x19080819192b0819, + 0x190808192b080808, 0x190808192b081919, 0x1908082b08080819, 0x1908082b08190808, + 0x1908082b19082b08, 0x1908082b1919192b, 0x1908082b192b2b08, 0x1908190808080808, + 0x1908190808082b08, 0x19081908082b0808, 0x190819082b080808, 0x190819082b192b19, + 0x190819190819082b, 0x19081919082b1908, 0x1908192b08080808, 0x19082b0808080819, + 0x19082b0808081908, 0x19082b0808190808, 0x19082b0819080808, 0x19082b0819081919, + 0x19082b1908080808, 0x19082b1919192b08, 0x19082b19192b0819, 0x19082b192b08082b, + 0x19082b2b19081919, 0x19082b2b2b190808, 0x1919080808080808, 0x1919080808082b08, + 0x1919080808190819, 0x1919080808192b19, 0x19190808082b0808, 0x191908082b080808, + 0x191908082b082b08, 0x1919081908081908, 0x191908191908082b, 0x191908192b2b1908, + 0x1919082b2b190819, 0x191919082b190808, 0x191919082b19082b, 0x1919191908082b2b, + 0x1919192b08080819, 0x1919192b19191908, 0x19192b0808080808, 0x19192b0808190819, + 0x19192b0808192b19, 0x19192b08192b1908, 0x19192b1919080808, 0x19192b2b08082b08, + 0x192b080808081908, 0x192b080808190808, 0x192b080819080808, 0x192b0808192b2b08, + 0x192b081908080808, 0x192b081919191919, 0x192b082b08192b08, 0x192b082b192b0808, + 0x192b190808080808, 0x192b190808081919, 0x192b191908190808, 0x192b19190819082b, + 0x192b19192b081908, 0x192b2b081908082b, 0x2b08080808080808, 0x2b0808080808082b, + 0x2b08080808082b2b, 0x2b08080819080819, 0x2b0808082b08082b, 0x2b08081908081908, + 0x2b08081908192b08, 0x2b08081919080808, 0x2b08082b08190819, 0x2b08190808080819, + 0x2b08190808081908, 0x2b08190808190808, 0x2b08190808191919, 0x2b08190819080808, + 0x2b081908192b0808, 0x2b08191908080808, 0x2b0819191908192b, 0x2b0819192b191908, + 0x2b08192b08082b19, 0x2b08192b19080808, 0x2b08192b192b0808, 0x2b082b080808082b, + 0x2b082b1908081908, 0x2b082b2b08190819, 0x2b19080808081908, 0x2b19080808190808, + 0x2b190808082b1908, 0x2b19080819080808, 0x2b1908082b2b0819, 0x2b1908190819192b, + 0x2b1908192b080808, 0x2b19082b19081919, 0x2b19190808080808, 0x2b191908082b082b, + 0x2b19190819081908, 0x2b19191919190819, 0x2b192b082b080819, 0x2b192b19082b0808, + 0x2b2b08080808082b, 0x2b2b080819190808, 0x2b2b08082b081919, 0x2b2b081908082b19, + 0x2b2b082b08080808, 0x2b2b190808192b08, 0x2b2b2b0819190808, 0x2b2b2b1908081908, +GGML_TABLE_END() + +GGML_TABLE_BEGIN(uint64_t, iq2xs_grid, 512) + 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08, + 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x080808080819192b, + 0x0808080808192b19, 0x08080808082b0808, 0x08080808082b082b, 0x08080808082b1919, + 0x08080808082b2b08, 0x0808080819080819, 0x0808080819081908, 0x080808081908192b, + 0x0808080819082b19, 0x0808080819190808, 0x080808081919082b, 0x0808080819191919, + 0x0808080819192b08, 0x08080808192b0819, 0x08080808192b1908, 0x080808082b080808, + 0x080808082b08082b, 0x080808082b081919, 0x080808082b082b08, 0x080808082b190819, + 0x080808082b191908, 0x080808082b192b19, 0x080808082b2b0808, 0x0808081908080819, + 0x0808081908081908, 0x080808190808192b, 0x0808081908082b19, 0x0808081908190808, + 0x080808190819082b, 0x0808081908191919, 0x0808081908192b08, 0x0808081908192b2b, + 0x08080819082b0819, 0x08080819082b1908, 0x0808081919080808, 0x080808191908082b, + 0x0808081919081919, 0x0808081919082b08, 0x0808081919190819, 0x0808081919191908, + 0x08080819192b0808, 0x08080819192b2b08, 0x080808192b080819, 0x080808192b081908, + 0x080808192b190808, 0x0808082b08080808, 0x0808082b0808082b, 0x0808082b08081919, + 0x0808082b08082b08, 0x0808082b08190819, 0x0808082b08191908, 0x0808082b082b0808, + 0x0808082b19080819, 0x0808082b19081908, 0x0808082b19190808, 0x0808082b19191919, + 0x0808082b2b080808, 0x0808082b2b082b2b, 0x0808190808080819, 0x0808190808081908, + 0x080819080808192b, 0x0808190808082b19, 0x0808190808190808, 0x080819080819082b, + 0x0808190808191919, 0x0808190808192b08, 0x08081908082b0819, 0x08081908082b1908, + 0x0808190819080808, 0x080819081908082b, 0x0808190819081919, 0x0808190819082b08, + 0x0808190819190819, 0x0808190819191908, 0x080819081919192b, 0x08081908192b0808, + 0x080819082b080819, 0x080819082b081908, 0x080819082b190808, 0x0808191908080808, + 0x080819190808082b, 0x0808191908081919, 0x0808191908082b08, 0x0808191908190819, + 0x0808191908191908, 0x08081919082b0808, 0x0808191919080819, 0x0808191919081908, + 0x0808191919190808, 0x08081919192b0819, 0x080819192b080808, 0x0808192b08080819, + 0x0808192b08081908, 0x0808192b08190808, 0x0808192b082b192b, 0x0808192b19080808, + 0x0808192b1908082b, 0x0808192b2b081908, 0x08082b0808080808, 0x08082b080808082b, + 0x08082b0808081919, 0x08082b0808082b08, 0x08082b0808082b2b, 0x08082b0808190819, + 0x08082b0808191908, 0x08082b08082b0808, 0x08082b08082b1919, 0x08082b0819080819, + 0x08082b0819081908, 0x08082b0819190808, 0x08082b0819192b08, 0x08082b082b080808, + 0x08082b082b2b0808, 0x08082b082b2b2b2b, 0x08082b1908080819, 0x08082b1908081908, + 0x08082b1908190808, 0x08082b1919080808, 0x08082b192b080819, 0x08082b192b082b19, + 0x08082b2b08080808, 0x08082b2b082b0808, 0x08082b2b082b2b08, 0x08082b2b2b19192b, + 0x08082b2b2b2b0808, 0x0819080808080819, 0x0819080808081908, 0x081908080808192b, + 0x0819080808082b19, 0x0819080808190808, 0x081908080819082b, 0x0819080808191919, + 0x0819080808192b08, 0x08190808082b0819, 0x08190808082b1908, 0x0819080819080808, + 0x081908081908082b, 0x0819080819081919, 0x0819080819082b08, 0x0819080819190819, + 0x0819080819191908, 0x08190808192b0808, 0x08190808192b2b2b, 0x081908082b080819, + 0x081908082b081908, 0x081908082b190808, 0x0819081908080808, 0x081908190808082b, + 0x0819081908081919, 0x0819081908082b08, 0x0819081908190819, 0x0819081908191908, + 0x08190819082b0808, 0x0819081919080819, 0x0819081919081908, 0x0819081919190808, + 0x081908192b080808, 0x081908192b191908, 0x081908192b19192b, 0x0819082b08080819, + 0x0819082b08081908, 0x0819082b0808192b, 0x0819082b08190808, 0x0819082b19080808, + 0x0819082b192b0808, 0x0819190808080808, 0x081919080808082b, 0x0819190808081919, + 0x0819190808082b08, 0x0819190808190819, 0x0819190808191908, 0x08191908082b0808, + 0x0819190819080819, 0x0819190819081908, 0x0819190819082b19, 0x0819190819190808, + 0x08191908192b1908, 0x081919082b080808, 0x0819191908080819, 0x0819191908081908, + 0x0819191908190808, 0x0819191919080808, 0x0819192b08080808, 0x0819192b08191908, + 0x0819192b19082b19, 0x08192b0808080819, 0x08192b0808081908, 0x08192b0808190808, + 0x08192b080819082b, 0x08192b0819080808, 0x08192b0819191908, 0x08192b082b08192b, + 0x08192b1908080808, 0x08192b1908081919, 0x08192b19192b192b, 0x08192b2b19190819, + 0x08192b2b2b2b2b19, 0x082b080808080808, 0x082b08080808082b, 0x082b080808081919, + 0x082b080808082b08, 0x082b080808082b2b, 0x082b080808190819, 0x082b080808191908, + 0x082b0808082b0808, 0x082b080819080819, 0x082b080819081908, 0x082b080819190808, + 0x082b08082b080808, 0x082b08082b2b0808, 0x082b081908080819, 0x082b081908081908, + 0x082b081908190808, 0x082b081919080808, 0x082b081919082b08, 0x082b0819192b1919, + 0x082b082b08080808, 0x082b082b082b082b, 0x082b082b2b080808, 0x082b082b2b2b2b08, + 0x082b190808080819, 0x082b190808081908, 0x082b190808190808, 0x082b1908082b2b19, + 0x082b190819080808, 0x082b191908080808, 0x082b191919080819, 0x082b19191919082b, + 0x082b19192b192b19, 0x082b192b08080819, 0x082b192b08192b2b, 0x082b192b2b2b192b, + 0x082b2b0808080808, 0x082b2b0808082b08, 0x082b2b0808082b2b, 0x082b2b08082b0808, + 0x082b2b0819191919, 0x082b2b082b082b08, 0x082b2b082b2b082b, 0x082b2b19192b2b08, + 0x082b2b192b190808, 0x082b2b2b08082b08, 0x082b2b2b082b0808, 0x082b2b2b2b08082b, + 0x082b2b2b2b082b08, 0x082b2b2b2b082b2b, 0x1908080808080819, 0x1908080808081908, + 0x190808080808192b, 0x1908080808082b19, 0x1908080808190808, 0x190808080819082b, + 0x1908080808191919, 0x1908080808192b08, 0x19080808082b0819, 0x19080808082b1908, + 0x1908080819080808, 0x190808081908082b, 0x1908080819081919, 0x1908080819082b08, + 0x1908080819082b2b, 0x1908080819190819, 0x1908080819191908, 0x19080808192b0808, + 0x19080808192b1919, 0x190808082b080819, 0x190808082b081908, 0x190808082b190808, + 0x1908081908080808, 0x190808190808082b, 0x1908081908081919, 0x1908081908082b08, + 0x1908081908190819, 0x1908081908191908, 0x19080819082b0808, 0x1908081919080819, + 0x1908081919081908, 0x1908081919190808, 0x190808192b080808, 0x190808192b081919, + 0x190808192b2b082b, 0x1908082b08080819, 0x1908082b08081908, 0x1908082b08190808, + 0x1908082b0819082b, 0x1908082b082b2b19, 0x1908082b19080808, 0x1908190808080808, + 0x190819080808082b, 0x1908190808081919, 0x1908190808082b08, 0x1908190808190819, + 0x1908190808191908, 0x1908190808192b19, 0x19081908082b0808, 0x1908190819080819, + 0x1908190819081908, 0x1908190819190808, 0x190819082b080808, 0x190819082b191908, + 0x1908191908080819, 0x1908191908081908, 0x1908191908190808, 0x19081919082b1908, + 0x1908191919080808, 0x190819192b192b2b, 0x1908192b08080808, 0x1908192b08082b2b, + 0x1908192b19081908, 0x1908192b19190808, 0x19082b0808080819, 0x19082b0808081908, + 0x19082b0808190808, 0x19082b0819080808, 0x19082b0819081919, 0x19082b0819191908, + 0x19082b08192b082b, 0x19082b1908080808, 0x19082b1908190819, 0x19082b1919081908, + 0x19082b1919190808, 0x19082b19192b2b19, 0x19082b2b08081908, 0x1919080808080808, + 0x191908080808082b, 0x1919080808081919, 0x1919080808082b08, 0x1919080808190819, + 0x1919080808191908, 0x19190808082b0808, 0x19190808082b2b08, 0x1919080819080819, + 0x1919080819081908, 0x1919080819190808, 0x191908082b080808, 0x1919081908080819, + 0x1919081908081908, 0x1919081908190808, 0x1919081908191919, 0x1919081919080808, + 0x191908191908082b, 0x1919082b08080808, 0x1919082b19081908, 0x1919082b2b2b2b2b, + 0x1919190808080819, 0x1919190808081908, 0x1919190808190808, 0x19191908082b0819, + 0x1919190819080808, 0x19191908192b0808, 0x191919082b080819, 0x191919082b2b0819, + 0x1919191908080808, 0x1919191908082b08, 0x191919192b080808, 0x191919192b082b08, + 0x1919192b082b0819, 0x1919192b192b2b08, 0x1919192b2b2b0819, 0x19192b0808080808, + 0x19192b0808191908, 0x19192b0819080819, 0x19192b0819190808, 0x19192b082b192b19, + 0x19192b1908192b2b, 0x19192b1919080808, 0x19192b191908082b, 0x19192b2b2b081919, + 0x192b080808080819, 0x192b080808081908, 0x192b080808190808, 0x192b080819080808, + 0x192b080819191908, 0x192b0808192b082b, 0x192b08082b08192b, 0x192b08082b2b2b19, + 0x192b081908080808, 0x192b082b082b1908, 0x192b082b19082b2b, 0x192b082b2b19082b, + 0x192b190808080808, 0x192b19080819192b, 0x192b191908190808, 0x192b191919080808, + 0x192b191919081919, 0x192b19192b2b1908, 0x192b2b0808080819, 0x192b2b08192b2b2b, + 0x192b2b19082b1919, 0x192b2b2b0808192b, 0x192b2b2b19191908, 0x192b2b2b192b082b, + 0x2b08080808080808, 0x2b0808080808082b, 0x2b08080808081919, 0x2b08080808082b08, + 0x2b08080808190819, 0x2b08080808191908, 0x2b080808082b0808, 0x2b080808082b2b2b, + 0x2b08080819080819, 0x2b08080819081908, 0x2b08080819190808, 0x2b0808082b080808, + 0x2b0808082b08082b, 0x2b0808082b2b2b08, 0x2b0808082b2b2b2b, 0x2b08081908080819, + 0x2b08081908081908, 0x2b0808190808192b, 0x2b08081908190808, 0x2b08081919080808, + 0x2b08081919190819, 0x2b08081919192b19, 0x2b08082b08080808, 0x2b08082b082b0808, + 0x2b08082b2b080808, 0x2b08082b2b08082b, 0x2b08082b2b2b0808, 0x2b08082b2b2b2b08, + 0x2b08190808080819, 0x2b08190808081908, 0x2b08190808190808, 0x2b0819080819082b, + 0x2b08190808191919, 0x2b08190819080808, 0x2b081908192b0808, 0x2b0819082b082b19, + 0x2b08191908080808, 0x2b08191919081908, 0x2b0819192b2b1919, 0x2b08192b08192b08, + 0x2b08192b192b2b2b, 0x2b082b0808080808, 0x2b082b0808082b08, 0x2b082b08082b1919, + 0x2b082b0819192b2b, 0x2b082b082b080808, 0x2b082b082b08082b, 0x2b082b082b2b2b08, + 0x2b082b190808192b, 0x2b082b2b082b082b, 0x2b082b2b2b080808, 0x2b082b2b2b082b08, + 0x2b082b2b2b19192b, 0x2b082b2b2b2b2b08, 0x2b19080808080819, 0x2b19080808081908, + 0x2b19080808190808, 0x2b19080819080808, 0x2b1908081919192b, 0x2b1908082b081908, + 0x2b19081908080808, 0x2b190819082b082b, 0x2b190819192b1908, 0x2b19082b1919192b, + 0x2b19082b2b082b19, 0x2b19190808080808, 0x2b19190808081919, 0x2b19190819081908, + 0x2b19190819190808, 0x2b19190819192b08, 0x2b191919082b2b19, 0x2b1919192b190808, + 0x2b1919192b19082b, 0x2b19192b19080819, 0x2b192b0819190819, 0x2b192b082b2b192b, + 0x2b192b1919082b19, 0x2b192b2b08191919, 0x2b192b2b192b0808, 0x2b2b080808080808, + 0x2b2b08080808082b, 0x2b2b080808082b08, 0x2b2b080808082b2b, 0x2b2b0808082b0808, + 0x2b2b0808082b2b2b, 0x2b2b08082b2b0808, 0x2b2b081919190819, 0x2b2b081919192b19, + 0x2b2b08192b2b192b, 0x2b2b082b08080808, 0x2b2b082b0808082b, 0x2b2b082b08082b08, + 0x2b2b082b082b2b2b, 0x2b2b082b2b080808, 0x2b2b082b2b2b0808, 0x2b2b190819080808, + 0x2b2b19082b191919, 0x2b2b192b192b1919, 0x2b2b192b2b192b08, 0x2b2b2b0808082b2b, + 0x2b2b2b08082b0808, 0x2b2b2b08082b082b, 0x2b2b2b08082b2b08, 0x2b2b2b082b2b0808, + 0x2b2b2b082b2b2b08, 0x2b2b2b1908081908, 0x2b2b2b192b081908, 0x2b2b2b192b08192b, + 0x2b2b2b2b082b2b08, 0x2b2b2b2b082b2b2b, 0x2b2b2b2b2b190819, 0x2b2b2b2b2b2b2b2b, +GGML_TABLE_END() + +GGML_TABLE_BEGIN(uint64_t, iq2s_grid, 1024) + 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08, + 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x080808080819192b, + 0x0808080808192b19, 0x08080808082b0808, 0x08080808082b082b, 0x08080808082b1919, + 0x08080808082b2b08, 0x0808080819080819, 0x0808080819081908, 0x080808081908192b, + 0x0808080819082b19, 0x0808080819190808, 0x080808081919082b, 0x0808080819191919, + 0x0808080819192b08, 0x08080808192b0819, 0x08080808192b1908, 0x08080808192b192b, + 0x08080808192b2b19, 0x080808082b080808, 0x080808082b08082b, 0x080808082b081919, + 0x080808082b082b08, 0x080808082b190819, 0x080808082b191908, 0x080808082b2b0808, + 0x080808082b2b1919, 0x080808082b2b2b2b, 0x0808081908080819, 0x0808081908081908, + 0x080808190808192b, 0x0808081908082b19, 0x0808081908190808, 0x080808190819082b, + 0x0808081908191919, 0x0808081908192b08, 0x08080819082b0819, 0x08080819082b1908, + 0x0808081919080808, 0x080808191908082b, 0x0808081919081919, 0x0808081919082b08, + 0x0808081919190819, 0x0808081919191908, 0x080808191919192b, 0x0808081919192b19, + 0x08080819192b0808, 0x08080819192b1919, 0x08080819192b2b08, 0x080808192b080819, + 0x080808192b081908, 0x080808192b190808, 0x080808192b19082b, 0x080808192b191919, + 0x080808192b2b0819, 0x080808192b2b1908, 0x0808082b08080808, 0x0808082b0808082b, + 0x0808082b08081919, 0x0808082b08082b08, 0x0808082b08190819, 0x0808082b08191908, + 0x0808082b082b0808, 0x0808082b082b2b2b, 0x0808082b19080819, 0x0808082b19081908, + 0x0808082b1908192b, 0x0808082b19082b19, 0x0808082b19190808, 0x0808082b19191919, + 0x0808082b2b080808, 0x0808082b2b081919, 0x0808082b2b082b2b, 0x0808082b2b191908, + 0x0808082b2b2b082b, 0x0808190808080819, 0x0808190808081908, 0x080819080808192b, + 0x0808190808082b19, 0x0808190808190808, 0x080819080819082b, 0x0808190808191919, + 0x0808190808192b08, 0x08081908082b0819, 0x08081908082b1908, 0x08081908082b192b, + 0x08081908082b2b19, 0x0808190819080808, 0x080819081908082b, 0x0808190819081919, + 0x0808190819082b08, 0x0808190819082b2b, 0x0808190819190819, 0x0808190819191908, + 0x080819081919192b, 0x0808190819192b19, 0x08081908192b0808, 0x08081908192b082b, + 0x08081908192b1919, 0x080819082b080819, 0x080819082b081908, 0x080819082b08192b, + 0x080819082b082b19, 0x080819082b190808, 0x080819082b191919, 0x080819082b192b08, + 0x080819082b2b0819, 0x080819082b2b1908, 0x0808191908080808, 0x080819190808082b, + 0x0808191908081919, 0x0808191908082b08, 0x0808191908082b2b, 0x0808191908190819, + 0x0808191908191908, 0x080819190819192b, 0x0808191908192b19, 0x08081919082b0808, + 0x08081919082b1919, 0x08081919082b2b08, 0x0808191919080819, 0x0808191919081908, + 0x080819191908192b, 0x0808191919082b19, 0x0808191919190808, 0x080819191919082b, + 0x0808191919191919, 0x0808191919192b08, 0x08081919192b0819, 0x08081919192b1908, + 0x080819192b080808, 0x080819192b08082b, 0x080819192b081919, 0x080819192b082b08, + 0x080819192b190819, 0x080819192b191908, 0x080819192b2b0808, 0x0808192b08080819, + 0x0808192b08081908, 0x0808192b0808192b, 0x0808192b08082b19, 0x0808192b08190808, + 0x0808192b08191919, 0x0808192b19080808, 0x0808192b19081919, 0x0808192b19082b08, + 0x0808192b19190819, 0x0808192b19191908, 0x0808192b192b0808, 0x0808192b2b080819, + 0x0808192b2b081908, 0x0808192b2b190808, 0x08082b0808080808, 0x08082b080808082b, + 0x08082b0808081919, 0x08082b0808082b08, 0x08082b0808190819, 0x08082b0808191908, + 0x08082b080819192b, 0x08082b0808192b19, 0x08082b08082b0808, 0x08082b08082b1919, + 0x08082b08082b2b2b, 0x08082b0819080819, 0x08082b0819081908, 0x08082b081908192b, + 0x08082b0819082b19, 0x08082b0819190808, 0x08082b081919082b, 0x08082b0819191919, + 0x08082b0819192b08, 0x08082b08192b0819, 0x08082b08192b1908, 0x08082b082b080808, + 0x08082b082b081919, 0x08082b082b191908, 0x08082b082b2b2b2b, 0x08082b1908080819, + 0x08082b1908081908, 0x08082b1908190808, 0x08082b190819082b, 0x08082b1908191919, + 0x08082b1908192b08, 0x08082b19082b0819, 0x08082b1919080808, 0x08082b1919081919, + 0x08082b1919082b08, 0x08082b1919190819, 0x08082b1919191908, 0x08082b19192b0808, + 0x08082b192b080819, 0x08082b192b190808, 0x08082b2b08080808, 0x08082b2b08190819, + 0x08082b2b08191908, 0x08082b2b082b082b, 0x08082b2b082b2b08, 0x08082b2b082b2b2b, + 0x08082b2b19190808, 0x08082b2b2b192b19, 0x0819080808080819, 0x0819080808081908, + 0x081908080808192b, 0x0819080808082b19, 0x0819080808190808, 0x081908080819082b, + 0x0819080808191919, 0x0819080808192b08, 0x08190808082b0819, 0x08190808082b1908, + 0x08190808082b192b, 0x0819080819080808, 0x081908081908082b, 0x0819080819081919, + 0x0819080819082b08, 0x0819080819190819, 0x0819080819191908, 0x081908081919192b, + 0x0819080819192b19, 0x08190808192b0808, 0x08190808192b082b, 0x08190808192b1919, + 0x08190808192b2b08, 0x081908082b080819, 0x081908082b081908, 0x081908082b08192b, + 0x081908082b190808, 0x081908082b191919, 0x081908082b192b08, 0x081908082b2b0819, + 0x081908082b2b1908, 0x0819081908080808, 0x081908190808082b, 0x0819081908081919, + 0x0819081908082b08, 0x0819081908082b2b, 0x0819081908190819, 0x0819081908191908, + 0x081908190819192b, 0x0819081908192b19, 0x08190819082b0808, 0x08190819082b082b, + 0x08190819082b1919, 0x08190819082b2b08, 0x0819081919080819, 0x0819081919081908, + 0x081908191908192b, 0x0819081919082b19, 0x0819081919190808, 0x081908191919082b, + 0x0819081919191919, 0x0819081919192b08, 0x08190819192b0819, 0x08190819192b1908, + 0x081908192b080808, 0x081908192b08082b, 0x081908192b081919, 0x081908192b082b08, + 0x081908192b190819, 0x081908192b191908, 0x0819082b08080819, 0x0819082b08081908, + 0x0819082b08082b19, 0x0819082b08190808, 0x0819082b08191919, 0x0819082b082b0819, + 0x0819082b082b1908, 0x0819082b19080808, 0x0819082b19081919, 0x0819082b19190819, + 0x0819082b19191908, 0x0819082b2b080819, 0x0819082b2b081908, 0x0819082b2b190808, + 0x0819190808080808, 0x081919080808082b, 0x0819190808081919, 0x0819190808082b08, + 0x0819190808190819, 0x0819190808191908, 0x081919080819192b, 0x0819190808192b19, + 0x08191908082b0808, 0x08191908082b1919, 0x08191908082b2b08, 0x0819190819080819, + 0x0819190819081908, 0x081919081908192b, 0x0819190819082b19, 0x0819190819190808, + 0x081919081919082b, 0x0819190819191919, 0x0819190819192b08, 0x08191908192b0819, + 0x08191908192b1908, 0x081919082b080808, 0x081919082b08082b, 0x081919082b081919, + 0x081919082b082b08, 0x081919082b190819, 0x081919082b191908, 0x081919082b2b0808, + 0x0819191908080819, 0x0819191908081908, 0x081919190808192b, 0x0819191908082b19, + 0x0819191908190808, 0x081919190819082b, 0x0819191908191919, 0x0819191908192b08, + 0x08191919082b0819, 0x08191919082b1908, 0x0819191919080808, 0x081919191908082b, + 0x0819191919081919, 0x0819191919082b08, 0x0819191919190819, 0x0819191919191908, + 0x08191919192b0808, 0x081919192b080819, 0x081919192b081908, 0x081919192b190808, + 0x0819192b08080808, 0x0819192b08081919, 0x0819192b08082b08, 0x0819192b08190819, + 0x0819192b08191908, 0x0819192b082b0808, 0x0819192b19080819, 0x0819192b19081908, + 0x0819192b19190808, 0x0819192b2b080808, 0x0819192b2b2b2b2b, 0x08192b0808080819, + 0x08192b0808081908, 0x08192b080808192b, 0x08192b0808082b19, 0x08192b0808190808, + 0x08192b0808191919, 0x08192b0808192b08, 0x08192b08082b0819, 0x08192b0819080808, + 0x08192b081908082b, 0x08192b0819081919, 0x08192b0819082b08, 0x08192b0819190819, + 0x08192b0819191908, 0x08192b08192b0808, 0x08192b082b080819, 0x08192b082b081908, + 0x08192b1908080808, 0x08192b190808082b, 0x08192b1908081919, 0x08192b1908082b08, + 0x08192b1908190819, 0x08192b1908191908, 0x08192b19082b0808, 0x08192b1919080819, + 0x08192b1919081908, 0x08192b1919190808, 0x08192b19192b2b19, 0x08192b192b2b082b, + 0x08192b2b08081908, 0x08192b2b08190808, 0x08192b2b19080808, 0x08192b2b1919192b, + 0x082b080808080808, 0x082b08080808082b, 0x082b080808081919, 0x082b080808082b08, + 0x082b080808190819, 0x082b080808191908, 0x082b08080819192b, 0x082b080808192b19, + 0x082b0808082b0808, 0x082b0808082b1919, 0x082b0808082b2b2b, 0x082b080819080819, + 0x082b080819081908, 0x082b080819190808, 0x082b08081919082b, 0x082b080819191919, + 0x082b0808192b1908, 0x082b08082b080808, 0x082b08082b082b2b, 0x082b08082b191908, + 0x082b08082b2b2b2b, 0x082b081908080819, 0x082b081908081908, 0x082b081908190808, + 0x082b08190819082b, 0x082b081908191919, 0x082b0819082b0819, 0x082b081919080808, + 0x082b08191908082b, 0x082b081919081919, 0x082b081919190819, 0x082b081919191908, + 0x082b0819192b0808, 0x082b08192b080819, 0x082b08192b081908, 0x082b08192b190808, + 0x082b082b08080808, 0x082b082b08082b2b, 0x082b082b082b082b, 0x082b082b082b2b08, + 0x082b082b082b2b2b, 0x082b082b19081908, 0x082b082b19190808, 0x082b082b2b082b08, + 0x082b082b2b082b2b, 0x082b082b2b2b2b08, 0x082b190808080819, 0x082b190808081908, + 0x082b19080808192b, 0x082b190808082b19, 0x082b190808190808, 0x082b190808191919, + 0x082b190808192b08, 0x082b1908082b0819, 0x082b1908082b1908, 0x082b190819080808, + 0x082b19081908082b, 0x082b190819081919, 0x082b190819082b08, 0x082b190819190819, + 0x082b190819191908, 0x082b1908192b0808, 0x082b19082b080819, 0x082b19082b081908, + 0x082b19082b190808, 0x082b191908080808, 0x082b191908081919, 0x082b191908082b08, + 0x082b191908190819, 0x082b191908191908, 0x082b1919082b0808, 0x082b191919080819, + 0x082b191919081908, 0x082b191919190808, 0x082b1919192b192b, 0x082b19192b080808, + 0x082b192b08080819, 0x082b192b08081908, 0x082b192b08190808, 0x082b192b19080808, + 0x082b192b19192b19, 0x082b2b0808080808, 0x082b2b0808081919, 0x082b2b0808190819, + 0x082b2b0808191908, 0x082b2b0819080819, 0x082b2b0819081908, 0x082b2b0819190808, + 0x082b2b082b082b2b, 0x082b2b082b2b2b2b, 0x082b2b1908080819, 0x082b2b1908081908, + 0x082b2b1908190808, 0x082b2b192b191919, 0x082b2b2b08082b2b, 0x082b2b2b082b082b, + 0x082b2b2b192b1908, 0x082b2b2b2b082b08, 0x082b2b2b2b082b2b, 0x1908080808080819, + 0x1908080808081908, 0x190808080808192b, 0x1908080808082b19, 0x1908080808190808, + 0x190808080819082b, 0x1908080808191919, 0x1908080808192b08, 0x1908080808192b2b, + 0x19080808082b0819, 0x19080808082b1908, 0x19080808082b192b, 0x1908080819080808, + 0x190808081908082b, 0x1908080819081919, 0x1908080819082b08, 0x1908080819082b2b, + 0x1908080819190819, 0x1908080819191908, 0x190808081919192b, 0x1908080819192b19, + 0x19080808192b0808, 0x19080808192b082b, 0x19080808192b1919, 0x190808082b080819, + 0x190808082b081908, 0x190808082b190808, 0x190808082b191919, 0x190808082b192b08, + 0x190808082b2b0819, 0x190808082b2b1908, 0x1908081908080808, 0x190808190808082b, + 0x1908081908081919, 0x1908081908082b08, 0x1908081908190819, 0x1908081908191908, + 0x190808190819192b, 0x1908081908192b19, 0x19080819082b0808, 0x19080819082b082b, + 0x19080819082b1919, 0x1908081919080819, 0x1908081919081908, 0x190808191908192b, + 0x1908081919082b19, 0x1908081919190808, 0x190808191919082b, 0x1908081919191919, + 0x1908081919192b08, 0x19080819192b0819, 0x19080819192b1908, 0x190808192b080808, + 0x190808192b08082b, 0x190808192b081919, 0x190808192b082b08, 0x190808192b190819, + 0x190808192b191908, 0x190808192b2b0808, 0x1908082b08080819, 0x1908082b08081908, + 0x1908082b08190808, 0x1908082b0819082b, 0x1908082b08191919, 0x1908082b08192b08, + 0x1908082b082b1908, 0x1908082b19080808, 0x1908082b19081919, 0x1908082b19082b08, + 0x1908082b19190819, 0x1908082b19191908, 0x1908082b192b0808, 0x1908082b2b080819, + 0x1908082b2b081908, 0x1908190808080808, 0x190819080808082b, 0x1908190808081919, + 0x1908190808082b08, 0x1908190808082b2b, 0x1908190808190819, 0x1908190808191908, + 0x190819080819192b, 0x1908190808192b19, 0x19081908082b0808, 0x19081908082b082b, + 0x19081908082b1919, 0x19081908082b2b08, 0x1908190819080819, 0x1908190819081908, + 0x190819081908192b, 0x1908190819082b19, 0x1908190819190808, 0x190819081919082b, + 0x1908190819191919, 0x1908190819192b08, 0x19081908192b0819, 0x19081908192b1908, + 0x190819082b080808, 0x190819082b08082b, 0x190819082b081919, 0x190819082b082b08, + 0x190819082b190819, 0x190819082b191908, 0x190819082b2b0808, 0x1908191908080819, + 0x1908191908081908, 0x190819190808192b, 0x1908191908082b19, 0x1908191908190808, + 0x190819190819082b, 0x1908191908191919, 0x1908191908192b08, 0x19081919082b0819, + 0x19081919082b1908, 0x1908191919080808, 0x190819191908082b, 0x1908191919081919, + 0x1908191919082b08, 0x1908191919190819, 0x1908191919191908, 0x19081919192b0808, + 0x19081919192b2b2b, 0x190819192b080819, 0x190819192b081908, 0x190819192b190808, + 0x1908192b08080808, 0x1908192b0808082b, 0x1908192b08081919, 0x1908192b08082b08, + 0x1908192b08190819, 0x1908192b08191908, 0x1908192b082b0808, 0x1908192b19080819, + 0x1908192b19081908, 0x1908192b19190808, 0x1908192b2b080808, 0x1908192b2b2b1919, + 0x19082b0808080819, 0x19082b0808081908, 0x19082b0808082b19, 0x19082b0808190808, + 0x19082b080819082b, 0x19082b0808191919, 0x19082b0808192b08, 0x19082b08082b0819, + 0x19082b08082b1908, 0x19082b0819080808, 0x19082b081908082b, 0x19082b0819081919, + 0x19082b0819082b08, 0x19082b0819190819, 0x19082b0819191908, 0x19082b08192b0808, + 0x19082b082b081908, 0x19082b082b190808, 0x19082b1908080808, 0x19082b190808082b, + 0x19082b1908081919, 0x19082b1908082b08, 0x19082b1908190819, 0x19082b1908191908, + 0x19082b19082b0808, 0x19082b1919080819, 0x19082b1919081908, 0x19082b1919190808, + 0x19082b192b080808, 0x19082b192b19192b, 0x19082b2b08080819, 0x19082b2b08081908, + 0x19082b2b08190808, 0x19082b2b19080808, 0x1919080808080808, 0x191908080808082b, + 0x1919080808081919, 0x1919080808082b08, 0x1919080808190819, 0x1919080808191908, + 0x191908080819192b, 0x1919080808192b19, 0x19190808082b0808, 0x19190808082b082b, + 0x19190808082b1919, 0x19190808082b2b08, 0x1919080819080819, 0x1919080819081908, + 0x191908081908192b, 0x1919080819082b19, 0x1919080819190808, 0x191908081919082b, + 0x1919080819191919, 0x1919080819192b08, 0x19190808192b0819, 0x19190808192b1908, + 0x191908082b080808, 0x191908082b08082b, 0x191908082b081919, 0x191908082b082b08, + 0x191908082b190819, 0x191908082b191908, 0x1919081908080819, 0x1919081908081908, + 0x191908190808192b, 0x1919081908082b19, 0x1919081908190808, 0x191908190819082b, + 0x1919081908191919, 0x1919081908192b08, 0x19190819082b0819, 0x19190819082b1908, + 0x1919081919080808, 0x191908191908082b, 0x1919081919081919, 0x1919081919082b08, + 0x1919081919190819, 0x1919081919191908, 0x19190819192b0808, 0x191908192b080819, + 0x191908192b081908, 0x191908192b190808, 0x1919082b08080808, 0x1919082b08081919, + 0x1919082b08082b08, 0x1919082b08190819, 0x1919082b08191908, 0x1919082b082b0808, + 0x1919082b19080819, 0x1919082b19081908, 0x1919082b19190808, 0x1919082b192b2b19, + 0x1919082b2b080808, 0x1919190808080819, 0x1919190808081908, 0x191919080808192b, + 0x1919190808082b19, 0x1919190808190808, 0x191919080819082b, 0x1919190808191919, + 0x1919190808192b08, 0x19191908082b0819, 0x19191908082b1908, 0x1919190819080808, + 0x191919081908082b, 0x1919190819081919, 0x1919190819082b08, 0x1919190819190819, + 0x1919190819191908, 0x19191908192b0808, 0x191919082b080819, 0x191919082b081908, + 0x191919082b190808, 0x1919191908080808, 0x191919190808082b, 0x1919191908081919, + 0x1919191908082b08, 0x1919191908190819, 0x1919191908191908, 0x19191919082b0808, + 0x1919191919080819, 0x1919191919081908, 0x1919191919190808, 0x191919192b080808, + 0x1919192b08080819, 0x1919192b08081908, 0x1919192b08190808, 0x1919192b082b192b, + 0x1919192b19080808, 0x19192b0808080808, 0x19192b080808082b, 0x19192b0808081919, + 0x19192b0808082b08, 0x19192b0808190819, 0x19192b0808191908, 0x19192b08082b0808, + 0x19192b0819080819, 0x19192b0819081908, 0x19192b0819190808, 0x19192b0819192b2b, + 0x19192b082b080808, 0x19192b1908080819, 0x19192b1908081908, 0x19192b1908190808, + 0x19192b1919080808, 0x19192b2b08080808, 0x19192b2b08192b19, 0x19192b2b2b081919, + 0x19192b2b2b2b2b08, 0x192b080808080819, 0x192b080808081908, 0x192b08080808192b, + 0x192b080808190808, 0x192b08080819082b, 0x192b080808191919, 0x192b080808192b08, + 0x192b0808082b0819, 0x192b0808082b1908, 0x192b080819080808, 0x192b080819081919, + 0x192b080819082b08, 0x192b080819190819, 0x192b080819191908, 0x192b0808192b0808, + 0x192b08082b081908, 0x192b08082b190808, 0x192b081908080808, 0x192b08190808082b, + 0x192b081908081919, 0x192b081908082b08, 0x192b081908190819, 0x192b081908191908, + 0x192b0819082b0808, 0x192b081919080819, 0x192b081919081908, 0x192b081919190808, + 0x192b08192b080808, 0x192b08192b192b19, 0x192b082b08081908, 0x192b082b08190808, + 0x192b082b19080808, 0x192b082b1919192b, 0x192b082b2b2b0819, 0x192b190808080808, + 0x192b190808081919, 0x192b190808082b08, 0x192b190808190819, 0x192b190808191908, + 0x192b1908082b0808, 0x192b190819080819, 0x192b190819081908, 0x192b190819190808, + 0x192b19082b080808, 0x192b191908080819, 0x192b191908081908, 0x192b191908190808, + 0x192b191919080808, 0x192b191919082b2b, 0x192b1919192b2b08, 0x192b19192b19082b, + 0x192b192b08080808, 0x192b192b2b191908, 0x192b2b0808080819, 0x192b2b0808081908, + 0x192b2b0808190808, 0x192b2b08192b1919, 0x192b2b082b192b08, 0x192b2b1908080808, + 0x192b2b19082b2b2b, 0x192b2b2b1908082b, 0x192b2b2b2b2b0819, 0x2b08080808080808, + 0x2b0808080808082b, 0x2b08080808081919, 0x2b08080808082b08, 0x2b08080808190819, + 0x2b08080808191908, 0x2b08080808192b19, 0x2b080808082b0808, 0x2b080808082b1919, + 0x2b08080819080819, 0x2b08080819081908, 0x2b08080819190808, 0x2b0808081919082b, + 0x2b08080819191919, 0x2b08080819192b08, 0x2b080808192b0819, 0x2b0808082b080808, + 0x2b0808082b081919, 0x2b0808082b190819, 0x2b0808082b191908, 0x2b08081908080819, + 0x2b08081908081908, 0x2b08081908082b19, 0x2b08081908190808, 0x2b0808190819082b, + 0x2b08081908191919, 0x2b08081908192b08, 0x2b080819082b0819, 0x2b080819082b1908, + 0x2b08081919080808, 0x2b0808191908082b, 0x2b08081919081919, 0x2b08081919082b08, + 0x2b08081919190819, 0x2b08081919191908, 0x2b0808192b080819, 0x2b0808192b081908, + 0x2b0808192b190808, 0x2b0808192b2b2b19, 0x2b08082b08080808, 0x2b08082b08081919, + 0x2b08082b08082b2b, 0x2b08082b08190819, 0x2b08082b08191908, 0x2b08082b19080819, + 0x2b08082b19081908, 0x2b08082b19190808, 0x2b08190808080819, 0x2b08190808081908, + 0x2b0819080808192b, 0x2b08190808082b19, 0x2b08190808190808, 0x2b0819080819082b, + 0x2b08190808191919, 0x2b08190808192b08, 0x2b081908082b0819, 0x2b08190819080808, + 0x2b0819081908082b, 0x2b08190819081919, 0x2b08190819082b08, 0x2b08190819190819, + 0x2b08190819191908, 0x2b081908192b0808, 0x2b0819082b080819, 0x2b0819082b081908, + 0x2b0819082b190808, 0x2b08191908080808, 0x2b0819190808082b, 0x2b08191908081919, + 0x2b08191908082b08, 0x2b08191908190819, 0x2b08191908191908, 0x2b081919082b0808, + 0x2b08191919080819, 0x2b08191919081908, 0x2b08191919190808, 0x2b0819192b080808, + 0x2b0819192b082b2b, 0x2b08192b08080819, 0x2b08192b08081908, 0x2b08192b08190808, + 0x2b08192b082b2b19, 0x2b08192b19080808, 0x2b082b0808080808, 0x2b082b0808081919, + 0x2b082b0808190819, 0x2b082b0808191908, 0x2b082b0819080819, 0x2b082b0819081908, + 0x2b082b0819190808, 0x2b082b082b2b082b, 0x2b082b1908080819, 0x2b082b1908081908, + 0x2b082b1919080808, 0x2b082b19192b1919, 0x2b082b2b082b082b, 0x2b082b2b19192b08, + 0x2b082b2b19192b2b, 0x2b082b2b2b08082b, 0x2b082b2b2b2b082b, 0x2b19080808080819, + 0x2b19080808081908, 0x2b19080808082b19, 0x2b19080808190808, 0x2b1908080819082b, + 0x2b19080808191919, 0x2b19080808192b08, 0x2b190808082b1908, 0x2b19080819080808, + 0x2b1908081908082b, 0x2b19080819081919, 0x2b19080819082b08, 0x2b19080819190819, + 0x2b19080819191908, 0x2b190808192b0808, 0x2b1908082b080819, 0x2b1908082b081908, + 0x2b1908082b190808, 0x2b19081908080808, 0x2b19081908081919, 0x2b19081908190819, + 0x2b19081908191908, 0x2b19081919080819, 0x2b19081919081908, 0x2b19081919190808, + 0x2b19081919192b2b, 0x2b19082b08080819, 0x2b19082b08081908, 0x2b19082b08190808, + 0x2b19082b19080808, 0x2b19082b2b2b192b, 0x2b19190808080808, 0x2b1919080808082b, + 0x2b19190808081919, 0x2b19190808082b08, 0x2b19190808190819, 0x2b19190808191908, + 0x2b191908082b0808, 0x2b19190819080819, 0x2b19190819081908, 0x2b19190819190808, + 0x2b1919082b080808, 0x2b1919082b19192b, 0x2b19191908080819, 0x2b19191908081908, + 0x2b19191908190808, 0x2b19191919080808, 0x2b1919192b192b08, 0x2b1919192b2b0819, + 0x2b19192b08080808, 0x2b19192b1908192b, 0x2b19192b192b1908, 0x2b192b0808080819, + 0x2b192b0808081908, 0x2b192b0808190808, 0x2b192b08082b192b, 0x2b192b0819080808, + 0x2b192b082b2b2b19, 0x2b192b1908080808, 0x2b192b1919082b19, 0x2b192b191919082b, + 0x2b192b2b2b190808, 0x2b2b080808080808, 0x2b2b080808081919, 0x2b2b080808082b2b, + 0x2b2b080808191908, 0x2b2b0808082b082b, 0x2b2b0808082b2b2b, 0x2b2b080819080819, + 0x2b2b080819081908, 0x2b2b080819190808, 0x2b2b08082b2b082b, 0x2b2b08082b2b2b2b, + 0x2b2b081919080808, 0x2b2b0819192b1919, 0x2b2b082b0808082b, 0x2b2b082b08082b2b, + 0x2b2b082b082b082b, 0x2b2b082b082b2b08, 0x2b2b082b082b2b2b, 0x2b2b082b2b08082b, + 0x2b2b082b2b082b08, 0x2b2b082b2b082b2b, 0x2b2b082b2b2b2b08, 0x2b2b190808080819, + 0x2b2b190808081908, 0x2b2b190808190808, 0x2b2b190819080808, 0x2b2b19082b082b19, + 0x2b2b19082b2b1908, 0x2b2b191908080808, 0x2b2b191908192b19, 0x2b2b192b19190819, + 0x2b2b2b0808082b2b, 0x2b2b2b08082b2b08, 0x2b2b2b082b2b082b, 0x2b2b2b1919191908, + 0x2b2b2b192b08192b, 0x2b2b2b2b08082b08, 0x2b2b2b2b08082b2b, 0x2b2b2b2b082b0808, + 0x2b2b2b2b082b082b, 0x2b2b2b2b082b2b08, 0x2b2b2b2b2b082b08, 0x2b2b2b2b2b2b2b2b, +GGML_TABLE_END() + +GGML_TABLE_BEGIN(uint32_t, iq3xxs_grid, 256) + 0x04040404, 0x04040414, 0x04040424, 0x04040c0c, 0x04040c1c, 0x04040c3e, 0x04041404, 0x04041414, + 0x04041c0c, 0x04042414, 0x04043e1c, 0x04043e2c, 0x040c040c, 0x040c041c, 0x040c0c04, 0x040c0c14, + 0x040c140c, 0x040c142c, 0x040c1c04, 0x040c1c14, 0x040c240c, 0x040c2c24, 0x040c3e04, 0x04140404, + 0x04140414, 0x04140424, 0x04140c0c, 0x04141404, 0x04141414, 0x04141c0c, 0x04141c1c, 0x04141c3e, + 0x04142c0c, 0x04142c3e, 0x04143e2c, 0x041c040c, 0x041c043e, 0x041c0c04, 0x041c0c14, 0x041c142c, + 0x041c3e04, 0x04240c1c, 0x04241c3e, 0x04242424, 0x04242c3e, 0x04243e1c, 0x04243e2c, 0x042c040c, + 0x042c043e, 0x042c1c14, 0x042c2c14, 0x04341c2c, 0x04343424, 0x043e0c04, 0x043e0c24, 0x043e0c34, + 0x043e241c, 0x043e340c, 0x0c04040c, 0x0c04041c, 0x0c040c04, 0x0c040c14, 0x0c04140c, 0x0c04141c, + 0x0c041c04, 0x0c041c14, 0x0c041c24, 0x0c04243e, 0x0c042c04, 0x0c0c0404, 0x0c0c0414, 0x0c0c0c0c, + 0x0c0c1404, 0x0c0c1414, 0x0c14040c, 0x0c14041c, 0x0c140c04, 0x0c140c14, 0x0c14140c, 0x0c141c04, + 0x0c143e14, 0x0c1c0404, 0x0c1c0414, 0x0c1c1404, 0x0c1c1c0c, 0x0c1c2434, 0x0c1c3434, 0x0c24040c, + 0x0c24042c, 0x0c242c04, 0x0c2c1404, 0x0c2c1424, 0x0c2c2434, 0x0c2c3e0c, 0x0c34042c, 0x0c3e1414, + 0x0c3e2404, 0x14040404, 0x14040414, 0x14040c0c, 0x14040c1c, 0x14041404, 0x14041414, 0x14041434, + 0x14041c0c, 0x14042414, 0x140c040c, 0x140c041c, 0x140c042c, 0x140c0c04, 0x140c0c14, 0x140c140c, + 0x140c1c04, 0x140c341c, 0x140c343e, 0x140c3e04, 0x14140404, 0x14140414, 0x14140c0c, 0x14140c3e, + 0x14141404, 0x14141414, 0x14141c3e, 0x14142404, 0x14142c2c, 0x141c040c, 0x141c0c04, 0x141c0c24, + 0x141c3e04, 0x141c3e24, 0x14241c2c, 0x14242c1c, 0x142c041c, 0x142c143e, 0x142c240c, 0x142c3e24, + 0x143e040c, 0x143e041c, 0x143e0c34, 0x143e242c, 0x1c04040c, 0x1c040c04, 0x1c040c14, 0x1c04140c, + 0x1c04141c, 0x1c042c04, 0x1c04342c, 0x1c043e14, 0x1c0c0404, 0x1c0c0414, 0x1c0c1404, 0x1c0c1c0c, + 0x1c0c2424, 0x1c0c2434, 0x1c14040c, 0x1c14041c, 0x1c140c04, 0x1c14142c, 0x1c142c14, 0x1c143e14, + 0x1c1c0c0c, 0x1c1c1c1c, 0x1c241c04, 0x1c24243e, 0x1c243e14, 0x1c2c0404, 0x1c2c0434, 0x1c2c1414, + 0x1c2c2c2c, 0x1c340c24, 0x1c341c34, 0x1c34341c, 0x1c3e1c1c, 0x1c3e3404, 0x24040424, 0x24040c3e, + 0x24041c2c, 0x24041c3e, 0x24042c1c, 0x24042c3e, 0x240c3e24, 0x24141404, 0x24141c3e, 0x24142404, + 0x24143404, 0x24143434, 0x241c043e, 0x241c242c, 0x24240424, 0x24242c0c, 0x24243424, 0x242c142c, + 0x242c241c, 0x242c3e04, 0x243e042c, 0x243e0c04, 0x243e0c14, 0x243e1c04, 0x2c040c14, 0x2c04240c, + 0x2c043e04, 0x2c0c0404, 0x2c0c0434, 0x2c0c1434, 0x2c0c2c2c, 0x2c140c24, 0x2c141c14, 0x2c143e14, + 0x2c1c0414, 0x2c1c2c1c, 0x2c240c04, 0x2c24141c, 0x2c24143e, 0x2c243e14, 0x2c2c0414, 0x2c2c1c0c, + 0x2c342c04, 0x2c3e1424, 0x2c3e2414, 0x34041424, 0x34042424, 0x34042434, 0x34043424, 0x340c140c, + 0x340c340c, 0x34140c3e, 0x34143424, 0x341c1c04, 0x341c1c34, 0x34242424, 0x342c042c, 0x342c2c14, + 0x34341c1c, 0x343e041c, 0x343e140c, 0x3e04041c, 0x3e04042c, 0x3e04043e, 0x3e040c04, 0x3e041c14, + 0x3e042c14, 0x3e0c1434, 0x3e0c2404, 0x3e140c14, 0x3e14242c, 0x3e142c14, 0x3e1c0404, 0x3e1c0c2c, + 0x3e1c1c1c, 0x3e1c3404, 0x3e24140c, 0x3e24240c, 0x3e2c0404, 0x3e2c0414, 0x3e2c1424, 0x3e341c04, +GGML_TABLE_END() + +GGML_TABLE_BEGIN(uint32_t, iq3s_grid, 512) + 0x01010101, 0x01010103, 0x01010105, 0x0101010b, 0x0101010f, 0x01010301, 0x01010303, 0x01010305, + 0x01010309, 0x0101030d, 0x01010501, 0x01010503, 0x0101050b, 0x01010707, 0x01010901, 0x01010905, + 0x0101090b, 0x0101090f, 0x01010b03, 0x01010b07, 0x01010d01, 0x01010d05, 0x01010f03, 0x01010f09, + 0x01010f0f, 0x01030101, 0x01030103, 0x01030105, 0x01030109, 0x01030301, 0x01030303, 0x0103030b, + 0x01030501, 0x01030507, 0x0103050f, 0x01030703, 0x0103070b, 0x01030909, 0x01030d03, 0x01030d0b, + 0x01030f05, 0x01050101, 0x01050103, 0x0105010b, 0x0105010f, 0x01050301, 0x01050307, 0x0105030d, + 0x01050503, 0x0105050b, 0x01050701, 0x01050709, 0x01050905, 0x0105090b, 0x0105090f, 0x01050b03, + 0x01050b07, 0x01050f01, 0x01050f07, 0x01070107, 0x01070303, 0x0107030b, 0x01070501, 0x01070505, + 0x01070703, 0x01070707, 0x0107070d, 0x01070909, 0x01070b01, 0x01070b05, 0x01070d0f, 0x01070f03, + 0x01070f0b, 0x01090101, 0x01090307, 0x0109030f, 0x01090503, 0x01090509, 0x01090705, 0x01090901, + 0x01090907, 0x01090b03, 0x01090f01, 0x010b0105, 0x010b0109, 0x010b0501, 0x010b0505, 0x010b050d, + 0x010b0707, 0x010b0903, 0x010b090b, 0x010b090f, 0x010b0d0d, 0x010b0f07, 0x010d010d, 0x010d0303, + 0x010d0307, 0x010d0703, 0x010d0b05, 0x010d0f03, 0x010f0101, 0x010f0105, 0x010f0109, 0x010f0501, + 0x010f0505, 0x010f050d, 0x010f0707, 0x010f0b01, 0x010f0b09, 0x03010101, 0x03010103, 0x03010105, + 0x03010109, 0x03010301, 0x03010303, 0x03010307, 0x0301030b, 0x0301030f, 0x03010501, 0x03010505, + 0x03010703, 0x03010709, 0x0301070d, 0x03010b09, 0x03010b0d, 0x03010d03, 0x03010f05, 0x03030101, + 0x03030103, 0x03030107, 0x0303010d, 0x03030301, 0x03030309, 0x03030503, 0x03030701, 0x03030707, + 0x03030903, 0x03030b01, 0x03030b05, 0x03030f01, 0x03030f0d, 0x03050101, 0x03050305, 0x0305030b, + 0x0305030f, 0x03050501, 0x03050509, 0x03050705, 0x03050901, 0x03050907, 0x03050b0b, 0x03050d01, + 0x03050f05, 0x03070103, 0x03070109, 0x0307010f, 0x03070301, 0x03070307, 0x03070503, 0x0307050f, + 0x03070701, 0x03070709, 0x03070903, 0x03070d05, 0x03070f01, 0x03090107, 0x0309010b, 0x03090305, + 0x03090309, 0x03090703, 0x03090707, 0x03090905, 0x0309090d, 0x03090b01, 0x03090b09, 0x030b0103, + 0x030b0301, 0x030b0307, 0x030b0503, 0x030b0701, 0x030b0705, 0x030b0b03, 0x030d0501, 0x030d0509, + 0x030d050f, 0x030d0909, 0x030d090d, 0x030f0103, 0x030f0107, 0x030f0301, 0x030f0305, 0x030f0503, + 0x030f070b, 0x030f0903, 0x030f0d05, 0x030f0f01, 0x05010101, 0x05010103, 0x05010107, 0x0501010b, + 0x0501010f, 0x05010301, 0x05010305, 0x05010309, 0x0501030d, 0x05010503, 0x05010507, 0x0501050f, + 0x05010701, 0x05010705, 0x05010903, 0x05010907, 0x0501090b, 0x05010b01, 0x05010b05, 0x05010d0f, + 0x05010f01, 0x05010f07, 0x05010f0b, 0x05030101, 0x05030105, 0x05030301, 0x05030307, 0x0503030f, + 0x05030505, 0x0503050b, 0x05030703, 0x05030709, 0x05030905, 0x05030b03, 0x05050103, 0x05050109, + 0x0505010f, 0x05050503, 0x05050507, 0x05050701, 0x0505070f, 0x05050903, 0x05050b07, 0x05050b0f, + 0x05050f03, 0x05050f09, 0x05070101, 0x05070105, 0x0507010b, 0x05070303, 0x05070505, 0x05070509, + 0x05070703, 0x05070707, 0x05070905, 0x05070b01, 0x05070d0d, 0x05090103, 0x0509010f, 0x05090501, + 0x05090507, 0x05090705, 0x0509070b, 0x05090903, 0x05090f05, 0x05090f0b, 0x050b0109, 0x050b0303, + 0x050b0505, 0x050b070f, 0x050b0901, 0x050b0b07, 0x050b0f01, 0x050d0101, 0x050d0105, 0x050d010f, + 0x050d0503, 0x050d0b0b, 0x050d0d03, 0x050f010b, 0x050f0303, 0x050f050d, 0x050f0701, 0x050f0907, + 0x050f0b01, 0x07010105, 0x07010303, 0x07010307, 0x0701030b, 0x0701030f, 0x07010505, 0x07010703, + 0x07010707, 0x0701070b, 0x07010905, 0x07010909, 0x0701090f, 0x07010b03, 0x07010d07, 0x07010f03, + 0x07030103, 0x07030107, 0x0703010b, 0x07030309, 0x07030503, 0x07030507, 0x07030901, 0x07030d01, + 0x07030f05, 0x07030f0d, 0x07050101, 0x07050305, 0x07050501, 0x07050705, 0x07050709, 0x07050b01, + 0x07070103, 0x07070301, 0x07070309, 0x07070503, 0x07070507, 0x0707050f, 0x07070701, 0x07070903, + 0x07070907, 0x0707090f, 0x07070b0b, 0x07070f07, 0x07090107, 0x07090303, 0x0709030d, 0x07090505, + 0x07090703, 0x07090b05, 0x07090d01, 0x07090d09, 0x070b0103, 0x070b0301, 0x070b0305, 0x070b050b, + 0x070b0705, 0x070b0909, 0x070b0b0d, 0x070b0f07, 0x070d030d, 0x070d0903, 0x070f0103, 0x070f0107, + 0x070f0501, 0x070f0505, 0x070f070b, 0x09010101, 0x09010109, 0x09010305, 0x09010501, 0x09010509, + 0x0901050f, 0x09010705, 0x09010903, 0x09010b01, 0x09010f01, 0x09030105, 0x0903010f, 0x09030303, + 0x09030307, 0x09030505, 0x09030701, 0x0903070b, 0x09030907, 0x09030b03, 0x09030b0b, 0x09050103, + 0x09050107, 0x09050301, 0x0905030b, 0x09050503, 0x09050707, 0x09050901, 0x09050b0f, 0x09050d05, + 0x09050f01, 0x09070109, 0x09070303, 0x09070307, 0x09070501, 0x09070505, 0x09070703, 0x0907070b, + 0x09090101, 0x09090105, 0x09090509, 0x0909070f, 0x09090901, 0x09090f03, 0x090b010b, 0x090b010f, + 0x090b0503, 0x090b0d05, 0x090d0307, 0x090d0709, 0x090d0d01, 0x090f0301, 0x090f030b, 0x090f0701, + 0x090f0907, 0x090f0b03, 0x0b010105, 0x0b010301, 0x0b010309, 0x0b010505, 0x0b010901, 0x0b010909, + 0x0b01090f, 0x0b010b05, 0x0b010d0d, 0x0b010f09, 0x0b030103, 0x0b030107, 0x0b03010b, 0x0b030305, + 0x0b030503, 0x0b030705, 0x0b030f05, 0x0b050101, 0x0b050303, 0x0b050507, 0x0b050701, 0x0b05070d, + 0x0b050b07, 0x0b070105, 0x0b07010f, 0x0b070301, 0x0b07050f, 0x0b070909, 0x0b070b03, 0x0b070d0b, + 0x0b070f07, 0x0b090103, 0x0b090109, 0x0b090501, 0x0b090705, 0x0b09090d, 0x0b0b0305, 0x0b0b050d, + 0x0b0b0b03, 0x0b0b0b07, 0x0b0d0905, 0x0b0f0105, 0x0b0f0109, 0x0b0f0505, 0x0d010303, 0x0d010307, + 0x0d01030b, 0x0d010703, 0x0d010707, 0x0d010d01, 0x0d030101, 0x0d030501, 0x0d03050f, 0x0d030d09, + 0x0d050305, 0x0d050709, 0x0d050905, 0x0d050b0b, 0x0d050d05, 0x0d050f01, 0x0d070101, 0x0d070309, + 0x0d070503, 0x0d070901, 0x0d09050b, 0x0d090907, 0x0d090d05, 0x0d0b0101, 0x0d0b0107, 0x0d0b0709, + 0x0d0b0d01, 0x0d0d010b, 0x0d0d0901, 0x0d0f0303, 0x0d0f0307, 0x0f010101, 0x0f010109, 0x0f01010f, + 0x0f010501, 0x0f010505, 0x0f01070d, 0x0f010901, 0x0f010b09, 0x0f010d05, 0x0f030105, 0x0f030303, + 0x0f030509, 0x0f030907, 0x0f03090b, 0x0f050103, 0x0f050109, 0x0f050301, 0x0f05030d, 0x0f050503, + 0x0f050701, 0x0f050b03, 0x0f070105, 0x0f070705, 0x0f07070b, 0x0f070b07, 0x0f090103, 0x0f09010b, + 0x0f090307, 0x0f090501, 0x0f090b01, 0x0f0b0505, 0x0f0b0905, 0x0f0d0105, 0x0f0d0703, 0x0f0f0101, +GGML_TABLE_END() + +#define NGRID_IQ1S 2048 +#define IQ1S_DELTA 0.125f +#define IQ1M_DELTA 0.125f +#if defined(GGML_COMMON_IMPL_C) +GGML_TABLE_BEGIN(uint64_t, iq1s_grid, NGRID_IQ1S) + 0xffffffffffffffff, 0xffffffffffffff01, 0xffffffffffff0000, 0xffffffffffff01ff, + 0xffffffffffff0101, 0xffffffffff00ff00, 0xffffffffff000000, 0xffffffffff01ffff, + 0xffffffffff01ff01, 0xffffffffff0101ff, 0xffffffffff010101, 0xffffffff00ff0000, + 0xffffffff0000ff00, 0xffffffff000000ff, 0xffffffff00000001, 0xffffffff00010000, + 0xffffffff01ffffff, 0xffffffff01ffff01, 0xffffffff01ff01ff, 0xffffffff01ff0101, + 0xffffffff01000000, 0xffffffff0101ffff, 0xffffffff0101ff01, 0xffffffff010101ff, + 0xffffffff01010101, 0xffffff00ffff00ff, 0xffffff00ffff0000, 0xffffff00ff00ff00, + 0xffffff00ff0000ff, 0xffffff00ff000001, 0xffffff00ff000100, 0xffffff00ff000101, + 0xffffff00ff010000, 0xffffff0000ffff00, 0xffffff0000ff0001, 0xffffff0000ff0100, + 0xffffff000000ff01, 0xffffff0000000000, 0xffffff0000000101, 0xffffff000001ff00, + 0xffffff00000100ff, 0xffffff0000010001, 0xffffff00000101ff, 0xffffff0001ff0000, + 0xffffff000100ff00, 0xffffff00010000ff, 0xffffff0001000001, 0xffffff0001010000, + 0xffffff01ffffffff, 0xffffff01ffffff01, 0xffffff01ffff01ff, 0xffffff01ffff0101, + 0xffffff01ff000000, 0xffffff01ff01ffff, 0xffffff01ff01ff01, 0xffffff01ff0101ff, + 0xffffff01ff010101, 0xffffff0100ff0000, 0xffffff010000ff00, 0xffffff0100000100, + 0xffffff01000100ff, 0xffffff0100010100, 0xffffff0101ffffff, 0xffffff0101ffff01, + 0xffffff0101ff01ff, 0xffffff0101ff0101, 0xffffff010100ff00, 0xffffff0101000000, + 0xffffff0101000100, 0xffffff010101ffff, 0xffffff010101ff01, 0xffffff01010101ff, + 0xffffff0101010101, 0xffff00ffff00ff00, 0xffff00ffff0000ff, 0xffff00ffff000001, + 0xffff00ffff010000, 0xffff00ff00ffff00, 0xffff00ff00ff0100, 0xffff00ff00000000, + 0xffff00ff00000101, 0xffff00ff000100ff, 0xffff00ff00010000, 0xffff00ff0100ff00, + 0xffff00ff01000100, 0xffff00ff01010000, 0xffff0000ffffff00, 0xffff0000ffff00ff, + 0xffff0000ffff0000, 0xffff0000ffff0001, 0xffff0000ff000000, 0xffff0000ff0001ff, + 0xffff0000ff000101, 0xffff0000ff010100, 0xffff000000ffffff, 0xffff000000ff0000, + 0xffff000000ff0101, 0xffff00000000ffff, 0xffff00000000ff00, 0xffff0000000000ff, + 0xffff000000000000, 0xffff000000000001, 0xffff000000000100, 0xffff00000001ffff, + 0xffff00000001ff01, 0xffff000000010000, 0xffff0000000101ff, 0xffff000000010101, + 0xffff000001ffff00, 0xffff00000100ff00, 0xffff000001000000, 0xffff0000010001ff, + 0xffff000001000101, 0xffff00000101ff00, 0xffff0000010100ff, 0xffff000001010000, + 0xffff000001010001, 0xffff000001010100, 0xffff0001ff0000ff, 0xffff0001ff000100, + 0xffff000100ffff00, 0xffff000100ff00ff, 0xffff00010000ffff, 0xffff00010000ff01, + 0xffff000100000000, 0xffff0001000001ff, 0xffff00010001ffff, 0xffff00010001ff00, + 0xffff000100010001, 0xffff000100010100, 0xffff000101ff0000, 0xffff00010100ff00, + 0xffff0001010000ff, 0xffff000101000100, 0xffff01ffffffffff, 0xffff01ffffffff01, + 0xffff01ffffff01ff, 0xffff01ffffff0101, 0xffff01ffff000000, 0xffff01ffff01ffff, + 0xffff01ffff01ff01, 0xffff01ffff0101ff, 0xffff01ffff010101, 0xffff01ff00ff0000, + 0xffff01ff0000ff00, 0xffff01ff00000001, 0xffff01ff00010000, 0xffff01ff01ffffff, + 0xffff01ff01ffff01, 0xffff01ff01ff01ff, 0xffff01ff01ff0101, 0xffff01ff01000000, + 0xffff01ff0101ffff, 0xffff01ff0101ff01, 0xffff01ff010101ff, 0xffff01ff01010101, + 0xffff0100ffff0000, 0xffff0100ff00ff00, 0xffff0100ff0000ff, 0xffff0100ff000100, + 0xffff0100ff0100ff, 0xffff0100ff010000, 0xffff010000ffff00, 0xffff01000000ffff, + 0xffff01000000ff00, 0xffff010000000000, 0xffff01000001ff00, 0xffff0100000100ff, + 0xffff010000010100, 0xffff01000100ff00, 0xffff0100010000ff, 0xffff010001000001, + 0xffff010001000100, 0xffff010001010000, 0xffff0101ffffffff, 0xffff0101ffffff01, + 0xffff0101ffff01ff, 0xffff0101ffff0101, 0xffff0101ff000000, 0xffff0101ff01ffff, + 0xffff0101ff01ff01, 0xffff0101ff0101ff, 0xffff0101ff010101, 0xffff010100ff0000, + 0xffff01010000ff00, 0xffff010100000100, 0xffff01010001ff00, 0xffff010100010000, + 0xffff010101ffffff, 0xffff010101ffff01, 0xffff010101ff0000, 0xffff010101ff01ff, + 0xffff010101ff0101, 0xffff010101000000, 0xffff01010101ffff, 0xffff01010101ff01, + 0xffff0101010101ff, 0xffff010101010101, 0xff00ffffff00ffff, 0xff00ffffff00ff00, + 0xff00ffffff0000ff, 0xff00ffffff000100, 0xff00ffffff0100ff, 0xff00ffffff010000, + 0xff00ffff00ffff00, 0xff00ffff00ff00ff, 0xff00ffff0000ffff, 0xff00ffff00000000, + 0xff00ffff000001ff, 0xff00ffff0001ff00, 0xff00ffff000100ff, 0xff00ffff00010000, + 0xff00ffff00010100, 0xff00ffff0100ff00, 0xff00ffff010000ff, 0xff00ffff01000001, + 0xff00ffff0101ff00, 0xff00ffff01010000, 0xff00ff00ffffff00, 0xff00ff00ffff00ff, + 0xff00ff00ffff0001, 0xff00ff00ffff0100, 0xff00ff00ff00ffff, 0xff00ff00ff00ff01, + 0xff00ff00ff000000, 0xff00ff00ff0001ff, 0xff00ff00ff01ff00, 0xff00ff00ff0100ff, + 0xff00ff00ff010100, 0xff00ff0000ff0000, 0xff00ff0000ff0101, 0xff00ff000000ffff, + 0xff00ff000000ff00, 0xff00ff000000ff01, 0xff00ff00000000ff, 0xff00ff0000000000, + 0xff00ff0000000001, 0xff00ff0000000100, 0xff00ff000001ffff, 0xff00ff0000010000, + 0xff00ff0001ff00ff, 0xff00ff000100ff01, 0xff00ff0001000000, 0xff00ff000101ff00, + 0xff00ff00010100ff, 0xff00ff01ff00ff00, 0xff00ff01ff0000ff, 0xff00ff01ff000001, + 0xff00ff01ff010000, 0xff00ff0100ffffff, 0xff00ff0100ff0001, 0xff00ff0100ff0100, + 0xff00ff010000ff01, 0xff00ff0100000000, 0xff00ff01000001ff, 0xff00ff0100000101, + 0xff00ff01000100ff, 0xff00ff0100010001, 0xff00ff0101ff0000, 0xff00ff010100ff00, + 0xff00ff01010000ff, 0xff00ff0101000001, 0xff00ff0101010000, 0xff0000ffffffff00, + 0xff0000ffffff0001, 0xff0000ffffff0100, 0xff0000ffff0000ff, 0xff0000ffff000000, + 0xff0000ffff0001ff, 0xff0000ffff000100, 0xff0000ffff01ff00, 0xff0000ffff010001, + 0xff0000ff00ffff00, 0xff0000ff00ff0000, 0xff0000ff00ff0001, 0xff0000ff00ff01ff, + 0xff0000ff00ff0101, 0xff0000ff0000ff00, 0xff0000ff000000ff, 0xff0000ff00000000, + 0xff0000ff00000001, 0xff0000ff00000100, 0xff0000ff0001ff01, 0xff0000ff00010000, + 0xff0000ff000101ff, 0xff0000ff01ff00ff, 0xff0000ff01ff0100, 0xff0000ff0100ffff, + 0xff0000ff010000ff, 0xff0000ff01000000, 0xff0000ff010001ff, 0xff0000ff01000100, + 0xff0000ff01000101, 0xff0000ff0101ff00, 0xff0000ff010100ff, 0xff0000ff01010000, + 0xff0000ff01010100, 0xff000000ffffff01, 0xff000000ffff0000, 0xff000000ffff0101, + 0xff000000ff00ff00, 0xff000000ff0000ff, 0xff000000ff000000, 0xff000000ff000001, + 0xff000000ff000100, 0xff000000ff01ffff, 0xff000000ff01ff01, 0xff000000ff010000, + 0xff000000ff0101ff, 0xff000000ff010101, 0xff00000000ffff00, 0xff00000000ff00ff, + 0xff00000000ff0000, 0xff00000000ff0001, 0xff0000000000ff00, 0xff0000000000ff01, + 0xff000000000000ff, 0xff00000000000000, 0xff00000000000001, 0xff00000000000100, + 0xff00000000000101, 0xff0000000001ff00, 0xff000000000100ff, 0xff00000000010000, + 0xff00000000010001, 0xff00000000010100, 0xff00000001ffffff, 0xff00000001ffff01, + 0xff00000001ff00ff, 0xff00000001ff0000, 0xff00000001ff01ff, 0xff00000001ff0101, + 0xff0000000100ffff, 0xff0000000100ff00, 0xff000000010000ff, 0xff00000001000000, + 0xff00000001000001, 0xff00000001000100, 0xff00000001000101, 0xff0000000101ffff, + 0xff0000000101ff01, 0xff00000001010000, 0xff000001ffffff00, 0xff000001ffff00ff, + 0xff000001ffff0000, 0xff000001ffff0001, 0xff000001ff000000, 0xff000001ff000001, + 0xff000001ff0001ff, 0xff000001ff000101, 0xff000001ff01ff00, 0xff000001ff010001, + 0xff00000100ffffff, 0xff00000100ffff01, 0xff00000100ff00ff, 0xff00000100ff0000, + 0xff00000100ff01ff, 0xff00000100ff0101, 0xff0000010000ff00, 0xff00000100000000, + 0xff00000100000001, 0xff000001000001ff, 0xff00000100000100, 0xff0000010001ff00, + 0xff000001000100ff, 0xff00000100010000, 0xff000001000101ff, 0xff00000100010100, + 0xff00000100010101, 0xff00000101ff0001, 0xff00000101ff0101, 0xff0000010100ff01, + 0xff00000101000000, 0xff000001010100ff, 0xff00000101010100, 0xff0001ffff00ff00, + 0xff0001ffff000001, 0xff0001ffff010000, 0xff0001ff00ffff00, 0xff0001ff00ff00ff, + 0xff0001ff00ff0001, 0xff0001ff00ff0100, 0xff0001ff0000ffff, 0xff0001ff00000000, + 0xff0001ff000001ff, 0xff0001ff00000101, 0xff0001ff0001ffff, 0xff0001ff0001ff00, + 0xff0001ff000100ff, 0xff0001ff00010001, 0xff0001ff00010100, 0xff0001ff01ff0000, + 0xff0001ff0100ff00, 0xff0001ff010000ff, 0xff0001ff01010000, 0xff000100ff00ffff, + 0xff000100ff00ff01, 0xff000100ff000000, 0xff000100ff000101, 0xff000100ff01ff00, + 0xff000100ff010000, 0xff00010000ffff01, 0xff00010000ff00ff, 0xff00010000ff0000, + 0xff00010000ff01ff, 0xff0001000000ff00, 0xff000100000000ff, 0xff00010000000000, + 0xff00010000000001, 0xff00010000000100, 0xff00010000000101, 0xff0001000001ffff, + 0xff00010000010000, 0xff00010000010101, 0xff00010001ff0100, 0xff0001000100ff00, + 0xff0001000100ff01, 0xff00010001000000, 0xff000100010001ff, 0xff0001000101ff00, + 0xff00010001010001, 0xff00010001010100, 0xff000101ffff0100, 0xff000101ff000001, + 0xff000101ff0100ff, 0xff000101ff010001, 0xff00010100ff00ff, 0xff00010100ff0001, + 0xff00010100ff0100, 0xff0001010000ffff, 0xff0001010000ff01, 0xff00010100000000, + 0xff000101000001ff, 0xff0001010001ff00, 0xff00010100010001, 0xff00010100010100, + 0xff00010101ff0000, 0xff0001010100ff00, 0xff00010101000001, 0xff00010101000101, + 0xff01ffffffffffff, 0xff01ffffffffff01, 0xff01ffffffff01ff, 0xff01ffffffff0101, + 0xff01ffffff000000, 0xff01ffffff01ffff, 0xff01ffffff01ff01, 0xff01ffffff010000, + 0xff01ffffff0101ff, 0xff01ffffff010101, 0xff01ffff00ff0000, 0xff01ffff0000ff00, + 0xff01ffff00000100, 0xff01ffff0001ff00, 0xff01ffff00010000, 0xff01ffff01ffffff, + 0xff01ffff01ffff01, 0xff01ffff01ff01ff, 0xff01ffff01ff0101, 0xff01ffff01000000, + 0xff01ffff0101ffff, 0xff01ffff0101ff01, 0xff01ffff01010000, 0xff01ffff010101ff, + 0xff01ffff01010101, 0xff01ff00ffff0000, 0xff01ff00ff00ff00, 0xff01ff00ff0000ff, + 0xff01ff00ff000100, 0xff01ff00ff010000, 0xff01ff0000ffff01, 0xff01ff0000ff00ff, + 0xff01ff0000ff0100, 0xff01ff0000000000, 0xff01ff00000001ff, 0xff01ff0000000101, + 0xff01ff000001ff00, 0xff01ff00000100ff, 0xff01ff0000010000, 0xff01ff0000010001, + 0xff01ff0001ff0000, 0xff01ff000100ffff, 0xff01ff0001000001, 0xff01ff0001000100, + 0xff01ff0001010000, 0xff01ff01ffffff00, 0xff01ff01ffff01ff, 0xff01ff01ffff0101, + 0xff01ff01ff00ff00, 0xff01ff01ff000000, 0xff01ff01ff01ffff, 0xff01ff01ff01ff01, + 0xff01ff01ff0101ff, 0xff01ff01ff010101, 0xff01ff0100ff0000, 0xff01ff010000ff00, + 0xff01ff0100000001, 0xff01ff0100000100, 0xff01ff0100010000, 0xff01ff0101ffff00, + 0xff01ff0101ff01ff, 0xff01ff0101ff0101, 0xff01ff010100ff00, 0xff01ff0101000000, + 0xff01ff010101ffff, 0xff01ff010101ff01, 0xff01ff01010101ff, 0xff01ff0101010101, + 0xff0100ffffff0000, 0xff0100ffff0000ff, 0xff0100ffff000001, 0xff0100ffff000100, + 0xff0100ffff010000, 0xff0100ff00ff00ff, 0xff0100ff00ff0000, 0xff0100ff00ff0001, + 0xff0100ff00ff0100, 0xff0100ff0000ff01, 0xff0100ff00000000, 0xff0100ff000001ff, + 0xff0100ff00000101, 0xff0100ff00010001, 0xff0100ff01ff0000, 0xff0100ff0100ff00, + 0xff0100ff010000ff, 0xff0100ff01000100, 0xff0100ff0101ff00, 0xff0100ff01010000, + 0xff010000ffff0100, 0xff010000ff000000, 0xff010000ff01ff00, 0xff010000ff010100, + 0xff01000000ffffff, 0xff01000000ff0000, 0xff01000000ff01ff, 0xff0100000000ff00, + 0xff010000000000ff, 0xff01000000000000, 0xff01000000000100, 0xff0100000001ff01, + 0xff01000000010000, 0xff010000000101ff, 0xff01000001ff0100, 0xff0100000100ffff, + 0xff010000010000ff, 0xff01000001000000, 0xff010000010001ff, 0xff01000001000101, + 0xff0100000101ff00, 0xff010000010100ff, 0xff01000001010001, 0xff01000001010100, + 0xff010001ffff0000, 0xff010001ff00ffff, 0xff010001ff00ff01, 0xff010001ff000100, + 0xff010001ff010000, 0xff01000100ffff00, 0xff01000100ff0100, 0xff01000100000000, + 0xff0100010001ffff, 0xff0100010001ff00, 0xff01000100010100, 0xff01000101ff00ff, + 0xff01000101ff0001, 0xff0100010100ffff, 0xff01000101000101, 0xff0101ffffffffff, + 0xff0101ffffffff01, 0xff0101ffffff01ff, 0xff0101ffffff0101, 0xff0101ffff000000, + 0xff0101ffff01ffff, 0xff0101ffff01ff01, 0xff0101ffff0101ff, 0xff0101ffff010101, + 0xff0101ff00ff0000, 0xff0101ff0000ff00, 0xff0101ff000000ff, 0xff0101ff00010000, + 0xff0101ff01ffffff, 0xff0101ff01ffff01, 0xff0101ff01ff01ff, 0xff0101ff01ff0101, + 0xff0101ff0101ffff, 0xff0101ff0101ff01, 0xff0101ff010101ff, 0xff0101ff01010101, + 0xff010100ffff0100, 0xff010100ff00ff00, 0xff010100ff0000ff, 0xff010100ff000100, + 0xff010100ff010000, 0xff01010000ff0001, 0xff01010000ff0100, 0xff0101000000ff01, + 0xff01010000000000, 0xff0101000001ff00, 0xff010100000100ff, 0xff01010000010001, + 0xff01010000010100, 0xff01010001ff0000, 0xff0101000100ffff, 0xff01010001000001, + 0xff01010001000100, 0xff010100010100ff, 0xff01010001010000, 0xff010101ffffffff, + 0xff010101ffffff01, 0xff010101ffff01ff, 0xff010101ffff0101, 0xff010101ff01ffff, + 0xff010101ff01ff01, 0xff010101ff0101ff, 0xff010101ff010101, 0xff01010100ff0000, + 0xff0101010000ff00, 0xff01010100000001, 0xff01010100000100, 0xff01010100010000, + 0xff01010101ffffff, 0xff01010101ffff01, 0xff01010101ff01ff, 0xff01010101ff0101, + 0xff01010101000000, 0xff0101010101ffff, 0xff0101010101ff01, 0xff010101010101ff, + 0xff01010101010101, 0x00ffffffffff0000, 0x00ffffffff00ff00, 0x00ffffffff000001, + 0x00ffffffff010000, 0x00ffffff00ff0100, 0x00ffffff0000ff01, 0x00ffffff00000000, + 0x00ffffff000001ff, 0x00ffffff00000101, 0x00ffffff0001ff00, 0x00ffffff000100ff, + 0x00ffffff00010001, 0x00ffffff010000ff, 0x00ffffff01000100, 0x00ffffff0101ff00, + 0x00ffffff01010001, 0x00ffff00ffffffff, 0x00ffff00ffffff00, 0x00ffff00ffff00ff, + 0x00ffff00ffff0001, 0x00ffff00ffff0100, 0x00ffff00ff00ff01, 0x00ffff00ff000000, + 0x00ffff00ff000001, 0x00ffff00ff0001ff, 0x00ffff00ff000101, 0x00ffff00ff01ff00, + 0x00ffff00ff010001, 0x00ffff00ff010100, 0x00ffff0000ff0000, 0x00ffff0000ff01ff, + 0x00ffff0000ff0101, 0x00ffff000000ff00, 0x00ffff00000000ff, 0x00ffff0000000000, + 0x00ffff0000000001, 0x00ffff0000000100, 0x00ffff0000000101, 0x00ffff0000010000, + 0x00ffff00000101ff, 0x00ffff0000010101, 0x00ffff0001ffff00, 0x00ffff0001ff00ff, + 0x00ffff0001ff0001, 0x00ffff000100ffff, 0x00ffff000100ff01, 0x00ffff0001000000, + 0x00ffff000101ffff, 0x00ffff000101ff00, 0x00ffff000101ff01, 0x00ffff01ffff0000, + 0x00ffff01ff00ff00, 0x00ffff01ff0000ff, 0x00ffff01ff000001, 0x00ffff01ff010000, + 0x00ffff0100ffff00, 0x00ffff010000ff01, 0x00ffff0100000000, 0x00ffff0100000101, + 0x00ffff01000100ff, 0x00ffff0100010100, 0x00ffff0101ff0100, 0x00ffff01010000ff, + 0x00ffff0101010000, 0x00ff00ffffffff00, 0x00ff00ffff000000, 0x00ff00ffff000100, + 0x00ff00ffff010100, 0x00ff00ff00ff0000, 0x00ff00ff00ff01ff, 0x00ff00ff00ff0101, + 0x00ff00ff0000ff00, 0x00ff00ff000000ff, 0x00ff00ff00000000, 0x00ff00ff00000001, + 0x00ff00ff0001ff00, 0x00ff00ff0001ff01, 0x00ff00ff00010000, 0x00ff00ff000101ff, + 0x00ff00ff00010101, 0x00ff00ff01ffff00, 0x00ff00ff01ff0001, 0x00ff00ff01ff0100, + 0x00ff00ff0100ffff, 0x00ff00ff0100ff01, 0x00ff00ff01000000, 0x00ff00ff0101ffff, + 0x00ff00ff0101ff00, 0x00ff00ff01010100, 0x00ff0000ffffff00, 0x00ff0000ffffff01, + 0x00ff0000ffff0000, 0x00ff0000ffff0101, 0x00ff0000ff00ff00, 0x00ff0000ff0000ff, + 0x00ff0000ff000000, 0x00ff0000ff000001, 0x00ff0000ff000100, 0x00ff0000ff01ffff, + 0x00ff0000ff010000, 0x00ff0000ff010101, 0x00ff000000ffff00, 0x00ff000000ff00ff, + 0x00ff000000ff0000, 0x00ff000000ff0001, 0x00ff000000ff0100, 0x00ff00000000ffff, + 0x00ff00000000ff00, 0x00ff0000000000ff, 0x00ff000000000000, 0x00ff000000000001, + 0x00ff0000000001ff, 0x00ff000000000100, 0x00ff00000001ff00, 0x00ff0000000100ff, + 0x00ff000000010000, 0x00ff000000010001, 0x00ff000000010100, 0x00ff000001ffff01, + 0x00ff000001ff00ff, 0x00ff000001ff0000, 0x00ff000001ff01ff, 0x00ff00000100ff00, + 0x00ff0000010000ff, 0x00ff000001000000, 0x00ff000001000001, 0x00ff000001000100, + 0x00ff000001000101, 0x00ff000001010000, 0x00ff0000010101ff, 0x00ff000001010101, + 0x00ff0001ffffff00, 0x00ff0001ffff0000, 0x00ff0001ffff0100, 0x00ff0001ff0000ff, + 0x00ff0001ff000000, 0x00ff0001ff0001ff, 0x00ff0001ff000101, 0x00ff0001ff01ff00, + 0x00ff0001ff0100ff, 0x00ff0001ff010100, 0x00ff000100ffffff, 0x00ff000100ffff01, + 0x00ff000100ff0000, 0x00ff000100ff01ff, 0x00ff00010000ffff, 0x00ff00010000ff00, + 0x00ff00010000ff01, 0x00ff000100000000, 0x00ff000100000001, 0x00ff000100000100, + 0x00ff00010001ff01, 0x00ff000100010000, 0x00ff0001000101ff, 0x00ff000101ffff00, + 0x00ff000101ff0000, 0x00ff000101ff0101, 0x00ff0001010000ff, 0x00ff000101000000, + 0x00ff00010101ff00, 0x00ff0001010100ff, 0x00ff000101010001, 0x00ff01ffffff0000, + 0x00ff01ffff00ff00, 0x00ff01ffff000000, 0x00ff01ffff000101, 0x00ff01ffff010000, + 0x00ff01ff00ffff01, 0x00ff01ff00ff0100, 0x00ff01ff0000ffff, 0x00ff01ff00000000, + 0x00ff01ff000001ff, 0x00ff01ff0001ff00, 0x00ff01ff000100ff, 0x00ff01ff00010001, + 0x00ff01ff00010100, 0x00ff01ff01ff0000, 0x00ff01ff0100ff00, 0x00ff01ff010000ff, + 0x00ff01ff01000001, 0x00ff01ff01000100, 0x00ff01ff01010000, 0x00ff0100ffffff00, + 0x00ff0100ffff0000, 0x00ff0100ffff0001, 0x00ff0100ffff0101, 0x00ff0100ff00ffff, + 0x00ff0100ff0000ff, 0x00ff0100ff000000, 0x00ff0100ff0001ff, 0x00ff0100ff01ff00, + 0x00ff0100ff0100ff, 0x00ff0100ff010001, 0x00ff010000ffffff, 0x00ff010000ff0000, + 0x00ff010000ff0101, 0x00ff01000000ff00, 0x00ff01000000ff01, 0x00ff0100000000ff, + 0x00ff010000000000, 0x00ff010000000001, 0x00ff010000000100, 0x00ff01000001ffff, + 0x00ff01000001ff01, 0x00ff010000010000, 0x00ff010000010001, 0x00ff010000010101, + 0x00ff010001ff0001, 0x00ff010001ff0100, 0x00ff01000100ff01, 0x00ff010001000000, + 0x00ff010001000001, 0x00ff0100010001ff, 0x00ff01000101ff00, 0x00ff0100010100ff, + 0x00ff010001010001, 0x00ff010001010100, 0x00ff0101ff000001, 0x00ff010100ff00ff, + 0x00ff010100ff0001, 0x00ff010100ff0100, 0x00ff010100000000, 0x00ff0101000001ff, + 0x00ff010100000101, 0x00ff0101000100ff, 0x00ff010100010100, 0x00ff0101010000ff, + 0x00ff010101010000, 0x0000ffffffffff00, 0x0000ffffffff00ff, 0x0000ffffffff0000, + 0x0000ffffffff0001, 0x0000ffffffff0100, 0x0000ffffff00ff01, 0x0000ffffff000000, + 0x0000ffffff000101, 0x0000ffffff01ff00, 0x0000ffffff0100ff, 0x0000ffffff010100, + 0x0000ffff00ffffff, 0x0000ffff00ff0000, 0x0000ffff00ff01ff, 0x0000ffff0000ff00, + 0x0000ffff000000ff, 0x0000ffff00000000, 0x0000ffff00000001, 0x0000ffff00000100, + 0x0000ffff00010000, 0x0000ffff000101ff, 0x0000ffff01ff0001, 0x0000ffff01ff0100, + 0x0000ffff01000000, 0x0000ffff010001ff, 0x0000ffff0101ffff, 0x0000ffff0101ff00, + 0x0000ffff01010001, 0x0000ffff01010100, 0x0000ff00ffff0000, 0x0000ff00ffff01ff, + 0x0000ff00ffff0100, 0x0000ff00ffff0101, 0x0000ff00ff00ff00, 0x0000ff00ff0000ff, + 0x0000ff00ff000000, 0x0000ff00ff000001, 0x0000ff00ff0001ff, 0x0000ff00ff000100, + 0x0000ff00ff01ffff, 0x0000ff00ff010000, 0x0000ff00ff010001, 0x0000ff00ff0101ff, + 0x0000ff00ff010101, 0x0000ff0000ffff00, 0x0000ff0000ff00ff, 0x0000ff0000ff0000, + 0x0000ff0000ff0001, 0x0000ff0000ff0100, 0x0000ff000000ffff, 0x0000ff000000ff00, + 0x0000ff000000ff01, 0x0000ff00000000ff, 0x0000ff0000000000, 0x0000ff0000000001, + 0x0000ff00000001ff, 0x0000ff0000000100, 0x0000ff0000000101, 0x0000ff000001ff00, + 0x0000ff00000100ff, 0x0000ff0000010000, 0x0000ff0000010001, 0x0000ff0000010100, + 0x0000ff0001ffff01, 0x0000ff0001ff0000, 0x0000ff000100ff00, 0x0000ff00010000ff, + 0x0000ff0001000000, 0x0000ff0001000001, 0x0000ff0001000100, 0x0000ff000101ffff, + 0x0000ff0001010000, 0x0000ff0001010101, 0x0000ff01ffffff00, 0x0000ff01ffff0001, + 0x0000ff01ff00ff01, 0x0000ff01ff000000, 0x0000ff01ff000101, 0x0000ff01ff01ff00, + 0x0000ff01ff0100ff, 0x0000ff0100ffff01, 0x0000ff0100ff0000, 0x0000ff0100ff0101, + 0x0000ff010000ff00, 0x0000ff01000000ff, 0x0000ff0100000000, 0x0000ff0100000001, + 0x0000ff0100000100, 0x0000ff010001ff01, 0x0000ff0100010000, 0x0000ff0101ff0000, + 0x0000ff010100ffff, 0x0000ff010100ff01, 0x0000ff0101000000, 0x0000ff0101000100, + 0x0000ff0101000101, 0x0000ff01010100ff, 0x000000ffffff00ff, 0x000000ffffff0000, + 0x000000ffff00ff00, 0x000000ffff0000ff, 0x000000ffff000000, 0x000000ffff000001, + 0x000000ffff0001ff, 0x000000ffff000100, 0x000000ffff01ff00, 0x000000ffff010000, + 0x000000ffff0101ff, 0x000000ffff010101, 0x000000ff00ffff00, 0x000000ff00ff00ff, + 0x000000ff00ff0000, 0x000000ff00ff0001, 0x000000ff00ff0100, 0x000000ff00ff0101, + 0x000000ff0000ffff, 0x000000ff0000ff00, 0x000000ff000000ff, 0x000000ff00000000, + 0x000000ff00000001, 0x000000ff000001ff, 0x000000ff00000100, 0x000000ff00000101, + 0x000000ff0001ff00, 0x000000ff0001ff01, 0x000000ff000100ff, 0x000000ff00010000, + 0x000000ff00010001, 0x000000ff00010100, 0x000000ff01ffffff, 0x000000ff01ff01ff, + 0x000000ff01ff0101, 0x000000ff0100ff00, 0x000000ff010000ff, 0x000000ff01000000, + 0x000000ff01000001, 0x000000ff01000100, 0x000000ff0101ff00, 0x000000ff010100ff, + 0x000000ff01010000, 0x000000ff01010101, 0x00000000ffffff00, 0x00000000ffffff01, + 0x00000000ffff00ff, 0x00000000ffff0000, 0x00000000ffff0001, 0x00000000ffff0100, + 0x00000000ff00ffff, 0x00000000ff00ff00, 0x00000000ff00ff01, 0x00000000ff0000ff, + 0x00000000ff000000, 0x00000000ff000001, 0x00000000ff000100, 0x00000000ff000101, + 0x00000000ff01ff00, 0x00000000ff0100ff, 0x00000000ff010000, 0x00000000ff010001, + 0x00000000ff010100, 0x0000000000ffffff, 0x0000000000ffff00, 0x0000000000ffff01, + 0x0000000000ff00ff, 0x0000000000ff0000, 0x0000000000ff0001, 0x0000000000ff01ff, + 0x0000000000ff0100, 0x000000000000ffff, 0x000000000000ff00, 0x000000000000ff01, + 0x00000000000000ff, 0x0000000000000000, 0x0000000000000001, 0x00000000000001ff, + 0x0000000000000100, 0x0000000000000101, 0x000000000001ffff, 0x000000000001ff00, + 0x00000000000100ff, 0x0000000000010000, 0x0000000000010001, 0x00000000000101ff, + 0x0000000000010100, 0x0000000000010101, 0x0000000001ffff00, 0x0000000001ff00ff, + 0x0000000001ff0000, 0x0000000001ff0100, 0x0000000001ff0101, 0x000000000100ffff, + 0x000000000100ff00, 0x00000000010000ff, 0x0000000001000000, 0x0000000001000001, + 0x00000000010001ff, 0x0000000001000100, 0x000000000101ff00, 0x00000000010100ff, + 0x0000000001010000, 0x0000000001010001, 0x0000000001010100, 0x00000001ffffffff, + 0x00000001ffffff00, 0x00000001ffffff01, 0x00000001ffff00ff, 0x00000001ffff0001, + 0x00000001ffff01ff, 0x00000001ffff0100, 0x00000001ff00ff00, 0x00000001ff0000ff, + 0x00000001ff000000, 0x00000001ff0001ff, 0x00000001ff000100, 0x00000001ff01ffff, + 0x00000001ff01ff00, 0x00000001ff01ff01, 0x00000001ff0100ff, 0x00000001ff010000, + 0x00000001ff010001, 0x00000001ff0101ff, 0x00000001ff010100, 0x0000000100ffff00, + 0x0000000100ff0000, 0x0000000100ff0001, 0x0000000100ff01ff, 0x0000000100ff0100, + 0x0000000100ff0101, 0x000000010000ffff, 0x000000010000ff00, 0x000000010000ff01, + 0x00000001000000ff, 0x0000000100000000, 0x0000000100000001, 0x00000001000001ff, + 0x0000000100000100, 0x0000000100000101, 0x000000010001ff00, 0x00000001000100ff, + 0x0000000100010000, 0x0000000100010100, 0x0000000101ffff01, 0x0000000101ff0000, + 0x0000000101ff0001, 0x0000000101ff01ff, 0x0000000101ff0100, 0x0000000101ff0101, + 0x000000010100ff00, 0x0000000101000000, 0x0000000101000101, 0x000000010101ff01, + 0x0000000101010000, 0x0000000101010001, 0x00000001010101ff, 0x0000000101010100, + 0x000001ffffff00ff, 0x000001ffffff0000, 0x000001ffffff0001, 0x000001ffffff0100, + 0x000001ffff00ffff, 0x000001ffff000000, 0x000001ffff0001ff, 0x000001ffff01ff00, + 0x000001ffff010101, 0x000001ff00ff0000, 0x000001ff00ff01ff, 0x000001ff00ff0101, + 0x000001ff0000ff00, 0x000001ff000000ff, 0x000001ff00000000, 0x000001ff00000001, + 0x000001ff000001ff, 0x000001ff00000100, 0x000001ff0001ffff, 0x000001ff0001ff01, + 0x000001ff000100ff, 0x000001ff00010000, 0x000001ff01ffff01, 0x000001ff01ff0100, + 0x000001ff0100ffff, 0x000001ff0100ff01, 0x000001ff01000000, 0x000001ff010001ff, + 0x000001ff0101ff00, 0x000001ff01010100, 0x00000100ffffff00, 0x00000100ffffff01, + 0x00000100ffff0000, 0x00000100ffff0101, 0x00000100ff00ff00, 0x00000100ff0000ff, + 0x00000100ff000000, 0x00000100ff000001, 0x00000100ff000100, 0x00000100ff010000, + 0x0000010000ffff00, 0x0000010000ff00ff, 0x0000010000ff0000, 0x0000010000ff0001, + 0x0000010000ff0100, 0x000001000000ffff, 0x000001000000ff00, 0x000001000000ff01, + 0x00000100000000ff, 0x0000010000000000, 0x0000010000000001, 0x00000100000001ff, + 0x0000010000000100, 0x0000010000000101, 0x000001000001ff00, 0x00000100000100ff, + 0x0000010000010000, 0x0000010000010001, 0x0000010000010100, 0x0000010001ffff00, + 0x0000010001ff0000, 0x0000010001ff0100, 0x000001000100ff00, 0x00000100010000ff, + 0x0000010001000000, 0x0000010001000001, 0x00000100010001ff, 0x0000010001000100, + 0x0000010001010000, 0x00000101ffff00ff, 0x00000101ffff01ff, 0x00000101ff000000, + 0x00000101ff000101, 0x00000101ff01ffff, 0x00000101ff010000, 0x00000101ff010001, + 0x00000101ff010100, 0x0000010100ff0000, 0x0000010100ff01ff, 0x0000010100ff0100, + 0x000001010000ff00, 0x0000010100000000, 0x0000010100000001, 0x00000101000001ff, + 0x0000010100000100, 0x000001010001ff01, 0x0000010100010000, 0x00000101000101ff, + 0x0000010100010101, 0x0000010101ffff00, 0x0000010101ff0101, 0x000001010100ff01, + 0x0000010101000000, 0x0000010101000001, 0x00000101010001ff, 0x0000010101000101, + 0x000001010101ff00, 0x0001ffffffff0000, 0x0001ffffff0000ff, 0x0001ffffff000001, + 0x0001ffffff000100, 0x0001ffffff010000, 0x0001ffff00ff00ff, 0x0001ffff0000ffff, + 0x0001ffff00000000, 0x0001ffff00000001, 0x0001ffff000001ff, 0x0001ffff00000101, + 0x0001ffff0001ff00, 0x0001ffff000100ff, 0x0001ffff00010001, 0x0001ffff00010100, + 0x0001ffff01ffff00, 0x0001ffff01000001, 0x0001ffff01010000, 0x0001ff00ffffff00, + 0x0001ff00ffff00ff, 0x0001ff00ffff0001, 0x0001ff00ffff0100, 0x0001ff00ff00ff01, + 0x0001ff00ff000000, 0x0001ff00ff01ff00, 0x0001ff00ff01ff01, 0x0001ff00ff010001, + 0x0001ff00ff010100, 0x0001ff0000ff0000, 0x0001ff0000ff0100, 0x0001ff000000ff00, + 0x0001ff0000000000, 0x0001ff0000000001, 0x0001ff0000000100, 0x0001ff0000010000, + 0x0001ff0000010001, 0x0001ff0000010101, 0x0001ff0001ff00ff, 0x0001ff0001ff0101, + 0x0001ff000100ff01, 0x0001ff0001000000, 0x0001ff000101ff00, 0x0001ff0001010001, + 0x0001ff0001010100, 0x0001ff01ff00ff00, 0x0001ff01ff000001, 0x0001ff01ff000100, + 0x0001ff0100ffffff, 0x0001ff0100ffff00, 0x0001ff0100ff0001, 0x0001ff0100000000, + 0x0001ff0100000001, 0x0001ff01000001ff, 0x0001ff010001ffff, 0x0001ff0101ff0000, + 0x0001ff010100ff00, 0x0001ff0101000001, 0x0001ff0101010000, 0x000100ffff00ff00, + 0x000100ffff00ff01, 0x000100ffff000000, 0x000100ffff000001, 0x000100ffff000101, + 0x000100ffff01ff00, 0x000100ffff010001, 0x000100ffff010100, 0x000100ff00ffffff, + 0x000100ff00ffff01, 0x000100ff00ff0000, 0x000100ff00ff01ff, 0x000100ff00ff0101, + 0x000100ff0000ff00, 0x000100ff000000ff, 0x000100ff00000000, 0x000100ff00000001, + 0x000100ff00000100, 0x000100ff00000101, 0x000100ff0001ffff, 0x000100ff0001ff01, + 0x000100ff00010000, 0x000100ff01ff00ff, 0x000100ff01ff0000, 0x000100ff01ff0100, + 0x000100ff0100ffff, 0x000100ff0100ff01, 0x000100ff010000ff, 0x000100ff01000000, + 0x000100ff01000001, 0x000100ff010001ff, 0x000100ff01000101, 0x000100ff0101ff00, + 0x000100ff010100ff, 0x000100ff01010100, 0x00010000ffff0000, 0x00010000ffff01ff, + 0x00010000ffff0101, 0x00010000ff00ff00, 0x00010000ff000000, 0x00010000ff000001, + 0x00010000ff000100, 0x0001000000ff00ff, 0x0001000000ff0000, 0x0001000000ff0001, + 0x0001000000ff0100, 0x000100000000ffff, 0x000100000000ff00, 0x00010000000000ff, + 0x0001000000000000, 0x0001000000000001, 0x0001000000000100, 0x000100000001ff00, + 0x00010000000100ff, 0x0001000000010000, 0x0001000000010001, 0x0001000000010100, + 0x0001000001ff0001, 0x0001000001ff0100, 0x0001000001ff0101, 0x000100000100ff00, + 0x0001000001000000, 0x0001000001000001, 0x0001000001000100, 0x0001000001000101, + 0x000100000101ff01, 0x0001000001010000, 0x0001000001010001, 0x00010000010101ff, + 0x00010001ffffff01, 0x00010001ffff0100, 0x00010001ff000000, 0x00010001ff01ffff, + 0x00010001ff010001, 0x00010001ff0101ff, 0x00010001ff010100, 0x0001000100ffffff, + 0x0001000100ff0000, 0x0001000100ff01ff, 0x0001000100ff0101, 0x000100010000ff00, + 0x00010001000000ff, 0x0001000100000000, 0x0001000100000001, 0x00010001000001ff, + 0x0001000100000101, 0x000100010001ffff, 0x0001000100010000, 0x00010001000101ff, + 0x0001000101ffffff, 0x0001000101ffff01, 0x0001000101ff0000, 0x0001000101ff0101, + 0x00010001010000ff, 0x0001000101000001, 0x00010001010001ff, 0x0001000101000100, + 0x000100010101ffff, 0x00010001010100ff, 0x0001000101010001, 0x0001000101010101, + 0x000101ffff000001, 0x000101ffff000100, 0x000101ffff010000, 0x000101ff00ffff00, + 0x000101ff0000ff01, 0x000101ff00000000, 0x000101ff00000101, 0x000101ff0001ff00, + 0x000101ff00010100, 0x000101ff01ff0000, 0x000101ff0100ff00, 0x000101ff010001ff, + 0x000101ff01010001, 0x00010100ffffff00, 0x00010100ffff00ff, 0x00010100ff00ffff, + 0x00010100ff000000, 0x00010100ff01ff00, 0x00010100ff0100ff, 0x00010100ff010001, + 0x00010100ff010100, 0x0001010000ffffff, 0x0001010000ffff00, 0x0001010000ff0000, + 0x0001010000ff0001, 0x0001010000ff01ff, 0x000101000000ff00, 0x00010100000000ff, + 0x0001010000000000, 0x0001010000000001, 0x0001010000000100, 0x000101000001ffff, + 0x0001010000010000, 0x0001010000010101, 0x0001010001ffff01, 0x0001010001ff00ff, + 0x0001010001ff0101, 0x0001010001000000, 0x000101000101ff00, 0x00010100010100ff, + 0x0001010001010000, 0x0001010001010100, 0x00010101ff00ff00, 0x00010101ff000001, + 0x00010101ff0001ff, 0x0001010100ffff00, 0x0001010100ff00ff, 0x0001010100ff0100, + 0x000101010000ffff, 0x0001010100000000, 0x00010101000001ff, 0x0001010100000101, + 0x00010101000100ff, 0x0001010100010000, 0x0001010100010100, 0x0001010101ff0001, + 0x00010101010000ff, 0x00010101010001ff, 0x0001010101000101, 0x0001010101010001, + 0x01ffffffffffffff, 0x01ffffffffffff01, 0x01ffffffffff01ff, 0x01ffffffffff0101, + 0x01ffffffff01ffff, 0x01ffffffff01ff01, 0x01ffffffff0101ff, 0x01ffffffff010101, + 0x01ffffff00ff0000, 0x01ffffff0000ffff, 0x01ffffff0000ff00, 0x01ffffff000000ff, + 0x01ffffff00000001, 0x01ffffff00000100, 0x01ffffff00010000, 0x01ffffff01ffffff, + 0x01ffffff01ffff01, 0x01ffffff01ff01ff, 0x01ffffff01ff0101, 0x01ffffff01000000, + 0x01ffffff0101ffff, 0x01ffffff0101ff01, 0x01ffffff010101ff, 0x01ffffff01010101, + 0x01ffff00ffff0000, 0x01ffff00ff00ff00, 0x01ffff00ff0000ff, 0x01ffff00ff000001, + 0x01ffff00ff000100, 0x01ffff00ff010000, 0x01ffff0000ffff00, 0x01ffff0000ff00ff, + 0x01ffff0000ff0100, 0x01ffff000000ffff, 0x01ffff000000ff01, 0x01ffff0000000000, + 0x01ffff0000000001, 0x01ffff00000001ff, 0x01ffff0000000100, 0x01ffff00000100ff, + 0x01ffff0000010001, 0x01ffff0000010100, 0x01ffff0001ff0000, 0x01ffff0001ff0100, + 0x01ffff00010000ff, 0x01ffff0001000001, 0x01ffff0001000100, 0x01ffff0001010000, + 0x01ffff01ffffffff, 0x01ffff01ffffff01, 0x01ffff01ffff01ff, 0x01ffff01ffff0101, + 0x01ffff01ff000000, 0x01ffff01ff01ffff, 0x01ffff01ff01ff01, 0x01ffff01ff0101ff, + 0x01ffff01ff010101, 0x01ffff010000ff00, 0x01ffff01000000ff, 0x01ffff0100000100, + 0x01ffff0100010000, 0x01ffff0101ffffff, 0x01ffff0101ffff01, 0x01ffff0101ff01ff, + 0x01ffff0101ff0101, 0x01ffff0101000000, 0x01ffff010101ffff, 0x01ffff010101ff01, + 0x01ffff01010101ff, 0x01ffff0101010101, 0x01ff00ffff0000ff, 0x01ff00ffff000100, + 0x01ff00ff00ffff00, 0x01ff00ff00ff00ff, 0x01ff00ff0000ff00, 0x01ff00ff00000000, + 0x01ff00ff00000101, 0x01ff00ff0001ff00, 0x01ff00ff000100ff, 0x01ff00ff00010100, + 0x01ff00ff010000ff, 0x01ff00ff01000100, 0x01ff0000ffffff00, 0x01ff0000ffff0100, + 0x01ff0000ff00ff01, 0x01ff0000ff000000, 0x01ff0000ff000101, 0x01ff0000ff010001, + 0x01ff0000ff010100, 0x01ff000000ffffff, 0x01ff000000ffff00, 0x01ff000000ff0000, + 0x01ff000000ff01ff, 0x01ff00000000ff00, 0x01ff0000000000ff, 0x01ff000000000000, + 0x01ff000000000001, 0x01ff000000000100, 0x01ff000000000101, 0x01ff000000010000, + 0x01ff000000010001, 0x01ff0000000101ff, 0x01ff000000010101, 0x01ff000001ffff00, + 0x01ff000001ff00ff, 0x01ff000001ff0001, 0x01ff000001ff0100, 0x01ff00000100ffff, + 0x01ff00000100ff01, 0x01ff000001000000, 0x01ff0000010001ff, 0x01ff000001010001, + 0x01ff0001ff00ff00, 0x01ff0001ff000001, 0x01ff0001ff000100, 0x01ff0001ff010000, + 0x01ff000100ffff00, 0x01ff000100ff00ff, 0x01ff000100ff0100, 0x01ff000100ff0101, + 0x01ff00010000ffff, 0x01ff000100000000, 0x01ff000100000100, 0x01ff000100000101, + 0x01ff00010001ff00, 0x01ff000100010001, 0x01ff000100010101, 0x01ff000101ff0000, + 0x01ff00010100ff00, 0x01ff000101000101, 0x01ff0001010100ff, 0x01ff01ffffffffff, + 0x01ff01ffffffff01, 0x01ff01ffffff01ff, 0x01ff01ffffff0101, 0x01ff01ffff000000, + 0x01ff01ffff01ffff, 0x01ff01ffff01ff01, 0x01ff01ffff0101ff, 0x01ff01ffff010101, + 0x01ff01ff00ffff00, 0x01ff01ff00ff0000, 0x01ff01ff0000ff00, 0x01ff01ff000000ff, + 0x01ff01ff00000100, 0x01ff01ff00010000, 0x01ff01ff00010100, 0x01ff01ff01ffffff, + 0x01ff01ff01ffff01, 0x01ff01ff01ff01ff, 0x01ff01ff01ff0101, 0x01ff01ff01000000, + 0x01ff01ff0101ffff, 0x01ff01ff0101ff01, 0x01ff01ff010101ff, 0x01ff01ff01010101, + 0x01ff0100ffff0000, 0x01ff0100ffff0001, 0x01ff0100ff00ff00, 0x01ff0100ff0000ff, + 0x01ff0100ff000001, 0x01ff0100ff010000, 0x01ff010000ffff00, 0x01ff010000ff00ff, + 0x01ff010000ff0001, 0x01ff010000ff0100, 0x01ff01000000ffff, 0x01ff01000000ff01, + 0x01ff010000000000, 0x01ff010000000101, 0x01ff01000001ff00, 0x01ff0100000100ff, + 0x01ff010001ff0000, 0x01ff010001000001, 0x01ff010001000100, 0x01ff010001010000, + 0x01ff0101ffffffff, 0x01ff0101ffffff01, 0x01ff0101ffff01ff, 0x01ff0101ffff0101, + 0x01ff0101ff000000, 0x01ff0101ff01ffff, 0x01ff0101ff01ff01, 0x01ff0101ff0101ff, + 0x01ff0101ff010101, 0x01ff010100ff0000, 0x01ff01010000ff00, 0x01ff0101000000ff, + 0x01ff010100000001, 0x01ff010101ffffff, 0x01ff010101ffff01, 0x01ff010101ff01ff, + 0x01ff010101ff0101, 0x01ff010101000000, 0x01ff01010101ffff, 0x01ff01010101ff01, + 0x01ff0101010101ff, 0x01ff010101010101, 0x0100ffffffff0000, 0x0100ffffff00ff00, + 0x0100ffffff000001, 0x0100ffffff0001ff, 0x0100ffffff000100, 0x0100ffffff010000, + 0x0100ffff00ffff00, 0x0100ffff00ff0001, 0x0100ffff00ff0100, 0x0100ffff00000000, + 0x0100ffff000001ff, 0x0100ffff00000101, 0x0100ffff00010100, 0x0100ffff00010101, + 0x0100ffff01ff0000, 0x0100ffff0100ff00, 0x0100ffff010000ff, 0x0100ffff01000001, + 0x0100ffff01000100, 0x0100ffff01010000, 0x0100ff00ffffff00, 0x0100ff00ffff00ff, + 0x0100ff00ffff0001, 0x0100ff00ffff0100, 0x0100ff00ff00ffff, 0x0100ff00ff000000, + 0x0100ff00ff0001ff, 0x0100ff00ff000101, 0x0100ff00ff01ff00, 0x0100ff00ff0100ff, + 0x0100ff00ff010001, 0x0100ff00ff010100, 0x0100ff0000ffffff, 0x0100ff0000ff0000, + 0x0100ff000000ffff, 0x0100ff000000ff00, 0x0100ff00000000ff, 0x0100ff0000000000, + 0x0100ff0000000001, 0x0100ff0000000100, 0x0100ff000001ff01, 0x0100ff0000010000, + 0x0100ff0001ff00ff, 0x0100ff0001ff0001, 0x0100ff000100ff01, 0x0100ff0001000000, + 0x0100ff00010001ff, 0x0100ff000101ff00, 0x0100ff00010100ff, 0x0100ff0001010001, + 0x0100ff0001010100, 0x0100ff01ffff0000, 0x0100ff01ff00ff00, 0x0100ff01ff0000ff, + 0x0100ff01ff000100, 0x0100ff01ff010000, 0x0100ff0100ff00ff, 0x0100ff0100ff0001, + 0x0100ff0100ff0100, 0x0100ff010000ffff, 0x0100ff010000ff01, 0x0100ff0100000000, + 0x0100ff01000001ff, 0x0100ff0100010001, 0x0100ff0100010100, 0x0100ff0101ff0000, + 0x0100ff01010000ff, 0x0100ff0101000001, 0x0100ff0101010100, 0x010000ffffffff00, + 0x010000ffffff00ff, 0x010000ffffff0001, 0x010000ffff00ffff, 0x010000ffff000000, + 0x010000ffff0001ff, 0x010000ffff010001, 0x010000ff00ffffff, 0x010000ff00ff0101, + 0x010000ff0000ff00, 0x010000ff000000ff, 0x010000ff00000000, 0x010000ff00000001, + 0x010000ff000001ff, 0x010000ff00000100, 0x010000ff0001ffff, 0x010000ff0001ff00, + 0x010000ff0001ff01, 0x010000ff00010000, 0x010000ff01ff00ff, 0x010000ff01ff0001, + 0x010000ff0100ff01, 0x010000ff010000ff, 0x010000ff01000000, 0x010000ff010001ff, + 0x010000ff0101ff00, 0x010000ff01010100, 0x01000000ffffffff, 0x01000000ffff0000, + 0x01000000ffff01ff, 0x01000000ffff0101, 0x01000000ff00ffff, 0x01000000ff00ff00, + 0x01000000ff0000ff, 0x01000000ff000000, 0x01000000ff000001, 0x01000000ff000100, + 0x01000000ff01ff00, 0x01000000ff010000, 0x01000000ff010100, 0x01000000ff010101, + 0x0100000000ffff00, 0x0100000000ff00ff, 0x0100000000ff0000, 0x0100000000ff0001, + 0x0100000000ff0100, 0x010000000000ffff, 0x010000000000ff00, 0x010000000000ff01, + 0x01000000000000ff, 0x0100000000000000, 0x0100000000000001, 0x01000000000001ff, + 0x0100000000000100, 0x0100000000000101, 0x010000000001ff00, 0x01000000000100ff, + 0x0100000000010000, 0x0100000000010001, 0x0100000000010100, 0x0100000001ffff00, + 0x0100000001ff0000, 0x0100000001ff01ff, 0x010000000100ff00, 0x010000000100ff01, + 0x01000000010000ff, 0x0100000001000000, 0x0100000001000001, 0x0100000001000100, + 0x0100000001000101, 0x010000000101ffff, 0x010000000101ff01, 0x0100000001010000, + 0x01000000010101ff, 0x0100000001010101, 0x01000001ffffff00, 0x01000001ffff00ff, + 0x01000001ff00ffff, 0x01000001ff000000, 0x01000001ff000100, 0x01000001ff01ffff, + 0x01000001ff010001, 0x01000001ff010100, 0x0100000100ff0000, 0x0100000100ff01ff, + 0x0100000100ff0100, 0x010000010000ff00, 0x010000010000ff01, 0x0100000100000000, + 0x0100000100000001, 0x0100000100000100, 0x0100000100010000, 0x01000001000101ff, + 0x0100000101ffff01, 0x0100000101ff00ff, 0x0100000101ff0100, 0x0100000101ff0101, + 0x010000010100ff01, 0x01000001010000ff, 0x0100000101000000, 0x01000001010100ff, + 0x0100000101010001, 0x0100000101010100, 0x010001ffffff0000, 0x010001ffff000001, + 0x010001ffff000100, 0x010001ffff010000, 0x010001ff00ffff00, 0x010001ff00ff0001, + 0x010001ff0000ffff, 0x010001ff0000ff01, 0x010001ff00000000, 0x010001ff00000001, + 0x010001ff00000101, 0x010001ff000100ff, 0x010001ff00010000, 0x010001ff01ff0000, + 0x010001ff0100ff00, 0x010001ff01000001, 0x010001ff01000100, 0x010001ff01010000, + 0x01000100ffff00ff, 0x01000100ffff0001, 0x01000100ffff0100, 0x01000100ff00ffff, + 0x01000100ff00ff01, 0x01000100ff000000, 0x01000100ff0001ff, 0x01000100ff000101, + 0x01000100ff01ffff, 0x01000100ff01ff00, 0x01000100ff0100ff, 0x01000100ff010001, + 0x0100010000ffffff, 0x0100010000ffff01, 0x0100010000ff0000, 0x0100010000ff01ff, + 0x0100010000ff0101, 0x010001000000ff00, 0x01000100000000ff, 0x0100010000000000, + 0x0100010000000001, 0x0100010000000100, 0x010001000001ff01, 0x0100010000010000, + 0x0100010000010001, 0x0100010000010101, 0x0100010001ffff00, 0x0100010001ff00ff, + 0x010001000100ffff, 0x010001000100ff01, 0x0100010001000000, 0x0100010001000101, + 0x010001000101ff00, 0x0100010001010001, 0x01000101ffff0000, 0x01000101ff000000, + 0x01000101ff010000, 0x0100010100ff00ff, 0x0100010100ff0001, 0x0100010100ff0100, + 0x010001010000ffff, 0x0100010100000000, 0x01000101000001ff, 0x010001010001ff00, + 0x0100010101ff0000, 0x010001010100ff00, 0x01000101010000ff, 0x0100010101000000, + 0x0100010101000001, 0x0101ffffffffffff, 0x0101ffffffffff01, 0x0101ffffffff01ff, + 0x0101ffffffff0101, 0x0101ffffff000000, 0x0101ffffff01ffff, 0x0101ffffff01ff01, + 0x0101ffffff0101ff, 0x0101ffffff010101, 0x0101ffff00ff0000, 0x0101ffff0000ff00, + 0x0101ffff000000ff, 0x0101ffff00000001, 0x0101ffff00000100, 0x0101ffff01ffffff, + 0x0101ffff01ffff01, 0x0101ffff01ff01ff, 0x0101ffff01ff0101, 0x0101ffff01000000, + 0x0101ffff0101ffff, 0x0101ffff0101ff01, 0x0101ffff010101ff, 0x0101ffff01010101, + 0x0101ff00ffff0000, 0x0101ff00ffff0100, 0x0101ff00ff00ff00, 0x0101ff00ff0000ff, + 0x0101ff00ff000001, 0x0101ff00ff000100, 0x0101ff00ff000101, 0x0101ff0000ff0001, + 0x0101ff0000ff0100, 0x0101ff000000ff00, 0x0101ff0000000000, 0x0101ff00000001ff, + 0x0101ff0000000101, 0x0101ff000001ff00, 0x0101ff00000100ff, 0x0101ff0001ff0000, + 0x0101ff000100ffff, 0x0101ff000100ff01, 0x0101ff0001000001, 0x0101ff0001000100, + 0x0101ff01ffffff01, 0x0101ff01ffff01ff, 0x0101ff01ffff0101, 0x0101ff01ff00ffff, + 0x0101ff01ff000100, 0x0101ff01ff01ff01, 0x0101ff01ff0101ff, 0x0101ff01ff010101, + 0x0101ff0100ff0000, 0x0101ff010000ff00, 0x0101ff0100000001, 0x0101ff0100000100, + 0x0101ff0100010000, 0x0101ff0101ffffff, 0x0101ff0101ffff01, 0x0101ff0101ff01ff, + 0x0101ff0101ff0101, 0x0101ff0101000000, 0x0101ff010101ffff, 0x0101ff010101ff01, + 0x0101ff01010101ff, 0x0101ff0101010101, 0x010100ffff000100, 0x010100ffff010000, + 0x010100ff00ffff00, 0x010100ff00ff00ff, 0x010100ff0000ffff, 0x010100ff000000ff, + 0x010100ff00000000, 0x010100ff000001ff, 0x010100ff00000101, 0x010100ff0001ff00, + 0x010100ff00010000, 0x010100ff00010001, 0x010100ff000101ff, 0x010100ff00010100, + 0x010100ff01ff0000, 0x01010000ffff0001, 0x01010000ffff0100, 0x01010000ff00ffff, + 0x01010000ff00ff01, 0x01010000ff000000, 0x01010000ff0001ff, 0x01010000ff010001, + 0x01010000ff010100, 0x0101000000ffff01, 0x0101000000ff0000, 0x010100000000ff00, + 0x01010000000000ff, 0x0101000000000000, 0x0101000000000001, 0x0101000000000100, + 0x0101000000010000, 0x0101000000010101, 0x0101000001ffff00, 0x0101000001ff00ff, + 0x0101000001ff0000, 0x0101000001ff0001, 0x0101000001ff0100, 0x010100000100ff01, + 0x0101000001000000, 0x01010000010001ff, 0x01010001ffff0000, 0x01010001ff00ff00, + 0x01010001ff000001, 0x01010001ff000101, 0x01010001ff01ff00, 0x01010001ff010000, + 0x0101000100ff00ff, 0x0101000100ff0001, 0x0101000100ff0101, 0x010100010000ff01, + 0x0101000100000000, 0x0101000100000001, 0x01010001000001ff, 0x010100010001ffff, + 0x010100010001ff01, 0x0101000101ff0001, 0x010100010100ffff, 0x0101000101000000, + 0x0101000101000001, 0x0101000101000100, 0x010100010101ff00, 0x01010001010100ff, + 0x0101000101010001, 0x010101ffffffffff, 0x010101ffffffff01, 0x010101ffffff01ff, + 0x010101ffffff0101, 0x010101ffff01ffff, 0x010101ffff01ff01, 0x010101ffff0101ff, + 0x010101ffff010101, 0x010101ff0000ff00, 0x010101ff000000ff, 0x010101ff00000001, + 0x010101ff00000100, 0x010101ff01ffffff, 0x010101ff01ffff01, 0x010101ff01ff01ff, + 0x010101ff01ff0101, 0x010101ff01000000, 0x010101ff0101ffff, 0x010101ff0101ff01, + 0x010101ff010101ff, 0x010101ff01010101, 0x01010100ffff0000, 0x01010100ff0000ff, + 0x01010100ff000100, 0x01010100ff01ff00, 0x01010100ff010000, 0x0101010000ffff00, + 0x010101000000ffff, 0x0101010000000000, 0x0101010000000101, 0x010101000001ff00, + 0x0101010000010001, 0x0101010000010100, 0x010101000100ffff, 0x0101010001000001, + 0x01010101ffffffff, 0x01010101ffffff01, 0x01010101ffff01ff, 0x01010101ffff0101, + 0x01010101ff01ffff, 0x01010101ff01ff01, 0x01010101ff0101ff, 0x01010101ff010101, + 0x010101010000ff00, 0x01010101000000ff, 0x0101010100000001, 0x0101010101ffffff, + 0x0101010101ffff01, 0x0101010101ff01ff, 0x0101010101ff0101, 0x0101010101000000, + 0x010101010101ffff, 0x010101010101ff01, 0x01010101010101ff, 0x0101010101010101, +GGML_TABLE_END() +#else +GGML_TABLE_BEGIN(uint32_t, iq1s_grid_gpu, NGRID_IQ1S) + 0x00000000, 0x00000002, 0x00000101, 0x00000200, 0x00000202, 0x00010001, 0x00010101, 0x00020000, + 0x00020002, 0x00020200, 0x00020202, 0x01000101, 0x01010001, 0x01010100, 0x01010102, 0x01020101, + 0x02000000, 0x02000002, 0x02000200, 0x02000202, 0x02010101, 0x02020000, 0x02020002, 0x02020200, + 0x02020202, 0x00000110, 0x00000111, 0x00010011, 0x00010110, 0x00010112, 0x00010211, 0x00010212, + 0x00020111, 0x01000011, 0x01000112, 0x01000211, 0x01010012, 0x01010111, 0x01010212, 0x01020011, + 0x01020110, 0x01020112, 0x01020210, 0x02000111, 0x02010011, 0x02010110, 0x02010112, 0x02020111, + 0x00000020, 0x00000022, 0x00000220, 0x00000222, 0x00010121, 0x00020020, 0x00020022, 0x00020220, + 0x00020222, 0x01000121, 0x01010021, 0x01010221, 0x01020120, 0x01020221, 0x02000020, 0x02000022, + 0x02000220, 0x02000222, 0x02010021, 0x02010121, 0x02010221, 0x02020020, 0x02020022, 0x02020220, + 0x02020222, 0x00011001, 0x00011100, 0x00011102, 0x00021101, 0x01001001, 0x01001201, 0x01011101, + 0x01011202, 0x01021100, 0x01021101, 0x02011001, 0x02011201, 0x02021101, 0x00001011, 0x00001110, + 0x00001111, 0x00001112, 0x00011111, 0x00011210, 0x00011212, 0x00021211, 0x01001010, 0x01001111, + 0x01001212, 0x01011010, 0x01011011, 0x01011110, 0x01011111, 0x01011112, 0x01011211, 0x01021010, + 0x01021012, 0x01021111, 0x01021210, 0x01021212, 0x02001011, 0x02011011, 0x02011111, 0x02011210, + 0x02011212, 0x02021011, 0x02021110, 0x02021111, 0x02021112, 0x02021211, 0x00011120, 0x00011221, + 0x01001021, 0x01001120, 0x01011020, 0x01011022, 0x01011121, 0x01011220, 0x01021020, 0x01021021, + 0x01021122, 0x01021221, 0x02001121, 0x02011021, 0x02011120, 0x02011221, 0x00002000, 0x00002002, + 0x00002200, 0x00002202, 0x00012101, 0x00022000, 0x00022002, 0x00022200, 0x00022202, 0x01002101, + 0x01012001, 0x01012102, 0x01022101, 0x02002000, 0x02002002, 0x02002200, 0x02002202, 0x02012101, + 0x02022000, 0x02022002, 0x02022200, 0x02022202, 0x00002111, 0x00012011, 0x00012110, 0x00012211, + 0x00022110, 0x00022111, 0x01002011, 0x01012010, 0x01012011, 0x01012111, 0x01022011, 0x01022110, + 0x01022211, 0x02012011, 0x02012110, 0x02012112, 0x02012211, 0x02022111, 0x00002020, 0x00002022, + 0x00002220, 0x00002222, 0x00012121, 0x00022020, 0x00022022, 0x00022220, 0x00022222, 0x01002121, + 0x01012021, 0x01012221, 0x01022021, 0x01022121, 0x02002020, 0x02002022, 0x02002121, 0x02002220, + 0x02002222, 0x02012121, 0x02022020, 0x02022022, 0x02022220, 0x02022222, 0x00110000, 0x00110001, + 0x00110100, 0x00110201, 0x00120100, 0x00120101, 0x01100001, 0x01100100, 0x01110000, 0x01110101, + 0x01110200, 0x01120001, 0x01120100, 0x01120101, 0x01120201, 0x02110001, 0x02110100, 0x02110102, + 0x02120001, 0x02120101, 0x00100011, 0x00100110, 0x00100112, 0x00100211, 0x00110010, 0x00110012, + 0x00110111, 0x00110210, 0x00120011, 0x00120110, 0x00120211, 0x01100111, 0x01100212, 0x01110010, + 0x01110011, 0x01110012, 0x01110110, 0x01110111, 0x01110112, 0x01110211, 0x01120010, 0x01120111, + 0x02100110, 0x02110012, 0x02110111, 0x02120011, 0x02120110, 0x00110021, 0x00110120, 0x00110122, + 0x00120121, 0x01100020, 0x01100122, 0x01100221, 0x01110022, 0x01110121, 0x01110220, 0x01110222, + 0x01120120, 0x01120122, 0x02100121, 0x02110021, 0x02110120, 0x02110122, 0x02120121, 0x00101001, + 0x00101102, 0x00101201, 0x00111100, 0x00111101, 0x00111200, 0x00111201, 0x00121001, 0x00121102, + 0x01101001, 0x01101101, 0x01101102, 0x01101200, 0x01101202, 0x01111001, 0x01111100, 0x01111101, + 0x01111102, 0x01111201, 0x01121002, 0x01121101, 0x01121200, 0x02101100, 0x02101201, 0x02111000, + 0x02111100, 0x02111101, 0x02111200, 0x02111201, 0x02111202, 0x02121001, 0x02121100, 0x02121101, + 0x02121201, 0x00101012, 0x00101111, 0x00101212, 0x00111011, 0x00111110, 0x00111111, 0x00111112, + 0x00111211, 0x00121010, 0x00121012, 0x00121111, 0x00121210, 0x00121212, 0x01101011, 0x01101110, + 0x01101111, 0x01101112, 0x01111011, 0x01111012, 0x01111110, 0x01111111, 0x01111112, 0x01111211, + 0x01111212, 0x01121011, 0x01121110, 0x01121111, 0x01121112, 0x01121211, 0x02101010, 0x02101012, + 0x02101110, 0x02101111, 0x02101210, 0x02101212, 0x02111010, 0x02111011, 0x02111110, 0x02111111, + 0x02111112, 0x02111211, 0x02111212, 0x02121010, 0x02121012, 0x02121111, 0x00101021, 0x00101120, + 0x00101121, 0x00101122, 0x00111121, 0x00111122, 0x00111220, 0x00111222, 0x00121021, 0x00121122, + 0x01101020, 0x01101022, 0x01101120, 0x01101121, 0x01101220, 0x01101222, 0x01111021, 0x01111121, + 0x01111122, 0x01111220, 0x01111221, 0x01121021, 0x01121120, 0x01121121, 0x01121220, 0x01121221, + 0x01121222, 0x02101122, 0x02101222, 0x02111022, 0x02111121, 0x02121120, 0x02121221, 0x00112001, + 0x00112102, 0x00122101, 0x01102001, 0x01102100, 0x01102102, 0x01102201, 0x01112000, 0x01112101, + 0x01112200, 0x01112202, 0x01122000, 0x01122001, 0x01122100, 0x01122102, 0x01122201, 0x02102101, + 0x02112001, 0x02112100, 0x02122101, 0x00112010, 0x00112012, 0x00112111, 0x00112212, 0x00122011, + 0x00122111, 0x01102012, 0x01102110, 0x01102111, 0x01102210, 0x01112011, 0x01112110, 0x01112111, + 0x01112112, 0x01112211, 0x01112212, 0x01122010, 0x01122111, 0x01122212, 0x02102211, 0x02112011, + 0x02112012, 0x02112111, 0x02112210, 0x02122011, 0x02122112, 0x02122211, 0x00102221, 0x00112122, + 0x00122120, 0x00122122, 0x01102120, 0x01102122, 0x01102221, 0x01112020, 0x01112022, 0x01112121, + 0x01112220, 0x01122021, 0x01122122, 0x01122221, 0x02102121, 0x02112021, 0x02112122, 0x02112222, + 0x00200000, 0x00200002, 0x00200200, 0x00200202, 0x00210101, 0x00220000, 0x00220002, 0x00220101, + 0x00220200, 0x00220202, 0x01200101, 0x01210001, 0x01210201, 0x01220001, 0x01220101, 0x02200000, + 0x02200002, 0x02200200, 0x02200202, 0x02210101, 0x02220000, 0x02220002, 0x02220101, 0x02220200, + 0x02220202, 0x00200111, 0x00210011, 0x00210110, 0x00210211, 0x00220111, 0x01200012, 0x01200110, + 0x01200211, 0x01210111, 0x01210210, 0x01210212, 0x01220011, 0x01220110, 0x01220111, 0x01220112, + 0x02200111, 0x02210010, 0x02210112, 0x02210211, 0x02220111, 0x00200021, 0x00200220, 0x00200222, + 0x00210021, 0x00210121, 0x00220020, 0x00220022, 0x00220220, 0x00220222, 0x01200121, 0x01210021, + 0x01210122, 0x01210221, 0x01220121, 0x02200021, 0x02200220, 0x02200222, 0x02210021, 0x02210121, + 0x02220020, 0x02220022, 0x02220220, 0x02220222, 0x00201101, 0x00211100, 0x00211102, 0x00211201, + 0x00221101, 0x01201100, 0x01201101, 0x01201102, 0x01201201, 0x01211002, 0x01211101, 0x01211200, + 0x01211202, 0x01221102, 0x02201101, 0x02211001, 0x02211100, 0x02211201, 0x02221001, 0x02221101, + 0x00201211, 0x00211111, 0x00221011, 0x00221211, 0x01201010, 0x01201111, 0x01201210, 0x01211011, + 0x01211110, 0x01211111, 0x01211211, 0x01221012, 0x01221111, 0x01221210, 0x02201211, 0x02211010, + 0x02211110, 0x02211111, 0x02211210, 0x02211212, 0x02221011, 0x02221110, 0x02221112, 0x02221211, + 0x00201121, 0x00211020, 0x00211022, 0x00211221, 0x00221121, 0x01201021, 0x01201221, 0x01211121, + 0x01221020, 0x01221021, 0x01221221, 0x02201120, 0x02201122, 0x02211020, 0x02211222, 0x00202000, + 0x00202002, 0x00202200, 0x00202202, 0x00212101, 0x00222000, 0x00222002, 0x00222200, 0x00222202, + 0x01202101, 0x01212001, 0x01212100, 0x01222101, 0x02202000, 0x02202002, 0x02202200, 0x02202202, + 0x02222000, 0x02222002, 0x02222200, 0x02222202, 0x00202211, 0x00212011, 0x00212110, 0x00212211, + 0x00222111, 0x01202112, 0x01202211, 0x01212012, 0x01212111, 0x01222011, 0x01222110, 0x01222112, + 0x01222211, 0x02202111, 0x02212010, 0x02212112, 0x02212211, 0x02222110, 0x02222111, 0x00202020, + 0x00202022, 0x00202220, 0x00202222, 0x00222020, 0x00222022, 0x00222220, 0x00222222, 0x01202121, + 0x01212021, 0x01212122, 0x01212221, 0x01222121, 0x02202020, 0x02202022, 0x02202220, 0x02202222, + 0x02212121, 0x02222020, 0x02222022, 0x02222220, 0x02222222, 0x10000101, 0x10010001, 0x10010102, + 0x10020101, 0x11000201, 0x11010002, 0x11010101, 0x11010200, 0x11010202, 0x11020001, 0x11020100, + 0x11020102, 0x12010100, 0x12010201, 0x12020001, 0x12020102, 0x10000010, 0x10000011, 0x10000110, + 0x10000112, 0x10000211, 0x10010012, 0x10010111, 0x10010112, 0x10010210, 0x10010212, 0x10020011, + 0x10020112, 0x10020211, 0x11000111, 0x11000210, 0x11000212, 0x11010011, 0x11010110, 0x11010111, + 0x11010112, 0x11010211, 0x11010212, 0x11020111, 0x11020210, 0x11020212, 0x12000011, 0x12000110, + 0x12000112, 0x12010010, 0x12010012, 0x12010111, 0x12020010, 0x12020011, 0x12020012, 0x10000121, + 0x10010021, 0x10010120, 0x10010122, 0x10020121, 0x11000021, 0x11010022, 0x11010121, 0x11010222, + 0x11020120, 0x11020221, 0x12000221, 0x12010120, 0x12020121, 0x10001001, 0x10011101, 0x10011201, + 0x10021201, 0x11001101, 0x11001200, 0x11001202, 0x11011001, 0x11011100, 0x11011101, 0x11011102, + 0x11021001, 0x11021002, 0x11021101, 0x11021200, 0x11021202, 0x12001001, 0x12001102, 0x12001201, + 0x12011000, 0x12011002, 0x12011101, 0x12021000, 0x12021001, 0x12021201, 0x10001011, 0x10001012, + 0x10001111, 0x10001212, 0x10011011, 0x10011110, 0x10011111, 0x10011112, 0x10011211, 0x10021010, + 0x10021111, 0x10021212, 0x11001011, 0x11001110, 0x11001111, 0x11001112, 0x11001211, 0x11011010, + 0x11011011, 0x11011110, 0x11011111, 0x11011112, 0x11011210, 0x11011211, 0x11021011, 0x11021110, + 0x11021111, 0x11021112, 0x11021211, 0x12001012, 0x12001110, 0x12001111, 0x12001210, 0x12011011, + 0x12011110, 0x12011111, 0x12011112, 0x12011211, 0x12011212, 0x12021111, 0x12021210, 0x12021212, + 0x10001021, 0x10001121, 0x10001221, 0x10011120, 0x10011121, 0x10011220, 0x10011222, 0x10021021, + 0x10021120, 0x10021221, 0x11001020, 0x11001022, 0x11001121, 0x11001220, 0x11011020, 0x11011021, + 0x11011022, 0x11011121, 0x11011122, 0x11011221, 0x11021022, 0x11021121, 0x11021220, 0x12001021, + 0x12001121, 0x12001222, 0x12011120, 0x12011121, 0x12021021, 0x12021120, 0x12021122, 0x10002101, + 0x10012001, 0x10012101, 0x10012202, 0x10022101, 0x11002002, 0x11002201, 0x11012000, 0x11012101, + 0x11012200, 0x11022001, 0x11022100, 0x11022102, 0x11022201, 0x12002101, 0x12012001, 0x12012100, + 0x12012102, 0x12012201, 0x12022101, 0x10002011, 0x10002111, 0x10002112, 0x10002212, 0x10012010, + 0x10012110, 0x10012111, 0x10012210, 0x10022011, 0x10022110, 0x10022112, 0x11002010, 0x11002111, + 0x11002212, 0x11012011, 0x11012012, 0x11012110, 0x11012111, 0x11012112, 0x11012211, 0x11022010, + 0x11022012, 0x11022111, 0x11022112, 0x11022212, 0x12002112, 0x12002211, 0x12012012, 0x12012111, + 0x12012112, 0x12012210, 0x12022011, 0x12022110, 0x12022112, 0x12022211, 0x10012122, 0x11002120, + 0x11002122, 0x11002221, 0x11012121, 0x11012220, 0x11012222, 0x11022120, 0x11022221, 0x12012120, + 0x12022121, 0x10100001, 0x10100100, 0x10100101, 0x10100102, 0x10100201, 0x10110002, 0x10110101, + 0x10110202, 0x10120001, 0x10120100, 0x10120201, 0x11100000, 0x11100101, 0x11100200, 0x11110001, + 0x11110100, 0x11110101, 0x11110102, 0x11110201, 0x11120101, 0x11120200, 0x12100102, 0x12100201, + 0x12110101, 0x12110200, 0x12120000, 0x12120001, 0x12120102, 0x12120201, 0x10100111, 0x10100210, + 0x10100211, 0x10100212, 0x10110011, 0x10110110, 0x10110111, 0x10110112, 0x10110210, 0x10110211, + 0x10120010, 0x10120111, 0x10120112, 0x10120210, 0x10120212, 0x11100011, 0x11100110, 0x11100111, + 0x11100112, 0x11100211, 0x11110010, 0x11110011, 0x11110012, 0x11110110, 0x11110111, 0x11110112, + 0x11110210, 0x11110211, 0x11110212, 0x11120011, 0x11120110, 0x11120111, 0x11120112, 0x11120211, + 0x12100012, 0x12100111, 0x12110011, 0x12110110, 0x12110111, 0x12110112, 0x12110211, 0x12120010, + 0x12120111, 0x12120212, 0x10100021, 0x10100122, 0x10110022, 0x10110121, 0x10110222, 0x10120021, + 0x10120120, 0x11100022, 0x11100121, 0x11100222, 0x11110021, 0x11110120, 0x11110121, 0x11110122, + 0x11110221, 0x11120022, 0x11120121, 0x12100121, 0x12110020, 0x12110022, 0x12110121, 0x12110221, + 0x12110222, 0x12120120, 0x10101100, 0x10101101, 0x10111001, 0x10111100, 0x10111101, 0x10111102, + 0x10111200, 0x10111201, 0x10121001, 0x10121101, 0x10121200, 0x10121202, 0x11101001, 0x11101100, + 0x11101101, 0x11101102, 0x11101201, 0x11101202, 0x11111000, 0x11111001, 0x11111100, 0x11111101, + 0x11111102, 0x11111200, 0x11111201, 0x11111202, 0x11121001, 0x11121002, 0x11121100, 0x11121101, + 0x11121102, 0x11121201, 0x12101000, 0x12101200, 0x12101202, 0x12111001, 0x12111100, 0x12111101, + 0x12111102, 0x12111201, 0x12121001, 0x12121100, 0x12121101, 0x12121202, 0x10101011, 0x10101012, + 0x10101110, 0x10101111, 0x10101112, 0x10101211, 0x10111010, 0x10111011, 0x10111012, 0x10111110, + 0x10111111, 0x10111112, 0x10111211, 0x10111212, 0x10121011, 0x10121110, 0x10121111, 0x10121112, + 0x10121211, 0x11101010, 0x11101011, 0x11101012, 0x11101110, 0x11101111, 0x11101112, 0x11101210, + 0x11101211, 0x11111010, 0x11111011, 0x11111012, 0x11111110, 0x11111111, 0x11111112, 0x11111210, + 0x11111211, 0x11111212, 0x11121010, 0x11121011, 0x11121110, 0x11121111, 0x11121112, 0x11121210, + 0x11121211, 0x11121212, 0x12101011, 0x12101110, 0x12101111, 0x12101211, 0x12101212, 0x12111010, + 0x12111011, 0x12111110, 0x12111111, 0x12111112, 0x12111210, 0x12111211, 0x12121011, 0x12121110, + 0x12121111, 0x12121112, 0x12121211, 0x10101020, 0x10101021, 0x10101022, 0x10101120, 0x10101122, + 0x10101220, 0x10101221, 0x10111021, 0x10111120, 0x10111121, 0x10111220, 0x10111221, 0x10121020, + 0x10121021, 0x10121022, 0x10121120, 0x10121121, 0x10121122, 0x10121220, 0x10121221, 0x11101021, + 0x11101121, 0x11101122, 0x11101220, 0x11101221, 0x11101222, 0x11111020, 0x11111021, 0x11111022, + 0x11111120, 0x11111121, 0x11111122, 0x11111220, 0x11111221, 0x11111222, 0x11121021, 0x11121120, + 0x11121121, 0x11121221, 0x12101022, 0x12101121, 0x12101122, 0x12101220, 0x12101221, 0x12101222, + 0x12111021, 0x12111121, 0x12111222, 0x12121022, 0x12121121, 0x12121122, 0x12121220, 0x12121221, + 0x10102100, 0x10102101, 0x10102102, 0x10102201, 0x10112000, 0x10112101, 0x10112200, 0x10122001, + 0x10122202, 0x11102101, 0x11102200, 0x11102202, 0x11112001, 0x11112100, 0x11112101, 0x11112102, + 0x11112200, 0x11112201, 0x11122000, 0x11122002, 0x11122100, 0x11122101, 0x12102002, 0x12102201, + 0x12112000, 0x12112002, 0x12112101, 0x12112200, 0x12122001, 0x12122201, 0x10102011, 0x10102012, + 0x10102111, 0x10102212, 0x10112011, 0x10112110, 0x10112111, 0x10112112, 0x10112211, 0x10122111, + 0x11102011, 0x11102110, 0x11102111, 0x11102112, 0x11102211, 0x11112010, 0x11112011, 0x11112012, + 0x11112110, 0x11112111, 0x11112112, 0x11112210, 0x11112211, 0x11112212, 0x11122011, 0x11122110, + 0x11122111, 0x11122112, 0x11122211, 0x12102011, 0x12102111, 0x12102211, 0x12112011, 0x12112110, + 0x12112111, 0x12112112, 0x12112210, 0x12112211, 0x12122111, 0x10102120, 0x10102220, 0x10112121, + 0x10112222, 0x10122020, 0x10122121, 0x10122122, 0x10122221, 0x11102121, 0x11102220, 0x11102221, + 0x11112021, 0x11112121, 0x11112122, 0x11112220, 0x11112221, 0x11122022, 0x11122121, 0x11122220, + 0x11122222, 0x12102021, 0x12102222, 0x12112022, 0x12112121, 0x12112122, 0x12112220, 0x12112222, + 0x12122021, 0x10200101, 0x10210100, 0x10210102, 0x10210201, 0x10220101, 0x11200100, 0x11210000, + 0x11210101, 0x11210102, 0x11210200, 0x11210202, 0x11220001, 0x11220100, 0x11220102, 0x11220201, + 0x12200001, 0x12210102, 0x12220101, 0x10200011, 0x10200110, 0x10200112, 0x10200211, 0x10210012, + 0x10210111, 0x10220011, 0x10220012, 0x10220112, 0x10220211, 0x11200111, 0x11200211, 0x11210011, + 0x11210111, 0x11210112, 0x11210211, 0x11220111, 0x11220112, 0x11220212, 0x12200110, 0x12200212, + 0x12210012, 0x12210111, 0x12220011, 0x12220112, 0x12220211, 0x10210021, 0x10210122, 0x10210221, + 0x11200020, 0x11200021, 0x11200122, 0x11210121, 0x11210122, 0x11210220, 0x11220020, 0x12200121, + 0x12210021, 0x12210122, 0x12220121, 0x10211001, 0x10211002, 0x10211101, 0x10211102, 0x10211202, + 0x10221001, 0x10221102, 0x10221201, 0x11201000, 0x11201002, 0x11201101, 0x11201200, 0x11201202, + 0x11211001, 0x11211100, 0x11211101, 0x11211102, 0x11211201, 0x11211202, 0x11221000, 0x11221002, + 0x11221101, 0x12201100, 0x12201101, 0x12201201, 0x12211000, 0x12211002, 0x12211100, 0x12211101, + 0x12211102, 0x12211200, 0x12211202, 0x12221001, 0x12221100, 0x12221201, 0x10201111, 0x10201210, + 0x10201212, 0x10211011, 0x10211111, 0x10211112, 0x10211211, 0x11201110, 0x11201111, 0x11201112, + 0x11201211, 0x11211010, 0x11211011, 0x11211110, 0x11211111, 0x11211112, 0x11211211, 0x11221011, + 0x11221110, 0x11221111, 0x11221112, 0x11221211, 0x12201112, 0x12201211, 0x12201212, 0x12211011, + 0x12211111, 0x12211112, 0x12211211, 0x12211212, 0x12221012, 0x12221111, 0x12221112, 0x12221210, + 0x10201022, 0x10201221, 0x10211121, 0x10221020, 0x10221122, 0x10221220, 0x10221221, 0x11201020, + 0x11201121, 0x11201220, 0x11201222, 0x11211021, 0x11211120, 0x11211121, 0x11211122, 0x11211220, + 0x11211222, 0x11221020, 0x11221121, 0x11221220, 0x12201020, 0x12201022, 0x12201121, 0x12201222, + 0x12211120, 0x12211122, 0x12211220, 0x12211221, 0x12221020, 0x12221120, 0x12221122, 0x12221222, + 0x10212102, 0x10212201, 0x10222101, 0x11202001, 0x11212002, 0x11212101, 0x11212202, 0x11222001, + 0x11222201, 0x12202101, 0x12212001, 0x12212200, 0x12222102, 0x10202011, 0x10202110, 0x10212010, + 0x10212111, 0x10222011, 0x10222110, 0x10222112, 0x10222211, 0x11202010, 0x11202011, 0x11202111, + 0x11202112, 0x11202210, 0x11212011, 0x11212110, 0x11212111, 0x11212112, 0x11212211, 0x11222010, + 0x11222111, 0x11222212, 0x12202012, 0x12202110, 0x12202212, 0x12212111, 0x12222011, 0x12222110, + 0x12222111, 0x12222211, 0x10212021, 0x10212122, 0x10212220, 0x11202021, 0x11202120, 0x11202221, + 0x11212020, 0x11212121, 0x11212220, 0x11212222, 0x11222120, 0x11222121, 0x11222221, 0x12202122, + 0x12212120, 0x12212220, 0x12212222, 0x12222122, 0x20000000, 0x20000002, 0x20000200, 0x20000202, + 0x20020000, 0x20020002, 0x20020200, 0x20020202, 0x21000101, 0x21010000, 0x21010001, 0x21010100, + 0x21010102, 0x21010201, 0x21020101, 0x22000000, 0x22000002, 0x22000200, 0x22000202, 0x22010101, + 0x22020000, 0x22020002, 0x22020200, 0x22020202, 0x20000111, 0x20010011, 0x20010110, 0x20010112, + 0x20010211, 0x20020111, 0x21000011, 0x21000110, 0x21000211, 0x21010010, 0x21010012, 0x21010111, + 0x21010112, 0x21010210, 0x21010211, 0x21020110, 0x21020112, 0x21020211, 0x22000111, 0x22000211, + 0x22010110, 0x22010112, 0x22010211, 0x22020111, 0x20000020, 0x20000022, 0x20000220, 0x20000222, + 0x20010121, 0x20020020, 0x20020022, 0x20020220, 0x20020222, 0x21010021, 0x21010120, 0x21010221, + 0x21020121, 0x22000020, 0x22000022, 0x22000220, 0x22000222, 0x22010121, 0x22020020, 0x22020022, + 0x22020220, 0x22020222, 0x20011100, 0x20011201, 0x21001001, 0x21001100, 0x21011001, 0x21011101, + 0x21011202, 0x21021001, 0x21021100, 0x21021201, 0x22011100, 0x22011201, 0x20001011, 0x20001211, + 0x20011012, 0x20011111, 0x20011212, 0x20021112, 0x20021211, 0x21001010, 0x21001011, 0x21001111, + 0x21001210, 0x21011011, 0x21011110, 0x21011111, 0x21011112, 0x21011211, 0x21011212, 0x21021111, + 0x21021112, 0x21021210, 0x21021212, 0x22001011, 0x22001110, 0x22001112, 0x22001211, 0x22011010, + 0x22011012, 0x22011111, 0x22011210, 0x22021112, 0x20011021, 0x20011122, 0x20011221, 0x20021121, + 0x21001021, 0x21001120, 0x21001221, 0x21001222, 0x21011020, 0x21011121, 0x21011221, 0x21011222, + 0x21021021, 0x21021122, 0x21021222, 0x22001121, 0x22011021, 0x22011222, 0x22021120, 0x20002000, + 0x20002002, 0x20002200, 0x20002202, 0x20012101, 0x20022000, 0x20022002, 0x20022200, 0x20022202, + 0x21002001, 0x21002101, 0x21012001, 0x21012100, 0x21012201, 0x21022101, 0x21022201, 0x22002000, + 0x22002002, 0x22002200, 0x22002202, 0x22012101, 0x22022000, 0x22022002, 0x22022200, 0x22022202, + 0x20002111, 0x20002112, 0x20012011, 0x20012110, 0x20012112, 0x20022111, 0x21002011, 0x21002110, + 0x21002112, 0x21002211, 0x21012010, 0x21012012, 0x21012111, 0x21012212, 0x21022011, 0x21022110, + 0x22002111, 0x22012112, 0x22012211, 0x22022111, 0x20002020, 0x20002022, 0x20002220, 0x20002222, + 0x20012121, 0x20022020, 0x20022022, 0x20022220, 0x20022222, 0x21002121, 0x21012021, 0x21012120, + 0x21012122, 0x22002020, 0x22002022, 0x22002220, 0x22002222, 0x22012121, 0x22022020, 0x22022022, + 0x22022220, 0x22022222, 0x20100101, 0x20110001, 0x20110102, 0x20110200, 0x20110201, 0x20120101, + 0x21100001, 0x21100102, 0x21100201, 0x21110101, 0x21110200, 0x21110202, 0x21120201, 0x21120202, + 0x22100101, 0x22110001, 0x22110100, 0x22110102, 0x22110201, 0x22120101, 0x20100011, 0x20100110, + 0x20100112, 0x20100211, 0x20110010, 0x20110111, 0x20110210, 0x20110212, 0x20120011, 0x20120110, + 0x20120112, 0x20120211, 0x21100010, 0x21100111, 0x21110010, 0x21110011, 0x21110110, 0x21110111, + 0x21110112, 0x21110211, 0x21120012, 0x21120111, 0x22100110, 0x22100112, 0x22110012, 0x22110111, + 0x22110210, 0x22120011, 0x22120110, 0x22120112, 0x22120211, 0x20100121, 0x20110021, 0x20110120, + 0x20110221, 0x20120121, 0x21100120, 0x21100122, 0x21100221, 0x21110020, 0x21110022, 0x21110121, + 0x21110220, 0x21120122, 0x21120221, 0x22100121, 0x22110120, 0x22110122, 0x22120221, 0x20101001, + 0x20101100, 0x20101102, 0x20111000, 0x20111101, 0x20111200, 0x20121102, 0x21101000, 0x21101202, + 0x21111001, 0x21111100, 0x21111101, 0x21111102, 0x21111200, 0x21111201, 0x21121000, 0x21121001, + 0x21121002, 0x21121101, 0x22101100, 0x22101102, 0x22111002, 0x22111100, 0x22111101, 0x22111200, + 0x22121001, 0x22121201, 0x20101010, 0x20101111, 0x20101210, 0x20101212, 0x20111010, 0x20111011, + 0x20111110, 0x20111111, 0x20111112, 0x20111211, 0x20121011, 0x20121111, 0x20121211, 0x20121212, + 0x21101011, 0x21101110, 0x21101111, 0x21101112, 0x21101211, 0x21111010, 0x21111011, 0x21111012, + 0x21111110, 0x21111111, 0x21111112, 0x21111210, 0x21111211, 0x21111212, 0x21121011, 0x21121110, + 0x21121111, 0x21121112, 0x21121211, 0x22101011, 0x22101111, 0x22101210, 0x22111011, 0x22111012, + 0x22111110, 0x22111111, 0x22111112, 0x22111211, 0x22111212, 0x22121010, 0x22121012, 0x22121111, + 0x22121210, 0x22121212, 0x20101021, 0x20101120, 0x20111020, 0x20111121, 0x20111221, 0x20121020, + 0x20121122, 0x20121221, 0x21101121, 0x21101220, 0x21101221, 0x21111021, 0x21111022, 0x21111121, + 0x21111122, 0x21111221, 0x21121121, 0x21121220, 0x22101022, 0x22101120, 0x22101221, 0x22101222, + 0x22111022, 0x22111120, 0x22111121, 0x22121120, 0x22121122, 0x22121221, 0x20102101, 0x20112102, + 0x20112201, 0x20122101, 0x21102001, 0x21102102, 0x21112000, 0x21112002, 0x21112101, 0x21112102, + 0x21112202, 0x21122100, 0x21122101, 0x22102101, 0x22112001, 0x22112102, 0x22112201, 0x22122101, + 0x20102110, 0x20102112, 0x20102211, 0x20112010, 0x20112012, 0x20112111, 0x20112210, 0x20112212, + 0x20122010, 0x20122011, 0x20122110, 0x20122112, 0x21102010, 0x21102012, 0x21102111, 0x21102210, + 0x21102212, 0x21112011, 0x21112110, 0x21112111, 0x21112112, 0x21112211, 0x21122012, 0x21122111, + 0x21122112, 0x21122212, 0x22102011, 0x22102110, 0x22112010, 0x22112012, 0x22112111, 0x22112212, + 0x22122011, 0x22122112, 0x20102121, 0x20112121, 0x20122121, 0x21102120, 0x21102122, 0x21102221, + 0x21112020, 0x21112121, 0x21112220, 0x21122021, 0x22102121, 0x22112021, 0x22112120, 0x22112121, + 0x22112122, 0x20200000, 0x20200002, 0x20200200, 0x20200202, 0x20210101, 0x20220000, 0x20220002, + 0x20220200, 0x20220202, 0x21200101, 0x21210001, 0x21210100, 0x21210102, 0x21210201, 0x22200000, + 0x22200002, 0x22200200, 0x22200202, 0x22210101, 0x22220000, 0x22220002, 0x22220200, 0x22220202, + 0x20200111, 0x20200211, 0x20210011, 0x20210110, 0x20210112, 0x20210211, 0x20210212, 0x21200112, + 0x21200211, 0x21210011, 0x21210111, 0x21210210, 0x21210212, 0x21220011, 0x21220110, 0x22200111, + 0x22210010, 0x22210012, 0x22210112, 0x22210211, 0x20200022, 0x20200220, 0x20200222, 0x20210020, + 0x20210221, 0x20220022, 0x20220220, 0x20220222, 0x21200121, 0x21210021, 0x21210122, 0x21210221, + 0x21220121, 0x22200020, 0x22200022, 0x22200220, 0x22200222, 0x22210121, 0x22220020, 0x22220022, + 0x22220220, 0x22220222, 0x20211201, 0x20221101, 0x21201001, 0x21201100, 0x21211000, 0x21211100, + 0x21211101, 0x21211200, 0x21211202, 0x21221001, 0x21221101, 0x21221102, 0x21221200, 0x21221201, + 0x22201101, 0x20201112, 0x20201211, 0x20211010, 0x20211012, 0x20211111, 0x20211210, 0x20221112, + 0x20221211, 0x21201012, 0x21201111, 0x21211011, 0x21211110, 0x21211111, 0x21211112, 0x21211211, + 0x21221111, 0x21221212, 0x22201011, 0x22201110, 0x22201111, 0x22201112, 0x22201211, 0x22211012, + 0x22211111, 0x22211210, 0x20201121, 0x20211021, 0x20211122, 0x20211222, 0x20221021, 0x20221121, + 0x21201120, 0x21201122, 0x21201222, 0x21211022, 0x21211121, 0x21211122, 0x21211220, 0x21221020, + 0x21221022, 0x22201122, 0x22211020, 0x22211121, 0x22211122, 0x22211221, 0x22221021, 0x22221120, + 0x22221122, 0x20202000, 0x20202002, 0x20202200, 0x20202202, 0x20222000, 0x20222002, 0x20222200, + 0x20222202, 0x21212001, 0x21212100, 0x21212102, 0x21212201, 0x22202000, 0x22202002, 0x22202200, + 0x22202202, 0x22212101, 0x22222000, 0x22222002, 0x22222200, 0x22222202, 0x20202111, 0x20212110, + 0x20212211, 0x20222011, 0x20222111, 0x21202011, 0x21212010, 0x21212111, 0x21212212, 0x21222011, + 0x21222112, 0x21222211, 0x22212010, 0x22212112, 0x20202020, 0x20202022, 0x20202220, 0x20202222, + 0x20222020, 0x20222022, 0x20222220, 0x20222222, 0x21212021, 0x21212120, 0x21212122, 0x22202020, + 0x22202022, 0x22202220, 0x22202222, 0x22212121, 0x22222020, 0x22222022, 0x22222220, 0x22222222, +GGML_TABLE_END() +#endif + +#endif // GGML_COMMON_IMPL +#endif // GGML_COMMON_IMPL diff --git a/llama/ggml-cuda.cu b/llama/ggml-cuda.cu new file mode 100644 index 00000000..d277104d --- /dev/null +++ b/llama/ggml-cuda.cu @@ -0,0 +1,2756 @@ +#include "ggml-cuda.h" +#include "ggml.h" +#include "ggml-backend-impl.h" + +#include "ggml-cuda/common.cuh" +#include "ggml-cuda/acc.cuh" +#include "ggml-cuda/alibi.cuh" +#include "ggml-cuda/arange.cuh" +#include "ggml-cuda/argsort.cuh" +#include "ggml-cuda/binbcast.cuh" +#include "ggml-cuda/clamp.cuh" +#include "ggml-cuda/concat.cuh" +#include "ggml-cuda/convert.cuh" +#include "ggml-cuda/cpy.cuh" +#include "ggml-cuda/diagmask.cuh" +#include "ggml-cuda/dmmv.cuh" +#include "ggml-cuda/getrows.cuh" +#include "ggml-cuda/im2col.cuh" +#include "ggml-cuda/mmq.cuh" +#include "ggml-cuda/mmvq.cuh" +#include "ggml-cuda/norm.cuh" +#include "ggml-cuda/pad.cuh" +#include "ggml-cuda/pool2d.cuh" +#include "ggml-cuda/quantize.cuh" +#include "ggml-cuda/rope.cuh" +#include "ggml-cuda/scale.cuh" +#include "ggml-cuda/softmax.cuh" +#include "ggml-cuda/sumrows.cuh" +#include "ggml-cuda/tsembd.cuh" +#include "ggml-cuda/unary.cuh" +#include "ggml-cuda/upscale.cuh" + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size"); + +[[noreturn]] +void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg) { + int id = -1; // in case cudaGetDevice fails + cudaGetDevice(&id); + + fprintf(stderr, "CUDA error: %s\n", msg); + fprintf(stderr, " current device: %d, in function %s at %s:%d\n", id, func, file, line); + fprintf(stderr, " %s\n", stmt); + // abort with GGML_ASSERT to get a stack trace + GGML_ASSERT(!"CUDA error"); +} + +// this is faster on Windows +// probably because the Windows CUDA libraries forget to make this check before invoking the drivers +void ggml_cuda_set_device(int device) { + int current_device; + CUDA_CHECK(cudaGetDevice(¤t_device)); + + if (device == current_device) { + return; + } + + CUDA_CHECK(cudaSetDevice(device)); +} + +int ggml_cuda_get_device() { + int id; + CUDA_CHECK(cudaGetDevice(&id)); + return id; +} + +static ggml_cuda_device_info ggml_cuda_init() { +#ifdef __HIP_PLATFORM_AMD__ + // Workaround for a rocBLAS bug when using multiple graphics cards: + // https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346 + rocblas_initialize(); + CUDA_CHECK(cudaDeviceSynchronize()); +#endif + + ggml_cuda_device_info info = {}; + + cudaError_t err = cudaGetDeviceCount(&info.device_count); + if (err != cudaSuccess) { + fprintf(stderr, "%s: failed to initialize " GGML_CUDA_NAME ": %s\n", __func__, cudaGetErrorString(err)); + return info; + } + + GGML_ASSERT(info.device_count <= GGML_CUDA_MAX_DEVICES); + + int64_t total_vram = 0; +#if defined(GGML_CUDA_FORCE_MMQ) + fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ: yes\n", __func__); +#else + fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ: no\n", __func__); +#endif +#if defined(CUDA_USE_TENSOR_CORES) + fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: yes\n", __func__); +#else + fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: no\n", __func__); +#endif + fprintf(stderr, "%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, info.device_count); + for (int id = 0; id < info.device_count; ++id) { + int device_vmm = 0; + +#if !defined(GGML_USE_HIPBLAS) + CUdevice device; + CU_CHECK(cuDeviceGet(&device, id)); + CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device)); + + if (device_vmm) { + CUmemAllocationProp alloc_prop = {}; + alloc_prop.type = CU_MEM_ALLOCATION_TYPE_PINNED; + alloc_prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE; + alloc_prop.location.id = id; + CU_CHECK(cuMemGetAllocationGranularity(&info.devices[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED)); + } +#endif // !defined(GGML_USE_HIPBLAS) + info.devices[id].vmm = !!device_vmm; + + cudaDeviceProp prop; + CUDA_CHECK(cudaGetDeviceProperties(&prop, id)); + fprintf(stderr, " Device %d: %s, compute capability %d.%d, VMM: %s\n", id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no"); + + info.default_tensor_split[id] = total_vram; + total_vram += prop.totalGlobalMem; + +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) + info.devices[id].cc = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD; +#else + info.devices[id].cc = 100*prop.major + 10*prop.minor; +#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) + info.devices[id].smpb = prop.sharedMemPerBlock; + } + + for (int id = 0; id < info.device_count; ++id) { + info.default_tensor_split[id] /= total_vram; + } + + // configure logging to stdout + // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr)); + + return info; +} + +const ggml_cuda_device_info & ggml_cuda_info() { + static ggml_cuda_device_info info = ggml_cuda_init(); + return info; +} + +// #define DEBUG_CUDA_MALLOC + +// buffer pool for cuda (legacy) +struct ggml_cuda_pool_leg : public ggml_cuda_pool { + static const int MAX_BUFFERS = 256; + + int device; + struct ggml_cuda_buffer { + void * ptr = nullptr; + size_t size = 0; + }; + + ggml_cuda_buffer buffer_pool[MAX_BUFFERS] = {}; + size_t pool_size = 0; + + explicit ggml_cuda_pool_leg(int device) : + device(device) { + } + + ~ggml_cuda_pool_leg() { + ggml_cuda_set_device(device); + for (int i = 0; i < MAX_BUFFERS; ++i) { + ggml_cuda_buffer & b = buffer_pool[i]; + if (b.ptr != nullptr) { + CUDA_CHECK(cudaFree(b.ptr)); + pool_size -= b.size; + } + } + GGML_ASSERT(pool_size == 0); + } + + void * alloc(size_t size, size_t * actual_size) override { +#ifdef DEBUG_CUDA_MALLOC + int nnz = 0; + size_t max_size = 0; +#endif + size_t best_diff = 1ull << 36; + int ibest = -1; + for (int i = 0; i < MAX_BUFFERS; ++i) { + ggml_cuda_buffer& b = buffer_pool[i]; + if (b.ptr != nullptr) { +#ifdef DEBUG_CUDA_MALLOC + ++nnz; + if (b.size > max_size) max_size = b.size; +#endif + if (b.size >= size) { + size_t diff = b.size - size; + if (diff < best_diff) { + best_diff = diff; + ibest = i; + if (!best_diff) { + void * ptr = b.ptr; + *actual_size = b.size; + b.ptr = nullptr; + b.size = 0; + return ptr; + } + } + } + } + } + if (ibest >= 0) { + ggml_cuda_buffer& b = buffer_pool[ibest]; + void * ptr = b.ptr; + *actual_size = b.size; + b.ptr = nullptr; + b.size = 0; + return ptr; + } + void * ptr; + size_t look_ahead_size = (size_t) (1.05 * size); + look_ahead_size = 256 * ((look_ahead_size + 255)/256); + ggml_cuda_set_device(device); + CUDA_CHECK(cudaMalloc((void **) &ptr, look_ahead_size)); + *actual_size = look_ahead_size; + pool_size += look_ahead_size; +#ifdef DEBUG_CUDA_MALLOC + fprintf(stderr, "%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, device, nnz, + (uint32_t)(max_size/1024/1024), (uint32_t)(pool_size/1024/1024), (uint32_t)(size/1024/1024)); +#endif + return ptr; + } + + void free(void * ptr, size_t size) override { + for (int i = 0; i < MAX_BUFFERS; ++i) { + ggml_cuda_buffer& b = buffer_pool[i]; + if (b.ptr == nullptr) { + b.ptr = ptr; + b.size = size; + return; + } + } + fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n"); + ggml_cuda_set_device(device); + CUDA_CHECK(cudaFree(ptr)); + pool_size -= size; + } +}; + +// pool with virtual memory +#if !defined(GGML_USE_HIPBLAS) +struct ggml_cuda_pool_vmm : public ggml_cuda_pool { + static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB + + int device; + CUdeviceptr pool_addr = 0; + size_t pool_used = 0; + size_t pool_size = 0; + size_t granularity; + + explicit ggml_cuda_pool_vmm(int device) : + device(device), + granularity(ggml_cuda_info().devices[device].vmm_granularity) { + } + + ~ggml_cuda_pool_vmm() { + if (pool_addr != 0) { + CU_CHECK(cuMemUnmap(pool_addr, pool_size)); + CU_CHECK(cuMemAddressFree(pool_addr, CUDA_POOL_VMM_MAX_SIZE)); + } + } + + void * alloc(size_t size, size_t * actual_size) override { + // round up the allocation size to the alignment to ensure that all allocations are aligned for all data types + const size_t alignment = 128; + size = alignment * ((size + alignment - 1) / alignment); + + size_t avail = pool_size - pool_used; + + if (size > avail) { + // round up to the next multiple of the granularity + size_t reserve_size = size - avail; + reserve_size = granularity * ((reserve_size + granularity - 1) / granularity); + + GGML_ASSERT(pool_size + reserve_size <= CUDA_POOL_VMM_MAX_SIZE); + + // allocate more physical memory + CUmemAllocationProp prop = {}; + prop.type = CU_MEM_ALLOCATION_TYPE_PINNED; + prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE; + prop.location.id = device; + CUmemGenericAllocationHandle handle; + CU_CHECK(cuMemCreate(&handle, reserve_size, &prop, 0)); + + // reserve virtual address space (if not already reserved) + if (pool_addr == 0) { + CU_CHECK(cuMemAddressReserve(&pool_addr, CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0)); + } + + // map at the end of the pool + CU_CHECK(cuMemMap(pool_addr + pool_size, reserve_size, 0, handle, 0)); + + // the memory allocation handle is no longer needed after mapping + CU_CHECK(cuMemRelease(handle)); + + // set access + CUmemAccessDesc access = {}; + access.location.type = CU_MEM_LOCATION_TYPE_DEVICE; + access.location.id = device; + access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE; + CU_CHECK(cuMemSetAccess(pool_addr + pool_size, reserve_size, &access, 1)); + + // add to the pool + pool_size += reserve_size; + + //printf("cuda pool[%d]: size increased to %llu MB (reserved %llu MB)\n", + // device, (unsigned long long) (pool_size/1024/1024), + // (unsigned long long) (reserve_size/1024/1024)); + } + + GGML_ASSERT(pool_addr != 0); + + void * ptr = (void *) (pool_addr + pool_used); + *actual_size = size; + pool_used += size; + +#ifdef DEBUG_CUDA_MALLOC + printf("cuda pool[%d]: allocated %llu bytes at %llx\n", device, (unsigned long long) size, ptr); +#endif + + return ptr; + } + + void free(void * ptr, size_t size) override { +#ifdef DEBUG_CUDA_MALLOC + printf("cuda pool[%d]: freed %llu bytes at %llx\n", device, (unsigned long long) size, ptr); +#endif + + pool_used -= size; + + // all deallocations must be in reverse order of the allocations + GGML_ASSERT(ptr == (void *) (pool_addr + pool_used)); + } +}; +#endif // !defined(GGML_USE_HIPBLAS) + +std::unique_ptr ggml_backend_cuda_context::new_pool_for_device(int device) { +#if !defined(GGML_USE_HIPBLAS) + if (ggml_cuda_info().devices[device].vmm) { + return std::unique_ptr(new ggml_cuda_pool_vmm(device)); + } +#endif + return std::unique_ptr(new ggml_cuda_pool_leg(device)); +} + +// cuda buffer + +struct ggml_backend_cuda_buffer_context { + int device; + void * dev_ptr = nullptr; + std::string name; + + ggml_backend_cuda_buffer_context(int device, void * dev_ptr) : + device(device), dev_ptr(dev_ptr), + name(GGML_CUDA_NAME + std::to_string(device)) { + } + + ~ggml_backend_cuda_buffer_context() { + CUDA_CHECK(cudaFree(dev_ptr)); + } +}; + +GGML_CALL static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) { + ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; + return ctx->name.c_str(); +} + +GGML_CALL static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) { + return buffer->iface.get_name == ggml_backend_cuda_buffer_get_name; +} + +GGML_CALL static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) { + ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; + delete ctx; +} + +GGML_CALL static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) { + ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; + return ctx->dev_ptr; +} + +GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { + ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; + + if (tensor->view_src != NULL) { + assert(tensor->view_src->buffer->buft == buffer->buft); + return; + } + + if (ggml_is_quantized(tensor->type)) { + // initialize padding to 0 to avoid possible NaN values + size_t original_size = ggml_nbytes(tensor); + size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor); + + if (padded_size > original_size && tensor->view_src == nullptr) { + ggml_cuda_set_device(ctx->device); + CUDA_CHECK(cudaMemset((char *)tensor->data + original_size, 0, padded_size - original_size)); + } + } +} + +GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; + + ggml_cuda_set_device(ctx->device); + CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cudaStreamPerThread)); + CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread)); +} + +GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { + ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; + + ggml_cuda_set_device(ctx->device); + CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cudaStreamPerThread)); + CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread)); +} + +GGML_CALL static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) { + if (ggml_backend_buffer_is_cuda(src->buffer)) { + ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context; + ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)dst->buffer->context; + if (src_ctx->device == dst_ctx->device) { + CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(src), cudaMemcpyDeviceToDevice, cudaStreamPerThread)); + } else { +#ifdef GGML_CUDA_NO_PEER_COPY + return false; +#else + CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, dst_ctx->device, src->data, src_ctx->device, ggml_nbytes(src), cudaStreamPerThread)); +#endif + } + CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread)); + return true; + } + return false; + + GGML_UNUSED(buffer); +} + +GGML_CALL static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { + ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context; + + ggml_cuda_set_device(ctx->device); + CUDA_CHECK(cudaDeviceSynchronize()); + CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size)); + CUDA_CHECK(cudaDeviceSynchronize()); +} + +static ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = { + /* .get_name = */ ggml_backend_cuda_buffer_get_name, + /* .free_buffer = */ ggml_backend_cuda_buffer_free_buffer, + /* .get_base = */ ggml_backend_cuda_buffer_get_base, + /* .init_tensor = */ ggml_backend_cuda_buffer_init_tensor, + /* .set_tensor = */ ggml_backend_cuda_buffer_set_tensor, + /* .get_tensor = */ ggml_backend_cuda_buffer_get_tensor, + /* .cpy_tensor = */ ggml_backend_cuda_buffer_cpy_tensor, + /* .clear = */ ggml_backend_cuda_buffer_clear, + /* .reset = */ NULL, +}; + +// cuda buffer type +struct ggml_backend_cuda_buffer_type_context { + int device; + std::string name; +}; + +GGML_CALL static const char * ggml_backend_cuda_buffer_type_name(ggml_backend_buffer_type_t buft) { + ggml_backend_cuda_buffer_type_context * ctx = (ggml_backend_cuda_buffer_type_context *)buft->context; + + return ctx->name.c_str(); +} + +GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { + ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context; + + ggml_cuda_set_device(buft_ctx->device); + + size = std::max(size, (size_t)1); // cudaMalloc returns null for size 0 + + void * dev_ptr; + cudaError_t err = cudaMalloc(&dev_ptr, size); + if (err != cudaSuccess) { + fprintf(stderr, "%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n", __func__, size/1024.0/1024.0, buft_ctx->device, cudaGetErrorString(err)); + return nullptr; + } + + ggml_backend_cuda_buffer_context * ctx = new ggml_backend_cuda_buffer_context(buft_ctx->device, dev_ptr); + + return ggml_backend_buffer_init(buft, ggml_backend_cuda_buffer_interface, ctx, size); +} + +GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { + return 128; + + GGML_UNUSED(buft); +} + +GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { + size_t size = ggml_nbytes(tensor); + int64_t ne0 = tensor->ne[0]; + + if (ggml_is_quantized(tensor->type)) { + if (ne0 % MATRIX_ROW_PADDING != 0) { + size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); + } + } + + return size; + + GGML_UNUSED(buft); +} + +GGML_CALL static bool ggml_backend_cuda_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { + if (!ggml_backend_is_cuda(backend)) { + return false; + } + + ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context; + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; + + return buft_ctx->device == cuda_ctx->device; +} + +static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = { + /* .get_name = */ ggml_backend_cuda_buffer_type_name, + /* .alloc_buffer = */ ggml_backend_cuda_buffer_type_alloc_buffer, + /* .get_alignment = */ ggml_backend_cuda_buffer_type_get_alignment, + /* .get_max_size = */ NULL, // defaults to SIZE_MAX + /* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size, + /* .supports_backend = */ ggml_backend_cuda_buffer_type_supports_backend, + /* .is_host = */ NULL, +}; + +GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) { + static std::mutex mutex; + std::lock_guard lock(mutex); + + if (device >= ggml_backend_cuda_get_device_count()) { + return nullptr; + } + + static ggml_backend_buffer_type ggml_backend_cuda_buffer_types[GGML_CUDA_MAX_DEVICES]; + + static bool ggml_backend_cuda_buffer_type_initialized = false; + + if (!ggml_backend_cuda_buffer_type_initialized) { + for (int i = 0; i < GGML_CUDA_MAX_DEVICES; i++) { + ggml_backend_cuda_buffer_types[i] = { + /* .iface = */ ggml_backend_cuda_buffer_type_interface, + /* .context = */ new ggml_backend_cuda_buffer_type_context{i, GGML_CUDA_NAME + std::to_string(i)}, + }; + } + ggml_backend_cuda_buffer_type_initialized = true; + } + + return &ggml_backend_cuda_buffer_types[device]; +} + +// cuda split buffer + +static int64_t get_row_rounding(ggml_type type, const std::array & tensor_split) { + int64_t min_compute_capability = INT_MAX; + int64_t max_compute_capability = INT_MIN; + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + if (tensor_split[id] < (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) { + if (min_compute_capability > ggml_cuda_info().devices[id].cc) { + min_compute_capability = ggml_cuda_info().devices[id].cc; + } + if (max_compute_capability < ggml_cuda_info().devices[id].cc) { + max_compute_capability = ggml_cuda_info().devices[id].cc; + } + } + } + +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) + switch(type) { + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + return max_compute_capability >= CC_RDNA2 ? 128 : 64; + case GGML_TYPE_F16: + case GGML_TYPE_F32: + return 1; + case GGML_TYPE_Q2_K: + return max_compute_capability >= CC_RDNA2 ? 128 : 32; + case GGML_TYPE_Q3_K: + return min_compute_capability < CC_RDNA2 ? 128 : 64; + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: + case GGML_TYPE_IQ2_XXS: + case GGML_TYPE_IQ2_XS: + case GGML_TYPE_IQ2_S: + case GGML_TYPE_IQ3_XXS: + case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ1_M: + case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_XS: + case GGML_TYPE_IQ3_S: + return max_compute_capability >= CC_RDNA2 ? 128 : 64; + default: + GGML_ASSERT(false); + } +#else + switch(type) { + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + return max_compute_capability >= CC_VOLTA ? 128 : 64; + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + return 64; + case GGML_TYPE_F16: + case GGML_TYPE_F32: + return 1; + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_IQ2_XXS: + case GGML_TYPE_IQ2_XS: + case GGML_TYPE_IQ2_S: + case GGML_TYPE_IQ3_XXS: + case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ1_M: + case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_XS: + case GGML_TYPE_IQ3_S: + return max_compute_capability >= CC_VOLTA ? 128 : 64; + case GGML_TYPE_Q6_K: + return 64; + default: + GGML_ASSERT(false); + } +#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) +} + +static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array & tensor_split, int id) { + const int64_t nrows = ggml_nrows(tensor); + const int64_t rounding = get_row_rounding(tensor->type, tensor_split); + + *row_low = id == 0 ? 0 : nrows*tensor_split[id]; + *row_low -= *row_low % rounding; + + if (id == ggml_backend_cuda_get_device_count() - 1) { + *row_high = nrows; + } else { + *row_high = nrows*tensor_split[id + 1]; + *row_high -= *row_high % rounding; + } +} + +static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]); +} + +struct ggml_backend_cuda_split_buffer_type_context { + std::array tensor_split; +}; + +struct ggml_backend_cuda_split_buffer_context { + ~ggml_backend_cuda_split_buffer_context() { + for (ggml_tensor_extra_gpu * extra : tensor_extras) { + for (int id = 0; id < GGML_CUDA_MAX_DEVICES; ++id) { + for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) { + if (extra->events[id][is] != nullptr) { + CUDA_CHECK(cudaEventDestroy(extra->events[id][is])); + } + } + if (extra->data_device[id] != nullptr) { + CUDA_CHECK(cudaFree(extra->data_device[id])); + } + } + delete extra; + } + } + + std::vector tensor_extras; +}; + +GGML_CALL static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) { + return GGML_CUDA_NAME "_Split"; + + GGML_UNUSED(buffer); +} + +static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) { + return buffer->iface.get_name == ggml_backend_cuda_split_buffer_get_name; + GGML_UNUSED(ggml_backend_buffer_is_cuda_split); // only used in debug builds currently, avoid unused function warning in release builds +} + +GGML_CALL static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) { + ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context; + delete ctx; +} + +GGML_CALL static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) { + // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced + return (void *)0x1000; + + GGML_UNUSED(buffer); +} + +GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) { + GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported + + ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context; + ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context; + + const int64_t ne0 = tensor->ne[0]; + + ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{}; + ctx->tensor_extras.push_back(extra); + + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + int64_t row_low, row_high; + get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id); + + int64_t nrows_split = row_high - row_low; + if (nrows_split == 0) { + continue; + } + + size_t size = ggml_nbytes_split(tensor, nrows_split); + const size_t original_size = size; + + // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses + if (ne0 % MATRIX_ROW_PADDING != 0) { + size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); + } + + // FIXME: do not crash if cudaMalloc fails + // currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first + ggml_cuda_set_device(id); + char * buf; + CUDA_CHECK(cudaMalloc(&buf, size)); + + // set padding to 0 to avoid possible NaN values + if (size > original_size) { + CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size)); + } + + extra->data_device[id] = buf; + + for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) { + CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming)); + } + } + tensor->extra = extra; +} + +GGML_CALL static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + // split tensors must always be set in their entirety at once + GGML_ASSERT(offset == 0); + GGML_ASSERT(size == ggml_nbytes(tensor)); + + ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context; + + const int64_t ne0 = tensor->ne[0]; + const size_t nb1 = tensor->nb[1]; + ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra; + + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + int64_t row_low, row_high; + get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id); + + int64_t nrows_split = row_high - row_low; + if (nrows_split == 0) { + continue; + } + + const size_t offset_split = row_low*nb1; + size_t size = ggml_nbytes_split(tensor, nrows_split); + const size_t original_size = size; + + // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses + if (ne0 % MATRIX_ROW_PADDING != 0) { + size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); + } + + const char * buf_host = (const char *)data + offset_split; + CUDA_CHECK(cudaMemcpyAsync(extra->data_device[id], buf_host, original_size, cudaMemcpyHostToDevice, cudaStreamPerThread)); + } + + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread)); + } +} + +GGML_CALL static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { + // split tensors must always be set in their entirety at once + GGML_ASSERT(offset == 0); + GGML_ASSERT(size == ggml_nbytes(tensor)); + + ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context; + + const int64_t ne0 = tensor->ne[0]; + const size_t nb1 = tensor->nb[1]; + ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra; + + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + int64_t row_low, row_high; + get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id); + + int64_t nrows_split = row_high - row_low; + if (nrows_split == 0) { + continue; + } + + const size_t offset_split = row_low*nb1; + size_t size = ggml_nbytes_split(tensor, nrows_split); + const size_t original_size = size; + + // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses + if (ne0 % MATRIX_ROW_PADDING != 0) { + size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); + } + + char * buf_host = (char *)data + offset_split; + CUDA_CHECK(cudaMemcpyAsync(buf_host, extra->data_device[id], original_size, cudaMemcpyDeviceToHost, cudaStreamPerThread)); + } + + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread)); + } +} + +GGML_CALL static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { + GGML_UNUSED(buffer); + GGML_UNUSED(value); +} + +static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = { + /* .get_name = */ ggml_backend_cuda_split_buffer_get_name, + /* .free_buffer = */ ggml_backend_cuda_split_buffer_free_buffer, + /* .get_base = */ ggml_backend_cuda_split_buffer_get_base, + /* .init_tensor = */ ggml_backend_cuda_split_buffer_init_tensor, + /* .set_tensor = */ ggml_backend_cuda_split_buffer_set_tensor, + /* .get_tensor = */ ggml_backend_cuda_split_buffer_get_tensor, + /* .cpy_tensor = */ NULL, + /* .clear = */ ggml_backend_cuda_split_buffer_clear, + /* .reset = */ NULL, +}; + +// cuda split buffer type + +GGML_CALL static const char * ggml_backend_cuda_split_buffer_type_name(ggml_backend_buffer_type_t buft) { + return GGML_CUDA_NAME "_Split"; + + GGML_UNUSED(buft); +} + +GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { + // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point + // instead, we allocate them for each tensor separately in init_tensor + // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated, + // as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct. + ggml_backend_cuda_split_buffer_context * ctx = new ggml_backend_cuda_split_buffer_context(); + + return ggml_backend_buffer_init(buft, ggml_backend_cuda_split_buffer_interface, ctx, size); +} + +GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { + return 128; + + GGML_UNUSED(buft); +} + +GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) { + ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context; + + size_t total_size = 0; + + const int64_t ne0 = tensor->ne[0]; + + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + int64_t row_low, row_high; + get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, id); + + int64_t nrows_split = row_high - row_low; + if (nrows_split == 0) { + continue; + } + + total_size += ggml_nbytes_split(tensor, nrows_split); + + // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses + if (ne0 % MATRIX_ROW_PADDING != 0) { + total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING); + } + } + + return total_size; +} + +GGML_CALL static bool ggml_backend_cuda_split_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { + return ggml_backend_is_cuda(backend); + + GGML_UNUSED(buft); +} + +GGML_CALL static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) { + return false; + + GGML_UNUSED(buft); +} + +static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = { + /* .get_name = */ ggml_backend_cuda_split_buffer_type_name, + /* .alloc_buffer = */ ggml_backend_cuda_split_buffer_type_alloc_buffer, + /* .get_alignment = */ ggml_backend_cuda_split_buffer_type_get_alignment, + /* .get_max_size = */ NULL, // defaults to SIZE_MAX + /* .get_alloc_size = */ ggml_backend_cuda_split_buffer_type_get_alloc_size, + /* .supports_backend = */ ggml_backend_cuda_split_buffer_type_supports_backend, + /* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host, +}; + +GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) { + static std::mutex mutex; + std::lock_guard lock(mutex); + + static std::map, struct ggml_backend_buffer_type> buft_map; + + std::array tensor_split_arr = {}; + + bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_CUDA_MAX_DEVICES, [](float x) { return x == 0.0f; }); + if (all_zero) { + tensor_split_arr = ggml_cuda_info().default_tensor_split; + } else { + float split_sum = 0.0f; + for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) { + tensor_split_arr[i] = split_sum; + split_sum += tensor_split[i]; + } + for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) { + tensor_split_arr[i] /= split_sum; + } + } + + auto it = buft_map.find(tensor_split_arr); + if (it != buft_map.end()) { + return &it->second; + } + + struct ggml_backend_buffer_type buft { + /* .iface = */ ggml_backend_cuda_split_buffer_type_interface, + /* .context = */ new ggml_backend_cuda_split_buffer_type_context{tensor_split_arr}, + }; + + auto result = buft_map.emplace(tensor_split_arr, buft); + return &result.first->second; +} + +// host buffer type + +GGML_CALL static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) { + return GGML_CUDA_NAME "_Host"; + + GGML_UNUSED(buft); +} + +GGML_CALL static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) { + return GGML_CUDA_NAME "_Host"; + + GGML_UNUSED(buffer); +} + +GGML_CALL static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) { + CUDA_CHECK(cudaFreeHost(buffer->context)); +} + +static void * ggml_cuda_host_malloc(size_t size) { + if (getenv("GGML_CUDA_NO_PINNED") != nullptr) { + return nullptr; + } + + void * ptr = nullptr; + cudaError_t err = cudaMallocHost((void **) &ptr, size); + if (err != cudaSuccess) { + // clear the error + cudaGetLastError(); + fprintf(stderr, "%s: warning: failed to allocate %.2f MiB of pinned memory: %s\n", __func__, + size/1024.0/1024.0, cudaGetErrorString(err)); + return nullptr; + } + + return ptr; +} + +GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { + void * ptr = ggml_cuda_host_malloc(size); + + if (ptr == nullptr) { + // fallback to cpu buffer + return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size); + } + + ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size); + buffer->buft = buft; + buffer->iface.get_name = ggml_backend_cuda_host_buffer_name; + buffer->iface.free_buffer = ggml_backend_cuda_host_buffer_free_buffer; + + return buffer; +} + +GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() { + static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = { + /* .iface = */ { + /* .get_name = */ ggml_backend_cuda_host_buffer_type_name, + /* .alloc_buffer = */ ggml_backend_cuda_host_buffer_type_alloc_buffer, + /* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment, + /* .get_max_size = */ NULL, // defaults to SIZE_MAX + /* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size, + /* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend, + /* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host, + }, + /* .context = */ nullptr, + }; + + return &ggml_backend_cuda_buffer_type_host; +} + +//static bool ggml_backend_buffer_is_cuda_host(ggml_backend_buffer_t buffer) { +// return buffer->buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name; +//} + +/// kernels + +typedef void (*ggml_cuda_op_mul_mat_t)( + ggml_backend_cuda_context & ctx, + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, + const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, + const int64_t src1_padded_row_size, cudaStream_t stream); + +#ifndef GGML_CUDA_PEER_MAX_BATCH_SIZE +#define GGML_CUDA_PEER_MAX_BATCH_SIZE 128 +#endif // GGML_CUDA_PEER_MAX_BATCH_SIZE + +#define MUL_MAT_SRC1_COL_STRIDE 128 + +static __global__ void mul_mat_p021_f16_f32( + const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, + const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) { + + const half * x = (const half *) vx; + + const int row_x = blockDim.y*blockIdx.y + threadIdx.y; + const int channel = blockDim.z*blockIdx.z + threadIdx.z; + const int channel_x = channel / (nchannels_y / nchannels_x); + + const int nrows_y = ncols_x; + const int nrows_dst = nrows_x; + const int row_dst = row_x; + + float tmp = 0.0f; + + for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) { + const int col_x = col_x0 + threadIdx.x; + + if (col_x >= ncols_x) { + break; + } + + // x is transposed and permuted + const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x; + const float xi = __half2float(x[ix]); + + const int row_y = col_x; + + // y is not transposed but permuted + const int iy = channel*nrows_y + row_y; + + tmp += xi * y[iy]; + } + + // dst is not transposed and not permuted + const int idst = channel*nrows_dst + row_dst; + + // sum up partial sums and write back result + tmp = warp_reduce_sum(tmp); + + if (threadIdx.x == 0) { + dst[idst] = tmp; + } +} + +static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous + const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x, + const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) { + + const half * x = (const half *) vx; + + const int row_x = blockDim.y*blockIdx.y + threadIdx.y; + const int channel = blockDim.z*blockIdx.z + threadIdx.z; + const int channel_x = channel / channel_x_divisor; + + const int nrows_y = ncols_x; + const int nrows_dst = nrows_x; + const int row_dst = row_x; + + const int idst = channel*nrows_dst + row_dst; + + float tmp = 0.0f; + + for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) { + const int col_x = col_x0 + threadIdx.x; + + if (col_x >= ncols_x) { + break; + } + + const int row_y = col_x; + + const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x; + const int iy = channel*nrows_y + row_y; + + const float xi = __half2float(x[ix]); + + tmp += xi * y[iy]; + } + + // sum up partial sums and write back result + tmp = warp_reduce_sum(tmp); + + if (threadIdx.x == 0) { + dst[idst] = tmp; + } +} + +static void ggml_mul_mat_p021_f16_f32_cuda( + const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, + const int nchannels_x, const int nchannels_y, cudaStream_t stream) { + + const dim3 block_nums(1, nrows_x, nchannels_y); + const dim3 block_dims(WARP_SIZE, 1, 1); + mul_mat_p021_f16_f32<<>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y); +} + +static void ggml_mul_mat_vec_nc_f16_f32_cuda( + const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x, + const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) { + + const dim3 block_nums(1, nrows_x, nchannels_y); + const dim3 block_dims(WARP_SIZE, 1, 1); + mul_mat_vec_nc_f16_f32<<>> + (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x); +} + +static cudaError_t ggml_cuda_cpy_tensor_2d( + void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) { + + GGML_ASSERT(ggml_backend_buffer_is_cuda(src->buffer)); + char * src_ptr = (char *) src->data; + char * dst_ptr = (char *) dst; + + const int64_t ne0 = src->ne[0]; + const int64_t nb0 = src->nb[0]; + const int64_t nb1 = src->nb[1]; + const int64_t nb2 = src->nb[2]; + const int64_t nb3 = src->nb[3]; + const enum ggml_type type = src->type; + const int64_t ts = ggml_type_size(type); + const int64_t bs = ggml_blck_size(type); + int64_t i1_diff = i1_high - i1_low; + + const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3; + if (nb0 == ts && nb1 == ts*ne0/bs) { + return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, cudaMemcpyDeviceToDevice, stream); + } else if (nb0 == ts) { + return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, cudaMemcpyDeviceToDevice, stream); + } else { + for (int64_t i1 = 0; i1 < i1_diff; i1++) { + const void * rx = (const void *) ((const char *) x + i1*nb1); + void * rd = (void *) (dst_ptr + i1*ts*ne0/bs); + // pretend the row is a matrix with cols=1 + cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyDeviceToDevice, stream); + if (r != cudaSuccess) { + return r; + } + } + return cudaSuccess; + } +} + +static void ggml_cuda_op_mul_mat_cublas( + ggml_backend_cuda_context & ctx, + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, + const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, + const int64_t src1_padded_row_size, cudaStream_t stream) { + + GGML_ASSERT(src0_dd_i != nullptr); + GGML_ASSERT(src1_ddf_i != nullptr); + GGML_ASSERT(dst_dd_i != nullptr); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne10 = src1->ne[0]; + + const int64_t ne0 = dst->ne[0]; + + const int64_t row_diff = row_high - row_low; + + int id = ggml_cuda_get_device(); + + // the main device has a larger memory buffer to hold the results from all GPUs + // ldc == nrows of the matrix that cuBLAS writes into + int64_t ldc = id == ctx.device ? ne0 : row_diff; + + const int compute_capability = ggml_cuda_info().devices[id].cc; + + if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) { + // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32 + ggml_cuda_pool_alloc src0_as_f16(ctx.pool(id)); + if (src0->type != GGML_TYPE_F16) { + const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type); + GGML_ASSERT(to_fp16_cuda != nullptr); + size_t ne = row_diff*ne00; + src0_as_f16.alloc(ne); + to_fp16_cuda(src0_dd_i, src0_as_f16.get(), ne, stream); + } + const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16.get(); + + ggml_cuda_pool_alloc src1_as_f16(ctx.pool(id)); + if (src1->type != GGML_TYPE_F16) { + const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type); + GGML_ASSERT(to_fp16_cuda != nullptr); + size_t ne = src1_ncols*ne10; + src1_as_f16.alloc(ne); + to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream); + } + const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get(); + ggml_cuda_pool_alloc dst_f16(ctx.pool(id), row_diff*src1_ncols); + + const half alpha_f16 = 1.0f; + const half beta_f16 = 0.0f; + + CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream)); + CUBLAS_CHECK( + cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N, + row_diff, src1_ncols, ne10, + &alpha_f16, src0_ptr, CUDA_R_16F, ne00, + src1_ptr, CUDA_R_16F, ne10, + &beta_f16, dst_f16.get(), CUDA_R_16F, ldc, + CUBLAS_COMPUTE_16F, + CUBLAS_GEMM_DEFAULT_TENSOR_OP)); + + const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); + to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream); + } else { + ggml_cuda_pool_alloc src0_ddq_as_f32(ctx.pool(id)); + ggml_cuda_pool_alloc src1_ddq_as_f32(ctx.pool(id)); + + if (src0->type != GGML_TYPE_F32) { + const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type); + GGML_ASSERT(to_fp32_cuda != nullptr); + src0_ddq_as_f32.alloc(row_diff*ne00); + to_fp32_cuda(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream); + } + if (src1->type != GGML_TYPE_F32) { + const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src1->type); + GGML_ASSERT(to_fp32_cuda != nullptr); + src1_ddq_as_f32.alloc(src1_ncols*ne10); + to_fp32_cuda(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream); + } + + const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get(); + const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get(); + + const float alpha = 1.0f; + const float beta = 0.0f; + + CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream)); + CUBLAS_CHECK( + cublasSgemm(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N, + row_diff, src1_ncols, ne10, + &alpha, src0_ddf_i, ne00, + src1_ddf1_i, ne10, + &beta, dst_dd_i, ldc)); + } + + GGML_UNUSED(dst); + GGML_UNUSED(src1_ddq_i); + GGML_UNUSED(src1_padded_row_size); +} + +static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) { + static bool peer_access_enabled = false; + + const bool enable_peer_access = n_tokens <= GGML_CUDA_PEER_MAX_BATCH_SIZE; + + if (peer_access_enabled == enable_peer_access) { + return; + } + +#ifdef NDEBUG + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + ggml_cuda_set_device(id); + CUDA_CHECK(cudaDeviceSynchronize()); + } + + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + ggml_cuda_set_device(id); + + for (int id_other = 0; id_other < ggml_backend_cuda_get_device_count(); ++id_other) { + if (id == id_other) { + continue; + } + if (id != main_device && id_other != main_device) { + continue; + } + + int can_access_peer; + CUDA_CHECK(cudaDeviceCanAccessPeer(&can_access_peer, id, id_other)); + if (can_access_peer) { + if (enable_peer_access) { + cudaError_t err = cudaDeviceEnablePeerAccess(id_other, 0); + if (err != cudaErrorPeerAccessAlreadyEnabled) { + CUDA_CHECK(err); + } + } else { + cudaError_t err = cudaDeviceDisablePeerAccess(id_other); + if (err != cudaErrorPeerAccessNotEnabled) { + CUDA_CHECK(err); + } + } + } + } + } + + ggml_cuda_set_device(main_device); +#endif // NDEBUG + + peer_access_enabled = enable_peer_access; + + GGML_UNUSED(main_device); +} + +static void ggml_cuda_op_mul_mat( + ggml_backend_cuda_context & ctx, + const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_cuda_op_mul_mat_t op, + const bool convert_src1_to_q8_1) { + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + const int64_t ne03 = src0->ne[3]; + + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + const int64_t ne12 = src1->ne[2]; + const int64_t ne13 = src1->ne[3]; + const int64_t nrows1 = ggml_nrows(src1); + + GGML_ASSERT(ne03 == ne13); + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + + const int64_t nb2 = dst->nb[2]; + const int64_t nb3 = dst->nb[3]; + + GGML_ASSERT(ggml_backend_buffer_is_cuda(dst->buffer)); + GGML_ASSERT(ggml_backend_buffer_is_cuda(src1->buffer)); + ggml_backend_cuda_buffer_context * src1_ctx = (ggml_backend_cuda_buffer_context *) src1->buffer->context; + ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *) dst->buffer->context; + + GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1)); + + GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0); + + const int64_t i02_divisor = ne12 / ne02; + + const size_t src0_ts = ggml_type_size(src0->type); + const size_t src0_bs = ggml_blck_size(src0->type); + const size_t q8_1_ts = sizeof(block_q8_1); + const size_t q8_1_bs = QK8_1; + + const bool src0_is_contiguous = ggml_is_contiguous(src0); + const bool src1_is_contiguous = ggml_is_contiguous(src1); + + const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING); + + const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer); + GGML_ASSERT(!(split && ne02 > 1)); + GGML_ASSERT(!(split && ne03 > 1)); + GGML_ASSERT(!(split && ne02 < ne12)); + + ggml_tensor_extra_gpu * src0_extra = split ? (ggml_tensor_extra_gpu *) src0->extra : nullptr; + + + std::array tensor_split; + if (split) { + ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context; + tensor_split = buft_ctx->tensor_split; + } + + struct dev_data { + ggml_cuda_pool_alloc src0_dd_alloc; + ggml_cuda_pool_alloc src1_ddf_alloc; + ggml_cuda_pool_alloc src1_ddq_alloc; + ggml_cuda_pool_alloc dst_dd_alloc; + + char * src0_dd = nullptr; + float * src1_ddf = nullptr; // float + char * src1_ddq = nullptr; // q8_1 + float * dst_dd = nullptr; + + int64_t row_low; + int64_t row_high; + }; + + dev_data dev[GGML_CUDA_MAX_DEVICES]; + + int used_devices = 0; + + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + // by default, use all rows + dev[id].row_low = 0; + dev[id].row_high = ne01; + + // for multi GPU, get the row boundaries from tensor split + // and round to mul_mat_q tile sizes + if (split) { + const int64_t rounding = get_row_rounding(src0->type, tensor_split); + + if (id != 0) { + dev[id].row_low = ne01*tensor_split[id]; + if (dev[id].row_low < ne01) { + dev[id].row_low -= dev[id].row_low % rounding; + } + } + + if (id != ggml_backend_cuda_get_device_count() - 1) { + dev[id].row_high = ne01*tensor_split[id + 1]; + if (dev[id].row_high < ne01) { + dev[id].row_high -= dev[id].row_high % rounding; + } + } + } + } + + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) { + continue; + } + + used_devices++; + + const bool src1_on_device = id == src1_ctx->device; + const bool dst_on_device = id == dst_ctx->device; + + ggml_cuda_set_device(id); + cudaStream_t stream = ctx.stream(id, 0); + + if (src0_is_contiguous) { + dev[id].src0_dd = split ? (char *) src0_extra->data_device[id] : (char *) src0->data; + } else { + dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ctx.pool(id), ggml_nbytes(src0)); + } + + if (src1_on_device && src1_is_contiguous) { + dev[id].src1_ddf = (float *) src1->data; + } else { + dev[id].src1_ddf = dev[id].src1_ddf_alloc.alloc(ctx.pool(id), ggml_nelements(src1)); + } + + if (convert_src1_to_q8_1) { + dev[id].src1_ddq = dev[id].src1_ddq_alloc.alloc(ctx.pool(id), nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs); + + if (src1_on_device && src1_is_contiguous) { + quantize_row_q8_1_cuda(dev[id].src1_ddf, dev[id].src1_ddq, ne10, nrows1, src1_padded_col_size, stream); + CUDA_CHECK(cudaGetLastError()); + } + } + + if (dst_on_device) { + dev[id].dst_dd = (float *) dst->data; + } else { + const size_t size_dst_ddf = split ? (dev[id].row_high - dev[id].row_low)*ne1 : ggml_nelements(dst); + dev[id].dst_dd = dev[id].dst_dd_alloc.alloc(ctx.pool(id), size_dst_ddf); + } + } + + // if multiple devices are used they need to wait for the main device + // here an event is recorded that signals that the main device has finished calculating the input data + if (split && used_devices > 1) { + ggml_cuda_set_device(ctx.device); + CUDA_CHECK(cudaEventRecord(src0_extra->events[ctx.device][0], ctx.stream())); + } + + const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11; + for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) { + const int64_t is = split ? (src1_col_0/src1_col_stride) % GGML_CUDA_MAX_STREAMS : 0; + const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride; + + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) { + continue; + } + + const bool src1_on_device = id == src1_ctx->device; + const bool dst_on_device = id == dst_ctx->device; + const int64_t row_diff = dev[id].row_high - dev[id].row_low; + + ggml_cuda_set_device(id); + cudaStream_t stream = ctx.stream(id, is); + + // wait for main GPU data if necessary + if (split && (id != ctx.device || is != 0)) { + CUDA_CHECK(cudaStreamWaitEvent(stream, src0_extra->events[ctx.device][0], 0)); + } + + for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) { + const int64_t i03 = i0 / ne12; + const int64_t i02 = i0 % ne12; + + const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs; + + // for split tensors the data begins at i0 == i0_offset_low + char * src0_dd_i = dev[id].src0_dd + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs; + float * src1_ddf_i = dev[id].src1_ddf + (i0*ne11 + src1_col_0) * ne10; + char * src1_ddq_i = dev[id].src1_ddq + src1_ddq_i_offset; + float * dst_dd_i = dev[id].dst_dd + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff); + + // the main device memory buffer can be on VRAM scratch, with space for all partial results + // in that case an offset on dst_ddf_i is needed + if (id == ctx.device) { + dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split + } + + // copy src0, src1 to device if necessary + if (src1_is_contiguous) { + if (id != ctx.device) { + if (convert_src1_to_q8_1) { + char * src1_ddq_i_source = dev[ctx.device].src1_ddq + src1_ddq_i_offset; + CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddq_i, id, src1_ddq_i_source, ctx.device, + src1_ncols*src1_padded_col_size*q8_1_ts/q8_1_bs, stream)); + } else { + float * src1_ddf_i_source = (float *) src1->data; + src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10; + CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddf_i, id, src1_ddf_i_source, ctx.device, + src1_ncols*ne10*sizeof(float), stream)); + } + } + } else if (src1_on_device && !src1_is_contiguous) { + CUDA_CHECK(ggml_cuda_cpy_tensor_2d( + src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream)); + } else { + GGML_ASSERT(false); + } + + if (convert_src1_to_q8_1 && !src1_is_contiguous) { + quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream); + CUDA_CHECK(cudaGetLastError()); + } + + if (src1_col_0 == 0 && !src0_is_contiguous && i02 % i02_divisor == 0) { + CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[id].row_low, dev[id].row_high, stream)); + } + + // do the computation + op(ctx, src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i, + dev[id].row_low, dev[id].row_high, src1_ncols, src1_padded_col_size, stream); + CUDA_CHECK(cudaGetLastError()); + + // copy dst to host or other device if necessary + if (!dst_on_device) { + void * dst_off_device = dst->data; + if (split) { + // src0 = weight matrix is saved as a transposed matrix for better memory layout. + // dst is NOT transposed. + // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU. + // Instead they need to be copied to the correct slice in ne0 = dst row index. + // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results. + float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3); + GGML_ASSERT(dst->nb[1] == ne0*sizeof(float)); + dhf_dst_i += src1_col_0*ne0 + dev[id].row_low; +#if !defined(GGML_USE_HIPBLAS) + // cudaMemcpy2DAsync may fail with copies between vmm pools of different devices + cudaMemcpy3DPeerParms p = {}; + p.dstDevice = ctx.device; + p.dstPtr = make_cudaPitchedPtr(dhf_dst_i, ne0*sizeof(float), row_diff, src1_ncols); + p.srcDevice = id; + p.srcPtr = make_cudaPitchedPtr(dst_dd_i, row_diff*sizeof(float), row_diff, src1_ncols); + p.extent = make_cudaExtent(row_diff*sizeof(float), src1_ncols, 1); + CUDA_CHECK(cudaMemcpy3DPeerAsync(&p, stream)); +#else + // HIP does not support cudaMemcpy3DPeerAsync or vmm pools + CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float), + dst_dd_i, row_diff*sizeof(float), + row_diff*sizeof(float), src1_ncols, + cudaMemcpyDeviceToDevice, stream)); +#endif + } else { + float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3); + GGML_ASSERT(dst->nb[1] == ne0*sizeof(float)); + dhf_dst_i += src1_col_0*ne0; + CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), cudaMemcpyDeviceToDevice, stream)); + } + } + + // add event for the main device to wait on until other device is done + if (split && (id != ctx.device || is != 0)) { + CUDA_CHECK(cudaEventRecord(src0_extra->events[id][is], stream)); + } + } + } + } + + // main device waits for all other devices to be finished + if (split && ggml_backend_cuda_get_device_count() > 1) { + int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE; + is_max = is_max <= GGML_CUDA_MAX_STREAMS ? is_max : GGML_CUDA_MAX_STREAMS; + + ggml_cuda_set_device(ctx.device); + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + if (dev[id].row_low == dev[id].row_high) { + continue; + } + for (int64_t is = 0; is < is_max; ++is) { + CUDA_CHECK(cudaStreamWaitEvent(ctx.stream(), src0_extra->events[id][is], 0)); + } + } + } +} + +static void ggml_cuda_mul_mat_vec_p021(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){ + GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1)); + GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer)); + GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation + GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + + const int64_t ne12 = src1->ne[2]; + + cudaStream_t main_stream = ctx.stream(); + + void * src0_ddq = src0->data; + float * src1_ddf = (float *) src1->data; + float * dst_ddf = (float *) dst->data; + + ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream); +} + +static void ggml_cuda_mul_mat_vec_nc(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){ + GGML_ASSERT(!ggml_is_transposed(src0)); + GGML_ASSERT(!ggml_is_transposed(src1)); + GGML_ASSERT(!ggml_is_permuted(src0)); + GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer)); + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + const int64_t ne02 = src0->ne[2]; + + const int64_t nb01 = src0->nb[1]; + const int64_t nb02 = src0->nb[2]; + + const int64_t ne12 = src1->ne[2]; + + cudaStream_t main_stream = ctx.stream(); + + void * src0_ddq = src0->data; + float * src1_ddf = (float *) src1->data; + float * dst_ddf = (float *) dst->data; + + const int64_t row_stride_x = nb01 / sizeof(half); + const int64_t channel_stride_x = nb02 / sizeof(half); + + ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream); +} + +static __global__ void k_compute_batched_ptrs( + const half * src0_as_f16, const half * src1_as_f16, char * dst, + const void ** ptrs_src, void ** ptrs_dst, + int64_t ne12, int64_t ne13, + int64_t ne23, + size_t nb02, size_t nb03, + size_t nb12, size_t nb13, + size_t nbd2, size_t nbd3, + int64_t r2, int64_t r3) { + int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x; + int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y; + + if (i13 >= ne13 || i12 >= ne12) { + return; + } + + int64_t i03 = i13 / r3; + int64_t i02 = i12 / r2; + + ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03; + ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13; + ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3; +} + +static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + GGML_ASSERT(!ggml_is_transposed(src0)); + GGML_ASSERT(!ggml_is_transposed(src1)); + + GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer)); + GGML_ASSERT(src0->type == GGML_TYPE_F16); + + GGML_TENSOR_BINARY_OP_LOCALS + + const int64_t ne_dst = ggml_nelements(dst); + + cudaStream_t main_stream = ctx.stream(); + + CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(), main_stream)); + + void * src0_ddq = src0->data; + half * src0_f16 = (half *) src0_ddq; + float * src1_ddf = (float *) src1->data; + float * dst_ddf = (float *) dst->data; + + // convert src1 to fp16 + ggml_cuda_pool_alloc src1_f16_alloc(ctx.pool()); + if (src1->type != GGML_TYPE_F16) { + const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type); + const int64_t ne_src1 = ggml_nelements(src1); + src1_f16_alloc.alloc(ne_src1); + GGML_ASSERT(to_fp16_cuda != nullptr); + to_fp16_cuda(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream); + } + half * src1_f16 = src1->type == GGML_TYPE_F16 ? (half *) src1_ddf : src1_f16_alloc.get(); + + ggml_cuda_pool_alloc dst_f16(ctx.pool()); + char * dst_t; + + cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F; + cudaDataType_t cu_data_type = CUDA_R_16F; + + // dst strides + size_t nbd2 = dst->nb[2]; + size_t nbd3 = dst->nb[3]; + + const half alpha_f16 = 1.0f; + const half beta_f16 = 0.0f; + + const float alpha_f32 = 1.0f; + const float beta_f32 = 0.0f; + + const void * alpha = &alpha_f16; + const void * beta = &beta_f16; + + if (dst->op_params[0] == GGML_PREC_DEFAULT) { + dst_t = (char *) dst_f16.alloc(ne_dst); + + nbd2 /= sizeof(float) / sizeof(half); + nbd3 /= sizeof(float) / sizeof(half); + } else { + dst_t = (char *) dst_ddf; + + cu_compute_type = CUBLAS_COMPUTE_32F; + cu_data_type = CUDA_R_32F; + + alpha = &alpha_f32; + beta = &beta_f32; + } + + GGML_ASSERT(ne12 % ne02 == 0); + GGML_ASSERT(ne13 % ne03 == 0); + + // broadcast factors + const int64_t r2 = ne12/ne02; + const int64_t r3 = ne13/ne03; + +#if 0 + // use cublasGemmEx + { + for (int i13 = 0; i13 < ne13; ++i13) { + for (int i12 = 0; i12 < ne12; ++i12) { + int i03 = i13 / r3; + int i02 = i12 / r2; + + CUBLAS_CHECK( + cublasGemmEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N, + ne01, ne11, ne10, + alpha, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , CUDA_R_16F, nb01/sizeof(half), + (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F, nb11/sizeof(float), + beta, ( char *) dst_t + i12*nbd2 + i13*nbd3, cu_data_type, ne01, + cu_compute_type, + CUBLAS_GEMM_DEFAULT_TENSOR_OP)); + } + } + } +#else + if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) { + // there is no broadcast and src0, src1 are contiguous across dims 2, 3 + // use cublasGemmStridedBatchedEx + CUBLAS_CHECK( + cublasGemmStridedBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N, + ne01, ne11, ne10, + alpha, (const char *) src0_f16, CUDA_R_16F, nb01/nb00, nb02/nb00, // strideA + (const char *) src1_f16, CUDA_R_16F, nb11/nb10, nb12/nb10, // strideB + beta, ( char *) dst_t, cu_data_type, ne01, nb2/nb0, // strideC + ne12*ne13, + cu_compute_type, + CUBLAS_GEMM_DEFAULT_TENSOR_OP)); + } else { + // use cublasGemmBatchedEx + const int ne23 = ne12*ne13; + + ggml_cuda_pool_alloc ptrs_src(ctx.pool(), 2*ne23); + ggml_cuda_pool_alloc< void *> ptrs_dst(ctx.pool(), 1*ne23); + + dim3 block_dims(ne13, ne12); + k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>( + src0_f16, src1_f16, dst_t, + ptrs_src.get(), ptrs_dst.get(), + ne12, ne13, + ne23, + nb02, nb03, + src1->type == GGML_TYPE_F16 ? nb12 : nb12/2, + src1->type == GGML_TYPE_F16 ? nb13 : nb13/2, + nbd2, nbd3, + r2, r3); + CUDA_CHECK(cudaGetLastError()); + + CUBLAS_CHECK( + cublasGemmBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N, + ne01, ne11, ne10, + alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F, nb01/nb00, + (const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F, nb11/nb10, + beta, ( void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne01, + ne23, + cu_compute_type, + CUBLAS_GEMM_DEFAULT_TENSOR_OP)); + } +#endif + + if (dst->op_params[0] == GGML_PREC_DEFAULT) { + const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16); + to_fp32_cuda(dst_f16.get(), dst_ddf, ne_dst, main_stream); + } +} + +static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { + const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer); + + int64_t min_compute_capability = INT_MAX; + + bool any_pascal_with_slow_fp16 = false; + if (split) { + ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context; + auto & tensor_split = buft_ctx->tensor_split; + for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) { + // skip devices that are not going to do any work: + if (tensor_split[id] >= (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) { + continue; + } + + if (min_compute_capability > ggml_cuda_info().devices[id].cc) { + min_compute_capability = ggml_cuda_info().devices[id].cc; + } + if (ggml_cuda_info().devices[id].cc == 610) { + any_pascal_with_slow_fp16 = true; + } + } + } else { + min_compute_capability = ggml_cuda_info().devices[ctx.device].cc; + any_pascal_with_slow_fp16 = ggml_cuda_info().devices[ctx.device].cc == 610; + } + + // check data types and tensor shapes for custom matrix multiplication kernels: + bool use_dequantize_mul_mat_vec = (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16) + && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 + && src0->ne[0] % GGML_CUDA_DMMV_X == 0 && src1->ne[1] == 1; + + bool use_mul_mat_vec_q = ggml_is_quantized(src0->type) + && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 + && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE; + + bool use_mul_mat_q = ggml_cuda_supports_mmq(src0->type) + && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32; + +#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) + + const bool fp16_performance_good = min_compute_capability >= CC_RDNA1; + +#ifdef CUDA_USE_TENSOR_CORES + use_mul_mat_q = use_mul_mat_q && min_compute_capability < CC_RDNA3; +#endif // CUDA_USE_TENSOR_CORES + +#else + + // fp16 performance is good on Volta or newer and on P100 (compute capability 6.0) + const bool fp16_performance_good = min_compute_capability >= CC_PASCAL && !any_pascal_with_slow_fp16; + + // mmvq and mmq need the __dp4a instruction which on NVIDIA is only available for CC >= 6.1 + use_mul_mat_vec_q = use_mul_mat_vec_q && min_compute_capability >= MIN_CC_DP4A; + use_mul_mat_q = use_mul_mat_q && min_compute_capability >= MIN_CC_DP4A; + +#ifdef CUDA_USE_TENSOR_CORES + // when tensor cores are available, use them for large batch size + // ref: https://github.com/ggerganov/llama.cpp/pull/3776 + use_mul_mat_q = use_mul_mat_q && (!fp16_performance_good || src1->ne[1] <= MMQ_MAX_BATCH_SIZE); +#endif // CUDA_USE_TENSOR_CORES + +#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) + + // if mmvq is available it's a better choice than dmmv: +#ifndef GGML_CUDA_FORCE_DMMV + use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q; +#endif // GGML_CUDA_FORCE_DMMV + + // debug helpers + //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]); + //printf(" %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]); + //printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]); + //printf(" %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]); + //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name); + //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name); + + if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) { + // KQ single-batch + ggml_cuda_mul_mat_vec_p021(ctx, src0, src1, dst); + } else if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) { + // KQV single-batch + ggml_cuda_mul_mat_vec_nc(ctx, src0, src1, dst); + } else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || fp16_performance_good) && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) { + // KQ + KQV multi-batch + ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst); + } else if (use_dequantize_mul_mat_vec) { + ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false); + } else if (use_mul_mat_vec_q) { + ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, true); + } else if (use_mul_mat_q) { + ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_q, true); + } else { + ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false); + } +} + +struct mmid_row_mapping { + int32_t i1; + int32_t i2; +}; + +static __global__ void k_copy_src1_to_contiguous(const char * __restrict__ src1_original, char * __restrict__ src1_contiguous, + int * __restrict__ cur_src1_row, mmid_row_mapping * __restrict__ row_mapping, + const char * __restrict ids, int64_t i02, size_t ids_nb1, size_t ids_nb0, + int64_t ne11, int64_t ne10, + size_t nb11, size_t nb12) { + int32_t iid1 = blockIdx.x; + int32_t id = blockIdx.y; + + const int32_t row_id_i = *(const int32_t *) (ids + iid1*ids_nb1 + id*ids_nb0); + + if (row_id_i != i02) { + return; + } + + const int64_t i11 = id % ne11; + const int64_t i12 = iid1; + + __shared__ int src1_row; + if (threadIdx.x == 0) { + src1_row = atomicAdd(cur_src1_row, 1); + row_mapping[src1_row] = {id, iid1}; + } + __syncthreads(); + + const float * src1_row_original = (const float *)(src1_original + i11*nb11 + i12*nb12); + float * src1_row_contiguous = (float *)(src1_contiguous + src1_row*nb11); + + for (int i = threadIdx.x; i < ne10; i += blockDim.x) { + src1_row_contiguous[i] = src1_row_original[i]; + } +} + +static __global__ void k_copy_dst_from_contiguous(char * __restrict__ dst_original, const char * __restrict__ dst_contiguous, + const mmid_row_mapping * __restrict__ row_mapping, + int64_t ne0, + size_t nb1, size_t nb2) { + int32_t i = blockIdx.x; + + const int32_t i1 = row_mapping[i].i1; + const int32_t i2 = row_mapping[i].i2; + + const float * dst_row_contiguous = (const float *)(dst_contiguous + i*nb1); + float * dst_row_original = (float *)(dst_original + i1*nb1 + i2*nb2); + + for (int j = threadIdx.x; j < ne0; j += blockDim.x) { + dst_row_original[j] = dst_row_contiguous[j]; + } +} + +static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { + const ggml_tensor * src0 = dst->src[0]; + const ggml_tensor * src1 = dst->src[1]; + const ggml_tensor * ids = dst->src[2]; + + GGML_TENSOR_BINARY_OP_LOCALS + + GGML_ASSERT(!ggml_backend_buffer_is_cuda_split(src0->buffer) && "mul_mat_id does not support split buffers"); + + cudaStream_t stream = ctx.stream(); + + const int64_t n_as = ne02; + const int64_t n_ids = ids->ne[0]; + + std::vector ids_host(ggml_nbytes(ids)); + const char * ids_dev = (const char *) ids->data; + CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream)); + CUDA_CHECK(cudaStreamSynchronize(stream)); + + ggml_tensor src0_row = *src0; + ggml_tensor src1_row = *src1; + ggml_tensor dst_row = *dst; + + char * src0_original = (char *) src0->data; + char * src1_original = (char *) src1->data; + char * dst_original = (char *) dst->data; + + src0_row.ne[2] = 1; + src0_row.ne[3] = 1; + src0_row.nb[3] = nb02; + + src1_row.ne[1] = 1; + src1_row.ne[2] = 1; + src1_row.ne[3] = 1; + src1_row.nb[2] = nb11; + src1_row.nb[3] = nb11; + + dst_row.ne[1] = 1; + dst_row.ne[2] = 1; + dst_row.ne[3] = 1; + dst_row.nb[2] = nb1; + dst_row.nb[3] = nb1; + + if (ne12 == 1) { + for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) { + for (int64_t id = 0; id < n_ids; id++) { + const int32_t i02 = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]); + + GGML_ASSERT(i02 >= 0 && i02 < n_as); + + const int64_t i11 = id % ne11; + const int64_t i12 = iid1; + + const int64_t i1 = id; + const int64_t i2 = i12; + + src0_row.data = src0_original + i02*nb02; + src1_row.data = src1_original + i11*nb11 + i12*nb12; + dst_row.data = dst_original + i1*nb1 + i2*nb2; + + ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row); + } + } + } else { + ggml_cuda_pool_alloc src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1)); + ggml_cuda_pool_alloc dst_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst)); + + src1_row.data = src1_contiguous.get(); + dst_row.data = dst_contiguous.get(); + + for (int64_t i02 = 0; i02 < n_as; i02++) { + int64_t num_src1_rows = 0; + + for (int64_t iid1 = 0; iid1 < ids->ne[1]; iid1++) { + for (int64_t id = 0; id < n_ids; id++) { + const int32_t row_id_i = *(const int32_t *) (ids_host.data() + iid1*ids->nb[1] + id*ids->nb[0]); + + GGML_ASSERT(row_id_i >= 0 && row_id_i < n_as); + + if (row_id_i != i02) { + continue; + } + + num_src1_rows++; + } + } + + if (num_src1_rows == 0) { + continue; + } + + ggml_cuda_pool_alloc dev_cur_src1_row(ctx.pool(), 1); + ggml_cuda_pool_alloc dev_row_mapping(ctx.pool(), num_src1_rows); + CUDA_CHECK(cudaMemsetAsync(dev_cur_src1_row.get(), 0, sizeof(int), stream)); + + { + dim3 block_dims(std::min((unsigned int)ne10, 768u)); + dim3 grid_dims(ids->ne[1], n_ids); + k_copy_src1_to_contiguous<<>>( + src1_original, src1_contiguous.get(), + dev_cur_src1_row.get(), dev_row_mapping.get(), + ids_dev, i02, ids->nb[1], ids->nb[0], + ne11, ne10, + nb11, nb12); + CUDA_CHECK(cudaGetLastError()); + } + + src0_row.data = src0_original + i02*nb02; + + GGML_ASSERT(nb11 == sizeof(float)*ne10); + GGML_ASSERT(nb1 == sizeof(float)*ne0); + + src1_row.ne[1] = num_src1_rows; + src1_row.nb[1] = nb11; + src1_row.nb[2] = num_src1_rows*nb11; + src1_row.nb[3] = num_src1_rows*nb11; + + dst_row.ne[1] = num_src1_rows; + dst_row.nb[1] = nb1; + dst_row.nb[2] = num_src1_rows*nb1; + dst_row.nb[3] = num_src1_rows*nb1; + + ggml_cuda_mul_mat(ctx, &src0_row, &src1_row, &dst_row); + + { + dim3 block_dims(std::min((unsigned int)ne0, 768u)); + dim3 grid_dims(num_src1_rows); + k_copy_dst_from_contiguous<<>>( + dst_original, dst_contiguous.get(), + dev_row_mapping.get(), + ne0, + nb1, nb2); + CUDA_CHECK(cudaGetLastError()); + } + } + } +} + +static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct ggml_tensor * dst) { + // why is this here instead of mul_mat? + if (dst->src[0] != nullptr && ggml_backend_buffer_is_cuda_split(dst->src[0]->buffer)) { + ggml_cuda_set_peer_access(dst->src[1]->ne[1], ctx.device); + } + + switch (dst->op) { + case GGML_OP_REPEAT: + ggml_cuda_op_repeat(ctx, dst); + break; + case GGML_OP_GET_ROWS: + ggml_cuda_op_get_rows(ctx, dst); + break; + case GGML_OP_DUP: + ggml_cuda_dup(ctx, dst); + break; + case GGML_OP_CPY: + ggml_cuda_cpy(ctx, dst->src[0], dst->src[1]); + break; + case GGML_OP_CONT: + ggml_cuda_dup(ctx, dst); + break; + case GGML_OP_ADD: + ggml_cuda_op_add(ctx, dst); + break; + case GGML_OP_ACC: + ggml_cuda_op_acc(ctx, dst); + break; + case GGML_OP_MUL: + ggml_cuda_op_mul(ctx, dst); + break; + case GGML_OP_DIV: + ggml_cuda_op_div(ctx, dst); + break; + case GGML_OP_UNARY: + switch (ggml_get_unary_op(dst)) { + case GGML_UNARY_OP_GELU: + ggml_cuda_op_gelu(ctx, dst); + break; + case GGML_UNARY_OP_SILU: + ggml_cuda_op_silu(ctx, dst); + break; + case GGML_UNARY_OP_GELU_QUICK: + ggml_cuda_op_gelu_quick(ctx, dst); + break; + case GGML_UNARY_OP_TANH: + ggml_cuda_op_tanh(ctx, dst); + break; + case GGML_UNARY_OP_RELU: + ggml_cuda_op_relu(ctx, dst); + break; + case GGML_UNARY_OP_HARDSIGMOID: + ggml_cuda_op_hardsigmoid(ctx, dst); + break; + case GGML_UNARY_OP_HARDSWISH: + ggml_cuda_op_hardswish(ctx, dst); + break; + default: + return false; + } + break; + case GGML_OP_NORM: + ggml_cuda_op_norm(ctx, dst); + break; + case GGML_OP_GROUP_NORM: + ggml_cuda_op_group_norm(ctx, dst); + break; + case GGML_OP_CONCAT: + ggml_cuda_op_concat(ctx, dst); + break; + case GGML_OP_UPSCALE: + ggml_cuda_op_upscale(ctx, dst); + break; + case GGML_OP_PAD: + ggml_cuda_op_pad(ctx, dst); + break; + case GGML_OP_ARANGE: + ggml_cuda_op_arange(ctx, dst); + break; + case GGML_OP_TIMESTEP_EMBEDDING: + ggml_cuda_op_timestep_embedding(ctx, dst); + break; + case GGML_OP_LEAKY_RELU: + ggml_cuda_op_leaky_relu(ctx, dst); + break; + case GGML_OP_RMS_NORM: + ggml_cuda_op_rms_norm(ctx, dst); + break; + case GGML_OP_MUL_MAT: + if (dst->src[0]->ne[3] != dst->src[1]->ne[3]) { + fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, dst->name, dst->src[0]->ne[3], dst->src[1]->ne[3]); + return false; + } else { + ggml_cuda_mul_mat(ctx, dst->src[0], dst->src[1], dst); + } + break; + case GGML_OP_MUL_MAT_ID: + ggml_cuda_mul_mat_id(ctx, dst); + break; + case GGML_OP_SCALE: + ggml_cuda_op_scale(ctx, dst); + break; + case GGML_OP_SQR: + ggml_cuda_op_sqr(ctx, dst); + break; + case GGML_OP_CLAMP: + ggml_cuda_op_clamp(ctx, dst); + break; + case GGML_OP_NONE: + case GGML_OP_RESHAPE: + case GGML_OP_VIEW: + case GGML_OP_PERMUTE: + case GGML_OP_TRANSPOSE: + break; + case GGML_OP_DIAG_MASK_INF: + ggml_cuda_op_diag_mask_inf(ctx, dst); + break; + case GGML_OP_SOFT_MAX: + ggml_cuda_op_soft_max(ctx, dst); + break; + case GGML_OP_ROPE: + ggml_cuda_op_rope(ctx, dst); + break; + case GGML_OP_ALIBI: + ggml_cuda_op_alibi(ctx, dst); + break; + case GGML_OP_IM2COL: + ggml_cuda_op_im2col(ctx, dst); + break; + case GGML_OP_POOL_2D: + ggml_cuda_op_pool2d(ctx, dst); + break; + case GGML_OP_SUM_ROWS: + ggml_cuda_op_sum_rows(ctx, dst); + break; + case GGML_OP_ARGSORT: + ggml_cuda_op_argsort(ctx, dst); + break; + default: + return false; + } + + cudaError_t err = cudaGetLastError(); + if (err != cudaSuccess) { + fprintf(stderr, "%s: %s failed\n", __func__, ggml_op_desc(dst)); + CUDA_CHECK(err); + } + + return true; +} + +//////////////////////////////////////////////////////////////////////////////// + +// backend + +GGML_CALL static const char * ggml_backend_cuda_name(ggml_backend_t backend) { + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; + + return cuda_ctx->name.c_str(); +} + +GGML_CALL static void ggml_backend_cuda_free(ggml_backend_t backend) { + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; + + delete cuda_ctx; + delete backend; +} + +GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cuda_get_default_buffer_type(ggml_backend_t backend) { + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; + + return ggml_backend_cuda_buffer_type(cuda_ctx->device); +} + +GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; + ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; + + GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type"); + + CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cuda_ctx->stream())); +} + +GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) { + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; + ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer; + + GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type"); + + CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cuda_ctx->stream())); +} + +GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) { + GGML_ASSERT(ggml_backend_is_cuda(backend_src) || ggml_backend_is_cuda(backend_dst)); + + ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer; + ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer; + + if (!ggml_backend_buffer_is_cuda(src->buffer)) { + return false; + } + + if (!ggml_backend_buffer_is_cuda(dst->buffer)) { + return false; + } + + // device -> device + ggml_backend_cuda_context * cuda_ctx_src = (ggml_backend_cuda_context *)backend_src->context; + ggml_backend_cuda_context * cuda_ctx_dst = (ggml_backend_cuda_context *)backend_dst->context; + + if (backend_src != backend_dst) { + ggml_backend_cuda_buffer_context * buf_ctx_src = (ggml_backend_cuda_buffer_context *)buf_src->context; + ggml_backend_cuda_buffer_context * buf_ctx_dst = (ggml_backend_cuda_buffer_context *)buf_dst->context; + + GGML_ASSERT(cuda_ctx_src->device == buf_ctx_src->device); + GGML_ASSERT(cuda_ctx_dst->device == buf_ctx_dst->device); + + // copy on src stream + if (cuda_ctx_src->device == cuda_ctx_dst->device) { + CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream())); + } else { +#ifdef GGML_CUDA_NO_PEER_COPY + return false; +#else + CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, cuda_ctx_dst->device, src->data, cuda_ctx_src->device, ggml_nbytes(dst), cuda_ctx_src->stream())); +#endif + } + + // record event on src stream + if (!cuda_ctx_src->copy_event) { + ggml_cuda_set_device(cuda_ctx_src->device); + CUDA_CHECK(cudaEventCreateWithFlags(&cuda_ctx_src->copy_event, cudaEventDisableTiming)); + } + + CUDA_CHECK(cudaEventRecord(cuda_ctx_src->copy_event, cuda_ctx_src->stream())); + + // wait on dst stream for the copy to complete + CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx_dst->stream(), cuda_ctx_src->copy_event, 0)); + } else { + // src and dst are on the same backend + CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream())); + } + return true; +} + +GGML_CALL static void ggml_backend_cuda_synchronize(ggml_backend_t backend) { + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; + + CUDA_CHECK(cudaStreamSynchronize(cuda_ctx->stream())); + + GGML_UNUSED(backend); +} + +GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) { + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; + + ggml_cuda_set_device(cuda_ctx->device); + + for (int i = 0; i < cgraph->n_nodes; i++) { + ggml_tensor * node = cgraph->nodes[i]; + + if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) { + continue; + } + +#ifndef NDEBUG + assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device)); + for (int j = 0; j < GGML_MAX_SRC; j++) { + if (node->src[j] != nullptr) { + assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer)); + } + } +#endif + + bool ok = ggml_cuda_compute_forward(*cuda_ctx, node); + if (!ok) { + fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op)); + } + GGML_ASSERT(ok); + } + + return GGML_STATUS_SUCCESS; +} + +GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_tensor * op) { + switch (op->op) { + case GGML_OP_UNARY: + switch (ggml_get_unary_op(op)) { + case GGML_UNARY_OP_GELU: + case GGML_UNARY_OP_SILU: + case GGML_UNARY_OP_RELU: + case GGML_UNARY_OP_HARDSIGMOID: + case GGML_UNARY_OP_HARDSWISH: + case GGML_UNARY_OP_GELU_QUICK: + case GGML_UNARY_OP_TANH: + return true; + default: + return false; + } + break; + case GGML_OP_MUL_MAT: + case GGML_OP_MUL_MAT_ID: + { + struct ggml_tensor * a; + struct ggml_tensor * b; + if (op->op == GGML_OP_MUL_MAT) { + a = op->src[0]; + b = op->src[1]; + } else { + a = op->src[2]; + b = op->src[1]; + } + if (a->ne[3] != b->ne[3]) { + return false; + } + ggml_type a_type = a->type; + if (a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ3_XXS || + a_type == GGML_TYPE_IQ1_S || a_type == GGML_TYPE_IQ4_NL || a_type == GGML_TYPE_IQ3_S || + a_type == GGML_TYPE_IQ1_M || a_type == GGML_TYPE_IQ2_S || a_type == GGML_TYPE_IQ4_XS) { + if (b->ne[1] == 1 && ggml_nrows(b) > 1) { + return false; + } + } + return true; + } break; + case GGML_OP_GET_ROWS: + { + switch (op->src[0]->type) { + case GGML_TYPE_F16: + case GGML_TYPE_F32: + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + return true; + default: + return false; + } + } break; + case GGML_OP_CPY: + { + ggml_type src0_type = op->src[0]->type; + ggml_type src1_type = op->src[1]->type; + if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) { + return true; + } + if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) { + return true; + } + if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) { + return true; + } + if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) { + return true; + } + if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) { + return true; + } + if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_0) { + return true; + } + if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_1) { + return true; + } + if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_IQ4_NL) { + return true; + } + if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) { + return true; + } + if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) { + return true; + } + return false; + } break; + case GGML_OP_DUP: + case GGML_OP_REPEAT: + case GGML_OP_CONCAT: + { + ggml_type src0_type = op->src[0]->type; + return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16; + } break; + case GGML_OP_NONE: + case GGML_OP_RESHAPE: + case GGML_OP_VIEW: + case GGML_OP_PERMUTE: + case GGML_OP_TRANSPOSE: + case GGML_OP_NORM: + case GGML_OP_ADD: + case GGML_OP_MUL: + case GGML_OP_DIV: + case GGML_OP_RMS_NORM: + case GGML_OP_SCALE: + case GGML_OP_SQR: + case GGML_OP_CLAMP: + case GGML_OP_CONT: + case GGML_OP_DIAG_MASK_INF: + case GGML_OP_SOFT_MAX: + case GGML_OP_ROPE: + case GGML_OP_ALIBI: + case GGML_OP_IM2COL: + case GGML_OP_POOL_2D: + case GGML_OP_SUM_ROWS: + case GGML_OP_ARGSORT: + case GGML_OP_ACC: + case GGML_OP_GROUP_NORM: + case GGML_OP_UPSCALE: + case GGML_OP_PAD: + case GGML_OP_ARANGE: + case GGML_OP_TIMESTEP_EMBEDDING: + case GGML_OP_LEAKY_RELU: + return true; + default: + return false; + } + + GGML_UNUSED(backend); +} + +GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) { + const int min_batch_size = 32; + + return (op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS) || + (op->ne[2] >= min_batch_size && op->op == GGML_OP_MUL_MAT_ID); + + GGML_UNUSED(backend); +} + +static ggml_backend_event_t ggml_backend_cuda_event_new(ggml_backend_t backend) { +#ifdef GGML_CUDA_NO_PEER_COPY + return nullptr; +#else + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; + + ggml_cuda_set_device(cuda_ctx->device); + + cudaEvent_t event; + CUDA_CHECK(cudaEventCreateWithFlags(&event, cudaEventDisableTiming)); + + return new ggml_backend_event { + /* .backend = */ backend, + /* .context = */ event, + }; +#endif +} + +static void ggml_backend_cuda_event_free(ggml_backend_event_t event) { + CUDA_CHECK(cudaEventDestroy((cudaEvent_t)event->context)); + + delete event; +} + +static void ggml_backend_cuda_event_record(ggml_backend_event_t event) { + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)event->backend->context; + + CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, cuda_ctx->stream())); +} + +static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_event_t event) { + ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context; + + if (ggml_backend_is_cuda(event->backend)) { + CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx->stream(), (cudaEvent_t)event->context, 0)); + } else { +#if 0 + // untested + auto wait_fn = [](void * user_data) { + ggml_backend_event_t event = (ggml_backend_event_t)user_data; + ggml_backend_event_synchronize(event); + }; + + CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event)); +#endif + GGML_ASSERT(false); + } +} + +static void ggml_backend_cuda_event_synchronize(ggml_backend_event_t event) { + CUDA_CHECK(cudaEventSynchronize((cudaEvent_t)event->context)); +} + +static ggml_backend_i ggml_backend_cuda_interface = { + /* .get_name = */ ggml_backend_cuda_name, + /* .free = */ ggml_backend_cuda_free, + /* .get_default_buffer_type = */ ggml_backend_cuda_get_default_buffer_type, + /* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async, + /* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async, + /* .cpy_tensor_async = */ ggml_backend_cuda_cpy_tensor_async, + /* .synchronize = */ ggml_backend_cuda_synchronize, + /* .graph_plan_create = */ NULL, + /* .graph_plan_free = */ NULL, + /* .graph_plan_compute = */ NULL, + /* .graph_compute = */ ggml_backend_cuda_graph_compute, + /* .supports_op = */ ggml_backend_cuda_supports_op, + /* .offload_op = */ ggml_backend_cuda_offload_op, + /* .event_new = */ ggml_backend_cuda_event_new, + /* .event_free = */ ggml_backend_cuda_event_free, + /* .event_record = */ ggml_backend_cuda_event_record, + /* .event_wait = */ ggml_backend_cuda_event_wait, + /* .event_synchronize = */ ggml_backend_cuda_event_synchronize, +}; + +static ggml_guid_t ggml_backend_cuda_guid() { + static ggml_guid guid = { 0x2c, 0xdd, 0xe8, 0x1c, 0x65, 0xb3, 0x65, 0x73, 0x6a, 0x12, 0x88, 0x61, 0x1c, 0xc9, 0xdc, 0x25 }; + return &guid; +} + +GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) { + if (device < 0 || device >= ggml_backend_cuda_get_device_count()) { + fprintf(stderr, "%s: error: invalid device %d\n", __func__, device); + return nullptr; + } + + ggml_backend_cuda_context * ctx = new ggml_backend_cuda_context(device); + if (ctx == nullptr) { + fprintf(stderr, "%s: error: failed to allocate context\n", __func__); + return nullptr; + } + + ggml_backend_t cuda_backend = new ggml_backend { + /* .guid = */ ggml_backend_cuda_guid(), + /* .interface = */ ggml_backend_cuda_interface, + /* .context = */ ctx + }; + + return cuda_backend; +} + +GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend) { + return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cuda_guid()); +} + +GGML_CALL int ggml_backend_cuda_get_device_count() { + return ggml_cuda_info().device_count; +} + +GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) { + cudaDeviceProp prop; + CUDA_CHECK(cudaGetDeviceProperties(&prop, device)); + snprintf(description, description_size, "%s", prop.name); +} + +GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) { + ggml_cuda_set_device(device); + + CUDA_CHECK(cudaMemGetInfo(free, total)); +} + +GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) { + if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) { + return false; + } + +#if CUDART_VERSION >= 11100 + cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly); + if (err != cudaSuccess) { + // clear the error + cudaGetLastError(); + + fprintf(stderr, "%s: warning: failed to register %.2f MiB of pinned memory: %s\n", __func__, + size/1024.0/1024.0, cudaGetErrorString(err)); + return false; + } + return true; +#else + return false; +#endif +} + +GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer) { + if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) { + return; + } + + cudaError_t err = cudaHostUnregister(buffer); + if (err != cudaSuccess) { + // clear the error + cudaGetLastError(); + } +} + +// backend registry +GGML_CALL static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * user_data) { + ggml_backend_t cuda_backend = ggml_backend_cuda_init((int) (intptr_t) user_data); + return cuda_backend; + + GGML_UNUSED(params); +} + +extern "C" GGML_CALL int ggml_backend_cuda_reg_devices(); + +GGML_CALL int ggml_backend_cuda_reg_devices() { + int device_count = ggml_backend_cuda_get_device_count(); + //int device_count = 1; // DEBUG: some tools require delaying CUDA initialization + for (int i = 0; i < device_count; i++) { + char name[128]; + snprintf(name, sizeof(name), "%s%d", GGML_CUDA_NAME, i); + ggml_backend_register(name, ggml_backend_reg_cuda_init, ggml_backend_cuda_buffer_type(i), (void *) (intptr_t) i); + } + return device_count; +} diff --git a/llama/ggml-cuda.h b/llama/ggml-cuda.h new file mode 100644 index 00000000..5eb4af40 --- /dev/null +++ b/llama/ggml-cuda.h @@ -0,0 +1,43 @@ +#pragma once + +#include "ggml.h" +#include "ggml-backend.h" + +#ifdef GGML_USE_HIPBLAS +#define GGML_CUDA_NAME "ROCm" +#define GGML_CUBLAS_NAME "hipBLAS" +#else +#define GGML_CUDA_NAME "CUDA" +#define GGML_CUBLAS_NAME "cuBLAS" +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +#define GGML_CUDA_MAX_DEVICES 16 + +// backend API +GGML_API GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device); + +GGML_API GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend); + +// device buffer +GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device); + +// split tensor buffer that splits matrices by rows across multiple devices +GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split); + +// pinned host buffer for use with the CPU backend for faster copies between CPU and GPU +GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type(void); + +GGML_API GGML_CALL int ggml_backend_cuda_get_device_count(void); +GGML_API GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size); +GGML_API GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total); + +GGML_API GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size); +GGML_API GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer); + +#ifdef __cplusplus +} +#endif diff --git a/llama/ggml-impl.h b/llama/ggml-impl.h new file mode 100644 index 00000000..0c997d3e --- /dev/null +++ b/llama/ggml-impl.h @@ -0,0 +1,265 @@ +#pragma once + +#include "ggml.h" + +// GGML internal header + +#include +#include // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/ +#include +#include +#include // memcpy +#include // fabsf + +#ifdef __cplusplus +extern "C" { +#endif + +// static_assert should be a #define, but if it's not, +// fall back to the _Static_assert C11 keyword. +// if C99 - static_assert is noop +// ref: https://stackoverflow.com/a/53923785/4039976 +#ifndef __cplusplus +#ifndef static_assert +#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L) +#define static_assert(cond, msg) _Static_assert(cond, msg) +#else +#define static_assert(cond, msg) struct global_scope_noop_trick +#endif +#endif +#endif + +// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512 +#if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__)) +#ifndef __FMA__ +#define __FMA__ +#endif +#ifndef __F16C__ +#define __F16C__ +#endif +#ifndef __SSE3__ +#define __SSE3__ +#endif +#endif + +// 16-bit float +// on Arm, we use __fp16 +// on x86, we use uint16_t +#if defined(__ARM_NEON) && !defined(_MSC_VER) + +// if YCM cannot find , make a symbolic link to it, for example: +// +// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/ +// +#include + +typedef __fp16 ggml_fp16_internal_t; + +#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x) +#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x) + +#define GGML_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x) + +static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) { + ggml_fp16_internal_t tmp; + memcpy(&tmp, &h, sizeof(ggml_fp16_t)); + return (float)tmp; +} + +static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) { + ggml_fp16_t res; + ggml_fp16_internal_t tmp = f; + memcpy(&res, &tmp, sizeof(ggml_fp16_t)); + return res; +} + +#else + +typedef uint16_t ggml_fp16_internal_t; + +#ifdef __wasm_simd128__ +#include +#else +#ifdef __POWER9_VECTOR__ +#include +#undef bool +#define bool _Bool +#else +#if defined(_MSC_VER) || defined(__MINGW32__) +#include +#else +#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) || defined(__SSE__) +#if !defined(__riscv) +#include +#endif +#endif +#endif +#endif +#endif + +#ifdef __riscv_v_intrinsic +#include +#endif + +#ifdef __F16C__ + +#ifdef _MSC_VER +#define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x))) +#define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0) +#else +#define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x) +#define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0) +#endif + +#elif defined(__POWER9_VECTOR__) + +#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x) +#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x) +/* the inline asm below is about 12% faster than the lookup method */ +#define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x) +#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x) + +static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) { + register float f; + register double d; + __asm__( + "mtfprd %0,%2\n" + "xscvhpdp %0,%0\n" + "frsp %1,%0\n" : + /* temp */ "=d"(d), + /* out */ "=f"(f): + /* in */ "r"(h)); + return f; +} + +static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) { + register double d; + register ggml_fp16_t r; + __asm__( /* xscvdphp can work on double or single precision */ + "xscvdphp %0,%2\n" + "mffprd %1,%0\n" : + /* temp */ "=d"(d), + /* out */ "=r"(r): + /* in */ "f"(f)); + return r; +} + +#else + +// FP16 <-> FP32 +// ref: https://github.com/Maratyszcza/FP16 + +static inline float fp32_from_bits(uint32_t w) { + union { + uint32_t as_bits; + float as_value; + } fp32; + fp32.as_bits = w; + return fp32.as_value; +} + +static inline uint32_t fp32_to_bits(float f) { + union { + float as_value; + uint32_t as_bits; + } fp32; + fp32.as_value = f; + return fp32.as_bits; +} + +static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) { + const uint32_t w = (uint32_t) h << 16; + const uint32_t sign = w & UINT32_C(0x80000000); + const uint32_t two_w = w + w; + + const uint32_t exp_offset = UINT32_C(0xE0) << 23; +#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__) + const float exp_scale = 0x1.0p-112f; +#else + const float exp_scale = fp32_from_bits(UINT32_C(0x7800000)); +#endif + const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale; + + const uint32_t magic_mask = UINT32_C(126) << 23; + const float magic_bias = 0.5f; + const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias; + + const uint32_t denormalized_cutoff = UINT32_C(1) << 27; + const uint32_t result = sign | + (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value)); + return fp32_from_bits(result); +} + +static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) { +#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__) + const float scale_to_inf = 0x1.0p+112f; + const float scale_to_zero = 0x1.0p-110f; +#else + const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000)); + const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000)); +#endif + float base = (fabsf(f) * scale_to_inf) * scale_to_zero; + + const uint32_t w = fp32_to_bits(f); + const uint32_t shl1_w = w + w; + const uint32_t sign = w & UINT32_C(0x80000000); + uint32_t bias = shl1_w & UINT32_C(0xFF000000); + if (bias < UINT32_C(0x71000000)) { + bias = UINT32_C(0x71000000); + } + + base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base; + const uint32_t bits = fp32_to_bits(base); + const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00); + const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF); + const uint32_t nonsign = exp_bits + mantissa_bits; + return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign); +} + +#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x) +#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x) + +#endif // __F16C__ + +#endif // __ARM_NEON + +// precomputed f32 table for f16 (256 KB) +// defined in ggml.c, initialized in ggml_init() +extern float ggml_table_f32_f16[1 << 16]; + +// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32, +// so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON. +// This is also true for POWER9. +#if !defined(GGML_FP16_TO_FP32) +inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) { + uint16_t s; + memcpy(&s, &f, sizeof(uint16_t)); + return ggml_table_f32_f16[s]; +} + +#define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x) +#endif + +#if !defined(GGML_FP32_TO_FP16) +#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x) +#endif + +#define GGML_HASHTABLE_FULL ((size_t)-1) +#define GGML_HASHTABLE_ALREADY_EXISTS ((size_t)-2) + +struct ggml_hash_set ggml_hash_set_new(size_t size); + +bool ggml_hash_contains (const struct ggml_hash_set hash_set, struct ggml_tensor * key); + +// returns GGML_HASHTABLE_FULL if table is full, otherwise the current index of the key or where it should be inserted +size_t ggml_hash_find (const struct ggml_hash_set hash_set, struct ggml_tensor * key); + +// returns GGML_HASHTABLE_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full +size_t ggml_hash_insert ( struct ggml_hash_set hash_set, struct ggml_tensor * key); + +// return index, asserts if table is full +size_t ggml_hash_find_or_insert( struct ggml_hash_set hash_set, struct ggml_tensor * key); + +#ifdef __cplusplus +} +#endif diff --git a/llama/ggml-metal-embed.metal b/llama/ggml-metal-embed.metal new file mode 100644 index 00000000..cd02bf6f --- /dev/null +++ b/llama/ggml-metal-embed.metal @@ -0,0 +1,8098 @@ +#define GGML_COMMON_DECL_METAL +#define GGML_COMMON_IMPL_METAL +#ifndef GGML_COMMON_DECL + +#if defined(GGML_COMMON_DECL_C) +#include + +typedef uint16_t ggml_half; +typedef uint32_t ggml_half2; + +#define GGML_COMMON_AGGR + +#define GGML_COMMON_DECL +#elif defined(GGML_COMMON_DECL_METAL) +#include + +typedef half ggml_half; +typedef half2 ggml_half2; + +#define GGML_COMMON_AGGR + +#define GGML_COMMON_DECL +#elif defined(GGML_COMMON_DECL_CUDA) +#include +#include + +typedef half ggml_half; +typedef half2 ggml_half2; + +#define GGML_COMMON_AGGR data + +#define GGML_COMMON_DECL +#elif defined(GGML_COMMON_DECL_HIP) +#include +#include + +typedef half ggml_half; +typedef half2 ggml_half2; + +#define GGML_COMMON_AGGR data + +#define GGML_COMMON_DECL +#elif defined(GGML_COMMON_DECL_SYCL) +#include +#include + +typedef sycl::half ggml_half; +typedef sycl::half2 ggml_half2; + +#define GGML_COMMON_AGGR data + +#define GGML_COMMON_DECL +#endif + +#if defined(GGML_COMMON_DECL) + +#ifndef __cplusplus +#ifndef static_assert +#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L) +#define static_assert(cond, msg) _Static_assert(cond, msg) +#else +#define static_assert(cond, msg) struct global_scope_noop_trick +#endif +#endif +#endif // __cplusplus + +// QK = number of values after dequantization +// QK_K = super-block size + +#ifdef GGML_QKK_64 +#define QK_K 64 +#define K_SCALE_SIZE 4 +#else +#define QK_K 256 +#define K_SCALE_SIZE 12 +#endif // GGML_QKK_64 + +#if defined(GGML_COMMON_DECL_CUDA) || defined(GGML_COMMON_DECL_HIP) || defined(GGML_COMMON_DECL_SYCL) +// QR = QK / number of values before dequantization +// QI = number of 32 bit integers before dequantization + +#define QI4_0 (QK4_0 / (4 * QR4_0)) +#define QR4_0 2 + +#define QI4_1 (QK4_1 / (4 * QR4_1)) +#define QR4_1 2 + +#define QI5_0 (QK5_0 / (4 * QR5_0)) +#define QR5_0 2 + +#define QI5_1 (QK5_1 / (4 * QR5_1)) +#define QR5_1 2 + +#define QI8_0 (QK8_0 / (4 * QR8_0)) +#define QR8_0 1 + +#define QI8_1 (QK8_1 / (4 * QR8_1)) +#define QR8_1 1 + +#define QI2_K (QK_K / (4*QR2_K)) +#define QR2_K 4 + +#define QI3_K (QK_K / (4*QR3_K)) +#define QR3_K 4 + +#define QI4_K (QK_K / (4*QR4_K)) +#define QR4_K 2 + +#define QI5_K (QK_K / (4*QR5_K)) +#define QR5_K 2 + +#define QI6_K (QK_K / (4*QR6_K)) +#define QR6_K 2 + +#define QI2_XXS (QK_K / (4*QR2_XXS)) +#define QR2_XXS 8 + +#define QI2_XS (QK_K / (4*QR2_XS)) +#define QR2_XS 8 + +#define QI2_S (QK_K / (4*QR2_S)) +#define QR2_S 8 + +#define QI3_XXS (QK_K / (4*QR3_XXS)) +#define QR3_XXS 8 + +#define QI3_XS (QK_K / (4*QR3_XS)) +#define QR3_XS 8 + +#define QI1_S (QK_K / (4*QR1_S)) +#define QR1_S 8 + +#define QI4_NL (QK4_NL / (4*QR4_NL)) +#define QR4_NL 2 + +#if QK_K == 64 +#define QI4_XS QI4_NL +#define QR4_XS QR4_NL +#else +#define QI4_XS (QK_K / (4*QR4_XS)) +#define QR4_XS 8 +#endif + +#endif // GGML_COMMON_DECL_CUDA || GGML_COMMON_DECL_HIP + +#define QK4_0 32 +typedef struct { + ggml_half d; // delta + uint8_t qs[QK4_0 / 2]; // nibbles / quants +} block_q4_0; +static_assert(sizeof(block_q4_0) == sizeof(ggml_half) + QK4_0 / 2, "wrong q4_0 block size/padding"); + +#define QK4_1 32 +typedef struct { + union { + struct { + ggml_half d; // delta + ggml_half m; // min + } GGML_COMMON_AGGR; + ggml_half2 dm; + }; + uint8_t qs[QK4_1 / 2]; // nibbles / quants +} block_q4_1; +static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_half) + QK4_1 / 2, "wrong q4_1 block size/padding"); + +#define QK5_0 32 +typedef struct { + ggml_half d; // delta + uint8_t qh[4]; // 5-th bit of quants + uint8_t qs[QK5_0 / 2]; // nibbles / quants +} block_q5_0; +static_assert(sizeof(block_q5_0) == sizeof(ggml_half) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding"); + +#define QK5_1 32 +typedef struct { + union { + struct { + ggml_half d; // delta + ggml_half m; // min + } GGML_COMMON_AGGR; + ggml_half2 dm; + }; + uint8_t qh[4]; // 5-th bit of quants + uint8_t qs[QK5_1 / 2]; // nibbles / quants +} block_q5_1; +static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_half) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding"); + +#define QK8_0 32 +typedef struct { + ggml_half d; // delta + int8_t qs[QK8_0]; // quants +} block_q8_0; +static_assert(sizeof(block_q8_0) == sizeof(ggml_half) + QK8_0, "wrong q8_0 block size/padding"); + +#define QK8_1 32 +typedef struct { + union { + struct { + ggml_half d; // delta + ggml_half s; // d * sum(qs[i]) + } GGML_COMMON_AGGR; + ggml_half2 ds; + }; + int8_t qs[QK8_1]; // quants +} block_q8_1; +static_assert(sizeof(block_q8_1) == 2*sizeof(ggml_half) + QK8_1, "wrong q8_1 block size/padding"); + +// +// Super-block quantization structures +// + +// 2-bit quantization +// weight is represented as x = a * q + b +// 16 blocks of 16 elements each +// Effectively 2.625 bits per weight +typedef struct { + uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits + uint8_t qs[QK_K/4]; // quants + union { + struct { + ggml_half d; // super-block scale for quantized scales + ggml_half dmin; // super-block scale for quantized mins + } GGML_COMMON_AGGR; + ggml_half2 dm; + }; +} block_q2_K; +static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_half) + QK_K/16 + QK_K/4, "wrong q2_K block size/padding"); + +// 3-bit quantization +// weight is represented as x = a * q +// 16 blocks of 16 elements each +// Effectively 3.4375 bits per weight +#ifdef GGML_QKK_64 +typedef struct { + uint8_t hmask[QK_K/8]; // quants - high bit + uint8_t qs[QK_K/4]; // quants - low 2 bits + uint8_t scales[2]; + ggml_half d; // super-block scale +} block_q3_K; +static_assert(sizeof(block_q3_K) == sizeof(ggml_half) + QK_K / 4 + QK_K / 8 + 2, "wrong q3_K block size/padding"); +#else +typedef struct { + uint8_t hmask[QK_K/8]; // quants - high bit + uint8_t qs[QK_K/4]; // quants - low 2 bits + uint8_t scales[12]; // scales, quantized with 6 bits + ggml_half d; // super-block scale +} block_q3_K; +static_assert(sizeof(block_q3_K) == sizeof(ggml_half) + QK_K / 4 + QK_K / 8 + 12, "wrong q3_K block size/padding"); +#endif + +// 4-bit quantization +// 8 blocks of 32 elements each +// weight is represented as x = a * q + b +// Effectively 4.5 bits per weight +#ifdef GGML_QKK_64 +typedef struct { + ggml_half d[2]; // super-block scales/mins + uint8_t scales[2]; // 4-bit block scales/mins + uint8_t qs[QK_K/2]; // 4--bit quants +} block_q4_K; +static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_half) + QK_K/2 + 2, "wrong q4_K block size/padding"); +#else +typedef struct { + union { + struct { + ggml_half d; // super-block scale for quantized scales + ggml_half dmin; // super-block scale for quantized mins + } GGML_COMMON_AGGR; + ggml_half2 dm; + }; + uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits + uint8_t qs[QK_K/2]; // 4--bit quants +} block_q4_K; +static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_half) + K_SCALE_SIZE + QK_K/2, "wrong q4_K block size/padding"); +#endif + +// 5-bit quantization +// 8 blocks of 32 elements each +// weight is represented as x = a * q + b +// Effectively 5.5 bits per weight +#ifdef GGML_QKK_64 +typedef struct { + ggml_half d; // super-block scale + int8_t scales[QK_K/16]; // 8-bit block scales + uint8_t qh[QK_K/8]; // quants, high bit + uint8_t qs[QK_K/2]; // quants, low 4 bits +} block_q5_K; +static_assert(sizeof(block_q5_K) == sizeof(ggml_half) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding"); +#else +typedef struct { + union { + struct { + ggml_half d; // super-block scale for quantized scales + ggml_half dmin; // super-block scale for quantized mins + } GGML_COMMON_AGGR; + ggml_half2 dm; + }; + uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits + uint8_t qh[QK_K/8]; // quants, high bit + uint8_t qs[QK_K/2]; // quants, low 4 bits +} block_q5_K; +static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_half) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding"); +#endif + +// 6-bit quantization +// weight is represented as x = a * q +// 16 blocks of 16 elements each +// Effectively 6.5625 bits per weight +typedef struct { + uint8_t ql[QK_K/2]; // quants, lower 4 bits + uint8_t qh[QK_K/4]; // quants, upper 2 bits + int8_t scales[QK_K/16]; // scales, quantized with 8 bits + ggml_half d; // super-block scale +} block_q6_K; +static_assert(sizeof(block_q6_K) == sizeof(ggml_half) + QK_K / 16 + 3*QK_K/4, "wrong q6_K block size/padding"); + +// This is only used for intermediate quantization and dot products +typedef struct { + float d; // delta + int8_t qs[QK_K]; // quants + int16_t bsums[QK_K/16]; // sum of quants in groups of 16 +} block_q8_K; +static_assert(sizeof(block_q8_K) == sizeof(float) + QK_K + QK_K/16*sizeof(int16_t), "wrong q8_K block size/padding"); + +// (Almost) "true" 2-bit quantization. +// Due to the need to use blocks as per ggml design, it ends up using +// 2.0625 bpw because of the 16-bit scale for each block of 256. +typedef struct { + ggml_half d; + uint16_t qs[QK_K/8]; +} block_iq2_xxs; +static_assert(sizeof(block_iq2_xxs) == sizeof(ggml_half) + QK_K/8*sizeof(uint16_t), "wrong iq2_xxs block size/padding"); + +// 2.3125 bpw quants +typedef struct { + ggml_half d; + uint16_t qs[QK_K/8]; + uint8_t scales[QK_K/32]; +} block_iq2_xs; +static_assert(sizeof(block_iq2_xs) == sizeof(ggml_half) + QK_K/8*sizeof(uint16_t) + QK_K/32, "wrong iq2_xs block size/padding"); + +// 2.5625 bpw quants +typedef struct { + ggml_half d; + uint8_t qs[QK_K/4]; + uint8_t qh[QK_K/32]; + uint8_t scales[QK_K/32]; +} block_iq2_s; +static_assert(sizeof(block_iq2_s) == sizeof(ggml_half) + QK_K/4 + QK_K/16, "wrong iq2_s block size/padding"); + +// (Almost) "true" 3-bit quantization. +// Due to the need to use blocks as per ggml design, it ends up using +// 3.0625 bpw because of the 16-bit scale for each block of 256. +typedef struct { + ggml_half d; + uint8_t qs[3*QK_K/8]; +} block_iq3_xxs; +static_assert(sizeof(block_iq3_xxs) == sizeof(ggml_half) + 3*(QK_K/8), "wrong iq3_xxs block size/padding"); + +// 3.4375 bpw +#if QK_K == 64 +#define IQ3S_N_SCALE 2 +#else +#define IQ3S_N_SCALE QK_K/64 +#endif +typedef struct { + ggml_half d; + uint8_t qs[QK_K/4]; + uint8_t qh[QK_K/32]; + uint8_t signs[QK_K/8]; + uint8_t scales[IQ3S_N_SCALE]; +} block_iq3_s; +static_assert(sizeof(block_iq3_s) == sizeof(ggml_half) + 13*(QK_K/32) + IQ3S_N_SCALE, "wrong iq3_s block size/padding"); + +typedef struct { + ggml_half d; + uint8_t qs[QK_K/8]; + uint16_t qh[QK_K/32]; +} block_iq1_s; +static_assert(sizeof(block_iq1_s) == sizeof(ggml_half) + QK_K/8 + QK_K/16, "wrong iq1_s block size/padding"); + +// 1.75 bpw +typedef struct { + uint8_t qs[QK_K/8]; // grid index, low 8 bits + uint8_t qh[QK_K/16]; // grid index, high 3 bits + grid shift bit (for two groups of 8) +#if QK_K == 64 + ggml_half d; +#endif + uint8_t scales[QK_K/32]; // 3-bit block scales (4-bit if QK_K == 64) +} block_iq1_m; +#if QK_K == 64 +static_assert(sizeof(block_iq1_m) == QK_K/8 + QK_K/16 + QK_K/32 + sizeof(ggml_half), "wrong iq1_m block size/padding"); +#else +static_assert(sizeof(block_iq1_m) == QK_K/8 + QK_K/16 + QK_K/32, "wrong iq1_m block size/padding"); +#endif + +// Used by IQ1_M quants +typedef union { + ggml_half f16; + uint16_t u16; +} iq1m_scale_t; + +// Non-linear quants +#define QK4_NL 32 +typedef struct { + ggml_half d; + uint8_t qs[QK4_NL/2]; +} block_iq4_nl; +static_assert(sizeof(block_iq4_nl) == sizeof(ggml_half) + QK4_NL/2, "wrong iq4_nl block size/padding"); + +#if QK_K == 64 +#define block_iq4_xs block_iq4_nl +#else +typedef struct { + ggml_half d; + uint16_t scales_h; + uint8_t scales_l[QK_K/64]; + uint8_t qs[QK_K/2]; +} block_iq4_xs; +static_assert(sizeof(block_iq4_xs) == sizeof(ggml_half) + sizeof(uint16_t) + QK_K/64 + QK_K/2, "wrong iq4_xs block size/padding"); +#endif + +#endif // GGML_COMMON_DECL +#endif // GGML_COMMON_DECL + +//////////////////////////////////////////////////////////////////////////////// + +#ifndef GGML_COMMON_IMPL + +#if defined(GGML_COMMON_IMPL_C) +#include + +#define GGML_TABLE_BEGIN(type, name, size) static const type name[size] = { +#define GGML_TABLE_END() }; + +#define GGML_COMMON_IMPL +#elif defined(GGML_COMMON_IMPL_METAL) +#include + +#define GGML_TABLE_BEGIN(type, name, size) static const constant type name[size] = { +#define GGML_TABLE_END() }; + +#define GGML_COMMON_IMPL +#elif defined(GGML_COMMON_IMPL_CUDA) || defined(GGML_COMMON_IMPL_HIP) +#include + +#define GGML_TABLE_BEGIN(type, name, size) static const __device__ type name[size] = { +#define GGML_TABLE_END() }; + +#define GGML_COMMON_IMPL +#elif defined(GGML_COMMON_IMPL_SYCL) + +#include + +#define GGML_TABLE_BEGIN(type, name, size) static const type name[size] = { +#define GGML_TABLE_END() }; + +#define GGML_COMMON_IMPL +#endif + +#if defined(GGML_COMMON_IMPL) + +GGML_TABLE_BEGIN(uint8_t, kmask_iq2xs, 8) + 1, 2, 4, 8, 16, 32, 64, 128 +GGML_TABLE_END() + +GGML_TABLE_BEGIN(uint8_t, ksigns_iq2xs, 128) + 0, 129, 130, 3, 132, 5, 6, 135, 136, 9, 10, 139, 12, 141, 142, 15, + 144, 17, 18, 147, 20, 149, 150, 23, 24, 153, 154, 27, 156, 29, 30, 159, + 160, 33, 34, 163, 36, 165, 166, 39, 40, 169, 170, 43, 172, 45, 46, 175, + 48, 177, 178, 51, 180, 53, 54, 183, 184, 57, 58, 187, 60, 189, 190, 63, + 192, 65, 66, 195, 68, 197, 198, 71, 72, 201, 202, 75, 204, 77, 78, 207, + 80, 209, 210, 83, 212, 85, 86, 215, 216, 89, 90, 219, 92, 221, 222, 95, + 96, 225, 226, 99, 228, 101, 102, 231, 232, 105, 106, 235, 108, 237, 238, 111, + 240, 113, 114, 243, 116, 245, 246, 119, 120, 249, 250, 123, 252, 125, 126, 255, +GGML_TABLE_END() + +//#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics +GGML_TABLE_BEGIN(uint64_t, ksigns64, 128) + 0x0000000000000000, 0xff000000000000ff, 0xff0000000000ff00, 0x000000000000ffff, + 0xff00000000ff0000, 0x0000000000ff00ff, 0x0000000000ffff00, 0xff00000000ffffff, + 0xff000000ff000000, 0x00000000ff0000ff, 0x00000000ff00ff00, 0xff000000ff00ffff, + 0x00000000ffff0000, 0xff000000ffff00ff, 0xff000000ffffff00, 0x00000000ffffffff, + 0xff0000ff00000000, 0x000000ff000000ff, 0x000000ff0000ff00, 0xff0000ff0000ffff, + 0x000000ff00ff0000, 0xff0000ff00ff00ff, 0xff0000ff00ffff00, 0x000000ff00ffffff, + 0x000000ffff000000, 0xff0000ffff0000ff, 0xff0000ffff00ff00, 0x000000ffff00ffff, + 0xff0000ffffff0000, 0x000000ffffff00ff, 0x000000ffffffff00, 0xff0000ffffffffff, + 0xff00ff0000000000, 0x0000ff00000000ff, 0x0000ff000000ff00, 0xff00ff000000ffff, + 0x0000ff0000ff0000, 0xff00ff0000ff00ff, 0xff00ff0000ffff00, 0x0000ff0000ffffff, + 0x0000ff00ff000000, 0xff00ff00ff0000ff, 0xff00ff00ff00ff00, 0x0000ff00ff00ffff, + 0xff00ff00ffff0000, 0x0000ff00ffff00ff, 0x0000ff00ffffff00, 0xff00ff00ffffffff, + 0x0000ffff00000000, 0xff00ffff000000ff, 0xff00ffff0000ff00, 0x0000ffff0000ffff, + 0xff00ffff00ff0000, 0x0000ffff00ff00ff, 0x0000ffff00ffff00, 0xff00ffff00ffffff, + 0xff00ffffff000000, 0x0000ffffff0000ff, 0x0000ffffff00ff00, 0xff00ffffff00ffff, + 0x0000ffffffff0000, 0xff00ffffffff00ff, 0xff00ffffffffff00, 0x0000ffffffffffff, + 0xffff000000000000, 0x00ff0000000000ff, 0x00ff00000000ff00, 0xffff00000000ffff, + 0x00ff000000ff0000, 0xffff000000ff00ff, 0xffff000000ffff00, 0x00ff000000ffffff, + 0x00ff0000ff000000, 0xffff0000ff0000ff, 0xffff0000ff00ff00, 0x00ff0000ff00ffff, + 0xffff0000ffff0000, 0x00ff0000ffff00ff, 0x00ff0000ffffff00, 0xffff0000ffffffff, + 0x00ff00ff00000000, 0xffff00ff000000ff, 0xffff00ff0000ff00, 0x00ff00ff0000ffff, + 0xffff00ff00ff0000, 0x00ff00ff00ff00ff, 0x00ff00ff00ffff00, 0xffff00ff00ffffff, + 0xffff00ffff000000, 0x00ff00ffff0000ff, 0x00ff00ffff00ff00, 0xffff00ffff00ffff, + 0x00ff00ffffff0000, 0xffff00ffffff00ff, 0xffff00ffffffff00, 0x00ff00ffffffffff, + 0x00ffff0000000000, 0xffffff00000000ff, 0xffffff000000ff00, 0x00ffff000000ffff, + 0xffffff0000ff0000, 0x00ffff0000ff00ff, 0x00ffff0000ffff00, 0xffffff0000ffffff, + 0xffffff00ff000000, 0x00ffff00ff0000ff, 0x00ffff00ff00ff00, 0xffffff00ff00ffff, + 0x00ffff00ffff0000, 0xffffff00ffff00ff, 0xffffff00ffffff00, 0x00ffff00ffffffff, + 0xffffffff00000000, 0x00ffffff000000ff, 0x00ffffff0000ff00, 0xffffffff0000ffff, + 0x00ffffff00ff0000, 0xffffffff00ff00ff, 0xffffffff00ffff00, 0x00ffffff00ffffff, + 0x00ffffffff000000, 0xffffffffff0000ff, 0xffffffffff00ff00, 0x00ffffffff00ffff, + 0xffffffffffff0000, 0x00ffffffffff00ff, 0x00ffffffffffff00, 0xffffffffffffffff, +GGML_TABLE_END() +//#endif + + +GGML_TABLE_BEGIN(uint64_t, iq2xxs_grid, 256) + 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08, + 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x08080808082b0808, + 0x08080808082b082b, 0x08080808082b2b08, 0x08080808082b2b2b, 0x0808080819080819, + 0x0808080819081908, 0x0808080819190808, 0x0808080819192b08, 0x08080808192b0819, + 0x08080808192b1908, 0x080808082b080808, 0x080808082b08082b, 0x080808082b082b2b, + 0x080808082b2b082b, 0x0808081908080819, 0x0808081908081908, 0x0808081908190808, + 0x0808081908191919, 0x0808081919080808, 0x080808192b081908, 0x080808192b192b08, + 0x0808082b08080808, 0x0808082b0808082b, 0x0808082b082b082b, 0x0808082b2b08082b, + 0x0808190808080819, 0x0808190808081908, 0x0808190808190808, 0x08081908082b0819, + 0x08081908082b1908, 0x0808190819080808, 0x080819081908082b, 0x0808190819082b08, + 0x08081908192b0808, 0x080819082b080819, 0x080819082b081908, 0x080819082b190808, + 0x080819082b2b1908, 0x0808191908080808, 0x080819190808082b, 0x0808191908082b08, + 0x08081919082b0808, 0x080819191908192b, 0x08081919192b2b19, 0x080819192b080808, + 0x080819192b190819, 0x0808192b08082b19, 0x0808192b08190808, 0x0808192b19080808, + 0x0808192b2b081908, 0x0808192b2b2b1908, 0x08082b0808080808, 0x08082b0808081919, + 0x08082b0808082b08, 0x08082b0808191908, 0x08082b08082b2b08, 0x08082b0819080819, + 0x08082b0819081908, 0x08082b0819190808, 0x08082b081919082b, 0x08082b082b082b08, + 0x08082b1908081908, 0x08082b1919080808, 0x08082b2b0808082b, 0x08082b2b08191908, + 0x0819080808080819, 0x0819080808081908, 0x0819080808190808, 0x08190808082b0819, + 0x0819080819080808, 0x08190808192b0808, 0x081908082b081908, 0x081908082b190808, + 0x081908082b191919, 0x0819081908080808, 0x0819081908082b08, 0x08190819082b0808, + 0x0819081919190808, 0x0819081919192b2b, 0x081908192b080808, 0x0819082b082b1908, + 0x0819082b19081919, 0x0819190808080808, 0x0819190808082b08, 0x08191908082b0808, + 0x08191908082b1919, 0x0819190819082b19, 0x081919082b080808, 0x0819191908192b08, + 0x08191919192b082b, 0x0819192b08080808, 0x0819192b0819192b, 0x08192b0808080819, + 0x08192b0808081908, 0x08192b0808190808, 0x08192b0819080808, 0x08192b082b080819, + 0x08192b1908080808, 0x08192b1908081919, 0x08192b192b2b0808, 0x08192b2b19190819, + 0x082b080808080808, 0x082b08080808082b, 0x082b080808082b2b, 0x082b080819081908, + 0x082b0808192b0819, 0x082b08082b080808, 0x082b08082b08082b, 0x082b0819082b2b19, + 0x082b081919082b08, 0x082b082b08080808, 0x082b082b0808082b, 0x082b190808080819, + 0x082b190808081908, 0x082b190808190808, 0x082b190819080808, 0x082b19081919192b, + 0x082b191908080808, 0x082b191919080819, 0x082b1919192b1908, 0x082b192b2b190808, + 0x082b2b0808082b08, 0x082b2b08082b0808, 0x082b2b082b191908, 0x082b2b2b19081908, + 0x1908080808080819, 0x1908080808081908, 0x1908080808190808, 0x1908080808192b08, + 0x19080808082b0819, 0x19080808082b1908, 0x1908080819080808, 0x1908080819082b08, + 0x190808081919192b, 0x19080808192b0808, 0x190808082b080819, 0x190808082b081908, + 0x190808082b190808, 0x1908081908080808, 0x19080819082b0808, 0x19080819192b0819, + 0x190808192b080808, 0x190808192b081919, 0x1908082b08080819, 0x1908082b08190808, + 0x1908082b19082b08, 0x1908082b1919192b, 0x1908082b192b2b08, 0x1908190808080808, + 0x1908190808082b08, 0x19081908082b0808, 0x190819082b080808, 0x190819082b192b19, + 0x190819190819082b, 0x19081919082b1908, 0x1908192b08080808, 0x19082b0808080819, + 0x19082b0808081908, 0x19082b0808190808, 0x19082b0819080808, 0x19082b0819081919, + 0x19082b1908080808, 0x19082b1919192b08, 0x19082b19192b0819, 0x19082b192b08082b, + 0x19082b2b19081919, 0x19082b2b2b190808, 0x1919080808080808, 0x1919080808082b08, + 0x1919080808190819, 0x1919080808192b19, 0x19190808082b0808, 0x191908082b080808, + 0x191908082b082b08, 0x1919081908081908, 0x191908191908082b, 0x191908192b2b1908, + 0x1919082b2b190819, 0x191919082b190808, 0x191919082b19082b, 0x1919191908082b2b, + 0x1919192b08080819, 0x1919192b19191908, 0x19192b0808080808, 0x19192b0808190819, + 0x19192b0808192b19, 0x19192b08192b1908, 0x19192b1919080808, 0x19192b2b08082b08, + 0x192b080808081908, 0x192b080808190808, 0x192b080819080808, 0x192b0808192b2b08, + 0x192b081908080808, 0x192b081919191919, 0x192b082b08192b08, 0x192b082b192b0808, + 0x192b190808080808, 0x192b190808081919, 0x192b191908190808, 0x192b19190819082b, + 0x192b19192b081908, 0x192b2b081908082b, 0x2b08080808080808, 0x2b0808080808082b, + 0x2b08080808082b2b, 0x2b08080819080819, 0x2b0808082b08082b, 0x2b08081908081908, + 0x2b08081908192b08, 0x2b08081919080808, 0x2b08082b08190819, 0x2b08190808080819, + 0x2b08190808081908, 0x2b08190808190808, 0x2b08190808191919, 0x2b08190819080808, + 0x2b081908192b0808, 0x2b08191908080808, 0x2b0819191908192b, 0x2b0819192b191908, + 0x2b08192b08082b19, 0x2b08192b19080808, 0x2b08192b192b0808, 0x2b082b080808082b, + 0x2b082b1908081908, 0x2b082b2b08190819, 0x2b19080808081908, 0x2b19080808190808, + 0x2b190808082b1908, 0x2b19080819080808, 0x2b1908082b2b0819, 0x2b1908190819192b, + 0x2b1908192b080808, 0x2b19082b19081919, 0x2b19190808080808, 0x2b191908082b082b, + 0x2b19190819081908, 0x2b19191919190819, 0x2b192b082b080819, 0x2b192b19082b0808, + 0x2b2b08080808082b, 0x2b2b080819190808, 0x2b2b08082b081919, 0x2b2b081908082b19, + 0x2b2b082b08080808, 0x2b2b190808192b08, 0x2b2b2b0819190808, 0x2b2b2b1908081908, +GGML_TABLE_END() + +GGML_TABLE_BEGIN(uint64_t, iq2xs_grid, 512) + 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08, + 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x080808080819192b, + 0x0808080808192b19, 0x08080808082b0808, 0x08080808082b082b, 0x08080808082b1919, + 0x08080808082b2b08, 0x0808080819080819, 0x0808080819081908, 0x080808081908192b, + 0x0808080819082b19, 0x0808080819190808, 0x080808081919082b, 0x0808080819191919, + 0x0808080819192b08, 0x08080808192b0819, 0x08080808192b1908, 0x080808082b080808, + 0x080808082b08082b, 0x080808082b081919, 0x080808082b082b08, 0x080808082b190819, + 0x080808082b191908, 0x080808082b192b19, 0x080808082b2b0808, 0x0808081908080819, + 0x0808081908081908, 0x080808190808192b, 0x0808081908082b19, 0x0808081908190808, + 0x080808190819082b, 0x0808081908191919, 0x0808081908192b08, 0x0808081908192b2b, + 0x08080819082b0819, 0x08080819082b1908, 0x0808081919080808, 0x080808191908082b, + 0x0808081919081919, 0x0808081919082b08, 0x0808081919190819, 0x0808081919191908, + 0x08080819192b0808, 0x08080819192b2b08, 0x080808192b080819, 0x080808192b081908, + 0x080808192b190808, 0x0808082b08080808, 0x0808082b0808082b, 0x0808082b08081919, + 0x0808082b08082b08, 0x0808082b08190819, 0x0808082b08191908, 0x0808082b082b0808, + 0x0808082b19080819, 0x0808082b19081908, 0x0808082b19190808, 0x0808082b19191919, + 0x0808082b2b080808, 0x0808082b2b082b2b, 0x0808190808080819, 0x0808190808081908, + 0x080819080808192b, 0x0808190808082b19, 0x0808190808190808, 0x080819080819082b, + 0x0808190808191919, 0x0808190808192b08, 0x08081908082b0819, 0x08081908082b1908, + 0x0808190819080808, 0x080819081908082b, 0x0808190819081919, 0x0808190819082b08, + 0x0808190819190819, 0x0808190819191908, 0x080819081919192b, 0x08081908192b0808, + 0x080819082b080819, 0x080819082b081908, 0x080819082b190808, 0x0808191908080808, + 0x080819190808082b, 0x0808191908081919, 0x0808191908082b08, 0x0808191908190819, + 0x0808191908191908, 0x08081919082b0808, 0x0808191919080819, 0x0808191919081908, + 0x0808191919190808, 0x08081919192b0819, 0x080819192b080808, 0x0808192b08080819, + 0x0808192b08081908, 0x0808192b08190808, 0x0808192b082b192b, 0x0808192b19080808, + 0x0808192b1908082b, 0x0808192b2b081908, 0x08082b0808080808, 0x08082b080808082b, + 0x08082b0808081919, 0x08082b0808082b08, 0x08082b0808082b2b, 0x08082b0808190819, + 0x08082b0808191908, 0x08082b08082b0808, 0x08082b08082b1919, 0x08082b0819080819, + 0x08082b0819081908, 0x08082b0819190808, 0x08082b0819192b08, 0x08082b082b080808, + 0x08082b082b2b0808, 0x08082b082b2b2b2b, 0x08082b1908080819, 0x08082b1908081908, + 0x08082b1908190808, 0x08082b1919080808, 0x08082b192b080819, 0x08082b192b082b19, + 0x08082b2b08080808, 0x08082b2b082b0808, 0x08082b2b082b2b08, 0x08082b2b2b19192b, + 0x08082b2b2b2b0808, 0x0819080808080819, 0x0819080808081908, 0x081908080808192b, + 0x0819080808082b19, 0x0819080808190808, 0x081908080819082b, 0x0819080808191919, + 0x0819080808192b08, 0x08190808082b0819, 0x08190808082b1908, 0x0819080819080808, + 0x081908081908082b, 0x0819080819081919, 0x0819080819082b08, 0x0819080819190819, + 0x0819080819191908, 0x08190808192b0808, 0x08190808192b2b2b, 0x081908082b080819, + 0x081908082b081908, 0x081908082b190808, 0x0819081908080808, 0x081908190808082b, + 0x0819081908081919, 0x0819081908082b08, 0x0819081908190819, 0x0819081908191908, + 0x08190819082b0808, 0x0819081919080819, 0x0819081919081908, 0x0819081919190808, + 0x081908192b080808, 0x081908192b191908, 0x081908192b19192b, 0x0819082b08080819, + 0x0819082b08081908, 0x0819082b0808192b, 0x0819082b08190808, 0x0819082b19080808, + 0x0819082b192b0808, 0x0819190808080808, 0x081919080808082b, 0x0819190808081919, + 0x0819190808082b08, 0x0819190808190819, 0x0819190808191908, 0x08191908082b0808, + 0x0819190819080819, 0x0819190819081908, 0x0819190819082b19, 0x0819190819190808, + 0x08191908192b1908, 0x081919082b080808, 0x0819191908080819, 0x0819191908081908, + 0x0819191908190808, 0x0819191919080808, 0x0819192b08080808, 0x0819192b08191908, + 0x0819192b19082b19, 0x08192b0808080819, 0x08192b0808081908, 0x08192b0808190808, + 0x08192b080819082b, 0x08192b0819080808, 0x08192b0819191908, 0x08192b082b08192b, + 0x08192b1908080808, 0x08192b1908081919, 0x08192b19192b192b, 0x08192b2b19190819, + 0x08192b2b2b2b2b19, 0x082b080808080808, 0x082b08080808082b, 0x082b080808081919, + 0x082b080808082b08, 0x082b080808082b2b, 0x082b080808190819, 0x082b080808191908, + 0x082b0808082b0808, 0x082b080819080819, 0x082b080819081908, 0x082b080819190808, + 0x082b08082b080808, 0x082b08082b2b0808, 0x082b081908080819, 0x082b081908081908, + 0x082b081908190808, 0x082b081919080808, 0x082b081919082b08, 0x082b0819192b1919, + 0x082b082b08080808, 0x082b082b082b082b, 0x082b082b2b080808, 0x082b082b2b2b2b08, + 0x082b190808080819, 0x082b190808081908, 0x082b190808190808, 0x082b1908082b2b19, + 0x082b190819080808, 0x082b191908080808, 0x082b191919080819, 0x082b19191919082b, + 0x082b19192b192b19, 0x082b192b08080819, 0x082b192b08192b2b, 0x082b192b2b2b192b, + 0x082b2b0808080808, 0x082b2b0808082b08, 0x082b2b0808082b2b, 0x082b2b08082b0808, + 0x082b2b0819191919, 0x082b2b082b082b08, 0x082b2b082b2b082b, 0x082b2b19192b2b08, + 0x082b2b192b190808, 0x082b2b2b08082b08, 0x082b2b2b082b0808, 0x082b2b2b2b08082b, + 0x082b2b2b2b082b08, 0x082b2b2b2b082b2b, 0x1908080808080819, 0x1908080808081908, + 0x190808080808192b, 0x1908080808082b19, 0x1908080808190808, 0x190808080819082b, + 0x1908080808191919, 0x1908080808192b08, 0x19080808082b0819, 0x19080808082b1908, + 0x1908080819080808, 0x190808081908082b, 0x1908080819081919, 0x1908080819082b08, + 0x1908080819082b2b, 0x1908080819190819, 0x1908080819191908, 0x19080808192b0808, + 0x19080808192b1919, 0x190808082b080819, 0x190808082b081908, 0x190808082b190808, + 0x1908081908080808, 0x190808190808082b, 0x1908081908081919, 0x1908081908082b08, + 0x1908081908190819, 0x1908081908191908, 0x19080819082b0808, 0x1908081919080819, + 0x1908081919081908, 0x1908081919190808, 0x190808192b080808, 0x190808192b081919, + 0x190808192b2b082b, 0x1908082b08080819, 0x1908082b08081908, 0x1908082b08190808, + 0x1908082b0819082b, 0x1908082b082b2b19, 0x1908082b19080808, 0x1908190808080808, + 0x190819080808082b, 0x1908190808081919, 0x1908190808082b08, 0x1908190808190819, + 0x1908190808191908, 0x1908190808192b19, 0x19081908082b0808, 0x1908190819080819, + 0x1908190819081908, 0x1908190819190808, 0x190819082b080808, 0x190819082b191908, + 0x1908191908080819, 0x1908191908081908, 0x1908191908190808, 0x19081919082b1908, + 0x1908191919080808, 0x190819192b192b2b, 0x1908192b08080808, 0x1908192b08082b2b, + 0x1908192b19081908, 0x1908192b19190808, 0x19082b0808080819, 0x19082b0808081908, + 0x19082b0808190808, 0x19082b0819080808, 0x19082b0819081919, 0x19082b0819191908, + 0x19082b08192b082b, 0x19082b1908080808, 0x19082b1908190819, 0x19082b1919081908, + 0x19082b1919190808, 0x19082b19192b2b19, 0x19082b2b08081908, 0x1919080808080808, + 0x191908080808082b, 0x1919080808081919, 0x1919080808082b08, 0x1919080808190819, + 0x1919080808191908, 0x19190808082b0808, 0x19190808082b2b08, 0x1919080819080819, + 0x1919080819081908, 0x1919080819190808, 0x191908082b080808, 0x1919081908080819, + 0x1919081908081908, 0x1919081908190808, 0x1919081908191919, 0x1919081919080808, + 0x191908191908082b, 0x1919082b08080808, 0x1919082b19081908, 0x1919082b2b2b2b2b, + 0x1919190808080819, 0x1919190808081908, 0x1919190808190808, 0x19191908082b0819, + 0x1919190819080808, 0x19191908192b0808, 0x191919082b080819, 0x191919082b2b0819, + 0x1919191908080808, 0x1919191908082b08, 0x191919192b080808, 0x191919192b082b08, + 0x1919192b082b0819, 0x1919192b192b2b08, 0x1919192b2b2b0819, 0x19192b0808080808, + 0x19192b0808191908, 0x19192b0819080819, 0x19192b0819190808, 0x19192b082b192b19, + 0x19192b1908192b2b, 0x19192b1919080808, 0x19192b191908082b, 0x19192b2b2b081919, + 0x192b080808080819, 0x192b080808081908, 0x192b080808190808, 0x192b080819080808, + 0x192b080819191908, 0x192b0808192b082b, 0x192b08082b08192b, 0x192b08082b2b2b19, + 0x192b081908080808, 0x192b082b082b1908, 0x192b082b19082b2b, 0x192b082b2b19082b, + 0x192b190808080808, 0x192b19080819192b, 0x192b191908190808, 0x192b191919080808, + 0x192b191919081919, 0x192b19192b2b1908, 0x192b2b0808080819, 0x192b2b08192b2b2b, + 0x192b2b19082b1919, 0x192b2b2b0808192b, 0x192b2b2b19191908, 0x192b2b2b192b082b, + 0x2b08080808080808, 0x2b0808080808082b, 0x2b08080808081919, 0x2b08080808082b08, + 0x2b08080808190819, 0x2b08080808191908, 0x2b080808082b0808, 0x2b080808082b2b2b, + 0x2b08080819080819, 0x2b08080819081908, 0x2b08080819190808, 0x2b0808082b080808, + 0x2b0808082b08082b, 0x2b0808082b2b2b08, 0x2b0808082b2b2b2b, 0x2b08081908080819, + 0x2b08081908081908, 0x2b0808190808192b, 0x2b08081908190808, 0x2b08081919080808, + 0x2b08081919190819, 0x2b08081919192b19, 0x2b08082b08080808, 0x2b08082b082b0808, + 0x2b08082b2b080808, 0x2b08082b2b08082b, 0x2b08082b2b2b0808, 0x2b08082b2b2b2b08, + 0x2b08190808080819, 0x2b08190808081908, 0x2b08190808190808, 0x2b0819080819082b, + 0x2b08190808191919, 0x2b08190819080808, 0x2b081908192b0808, 0x2b0819082b082b19, + 0x2b08191908080808, 0x2b08191919081908, 0x2b0819192b2b1919, 0x2b08192b08192b08, + 0x2b08192b192b2b2b, 0x2b082b0808080808, 0x2b082b0808082b08, 0x2b082b08082b1919, + 0x2b082b0819192b2b, 0x2b082b082b080808, 0x2b082b082b08082b, 0x2b082b082b2b2b08, + 0x2b082b190808192b, 0x2b082b2b082b082b, 0x2b082b2b2b080808, 0x2b082b2b2b082b08, + 0x2b082b2b2b19192b, 0x2b082b2b2b2b2b08, 0x2b19080808080819, 0x2b19080808081908, + 0x2b19080808190808, 0x2b19080819080808, 0x2b1908081919192b, 0x2b1908082b081908, + 0x2b19081908080808, 0x2b190819082b082b, 0x2b190819192b1908, 0x2b19082b1919192b, + 0x2b19082b2b082b19, 0x2b19190808080808, 0x2b19190808081919, 0x2b19190819081908, + 0x2b19190819190808, 0x2b19190819192b08, 0x2b191919082b2b19, 0x2b1919192b190808, + 0x2b1919192b19082b, 0x2b19192b19080819, 0x2b192b0819190819, 0x2b192b082b2b192b, + 0x2b192b1919082b19, 0x2b192b2b08191919, 0x2b192b2b192b0808, 0x2b2b080808080808, + 0x2b2b08080808082b, 0x2b2b080808082b08, 0x2b2b080808082b2b, 0x2b2b0808082b0808, + 0x2b2b0808082b2b2b, 0x2b2b08082b2b0808, 0x2b2b081919190819, 0x2b2b081919192b19, + 0x2b2b08192b2b192b, 0x2b2b082b08080808, 0x2b2b082b0808082b, 0x2b2b082b08082b08, + 0x2b2b082b082b2b2b, 0x2b2b082b2b080808, 0x2b2b082b2b2b0808, 0x2b2b190819080808, + 0x2b2b19082b191919, 0x2b2b192b192b1919, 0x2b2b192b2b192b08, 0x2b2b2b0808082b2b, + 0x2b2b2b08082b0808, 0x2b2b2b08082b082b, 0x2b2b2b08082b2b08, 0x2b2b2b082b2b0808, + 0x2b2b2b082b2b2b08, 0x2b2b2b1908081908, 0x2b2b2b192b081908, 0x2b2b2b192b08192b, + 0x2b2b2b2b082b2b08, 0x2b2b2b2b082b2b2b, 0x2b2b2b2b2b190819, 0x2b2b2b2b2b2b2b2b, +GGML_TABLE_END() + +GGML_TABLE_BEGIN(uint64_t, iq2s_grid, 1024) + 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08, + 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x080808080819192b, + 0x0808080808192b19, 0x08080808082b0808, 0x08080808082b082b, 0x08080808082b1919, + 0x08080808082b2b08, 0x0808080819080819, 0x0808080819081908, 0x080808081908192b, + 0x0808080819082b19, 0x0808080819190808, 0x080808081919082b, 0x0808080819191919, + 0x0808080819192b08, 0x08080808192b0819, 0x08080808192b1908, 0x08080808192b192b, + 0x08080808192b2b19, 0x080808082b080808, 0x080808082b08082b, 0x080808082b081919, + 0x080808082b082b08, 0x080808082b190819, 0x080808082b191908, 0x080808082b2b0808, + 0x080808082b2b1919, 0x080808082b2b2b2b, 0x0808081908080819, 0x0808081908081908, + 0x080808190808192b, 0x0808081908082b19, 0x0808081908190808, 0x080808190819082b, + 0x0808081908191919, 0x0808081908192b08, 0x08080819082b0819, 0x08080819082b1908, + 0x0808081919080808, 0x080808191908082b, 0x0808081919081919, 0x0808081919082b08, + 0x0808081919190819, 0x0808081919191908, 0x080808191919192b, 0x0808081919192b19, + 0x08080819192b0808, 0x08080819192b1919, 0x08080819192b2b08, 0x080808192b080819, + 0x080808192b081908, 0x080808192b190808, 0x080808192b19082b, 0x080808192b191919, + 0x080808192b2b0819, 0x080808192b2b1908, 0x0808082b08080808, 0x0808082b0808082b, + 0x0808082b08081919, 0x0808082b08082b08, 0x0808082b08190819, 0x0808082b08191908, + 0x0808082b082b0808, 0x0808082b082b2b2b, 0x0808082b19080819, 0x0808082b19081908, + 0x0808082b1908192b, 0x0808082b19082b19, 0x0808082b19190808, 0x0808082b19191919, + 0x0808082b2b080808, 0x0808082b2b081919, 0x0808082b2b082b2b, 0x0808082b2b191908, + 0x0808082b2b2b082b, 0x0808190808080819, 0x0808190808081908, 0x080819080808192b, + 0x0808190808082b19, 0x0808190808190808, 0x080819080819082b, 0x0808190808191919, + 0x0808190808192b08, 0x08081908082b0819, 0x08081908082b1908, 0x08081908082b192b, + 0x08081908082b2b19, 0x0808190819080808, 0x080819081908082b, 0x0808190819081919, + 0x0808190819082b08, 0x0808190819082b2b, 0x0808190819190819, 0x0808190819191908, + 0x080819081919192b, 0x0808190819192b19, 0x08081908192b0808, 0x08081908192b082b, + 0x08081908192b1919, 0x080819082b080819, 0x080819082b081908, 0x080819082b08192b, + 0x080819082b082b19, 0x080819082b190808, 0x080819082b191919, 0x080819082b192b08, + 0x080819082b2b0819, 0x080819082b2b1908, 0x0808191908080808, 0x080819190808082b, + 0x0808191908081919, 0x0808191908082b08, 0x0808191908082b2b, 0x0808191908190819, + 0x0808191908191908, 0x080819190819192b, 0x0808191908192b19, 0x08081919082b0808, + 0x08081919082b1919, 0x08081919082b2b08, 0x0808191919080819, 0x0808191919081908, + 0x080819191908192b, 0x0808191919082b19, 0x0808191919190808, 0x080819191919082b, + 0x0808191919191919, 0x0808191919192b08, 0x08081919192b0819, 0x08081919192b1908, + 0x080819192b080808, 0x080819192b08082b, 0x080819192b081919, 0x080819192b082b08, + 0x080819192b190819, 0x080819192b191908, 0x080819192b2b0808, 0x0808192b08080819, + 0x0808192b08081908, 0x0808192b0808192b, 0x0808192b08082b19, 0x0808192b08190808, + 0x0808192b08191919, 0x0808192b19080808, 0x0808192b19081919, 0x0808192b19082b08, + 0x0808192b19190819, 0x0808192b19191908, 0x0808192b192b0808, 0x0808192b2b080819, + 0x0808192b2b081908, 0x0808192b2b190808, 0x08082b0808080808, 0x08082b080808082b, + 0x08082b0808081919, 0x08082b0808082b08, 0x08082b0808190819, 0x08082b0808191908, + 0x08082b080819192b, 0x08082b0808192b19, 0x08082b08082b0808, 0x08082b08082b1919, + 0x08082b08082b2b2b, 0x08082b0819080819, 0x08082b0819081908, 0x08082b081908192b, + 0x08082b0819082b19, 0x08082b0819190808, 0x08082b081919082b, 0x08082b0819191919, + 0x08082b0819192b08, 0x08082b08192b0819, 0x08082b08192b1908, 0x08082b082b080808, + 0x08082b082b081919, 0x08082b082b191908, 0x08082b082b2b2b2b, 0x08082b1908080819, + 0x08082b1908081908, 0x08082b1908190808, 0x08082b190819082b, 0x08082b1908191919, + 0x08082b1908192b08, 0x08082b19082b0819, 0x08082b1919080808, 0x08082b1919081919, + 0x08082b1919082b08, 0x08082b1919190819, 0x08082b1919191908, 0x08082b19192b0808, + 0x08082b192b080819, 0x08082b192b190808, 0x08082b2b08080808, 0x08082b2b08190819, + 0x08082b2b08191908, 0x08082b2b082b082b, 0x08082b2b082b2b08, 0x08082b2b082b2b2b, + 0x08082b2b19190808, 0x08082b2b2b192b19, 0x0819080808080819, 0x0819080808081908, + 0x081908080808192b, 0x0819080808082b19, 0x0819080808190808, 0x081908080819082b, + 0x0819080808191919, 0x0819080808192b08, 0x08190808082b0819, 0x08190808082b1908, + 0x08190808082b192b, 0x0819080819080808, 0x081908081908082b, 0x0819080819081919, + 0x0819080819082b08, 0x0819080819190819, 0x0819080819191908, 0x081908081919192b, + 0x0819080819192b19, 0x08190808192b0808, 0x08190808192b082b, 0x08190808192b1919, + 0x08190808192b2b08, 0x081908082b080819, 0x081908082b081908, 0x081908082b08192b, + 0x081908082b190808, 0x081908082b191919, 0x081908082b192b08, 0x081908082b2b0819, + 0x081908082b2b1908, 0x0819081908080808, 0x081908190808082b, 0x0819081908081919, + 0x0819081908082b08, 0x0819081908082b2b, 0x0819081908190819, 0x0819081908191908, + 0x081908190819192b, 0x0819081908192b19, 0x08190819082b0808, 0x08190819082b082b, + 0x08190819082b1919, 0x08190819082b2b08, 0x0819081919080819, 0x0819081919081908, + 0x081908191908192b, 0x0819081919082b19, 0x0819081919190808, 0x081908191919082b, + 0x0819081919191919, 0x0819081919192b08, 0x08190819192b0819, 0x08190819192b1908, + 0x081908192b080808, 0x081908192b08082b, 0x081908192b081919, 0x081908192b082b08, + 0x081908192b190819, 0x081908192b191908, 0x0819082b08080819, 0x0819082b08081908, + 0x0819082b08082b19, 0x0819082b08190808, 0x0819082b08191919, 0x0819082b082b0819, + 0x0819082b082b1908, 0x0819082b19080808, 0x0819082b19081919, 0x0819082b19190819, + 0x0819082b19191908, 0x0819082b2b080819, 0x0819082b2b081908, 0x0819082b2b190808, + 0x0819190808080808, 0x081919080808082b, 0x0819190808081919, 0x0819190808082b08, + 0x0819190808190819, 0x0819190808191908, 0x081919080819192b, 0x0819190808192b19, + 0x08191908082b0808, 0x08191908082b1919, 0x08191908082b2b08, 0x0819190819080819, + 0x0819190819081908, 0x081919081908192b, 0x0819190819082b19, 0x0819190819190808, + 0x081919081919082b, 0x0819190819191919, 0x0819190819192b08, 0x08191908192b0819, + 0x08191908192b1908, 0x081919082b080808, 0x081919082b08082b, 0x081919082b081919, + 0x081919082b082b08, 0x081919082b190819, 0x081919082b191908, 0x081919082b2b0808, + 0x0819191908080819, 0x0819191908081908, 0x081919190808192b, 0x0819191908082b19, + 0x0819191908190808, 0x081919190819082b, 0x0819191908191919, 0x0819191908192b08, + 0x08191919082b0819, 0x08191919082b1908, 0x0819191919080808, 0x081919191908082b, + 0x0819191919081919, 0x0819191919082b08, 0x0819191919190819, 0x0819191919191908, + 0x08191919192b0808, 0x081919192b080819, 0x081919192b081908, 0x081919192b190808, + 0x0819192b08080808, 0x0819192b08081919, 0x0819192b08082b08, 0x0819192b08190819, + 0x0819192b08191908, 0x0819192b082b0808, 0x0819192b19080819, 0x0819192b19081908, + 0x0819192b19190808, 0x0819192b2b080808, 0x0819192b2b2b2b2b, 0x08192b0808080819, + 0x08192b0808081908, 0x08192b080808192b, 0x08192b0808082b19, 0x08192b0808190808, + 0x08192b0808191919, 0x08192b0808192b08, 0x08192b08082b0819, 0x08192b0819080808, + 0x08192b081908082b, 0x08192b0819081919, 0x08192b0819082b08, 0x08192b0819190819, + 0x08192b0819191908, 0x08192b08192b0808, 0x08192b082b080819, 0x08192b082b081908, + 0x08192b1908080808, 0x08192b190808082b, 0x08192b1908081919, 0x08192b1908082b08, + 0x08192b1908190819, 0x08192b1908191908, 0x08192b19082b0808, 0x08192b1919080819, + 0x08192b1919081908, 0x08192b1919190808, 0x08192b19192b2b19, 0x08192b192b2b082b, + 0x08192b2b08081908, 0x08192b2b08190808, 0x08192b2b19080808, 0x08192b2b1919192b, + 0x082b080808080808, 0x082b08080808082b, 0x082b080808081919, 0x082b080808082b08, + 0x082b080808190819, 0x082b080808191908, 0x082b08080819192b, 0x082b080808192b19, + 0x082b0808082b0808, 0x082b0808082b1919, 0x082b0808082b2b2b, 0x082b080819080819, + 0x082b080819081908, 0x082b080819190808, 0x082b08081919082b, 0x082b080819191919, + 0x082b0808192b1908, 0x082b08082b080808, 0x082b08082b082b2b, 0x082b08082b191908, + 0x082b08082b2b2b2b, 0x082b081908080819, 0x082b081908081908, 0x082b081908190808, + 0x082b08190819082b, 0x082b081908191919, 0x082b0819082b0819, 0x082b081919080808, + 0x082b08191908082b, 0x082b081919081919, 0x082b081919190819, 0x082b081919191908, + 0x082b0819192b0808, 0x082b08192b080819, 0x082b08192b081908, 0x082b08192b190808, + 0x082b082b08080808, 0x082b082b08082b2b, 0x082b082b082b082b, 0x082b082b082b2b08, + 0x082b082b082b2b2b, 0x082b082b19081908, 0x082b082b19190808, 0x082b082b2b082b08, + 0x082b082b2b082b2b, 0x082b082b2b2b2b08, 0x082b190808080819, 0x082b190808081908, + 0x082b19080808192b, 0x082b190808082b19, 0x082b190808190808, 0x082b190808191919, + 0x082b190808192b08, 0x082b1908082b0819, 0x082b1908082b1908, 0x082b190819080808, + 0x082b19081908082b, 0x082b190819081919, 0x082b190819082b08, 0x082b190819190819, + 0x082b190819191908, 0x082b1908192b0808, 0x082b19082b080819, 0x082b19082b081908, + 0x082b19082b190808, 0x082b191908080808, 0x082b191908081919, 0x082b191908082b08, + 0x082b191908190819, 0x082b191908191908, 0x082b1919082b0808, 0x082b191919080819, + 0x082b191919081908, 0x082b191919190808, 0x082b1919192b192b, 0x082b19192b080808, + 0x082b192b08080819, 0x082b192b08081908, 0x082b192b08190808, 0x082b192b19080808, + 0x082b192b19192b19, 0x082b2b0808080808, 0x082b2b0808081919, 0x082b2b0808190819, + 0x082b2b0808191908, 0x082b2b0819080819, 0x082b2b0819081908, 0x082b2b0819190808, + 0x082b2b082b082b2b, 0x082b2b082b2b2b2b, 0x082b2b1908080819, 0x082b2b1908081908, + 0x082b2b1908190808, 0x082b2b192b191919, 0x082b2b2b08082b2b, 0x082b2b2b082b082b, + 0x082b2b2b192b1908, 0x082b2b2b2b082b08, 0x082b2b2b2b082b2b, 0x1908080808080819, + 0x1908080808081908, 0x190808080808192b, 0x1908080808082b19, 0x1908080808190808, + 0x190808080819082b, 0x1908080808191919, 0x1908080808192b08, 0x1908080808192b2b, + 0x19080808082b0819, 0x19080808082b1908, 0x19080808082b192b, 0x1908080819080808, + 0x190808081908082b, 0x1908080819081919, 0x1908080819082b08, 0x1908080819082b2b, + 0x1908080819190819, 0x1908080819191908, 0x190808081919192b, 0x1908080819192b19, + 0x19080808192b0808, 0x19080808192b082b, 0x19080808192b1919, 0x190808082b080819, + 0x190808082b081908, 0x190808082b190808, 0x190808082b191919, 0x190808082b192b08, + 0x190808082b2b0819, 0x190808082b2b1908, 0x1908081908080808, 0x190808190808082b, + 0x1908081908081919, 0x1908081908082b08, 0x1908081908190819, 0x1908081908191908, + 0x190808190819192b, 0x1908081908192b19, 0x19080819082b0808, 0x19080819082b082b, + 0x19080819082b1919, 0x1908081919080819, 0x1908081919081908, 0x190808191908192b, + 0x1908081919082b19, 0x1908081919190808, 0x190808191919082b, 0x1908081919191919, + 0x1908081919192b08, 0x19080819192b0819, 0x19080819192b1908, 0x190808192b080808, + 0x190808192b08082b, 0x190808192b081919, 0x190808192b082b08, 0x190808192b190819, + 0x190808192b191908, 0x190808192b2b0808, 0x1908082b08080819, 0x1908082b08081908, + 0x1908082b08190808, 0x1908082b0819082b, 0x1908082b08191919, 0x1908082b08192b08, + 0x1908082b082b1908, 0x1908082b19080808, 0x1908082b19081919, 0x1908082b19082b08, + 0x1908082b19190819, 0x1908082b19191908, 0x1908082b192b0808, 0x1908082b2b080819, + 0x1908082b2b081908, 0x1908190808080808, 0x190819080808082b, 0x1908190808081919, + 0x1908190808082b08, 0x1908190808082b2b, 0x1908190808190819, 0x1908190808191908, + 0x190819080819192b, 0x1908190808192b19, 0x19081908082b0808, 0x19081908082b082b, + 0x19081908082b1919, 0x19081908082b2b08, 0x1908190819080819, 0x1908190819081908, + 0x190819081908192b, 0x1908190819082b19, 0x1908190819190808, 0x190819081919082b, + 0x1908190819191919, 0x1908190819192b08, 0x19081908192b0819, 0x19081908192b1908, + 0x190819082b080808, 0x190819082b08082b, 0x190819082b081919, 0x190819082b082b08, + 0x190819082b190819, 0x190819082b191908, 0x190819082b2b0808, 0x1908191908080819, + 0x1908191908081908, 0x190819190808192b, 0x1908191908082b19, 0x1908191908190808, + 0x190819190819082b, 0x1908191908191919, 0x1908191908192b08, 0x19081919082b0819, + 0x19081919082b1908, 0x1908191919080808, 0x190819191908082b, 0x1908191919081919, + 0x1908191919082b08, 0x1908191919190819, 0x1908191919191908, 0x19081919192b0808, + 0x19081919192b2b2b, 0x190819192b080819, 0x190819192b081908, 0x190819192b190808, + 0x1908192b08080808, 0x1908192b0808082b, 0x1908192b08081919, 0x1908192b08082b08, + 0x1908192b08190819, 0x1908192b08191908, 0x1908192b082b0808, 0x1908192b19080819, + 0x1908192b19081908, 0x1908192b19190808, 0x1908192b2b080808, 0x1908192b2b2b1919, + 0x19082b0808080819, 0x19082b0808081908, 0x19082b0808082b19, 0x19082b0808190808, + 0x19082b080819082b, 0x19082b0808191919, 0x19082b0808192b08, 0x19082b08082b0819, + 0x19082b08082b1908, 0x19082b0819080808, 0x19082b081908082b, 0x19082b0819081919, + 0x19082b0819082b08, 0x19082b0819190819, 0x19082b0819191908, 0x19082b08192b0808, + 0x19082b082b081908, 0x19082b082b190808, 0x19082b1908080808, 0x19082b190808082b, + 0x19082b1908081919, 0x19082b1908082b08, 0x19082b1908190819, 0x19082b1908191908, + 0x19082b19082b0808, 0x19082b1919080819, 0x19082b1919081908, 0x19082b1919190808, + 0x19082b192b080808, 0x19082b192b19192b, 0x19082b2b08080819, 0x19082b2b08081908, + 0x19082b2b08190808, 0x19082b2b19080808, 0x1919080808080808, 0x191908080808082b, + 0x1919080808081919, 0x1919080808082b08, 0x1919080808190819, 0x1919080808191908, + 0x191908080819192b, 0x1919080808192b19, 0x19190808082b0808, 0x19190808082b082b, + 0x19190808082b1919, 0x19190808082b2b08, 0x1919080819080819, 0x1919080819081908, + 0x191908081908192b, 0x1919080819082b19, 0x1919080819190808, 0x191908081919082b, + 0x1919080819191919, 0x1919080819192b08, 0x19190808192b0819, 0x19190808192b1908, + 0x191908082b080808, 0x191908082b08082b, 0x191908082b081919, 0x191908082b082b08, + 0x191908082b190819, 0x191908082b191908, 0x1919081908080819, 0x1919081908081908, + 0x191908190808192b, 0x1919081908082b19, 0x1919081908190808, 0x191908190819082b, + 0x1919081908191919, 0x1919081908192b08, 0x19190819082b0819, 0x19190819082b1908, + 0x1919081919080808, 0x191908191908082b, 0x1919081919081919, 0x1919081919082b08, + 0x1919081919190819, 0x1919081919191908, 0x19190819192b0808, 0x191908192b080819, + 0x191908192b081908, 0x191908192b190808, 0x1919082b08080808, 0x1919082b08081919, + 0x1919082b08082b08, 0x1919082b08190819, 0x1919082b08191908, 0x1919082b082b0808, + 0x1919082b19080819, 0x1919082b19081908, 0x1919082b19190808, 0x1919082b192b2b19, + 0x1919082b2b080808, 0x1919190808080819, 0x1919190808081908, 0x191919080808192b, + 0x1919190808082b19, 0x1919190808190808, 0x191919080819082b, 0x1919190808191919, + 0x1919190808192b08, 0x19191908082b0819, 0x19191908082b1908, 0x1919190819080808, + 0x191919081908082b, 0x1919190819081919, 0x1919190819082b08, 0x1919190819190819, + 0x1919190819191908, 0x19191908192b0808, 0x191919082b080819, 0x191919082b081908, + 0x191919082b190808, 0x1919191908080808, 0x191919190808082b, 0x1919191908081919, + 0x1919191908082b08, 0x1919191908190819, 0x1919191908191908, 0x19191919082b0808, + 0x1919191919080819, 0x1919191919081908, 0x1919191919190808, 0x191919192b080808, + 0x1919192b08080819, 0x1919192b08081908, 0x1919192b08190808, 0x1919192b082b192b, + 0x1919192b19080808, 0x19192b0808080808, 0x19192b080808082b, 0x19192b0808081919, + 0x19192b0808082b08, 0x19192b0808190819, 0x19192b0808191908, 0x19192b08082b0808, + 0x19192b0819080819, 0x19192b0819081908, 0x19192b0819190808, 0x19192b0819192b2b, + 0x19192b082b080808, 0x19192b1908080819, 0x19192b1908081908, 0x19192b1908190808, + 0x19192b1919080808, 0x19192b2b08080808, 0x19192b2b08192b19, 0x19192b2b2b081919, + 0x19192b2b2b2b2b08, 0x192b080808080819, 0x192b080808081908, 0x192b08080808192b, + 0x192b080808190808, 0x192b08080819082b, 0x192b080808191919, 0x192b080808192b08, + 0x192b0808082b0819, 0x192b0808082b1908, 0x192b080819080808, 0x192b080819081919, + 0x192b080819082b08, 0x192b080819190819, 0x192b080819191908, 0x192b0808192b0808, + 0x192b08082b081908, 0x192b08082b190808, 0x192b081908080808, 0x192b08190808082b, + 0x192b081908081919, 0x192b081908082b08, 0x192b081908190819, 0x192b081908191908, + 0x192b0819082b0808, 0x192b081919080819, 0x192b081919081908, 0x192b081919190808, + 0x192b08192b080808, 0x192b08192b192b19, 0x192b082b08081908, 0x192b082b08190808, + 0x192b082b19080808, 0x192b082b1919192b, 0x192b082b2b2b0819, 0x192b190808080808, + 0x192b190808081919, 0x192b190808082b08, 0x192b190808190819, 0x192b190808191908, + 0x192b1908082b0808, 0x192b190819080819, 0x192b190819081908, 0x192b190819190808, + 0x192b19082b080808, 0x192b191908080819, 0x192b191908081908, 0x192b191908190808, + 0x192b191919080808, 0x192b191919082b2b, 0x192b1919192b2b08, 0x192b19192b19082b, + 0x192b192b08080808, 0x192b192b2b191908, 0x192b2b0808080819, 0x192b2b0808081908, + 0x192b2b0808190808, 0x192b2b08192b1919, 0x192b2b082b192b08, 0x192b2b1908080808, + 0x192b2b19082b2b2b, 0x192b2b2b1908082b, 0x192b2b2b2b2b0819, 0x2b08080808080808, + 0x2b0808080808082b, 0x2b08080808081919, 0x2b08080808082b08, 0x2b08080808190819, + 0x2b08080808191908, 0x2b08080808192b19, 0x2b080808082b0808, 0x2b080808082b1919, + 0x2b08080819080819, 0x2b08080819081908, 0x2b08080819190808, 0x2b0808081919082b, + 0x2b08080819191919, 0x2b08080819192b08, 0x2b080808192b0819, 0x2b0808082b080808, + 0x2b0808082b081919, 0x2b0808082b190819, 0x2b0808082b191908, 0x2b08081908080819, + 0x2b08081908081908, 0x2b08081908082b19, 0x2b08081908190808, 0x2b0808190819082b, + 0x2b08081908191919, 0x2b08081908192b08, 0x2b080819082b0819, 0x2b080819082b1908, + 0x2b08081919080808, 0x2b0808191908082b, 0x2b08081919081919, 0x2b08081919082b08, + 0x2b08081919190819, 0x2b08081919191908, 0x2b0808192b080819, 0x2b0808192b081908, + 0x2b0808192b190808, 0x2b0808192b2b2b19, 0x2b08082b08080808, 0x2b08082b08081919, + 0x2b08082b08082b2b, 0x2b08082b08190819, 0x2b08082b08191908, 0x2b08082b19080819, + 0x2b08082b19081908, 0x2b08082b19190808, 0x2b08190808080819, 0x2b08190808081908, + 0x2b0819080808192b, 0x2b08190808082b19, 0x2b08190808190808, 0x2b0819080819082b, + 0x2b08190808191919, 0x2b08190808192b08, 0x2b081908082b0819, 0x2b08190819080808, + 0x2b0819081908082b, 0x2b08190819081919, 0x2b08190819082b08, 0x2b08190819190819, + 0x2b08190819191908, 0x2b081908192b0808, 0x2b0819082b080819, 0x2b0819082b081908, + 0x2b0819082b190808, 0x2b08191908080808, 0x2b0819190808082b, 0x2b08191908081919, + 0x2b08191908082b08, 0x2b08191908190819, 0x2b08191908191908, 0x2b081919082b0808, + 0x2b08191919080819, 0x2b08191919081908, 0x2b08191919190808, 0x2b0819192b080808, + 0x2b0819192b082b2b, 0x2b08192b08080819, 0x2b08192b08081908, 0x2b08192b08190808, + 0x2b08192b082b2b19, 0x2b08192b19080808, 0x2b082b0808080808, 0x2b082b0808081919, + 0x2b082b0808190819, 0x2b082b0808191908, 0x2b082b0819080819, 0x2b082b0819081908, + 0x2b082b0819190808, 0x2b082b082b2b082b, 0x2b082b1908080819, 0x2b082b1908081908, + 0x2b082b1919080808, 0x2b082b19192b1919, 0x2b082b2b082b082b, 0x2b082b2b19192b08, + 0x2b082b2b19192b2b, 0x2b082b2b2b08082b, 0x2b082b2b2b2b082b, 0x2b19080808080819, + 0x2b19080808081908, 0x2b19080808082b19, 0x2b19080808190808, 0x2b1908080819082b, + 0x2b19080808191919, 0x2b19080808192b08, 0x2b190808082b1908, 0x2b19080819080808, + 0x2b1908081908082b, 0x2b19080819081919, 0x2b19080819082b08, 0x2b19080819190819, + 0x2b19080819191908, 0x2b190808192b0808, 0x2b1908082b080819, 0x2b1908082b081908, + 0x2b1908082b190808, 0x2b19081908080808, 0x2b19081908081919, 0x2b19081908190819, + 0x2b19081908191908, 0x2b19081919080819, 0x2b19081919081908, 0x2b19081919190808, + 0x2b19081919192b2b, 0x2b19082b08080819, 0x2b19082b08081908, 0x2b19082b08190808, + 0x2b19082b19080808, 0x2b19082b2b2b192b, 0x2b19190808080808, 0x2b1919080808082b, + 0x2b19190808081919, 0x2b19190808082b08, 0x2b19190808190819, 0x2b19190808191908, + 0x2b191908082b0808, 0x2b19190819080819, 0x2b19190819081908, 0x2b19190819190808, + 0x2b1919082b080808, 0x2b1919082b19192b, 0x2b19191908080819, 0x2b19191908081908, + 0x2b19191908190808, 0x2b19191919080808, 0x2b1919192b192b08, 0x2b1919192b2b0819, + 0x2b19192b08080808, 0x2b19192b1908192b, 0x2b19192b192b1908, 0x2b192b0808080819, + 0x2b192b0808081908, 0x2b192b0808190808, 0x2b192b08082b192b, 0x2b192b0819080808, + 0x2b192b082b2b2b19, 0x2b192b1908080808, 0x2b192b1919082b19, 0x2b192b191919082b, + 0x2b192b2b2b190808, 0x2b2b080808080808, 0x2b2b080808081919, 0x2b2b080808082b2b, + 0x2b2b080808191908, 0x2b2b0808082b082b, 0x2b2b0808082b2b2b, 0x2b2b080819080819, + 0x2b2b080819081908, 0x2b2b080819190808, 0x2b2b08082b2b082b, 0x2b2b08082b2b2b2b, + 0x2b2b081919080808, 0x2b2b0819192b1919, 0x2b2b082b0808082b, 0x2b2b082b08082b2b, + 0x2b2b082b082b082b, 0x2b2b082b082b2b08, 0x2b2b082b082b2b2b, 0x2b2b082b2b08082b, + 0x2b2b082b2b082b08, 0x2b2b082b2b082b2b, 0x2b2b082b2b2b2b08, 0x2b2b190808080819, + 0x2b2b190808081908, 0x2b2b190808190808, 0x2b2b190819080808, 0x2b2b19082b082b19, + 0x2b2b19082b2b1908, 0x2b2b191908080808, 0x2b2b191908192b19, 0x2b2b192b19190819, + 0x2b2b2b0808082b2b, 0x2b2b2b08082b2b08, 0x2b2b2b082b2b082b, 0x2b2b2b1919191908, + 0x2b2b2b192b08192b, 0x2b2b2b2b08082b08, 0x2b2b2b2b08082b2b, 0x2b2b2b2b082b0808, + 0x2b2b2b2b082b082b, 0x2b2b2b2b082b2b08, 0x2b2b2b2b2b082b08, 0x2b2b2b2b2b2b2b2b, +GGML_TABLE_END() + +GGML_TABLE_BEGIN(uint32_t, iq3xxs_grid, 256) + 0x04040404, 0x04040414, 0x04040424, 0x04040c0c, 0x04040c1c, 0x04040c3e, 0x04041404, 0x04041414, + 0x04041c0c, 0x04042414, 0x04043e1c, 0x04043e2c, 0x040c040c, 0x040c041c, 0x040c0c04, 0x040c0c14, + 0x040c140c, 0x040c142c, 0x040c1c04, 0x040c1c14, 0x040c240c, 0x040c2c24, 0x040c3e04, 0x04140404, + 0x04140414, 0x04140424, 0x04140c0c, 0x04141404, 0x04141414, 0x04141c0c, 0x04141c1c, 0x04141c3e, + 0x04142c0c, 0x04142c3e, 0x04143e2c, 0x041c040c, 0x041c043e, 0x041c0c04, 0x041c0c14, 0x041c142c, + 0x041c3e04, 0x04240c1c, 0x04241c3e, 0x04242424, 0x04242c3e, 0x04243e1c, 0x04243e2c, 0x042c040c, + 0x042c043e, 0x042c1c14, 0x042c2c14, 0x04341c2c, 0x04343424, 0x043e0c04, 0x043e0c24, 0x043e0c34, + 0x043e241c, 0x043e340c, 0x0c04040c, 0x0c04041c, 0x0c040c04, 0x0c040c14, 0x0c04140c, 0x0c04141c, + 0x0c041c04, 0x0c041c14, 0x0c041c24, 0x0c04243e, 0x0c042c04, 0x0c0c0404, 0x0c0c0414, 0x0c0c0c0c, + 0x0c0c1404, 0x0c0c1414, 0x0c14040c, 0x0c14041c, 0x0c140c04, 0x0c140c14, 0x0c14140c, 0x0c141c04, + 0x0c143e14, 0x0c1c0404, 0x0c1c0414, 0x0c1c1404, 0x0c1c1c0c, 0x0c1c2434, 0x0c1c3434, 0x0c24040c, + 0x0c24042c, 0x0c242c04, 0x0c2c1404, 0x0c2c1424, 0x0c2c2434, 0x0c2c3e0c, 0x0c34042c, 0x0c3e1414, + 0x0c3e2404, 0x14040404, 0x14040414, 0x14040c0c, 0x14040c1c, 0x14041404, 0x14041414, 0x14041434, + 0x14041c0c, 0x14042414, 0x140c040c, 0x140c041c, 0x140c042c, 0x140c0c04, 0x140c0c14, 0x140c140c, + 0x140c1c04, 0x140c341c, 0x140c343e, 0x140c3e04, 0x14140404, 0x14140414, 0x14140c0c, 0x14140c3e, + 0x14141404, 0x14141414, 0x14141c3e, 0x14142404, 0x14142c2c, 0x141c040c, 0x141c0c04, 0x141c0c24, + 0x141c3e04, 0x141c3e24, 0x14241c2c, 0x14242c1c, 0x142c041c, 0x142c143e, 0x142c240c, 0x142c3e24, + 0x143e040c, 0x143e041c, 0x143e0c34, 0x143e242c, 0x1c04040c, 0x1c040c04, 0x1c040c14, 0x1c04140c, + 0x1c04141c, 0x1c042c04, 0x1c04342c, 0x1c043e14, 0x1c0c0404, 0x1c0c0414, 0x1c0c1404, 0x1c0c1c0c, + 0x1c0c2424, 0x1c0c2434, 0x1c14040c, 0x1c14041c, 0x1c140c04, 0x1c14142c, 0x1c142c14, 0x1c143e14, + 0x1c1c0c0c, 0x1c1c1c1c, 0x1c241c04, 0x1c24243e, 0x1c243e14, 0x1c2c0404, 0x1c2c0434, 0x1c2c1414, + 0x1c2c2c2c, 0x1c340c24, 0x1c341c34, 0x1c34341c, 0x1c3e1c1c, 0x1c3e3404, 0x24040424, 0x24040c3e, + 0x24041c2c, 0x24041c3e, 0x24042c1c, 0x24042c3e, 0x240c3e24, 0x24141404, 0x24141c3e, 0x24142404, + 0x24143404, 0x24143434, 0x241c043e, 0x241c242c, 0x24240424, 0x24242c0c, 0x24243424, 0x242c142c, + 0x242c241c, 0x242c3e04, 0x243e042c, 0x243e0c04, 0x243e0c14, 0x243e1c04, 0x2c040c14, 0x2c04240c, + 0x2c043e04, 0x2c0c0404, 0x2c0c0434, 0x2c0c1434, 0x2c0c2c2c, 0x2c140c24, 0x2c141c14, 0x2c143e14, + 0x2c1c0414, 0x2c1c2c1c, 0x2c240c04, 0x2c24141c, 0x2c24143e, 0x2c243e14, 0x2c2c0414, 0x2c2c1c0c, + 0x2c342c04, 0x2c3e1424, 0x2c3e2414, 0x34041424, 0x34042424, 0x34042434, 0x34043424, 0x340c140c, + 0x340c340c, 0x34140c3e, 0x34143424, 0x341c1c04, 0x341c1c34, 0x34242424, 0x342c042c, 0x342c2c14, + 0x34341c1c, 0x343e041c, 0x343e140c, 0x3e04041c, 0x3e04042c, 0x3e04043e, 0x3e040c04, 0x3e041c14, + 0x3e042c14, 0x3e0c1434, 0x3e0c2404, 0x3e140c14, 0x3e14242c, 0x3e142c14, 0x3e1c0404, 0x3e1c0c2c, + 0x3e1c1c1c, 0x3e1c3404, 0x3e24140c, 0x3e24240c, 0x3e2c0404, 0x3e2c0414, 0x3e2c1424, 0x3e341c04, +GGML_TABLE_END() + +GGML_TABLE_BEGIN(uint32_t, iq3s_grid, 512) + 0x01010101, 0x01010103, 0x01010105, 0x0101010b, 0x0101010f, 0x01010301, 0x01010303, 0x01010305, + 0x01010309, 0x0101030d, 0x01010501, 0x01010503, 0x0101050b, 0x01010707, 0x01010901, 0x01010905, + 0x0101090b, 0x0101090f, 0x01010b03, 0x01010b07, 0x01010d01, 0x01010d05, 0x01010f03, 0x01010f09, + 0x01010f0f, 0x01030101, 0x01030103, 0x01030105, 0x01030109, 0x01030301, 0x01030303, 0x0103030b, + 0x01030501, 0x01030507, 0x0103050f, 0x01030703, 0x0103070b, 0x01030909, 0x01030d03, 0x01030d0b, + 0x01030f05, 0x01050101, 0x01050103, 0x0105010b, 0x0105010f, 0x01050301, 0x01050307, 0x0105030d, + 0x01050503, 0x0105050b, 0x01050701, 0x01050709, 0x01050905, 0x0105090b, 0x0105090f, 0x01050b03, + 0x01050b07, 0x01050f01, 0x01050f07, 0x01070107, 0x01070303, 0x0107030b, 0x01070501, 0x01070505, + 0x01070703, 0x01070707, 0x0107070d, 0x01070909, 0x01070b01, 0x01070b05, 0x01070d0f, 0x01070f03, + 0x01070f0b, 0x01090101, 0x01090307, 0x0109030f, 0x01090503, 0x01090509, 0x01090705, 0x01090901, + 0x01090907, 0x01090b03, 0x01090f01, 0x010b0105, 0x010b0109, 0x010b0501, 0x010b0505, 0x010b050d, + 0x010b0707, 0x010b0903, 0x010b090b, 0x010b090f, 0x010b0d0d, 0x010b0f07, 0x010d010d, 0x010d0303, + 0x010d0307, 0x010d0703, 0x010d0b05, 0x010d0f03, 0x010f0101, 0x010f0105, 0x010f0109, 0x010f0501, + 0x010f0505, 0x010f050d, 0x010f0707, 0x010f0b01, 0x010f0b09, 0x03010101, 0x03010103, 0x03010105, + 0x03010109, 0x03010301, 0x03010303, 0x03010307, 0x0301030b, 0x0301030f, 0x03010501, 0x03010505, + 0x03010703, 0x03010709, 0x0301070d, 0x03010b09, 0x03010b0d, 0x03010d03, 0x03010f05, 0x03030101, + 0x03030103, 0x03030107, 0x0303010d, 0x03030301, 0x03030309, 0x03030503, 0x03030701, 0x03030707, + 0x03030903, 0x03030b01, 0x03030b05, 0x03030f01, 0x03030f0d, 0x03050101, 0x03050305, 0x0305030b, + 0x0305030f, 0x03050501, 0x03050509, 0x03050705, 0x03050901, 0x03050907, 0x03050b0b, 0x03050d01, + 0x03050f05, 0x03070103, 0x03070109, 0x0307010f, 0x03070301, 0x03070307, 0x03070503, 0x0307050f, + 0x03070701, 0x03070709, 0x03070903, 0x03070d05, 0x03070f01, 0x03090107, 0x0309010b, 0x03090305, + 0x03090309, 0x03090703, 0x03090707, 0x03090905, 0x0309090d, 0x03090b01, 0x03090b09, 0x030b0103, + 0x030b0301, 0x030b0307, 0x030b0503, 0x030b0701, 0x030b0705, 0x030b0b03, 0x030d0501, 0x030d0509, + 0x030d050f, 0x030d0909, 0x030d090d, 0x030f0103, 0x030f0107, 0x030f0301, 0x030f0305, 0x030f0503, + 0x030f070b, 0x030f0903, 0x030f0d05, 0x030f0f01, 0x05010101, 0x05010103, 0x05010107, 0x0501010b, + 0x0501010f, 0x05010301, 0x05010305, 0x05010309, 0x0501030d, 0x05010503, 0x05010507, 0x0501050f, + 0x05010701, 0x05010705, 0x05010903, 0x05010907, 0x0501090b, 0x05010b01, 0x05010b05, 0x05010d0f, + 0x05010f01, 0x05010f07, 0x05010f0b, 0x05030101, 0x05030105, 0x05030301, 0x05030307, 0x0503030f, + 0x05030505, 0x0503050b, 0x05030703, 0x05030709, 0x05030905, 0x05030b03, 0x05050103, 0x05050109, + 0x0505010f, 0x05050503, 0x05050507, 0x05050701, 0x0505070f, 0x05050903, 0x05050b07, 0x05050b0f, + 0x05050f03, 0x05050f09, 0x05070101, 0x05070105, 0x0507010b, 0x05070303, 0x05070505, 0x05070509, + 0x05070703, 0x05070707, 0x05070905, 0x05070b01, 0x05070d0d, 0x05090103, 0x0509010f, 0x05090501, + 0x05090507, 0x05090705, 0x0509070b, 0x05090903, 0x05090f05, 0x05090f0b, 0x050b0109, 0x050b0303, + 0x050b0505, 0x050b070f, 0x050b0901, 0x050b0b07, 0x050b0f01, 0x050d0101, 0x050d0105, 0x050d010f, + 0x050d0503, 0x050d0b0b, 0x050d0d03, 0x050f010b, 0x050f0303, 0x050f050d, 0x050f0701, 0x050f0907, + 0x050f0b01, 0x07010105, 0x07010303, 0x07010307, 0x0701030b, 0x0701030f, 0x07010505, 0x07010703, + 0x07010707, 0x0701070b, 0x07010905, 0x07010909, 0x0701090f, 0x07010b03, 0x07010d07, 0x07010f03, + 0x07030103, 0x07030107, 0x0703010b, 0x07030309, 0x07030503, 0x07030507, 0x07030901, 0x07030d01, + 0x07030f05, 0x07030f0d, 0x07050101, 0x07050305, 0x07050501, 0x07050705, 0x07050709, 0x07050b01, + 0x07070103, 0x07070301, 0x07070309, 0x07070503, 0x07070507, 0x0707050f, 0x07070701, 0x07070903, + 0x07070907, 0x0707090f, 0x07070b0b, 0x07070f07, 0x07090107, 0x07090303, 0x0709030d, 0x07090505, + 0x07090703, 0x07090b05, 0x07090d01, 0x07090d09, 0x070b0103, 0x070b0301, 0x070b0305, 0x070b050b, + 0x070b0705, 0x070b0909, 0x070b0b0d, 0x070b0f07, 0x070d030d, 0x070d0903, 0x070f0103, 0x070f0107, + 0x070f0501, 0x070f0505, 0x070f070b, 0x09010101, 0x09010109, 0x09010305, 0x09010501, 0x09010509, + 0x0901050f, 0x09010705, 0x09010903, 0x09010b01, 0x09010f01, 0x09030105, 0x0903010f, 0x09030303, + 0x09030307, 0x09030505, 0x09030701, 0x0903070b, 0x09030907, 0x09030b03, 0x09030b0b, 0x09050103, + 0x09050107, 0x09050301, 0x0905030b, 0x09050503, 0x09050707, 0x09050901, 0x09050b0f, 0x09050d05, + 0x09050f01, 0x09070109, 0x09070303, 0x09070307, 0x09070501, 0x09070505, 0x09070703, 0x0907070b, + 0x09090101, 0x09090105, 0x09090509, 0x0909070f, 0x09090901, 0x09090f03, 0x090b010b, 0x090b010f, + 0x090b0503, 0x090b0d05, 0x090d0307, 0x090d0709, 0x090d0d01, 0x090f0301, 0x090f030b, 0x090f0701, + 0x090f0907, 0x090f0b03, 0x0b010105, 0x0b010301, 0x0b010309, 0x0b010505, 0x0b010901, 0x0b010909, + 0x0b01090f, 0x0b010b05, 0x0b010d0d, 0x0b010f09, 0x0b030103, 0x0b030107, 0x0b03010b, 0x0b030305, + 0x0b030503, 0x0b030705, 0x0b030f05, 0x0b050101, 0x0b050303, 0x0b050507, 0x0b050701, 0x0b05070d, + 0x0b050b07, 0x0b070105, 0x0b07010f, 0x0b070301, 0x0b07050f, 0x0b070909, 0x0b070b03, 0x0b070d0b, + 0x0b070f07, 0x0b090103, 0x0b090109, 0x0b090501, 0x0b090705, 0x0b09090d, 0x0b0b0305, 0x0b0b050d, + 0x0b0b0b03, 0x0b0b0b07, 0x0b0d0905, 0x0b0f0105, 0x0b0f0109, 0x0b0f0505, 0x0d010303, 0x0d010307, + 0x0d01030b, 0x0d010703, 0x0d010707, 0x0d010d01, 0x0d030101, 0x0d030501, 0x0d03050f, 0x0d030d09, + 0x0d050305, 0x0d050709, 0x0d050905, 0x0d050b0b, 0x0d050d05, 0x0d050f01, 0x0d070101, 0x0d070309, + 0x0d070503, 0x0d070901, 0x0d09050b, 0x0d090907, 0x0d090d05, 0x0d0b0101, 0x0d0b0107, 0x0d0b0709, + 0x0d0b0d01, 0x0d0d010b, 0x0d0d0901, 0x0d0f0303, 0x0d0f0307, 0x0f010101, 0x0f010109, 0x0f01010f, + 0x0f010501, 0x0f010505, 0x0f01070d, 0x0f010901, 0x0f010b09, 0x0f010d05, 0x0f030105, 0x0f030303, + 0x0f030509, 0x0f030907, 0x0f03090b, 0x0f050103, 0x0f050109, 0x0f050301, 0x0f05030d, 0x0f050503, + 0x0f050701, 0x0f050b03, 0x0f070105, 0x0f070705, 0x0f07070b, 0x0f070b07, 0x0f090103, 0x0f09010b, + 0x0f090307, 0x0f090501, 0x0f090b01, 0x0f0b0505, 0x0f0b0905, 0x0f0d0105, 0x0f0d0703, 0x0f0f0101, +GGML_TABLE_END() + +#define NGRID_IQ1S 2048 +#define IQ1S_DELTA 0.125f +#define IQ1M_DELTA 0.125f +#if defined(GGML_COMMON_IMPL_C) +GGML_TABLE_BEGIN(uint64_t, iq1s_grid, NGRID_IQ1S) + 0xffffffffffffffff, 0xffffffffffffff01, 0xffffffffffff0000, 0xffffffffffff01ff, + 0xffffffffffff0101, 0xffffffffff00ff00, 0xffffffffff000000, 0xffffffffff01ffff, + 0xffffffffff01ff01, 0xffffffffff0101ff, 0xffffffffff010101, 0xffffffff00ff0000, + 0xffffffff0000ff00, 0xffffffff000000ff, 0xffffffff00000001, 0xffffffff00010000, + 0xffffffff01ffffff, 0xffffffff01ffff01, 0xffffffff01ff01ff, 0xffffffff01ff0101, + 0xffffffff01000000, 0xffffffff0101ffff, 0xffffffff0101ff01, 0xffffffff010101ff, + 0xffffffff01010101, 0xffffff00ffff00ff, 0xffffff00ffff0000, 0xffffff00ff00ff00, + 0xffffff00ff0000ff, 0xffffff00ff000001, 0xffffff00ff000100, 0xffffff00ff000101, + 0xffffff00ff010000, 0xffffff0000ffff00, 0xffffff0000ff0001, 0xffffff0000ff0100, + 0xffffff000000ff01, 0xffffff0000000000, 0xffffff0000000101, 0xffffff000001ff00, + 0xffffff00000100ff, 0xffffff0000010001, 0xffffff00000101ff, 0xffffff0001ff0000, + 0xffffff000100ff00, 0xffffff00010000ff, 0xffffff0001000001, 0xffffff0001010000, + 0xffffff01ffffffff, 0xffffff01ffffff01, 0xffffff01ffff01ff, 0xffffff01ffff0101, + 0xffffff01ff000000, 0xffffff01ff01ffff, 0xffffff01ff01ff01, 0xffffff01ff0101ff, + 0xffffff01ff010101, 0xffffff0100ff0000, 0xffffff010000ff00, 0xffffff0100000100, + 0xffffff01000100ff, 0xffffff0100010100, 0xffffff0101ffffff, 0xffffff0101ffff01, + 0xffffff0101ff01ff, 0xffffff0101ff0101, 0xffffff010100ff00, 0xffffff0101000000, + 0xffffff0101000100, 0xffffff010101ffff, 0xffffff010101ff01, 0xffffff01010101ff, + 0xffffff0101010101, 0xffff00ffff00ff00, 0xffff00ffff0000ff, 0xffff00ffff000001, + 0xffff00ffff010000, 0xffff00ff00ffff00, 0xffff00ff00ff0100, 0xffff00ff00000000, + 0xffff00ff00000101, 0xffff00ff000100ff, 0xffff00ff00010000, 0xffff00ff0100ff00, + 0xffff00ff01000100, 0xffff00ff01010000, 0xffff0000ffffff00, 0xffff0000ffff00ff, + 0xffff0000ffff0000, 0xffff0000ffff0001, 0xffff0000ff000000, 0xffff0000ff0001ff, + 0xffff0000ff000101, 0xffff0000ff010100, 0xffff000000ffffff, 0xffff000000ff0000, + 0xffff000000ff0101, 0xffff00000000ffff, 0xffff00000000ff00, 0xffff0000000000ff, + 0xffff000000000000, 0xffff000000000001, 0xffff000000000100, 0xffff00000001ffff, + 0xffff00000001ff01, 0xffff000000010000, 0xffff0000000101ff, 0xffff000000010101, + 0xffff000001ffff00, 0xffff00000100ff00, 0xffff000001000000, 0xffff0000010001ff, + 0xffff000001000101, 0xffff00000101ff00, 0xffff0000010100ff, 0xffff000001010000, + 0xffff000001010001, 0xffff000001010100, 0xffff0001ff0000ff, 0xffff0001ff000100, + 0xffff000100ffff00, 0xffff000100ff00ff, 0xffff00010000ffff, 0xffff00010000ff01, + 0xffff000100000000, 0xffff0001000001ff, 0xffff00010001ffff, 0xffff00010001ff00, + 0xffff000100010001, 0xffff000100010100, 0xffff000101ff0000, 0xffff00010100ff00, + 0xffff0001010000ff, 0xffff000101000100, 0xffff01ffffffffff, 0xffff01ffffffff01, + 0xffff01ffffff01ff, 0xffff01ffffff0101, 0xffff01ffff000000, 0xffff01ffff01ffff, + 0xffff01ffff01ff01, 0xffff01ffff0101ff, 0xffff01ffff010101, 0xffff01ff00ff0000, + 0xffff01ff0000ff00, 0xffff01ff00000001, 0xffff01ff00010000, 0xffff01ff01ffffff, + 0xffff01ff01ffff01, 0xffff01ff01ff01ff, 0xffff01ff01ff0101, 0xffff01ff01000000, + 0xffff01ff0101ffff, 0xffff01ff0101ff01, 0xffff01ff010101ff, 0xffff01ff01010101, + 0xffff0100ffff0000, 0xffff0100ff00ff00, 0xffff0100ff0000ff, 0xffff0100ff000100, + 0xffff0100ff0100ff, 0xffff0100ff010000, 0xffff010000ffff00, 0xffff01000000ffff, + 0xffff01000000ff00, 0xffff010000000000, 0xffff01000001ff00, 0xffff0100000100ff, + 0xffff010000010100, 0xffff01000100ff00, 0xffff0100010000ff, 0xffff010001000001, + 0xffff010001000100, 0xffff010001010000, 0xffff0101ffffffff, 0xffff0101ffffff01, + 0xffff0101ffff01ff, 0xffff0101ffff0101, 0xffff0101ff000000, 0xffff0101ff01ffff, + 0xffff0101ff01ff01, 0xffff0101ff0101ff, 0xffff0101ff010101, 0xffff010100ff0000, + 0xffff01010000ff00, 0xffff010100000100, 0xffff01010001ff00, 0xffff010100010000, + 0xffff010101ffffff, 0xffff010101ffff01, 0xffff010101ff0000, 0xffff010101ff01ff, + 0xffff010101ff0101, 0xffff010101000000, 0xffff01010101ffff, 0xffff01010101ff01, + 0xffff0101010101ff, 0xffff010101010101, 0xff00ffffff00ffff, 0xff00ffffff00ff00, + 0xff00ffffff0000ff, 0xff00ffffff000100, 0xff00ffffff0100ff, 0xff00ffffff010000, + 0xff00ffff00ffff00, 0xff00ffff00ff00ff, 0xff00ffff0000ffff, 0xff00ffff00000000, + 0xff00ffff000001ff, 0xff00ffff0001ff00, 0xff00ffff000100ff, 0xff00ffff00010000, + 0xff00ffff00010100, 0xff00ffff0100ff00, 0xff00ffff010000ff, 0xff00ffff01000001, + 0xff00ffff0101ff00, 0xff00ffff01010000, 0xff00ff00ffffff00, 0xff00ff00ffff00ff, + 0xff00ff00ffff0001, 0xff00ff00ffff0100, 0xff00ff00ff00ffff, 0xff00ff00ff00ff01, + 0xff00ff00ff000000, 0xff00ff00ff0001ff, 0xff00ff00ff01ff00, 0xff00ff00ff0100ff, + 0xff00ff00ff010100, 0xff00ff0000ff0000, 0xff00ff0000ff0101, 0xff00ff000000ffff, + 0xff00ff000000ff00, 0xff00ff000000ff01, 0xff00ff00000000ff, 0xff00ff0000000000, + 0xff00ff0000000001, 0xff00ff0000000100, 0xff00ff000001ffff, 0xff00ff0000010000, + 0xff00ff0001ff00ff, 0xff00ff000100ff01, 0xff00ff0001000000, 0xff00ff000101ff00, + 0xff00ff00010100ff, 0xff00ff01ff00ff00, 0xff00ff01ff0000ff, 0xff00ff01ff000001, + 0xff00ff01ff010000, 0xff00ff0100ffffff, 0xff00ff0100ff0001, 0xff00ff0100ff0100, + 0xff00ff010000ff01, 0xff00ff0100000000, 0xff00ff01000001ff, 0xff00ff0100000101, + 0xff00ff01000100ff, 0xff00ff0100010001, 0xff00ff0101ff0000, 0xff00ff010100ff00, + 0xff00ff01010000ff, 0xff00ff0101000001, 0xff00ff0101010000, 0xff0000ffffffff00, + 0xff0000ffffff0001, 0xff0000ffffff0100, 0xff0000ffff0000ff, 0xff0000ffff000000, + 0xff0000ffff0001ff, 0xff0000ffff000100, 0xff0000ffff01ff00, 0xff0000ffff010001, + 0xff0000ff00ffff00, 0xff0000ff00ff0000, 0xff0000ff00ff0001, 0xff0000ff00ff01ff, + 0xff0000ff00ff0101, 0xff0000ff0000ff00, 0xff0000ff000000ff, 0xff0000ff00000000, + 0xff0000ff00000001, 0xff0000ff00000100, 0xff0000ff0001ff01, 0xff0000ff00010000, + 0xff0000ff000101ff, 0xff0000ff01ff00ff, 0xff0000ff01ff0100, 0xff0000ff0100ffff, + 0xff0000ff010000ff, 0xff0000ff01000000, 0xff0000ff010001ff, 0xff0000ff01000100, + 0xff0000ff01000101, 0xff0000ff0101ff00, 0xff0000ff010100ff, 0xff0000ff01010000, + 0xff0000ff01010100, 0xff000000ffffff01, 0xff000000ffff0000, 0xff000000ffff0101, + 0xff000000ff00ff00, 0xff000000ff0000ff, 0xff000000ff000000, 0xff000000ff000001, + 0xff000000ff000100, 0xff000000ff01ffff, 0xff000000ff01ff01, 0xff000000ff010000, + 0xff000000ff0101ff, 0xff000000ff010101, 0xff00000000ffff00, 0xff00000000ff00ff, + 0xff00000000ff0000, 0xff00000000ff0001, 0xff0000000000ff00, 0xff0000000000ff01, + 0xff000000000000ff, 0xff00000000000000, 0xff00000000000001, 0xff00000000000100, + 0xff00000000000101, 0xff0000000001ff00, 0xff000000000100ff, 0xff00000000010000, + 0xff00000000010001, 0xff00000000010100, 0xff00000001ffffff, 0xff00000001ffff01, + 0xff00000001ff00ff, 0xff00000001ff0000, 0xff00000001ff01ff, 0xff00000001ff0101, + 0xff0000000100ffff, 0xff0000000100ff00, 0xff000000010000ff, 0xff00000001000000, + 0xff00000001000001, 0xff00000001000100, 0xff00000001000101, 0xff0000000101ffff, + 0xff0000000101ff01, 0xff00000001010000, 0xff000001ffffff00, 0xff000001ffff00ff, + 0xff000001ffff0000, 0xff000001ffff0001, 0xff000001ff000000, 0xff000001ff000001, + 0xff000001ff0001ff, 0xff000001ff000101, 0xff000001ff01ff00, 0xff000001ff010001, + 0xff00000100ffffff, 0xff00000100ffff01, 0xff00000100ff00ff, 0xff00000100ff0000, + 0xff00000100ff01ff, 0xff00000100ff0101, 0xff0000010000ff00, 0xff00000100000000, + 0xff00000100000001, 0xff000001000001ff, 0xff00000100000100, 0xff0000010001ff00, + 0xff000001000100ff, 0xff00000100010000, 0xff000001000101ff, 0xff00000100010100, + 0xff00000100010101, 0xff00000101ff0001, 0xff00000101ff0101, 0xff0000010100ff01, + 0xff00000101000000, 0xff000001010100ff, 0xff00000101010100, 0xff0001ffff00ff00, + 0xff0001ffff000001, 0xff0001ffff010000, 0xff0001ff00ffff00, 0xff0001ff00ff00ff, + 0xff0001ff00ff0001, 0xff0001ff00ff0100, 0xff0001ff0000ffff, 0xff0001ff00000000, + 0xff0001ff000001ff, 0xff0001ff00000101, 0xff0001ff0001ffff, 0xff0001ff0001ff00, + 0xff0001ff000100ff, 0xff0001ff00010001, 0xff0001ff00010100, 0xff0001ff01ff0000, + 0xff0001ff0100ff00, 0xff0001ff010000ff, 0xff0001ff01010000, 0xff000100ff00ffff, + 0xff000100ff00ff01, 0xff000100ff000000, 0xff000100ff000101, 0xff000100ff01ff00, + 0xff000100ff010000, 0xff00010000ffff01, 0xff00010000ff00ff, 0xff00010000ff0000, + 0xff00010000ff01ff, 0xff0001000000ff00, 0xff000100000000ff, 0xff00010000000000, + 0xff00010000000001, 0xff00010000000100, 0xff00010000000101, 0xff0001000001ffff, + 0xff00010000010000, 0xff00010000010101, 0xff00010001ff0100, 0xff0001000100ff00, + 0xff0001000100ff01, 0xff00010001000000, 0xff000100010001ff, 0xff0001000101ff00, + 0xff00010001010001, 0xff00010001010100, 0xff000101ffff0100, 0xff000101ff000001, + 0xff000101ff0100ff, 0xff000101ff010001, 0xff00010100ff00ff, 0xff00010100ff0001, + 0xff00010100ff0100, 0xff0001010000ffff, 0xff0001010000ff01, 0xff00010100000000, + 0xff000101000001ff, 0xff0001010001ff00, 0xff00010100010001, 0xff00010100010100, + 0xff00010101ff0000, 0xff0001010100ff00, 0xff00010101000001, 0xff00010101000101, + 0xff01ffffffffffff, 0xff01ffffffffff01, 0xff01ffffffff01ff, 0xff01ffffffff0101, + 0xff01ffffff000000, 0xff01ffffff01ffff, 0xff01ffffff01ff01, 0xff01ffffff010000, + 0xff01ffffff0101ff, 0xff01ffffff010101, 0xff01ffff00ff0000, 0xff01ffff0000ff00, + 0xff01ffff00000100, 0xff01ffff0001ff00, 0xff01ffff00010000, 0xff01ffff01ffffff, + 0xff01ffff01ffff01, 0xff01ffff01ff01ff, 0xff01ffff01ff0101, 0xff01ffff01000000, + 0xff01ffff0101ffff, 0xff01ffff0101ff01, 0xff01ffff01010000, 0xff01ffff010101ff, + 0xff01ffff01010101, 0xff01ff00ffff0000, 0xff01ff00ff00ff00, 0xff01ff00ff0000ff, + 0xff01ff00ff000100, 0xff01ff00ff010000, 0xff01ff0000ffff01, 0xff01ff0000ff00ff, + 0xff01ff0000ff0100, 0xff01ff0000000000, 0xff01ff00000001ff, 0xff01ff0000000101, + 0xff01ff000001ff00, 0xff01ff00000100ff, 0xff01ff0000010000, 0xff01ff0000010001, + 0xff01ff0001ff0000, 0xff01ff000100ffff, 0xff01ff0001000001, 0xff01ff0001000100, + 0xff01ff0001010000, 0xff01ff01ffffff00, 0xff01ff01ffff01ff, 0xff01ff01ffff0101, + 0xff01ff01ff00ff00, 0xff01ff01ff000000, 0xff01ff01ff01ffff, 0xff01ff01ff01ff01, + 0xff01ff01ff0101ff, 0xff01ff01ff010101, 0xff01ff0100ff0000, 0xff01ff010000ff00, + 0xff01ff0100000001, 0xff01ff0100000100, 0xff01ff0100010000, 0xff01ff0101ffff00, + 0xff01ff0101ff01ff, 0xff01ff0101ff0101, 0xff01ff010100ff00, 0xff01ff0101000000, + 0xff01ff010101ffff, 0xff01ff010101ff01, 0xff01ff01010101ff, 0xff01ff0101010101, + 0xff0100ffffff0000, 0xff0100ffff0000ff, 0xff0100ffff000001, 0xff0100ffff000100, + 0xff0100ffff010000, 0xff0100ff00ff00ff, 0xff0100ff00ff0000, 0xff0100ff00ff0001, + 0xff0100ff00ff0100, 0xff0100ff0000ff01, 0xff0100ff00000000, 0xff0100ff000001ff, + 0xff0100ff00000101, 0xff0100ff00010001, 0xff0100ff01ff0000, 0xff0100ff0100ff00, + 0xff0100ff010000ff, 0xff0100ff01000100, 0xff0100ff0101ff00, 0xff0100ff01010000, + 0xff010000ffff0100, 0xff010000ff000000, 0xff010000ff01ff00, 0xff010000ff010100, + 0xff01000000ffffff, 0xff01000000ff0000, 0xff01000000ff01ff, 0xff0100000000ff00, + 0xff010000000000ff, 0xff01000000000000, 0xff01000000000100, 0xff0100000001ff01, + 0xff01000000010000, 0xff010000000101ff, 0xff01000001ff0100, 0xff0100000100ffff, + 0xff010000010000ff, 0xff01000001000000, 0xff010000010001ff, 0xff01000001000101, + 0xff0100000101ff00, 0xff010000010100ff, 0xff01000001010001, 0xff01000001010100, + 0xff010001ffff0000, 0xff010001ff00ffff, 0xff010001ff00ff01, 0xff010001ff000100, + 0xff010001ff010000, 0xff01000100ffff00, 0xff01000100ff0100, 0xff01000100000000, + 0xff0100010001ffff, 0xff0100010001ff00, 0xff01000100010100, 0xff01000101ff00ff, + 0xff01000101ff0001, 0xff0100010100ffff, 0xff01000101000101, 0xff0101ffffffffff, + 0xff0101ffffffff01, 0xff0101ffffff01ff, 0xff0101ffffff0101, 0xff0101ffff000000, + 0xff0101ffff01ffff, 0xff0101ffff01ff01, 0xff0101ffff0101ff, 0xff0101ffff010101, + 0xff0101ff00ff0000, 0xff0101ff0000ff00, 0xff0101ff000000ff, 0xff0101ff00010000, + 0xff0101ff01ffffff, 0xff0101ff01ffff01, 0xff0101ff01ff01ff, 0xff0101ff01ff0101, + 0xff0101ff0101ffff, 0xff0101ff0101ff01, 0xff0101ff010101ff, 0xff0101ff01010101, + 0xff010100ffff0100, 0xff010100ff00ff00, 0xff010100ff0000ff, 0xff010100ff000100, + 0xff010100ff010000, 0xff01010000ff0001, 0xff01010000ff0100, 0xff0101000000ff01, + 0xff01010000000000, 0xff0101000001ff00, 0xff010100000100ff, 0xff01010000010001, + 0xff01010000010100, 0xff01010001ff0000, 0xff0101000100ffff, 0xff01010001000001, + 0xff01010001000100, 0xff010100010100ff, 0xff01010001010000, 0xff010101ffffffff, + 0xff010101ffffff01, 0xff010101ffff01ff, 0xff010101ffff0101, 0xff010101ff01ffff, + 0xff010101ff01ff01, 0xff010101ff0101ff, 0xff010101ff010101, 0xff01010100ff0000, + 0xff0101010000ff00, 0xff01010100000001, 0xff01010100000100, 0xff01010100010000, + 0xff01010101ffffff, 0xff01010101ffff01, 0xff01010101ff01ff, 0xff01010101ff0101, + 0xff01010101000000, 0xff0101010101ffff, 0xff0101010101ff01, 0xff010101010101ff, + 0xff01010101010101, 0x00ffffffffff0000, 0x00ffffffff00ff00, 0x00ffffffff000001, + 0x00ffffffff010000, 0x00ffffff00ff0100, 0x00ffffff0000ff01, 0x00ffffff00000000, + 0x00ffffff000001ff, 0x00ffffff00000101, 0x00ffffff0001ff00, 0x00ffffff000100ff, + 0x00ffffff00010001, 0x00ffffff010000ff, 0x00ffffff01000100, 0x00ffffff0101ff00, + 0x00ffffff01010001, 0x00ffff00ffffffff, 0x00ffff00ffffff00, 0x00ffff00ffff00ff, + 0x00ffff00ffff0001, 0x00ffff00ffff0100, 0x00ffff00ff00ff01, 0x00ffff00ff000000, + 0x00ffff00ff000001, 0x00ffff00ff0001ff, 0x00ffff00ff000101, 0x00ffff00ff01ff00, + 0x00ffff00ff010001, 0x00ffff00ff010100, 0x00ffff0000ff0000, 0x00ffff0000ff01ff, + 0x00ffff0000ff0101, 0x00ffff000000ff00, 0x00ffff00000000ff, 0x00ffff0000000000, + 0x00ffff0000000001, 0x00ffff0000000100, 0x00ffff0000000101, 0x00ffff0000010000, + 0x00ffff00000101ff, 0x00ffff0000010101, 0x00ffff0001ffff00, 0x00ffff0001ff00ff, + 0x00ffff0001ff0001, 0x00ffff000100ffff, 0x00ffff000100ff01, 0x00ffff0001000000, + 0x00ffff000101ffff, 0x00ffff000101ff00, 0x00ffff000101ff01, 0x00ffff01ffff0000, + 0x00ffff01ff00ff00, 0x00ffff01ff0000ff, 0x00ffff01ff000001, 0x00ffff01ff010000, + 0x00ffff0100ffff00, 0x00ffff010000ff01, 0x00ffff0100000000, 0x00ffff0100000101, + 0x00ffff01000100ff, 0x00ffff0100010100, 0x00ffff0101ff0100, 0x00ffff01010000ff, + 0x00ffff0101010000, 0x00ff00ffffffff00, 0x00ff00ffff000000, 0x00ff00ffff000100, + 0x00ff00ffff010100, 0x00ff00ff00ff0000, 0x00ff00ff00ff01ff, 0x00ff00ff00ff0101, + 0x00ff00ff0000ff00, 0x00ff00ff000000ff, 0x00ff00ff00000000, 0x00ff00ff00000001, + 0x00ff00ff0001ff00, 0x00ff00ff0001ff01, 0x00ff00ff00010000, 0x00ff00ff000101ff, + 0x00ff00ff00010101, 0x00ff00ff01ffff00, 0x00ff00ff01ff0001, 0x00ff00ff01ff0100, + 0x00ff00ff0100ffff, 0x00ff00ff0100ff01, 0x00ff00ff01000000, 0x00ff00ff0101ffff, + 0x00ff00ff0101ff00, 0x00ff00ff01010100, 0x00ff0000ffffff00, 0x00ff0000ffffff01, + 0x00ff0000ffff0000, 0x00ff0000ffff0101, 0x00ff0000ff00ff00, 0x00ff0000ff0000ff, + 0x00ff0000ff000000, 0x00ff0000ff000001, 0x00ff0000ff000100, 0x00ff0000ff01ffff, + 0x00ff0000ff010000, 0x00ff0000ff010101, 0x00ff000000ffff00, 0x00ff000000ff00ff, + 0x00ff000000ff0000, 0x00ff000000ff0001, 0x00ff000000ff0100, 0x00ff00000000ffff, + 0x00ff00000000ff00, 0x00ff0000000000ff, 0x00ff000000000000, 0x00ff000000000001, + 0x00ff0000000001ff, 0x00ff000000000100, 0x00ff00000001ff00, 0x00ff0000000100ff, + 0x00ff000000010000, 0x00ff000000010001, 0x00ff000000010100, 0x00ff000001ffff01, + 0x00ff000001ff00ff, 0x00ff000001ff0000, 0x00ff000001ff01ff, 0x00ff00000100ff00, + 0x00ff0000010000ff, 0x00ff000001000000, 0x00ff000001000001, 0x00ff000001000100, + 0x00ff000001000101, 0x00ff000001010000, 0x00ff0000010101ff, 0x00ff000001010101, + 0x00ff0001ffffff00, 0x00ff0001ffff0000, 0x00ff0001ffff0100, 0x00ff0001ff0000ff, + 0x00ff0001ff000000, 0x00ff0001ff0001ff, 0x00ff0001ff000101, 0x00ff0001ff01ff00, + 0x00ff0001ff0100ff, 0x00ff0001ff010100, 0x00ff000100ffffff, 0x00ff000100ffff01, + 0x00ff000100ff0000, 0x00ff000100ff01ff, 0x00ff00010000ffff, 0x00ff00010000ff00, + 0x00ff00010000ff01, 0x00ff000100000000, 0x00ff000100000001, 0x00ff000100000100, + 0x00ff00010001ff01, 0x00ff000100010000, 0x00ff0001000101ff, 0x00ff000101ffff00, + 0x00ff000101ff0000, 0x00ff000101ff0101, 0x00ff0001010000ff, 0x00ff000101000000, + 0x00ff00010101ff00, 0x00ff0001010100ff, 0x00ff000101010001, 0x00ff01ffffff0000, + 0x00ff01ffff00ff00, 0x00ff01ffff000000, 0x00ff01ffff000101, 0x00ff01ffff010000, + 0x00ff01ff00ffff01, 0x00ff01ff00ff0100, 0x00ff01ff0000ffff, 0x00ff01ff00000000, + 0x00ff01ff000001ff, 0x00ff01ff0001ff00, 0x00ff01ff000100ff, 0x00ff01ff00010001, + 0x00ff01ff00010100, 0x00ff01ff01ff0000, 0x00ff01ff0100ff00, 0x00ff01ff010000ff, + 0x00ff01ff01000001, 0x00ff01ff01000100, 0x00ff01ff01010000, 0x00ff0100ffffff00, + 0x00ff0100ffff0000, 0x00ff0100ffff0001, 0x00ff0100ffff0101, 0x00ff0100ff00ffff, + 0x00ff0100ff0000ff, 0x00ff0100ff000000, 0x00ff0100ff0001ff, 0x00ff0100ff01ff00, + 0x00ff0100ff0100ff, 0x00ff0100ff010001, 0x00ff010000ffffff, 0x00ff010000ff0000, + 0x00ff010000ff0101, 0x00ff01000000ff00, 0x00ff01000000ff01, 0x00ff0100000000ff, + 0x00ff010000000000, 0x00ff010000000001, 0x00ff010000000100, 0x00ff01000001ffff, + 0x00ff01000001ff01, 0x00ff010000010000, 0x00ff010000010001, 0x00ff010000010101, + 0x00ff010001ff0001, 0x00ff010001ff0100, 0x00ff01000100ff01, 0x00ff010001000000, + 0x00ff010001000001, 0x00ff0100010001ff, 0x00ff01000101ff00, 0x00ff0100010100ff, + 0x00ff010001010001, 0x00ff010001010100, 0x00ff0101ff000001, 0x00ff010100ff00ff, + 0x00ff010100ff0001, 0x00ff010100ff0100, 0x00ff010100000000, 0x00ff0101000001ff, + 0x00ff010100000101, 0x00ff0101000100ff, 0x00ff010100010100, 0x00ff0101010000ff, + 0x00ff010101010000, 0x0000ffffffffff00, 0x0000ffffffff00ff, 0x0000ffffffff0000, + 0x0000ffffffff0001, 0x0000ffffffff0100, 0x0000ffffff00ff01, 0x0000ffffff000000, + 0x0000ffffff000101, 0x0000ffffff01ff00, 0x0000ffffff0100ff, 0x0000ffffff010100, + 0x0000ffff00ffffff, 0x0000ffff00ff0000, 0x0000ffff00ff01ff, 0x0000ffff0000ff00, + 0x0000ffff000000ff, 0x0000ffff00000000, 0x0000ffff00000001, 0x0000ffff00000100, + 0x0000ffff00010000, 0x0000ffff000101ff, 0x0000ffff01ff0001, 0x0000ffff01ff0100, + 0x0000ffff01000000, 0x0000ffff010001ff, 0x0000ffff0101ffff, 0x0000ffff0101ff00, + 0x0000ffff01010001, 0x0000ffff01010100, 0x0000ff00ffff0000, 0x0000ff00ffff01ff, + 0x0000ff00ffff0100, 0x0000ff00ffff0101, 0x0000ff00ff00ff00, 0x0000ff00ff0000ff, + 0x0000ff00ff000000, 0x0000ff00ff000001, 0x0000ff00ff0001ff, 0x0000ff00ff000100, + 0x0000ff00ff01ffff, 0x0000ff00ff010000, 0x0000ff00ff010001, 0x0000ff00ff0101ff, + 0x0000ff00ff010101, 0x0000ff0000ffff00, 0x0000ff0000ff00ff, 0x0000ff0000ff0000, + 0x0000ff0000ff0001, 0x0000ff0000ff0100, 0x0000ff000000ffff, 0x0000ff000000ff00, + 0x0000ff000000ff01, 0x0000ff00000000ff, 0x0000ff0000000000, 0x0000ff0000000001, + 0x0000ff00000001ff, 0x0000ff0000000100, 0x0000ff0000000101, 0x0000ff000001ff00, + 0x0000ff00000100ff, 0x0000ff0000010000, 0x0000ff0000010001, 0x0000ff0000010100, + 0x0000ff0001ffff01, 0x0000ff0001ff0000, 0x0000ff000100ff00, 0x0000ff00010000ff, + 0x0000ff0001000000, 0x0000ff0001000001, 0x0000ff0001000100, 0x0000ff000101ffff, + 0x0000ff0001010000, 0x0000ff0001010101, 0x0000ff01ffffff00, 0x0000ff01ffff0001, + 0x0000ff01ff00ff01, 0x0000ff01ff000000, 0x0000ff01ff000101, 0x0000ff01ff01ff00, + 0x0000ff01ff0100ff, 0x0000ff0100ffff01, 0x0000ff0100ff0000, 0x0000ff0100ff0101, + 0x0000ff010000ff00, 0x0000ff01000000ff, 0x0000ff0100000000, 0x0000ff0100000001, + 0x0000ff0100000100, 0x0000ff010001ff01, 0x0000ff0100010000, 0x0000ff0101ff0000, + 0x0000ff010100ffff, 0x0000ff010100ff01, 0x0000ff0101000000, 0x0000ff0101000100, + 0x0000ff0101000101, 0x0000ff01010100ff, 0x000000ffffff00ff, 0x000000ffffff0000, + 0x000000ffff00ff00, 0x000000ffff0000ff, 0x000000ffff000000, 0x000000ffff000001, + 0x000000ffff0001ff, 0x000000ffff000100, 0x000000ffff01ff00, 0x000000ffff010000, + 0x000000ffff0101ff, 0x000000ffff010101, 0x000000ff00ffff00, 0x000000ff00ff00ff, + 0x000000ff00ff0000, 0x000000ff00ff0001, 0x000000ff00ff0100, 0x000000ff00ff0101, + 0x000000ff0000ffff, 0x000000ff0000ff00, 0x000000ff000000ff, 0x000000ff00000000, + 0x000000ff00000001, 0x000000ff000001ff, 0x000000ff00000100, 0x000000ff00000101, + 0x000000ff0001ff00, 0x000000ff0001ff01, 0x000000ff000100ff, 0x000000ff00010000, + 0x000000ff00010001, 0x000000ff00010100, 0x000000ff01ffffff, 0x000000ff01ff01ff, + 0x000000ff01ff0101, 0x000000ff0100ff00, 0x000000ff010000ff, 0x000000ff01000000, + 0x000000ff01000001, 0x000000ff01000100, 0x000000ff0101ff00, 0x000000ff010100ff, + 0x000000ff01010000, 0x000000ff01010101, 0x00000000ffffff00, 0x00000000ffffff01, + 0x00000000ffff00ff, 0x00000000ffff0000, 0x00000000ffff0001, 0x00000000ffff0100, + 0x00000000ff00ffff, 0x00000000ff00ff00, 0x00000000ff00ff01, 0x00000000ff0000ff, + 0x00000000ff000000, 0x00000000ff000001, 0x00000000ff000100, 0x00000000ff000101, + 0x00000000ff01ff00, 0x00000000ff0100ff, 0x00000000ff010000, 0x00000000ff010001, + 0x00000000ff010100, 0x0000000000ffffff, 0x0000000000ffff00, 0x0000000000ffff01, + 0x0000000000ff00ff, 0x0000000000ff0000, 0x0000000000ff0001, 0x0000000000ff01ff, + 0x0000000000ff0100, 0x000000000000ffff, 0x000000000000ff00, 0x000000000000ff01, + 0x00000000000000ff, 0x0000000000000000, 0x0000000000000001, 0x00000000000001ff, + 0x0000000000000100, 0x0000000000000101, 0x000000000001ffff, 0x000000000001ff00, + 0x00000000000100ff, 0x0000000000010000, 0x0000000000010001, 0x00000000000101ff, + 0x0000000000010100, 0x0000000000010101, 0x0000000001ffff00, 0x0000000001ff00ff, + 0x0000000001ff0000, 0x0000000001ff0100, 0x0000000001ff0101, 0x000000000100ffff, + 0x000000000100ff00, 0x00000000010000ff, 0x0000000001000000, 0x0000000001000001, + 0x00000000010001ff, 0x0000000001000100, 0x000000000101ff00, 0x00000000010100ff, + 0x0000000001010000, 0x0000000001010001, 0x0000000001010100, 0x00000001ffffffff, + 0x00000001ffffff00, 0x00000001ffffff01, 0x00000001ffff00ff, 0x00000001ffff0001, + 0x00000001ffff01ff, 0x00000001ffff0100, 0x00000001ff00ff00, 0x00000001ff0000ff, + 0x00000001ff000000, 0x00000001ff0001ff, 0x00000001ff000100, 0x00000001ff01ffff, + 0x00000001ff01ff00, 0x00000001ff01ff01, 0x00000001ff0100ff, 0x00000001ff010000, + 0x00000001ff010001, 0x00000001ff0101ff, 0x00000001ff010100, 0x0000000100ffff00, + 0x0000000100ff0000, 0x0000000100ff0001, 0x0000000100ff01ff, 0x0000000100ff0100, + 0x0000000100ff0101, 0x000000010000ffff, 0x000000010000ff00, 0x000000010000ff01, + 0x00000001000000ff, 0x0000000100000000, 0x0000000100000001, 0x00000001000001ff, + 0x0000000100000100, 0x0000000100000101, 0x000000010001ff00, 0x00000001000100ff, + 0x0000000100010000, 0x0000000100010100, 0x0000000101ffff01, 0x0000000101ff0000, + 0x0000000101ff0001, 0x0000000101ff01ff, 0x0000000101ff0100, 0x0000000101ff0101, + 0x000000010100ff00, 0x0000000101000000, 0x0000000101000101, 0x000000010101ff01, + 0x0000000101010000, 0x0000000101010001, 0x00000001010101ff, 0x0000000101010100, + 0x000001ffffff00ff, 0x000001ffffff0000, 0x000001ffffff0001, 0x000001ffffff0100, + 0x000001ffff00ffff, 0x000001ffff000000, 0x000001ffff0001ff, 0x000001ffff01ff00, + 0x000001ffff010101, 0x000001ff00ff0000, 0x000001ff00ff01ff, 0x000001ff00ff0101, + 0x000001ff0000ff00, 0x000001ff000000ff, 0x000001ff00000000, 0x000001ff00000001, + 0x000001ff000001ff, 0x000001ff00000100, 0x000001ff0001ffff, 0x000001ff0001ff01, + 0x000001ff000100ff, 0x000001ff00010000, 0x000001ff01ffff01, 0x000001ff01ff0100, + 0x000001ff0100ffff, 0x000001ff0100ff01, 0x000001ff01000000, 0x000001ff010001ff, + 0x000001ff0101ff00, 0x000001ff01010100, 0x00000100ffffff00, 0x00000100ffffff01, + 0x00000100ffff0000, 0x00000100ffff0101, 0x00000100ff00ff00, 0x00000100ff0000ff, + 0x00000100ff000000, 0x00000100ff000001, 0x00000100ff000100, 0x00000100ff010000, + 0x0000010000ffff00, 0x0000010000ff00ff, 0x0000010000ff0000, 0x0000010000ff0001, + 0x0000010000ff0100, 0x000001000000ffff, 0x000001000000ff00, 0x000001000000ff01, + 0x00000100000000ff, 0x0000010000000000, 0x0000010000000001, 0x00000100000001ff, + 0x0000010000000100, 0x0000010000000101, 0x000001000001ff00, 0x00000100000100ff, + 0x0000010000010000, 0x0000010000010001, 0x0000010000010100, 0x0000010001ffff00, + 0x0000010001ff0000, 0x0000010001ff0100, 0x000001000100ff00, 0x00000100010000ff, + 0x0000010001000000, 0x0000010001000001, 0x00000100010001ff, 0x0000010001000100, + 0x0000010001010000, 0x00000101ffff00ff, 0x00000101ffff01ff, 0x00000101ff000000, + 0x00000101ff000101, 0x00000101ff01ffff, 0x00000101ff010000, 0x00000101ff010001, + 0x00000101ff010100, 0x0000010100ff0000, 0x0000010100ff01ff, 0x0000010100ff0100, + 0x000001010000ff00, 0x0000010100000000, 0x0000010100000001, 0x00000101000001ff, + 0x0000010100000100, 0x000001010001ff01, 0x0000010100010000, 0x00000101000101ff, + 0x0000010100010101, 0x0000010101ffff00, 0x0000010101ff0101, 0x000001010100ff01, + 0x0000010101000000, 0x0000010101000001, 0x00000101010001ff, 0x0000010101000101, + 0x000001010101ff00, 0x0001ffffffff0000, 0x0001ffffff0000ff, 0x0001ffffff000001, + 0x0001ffffff000100, 0x0001ffffff010000, 0x0001ffff00ff00ff, 0x0001ffff0000ffff, + 0x0001ffff00000000, 0x0001ffff00000001, 0x0001ffff000001ff, 0x0001ffff00000101, + 0x0001ffff0001ff00, 0x0001ffff000100ff, 0x0001ffff00010001, 0x0001ffff00010100, + 0x0001ffff01ffff00, 0x0001ffff01000001, 0x0001ffff01010000, 0x0001ff00ffffff00, + 0x0001ff00ffff00ff, 0x0001ff00ffff0001, 0x0001ff00ffff0100, 0x0001ff00ff00ff01, + 0x0001ff00ff000000, 0x0001ff00ff01ff00, 0x0001ff00ff01ff01, 0x0001ff00ff010001, + 0x0001ff00ff010100, 0x0001ff0000ff0000, 0x0001ff0000ff0100, 0x0001ff000000ff00, + 0x0001ff0000000000, 0x0001ff0000000001, 0x0001ff0000000100, 0x0001ff0000010000, + 0x0001ff0000010001, 0x0001ff0000010101, 0x0001ff0001ff00ff, 0x0001ff0001ff0101, + 0x0001ff000100ff01, 0x0001ff0001000000, 0x0001ff000101ff00, 0x0001ff0001010001, + 0x0001ff0001010100, 0x0001ff01ff00ff00, 0x0001ff01ff000001, 0x0001ff01ff000100, + 0x0001ff0100ffffff, 0x0001ff0100ffff00, 0x0001ff0100ff0001, 0x0001ff0100000000, + 0x0001ff0100000001, 0x0001ff01000001ff, 0x0001ff010001ffff, 0x0001ff0101ff0000, + 0x0001ff010100ff00, 0x0001ff0101000001, 0x0001ff0101010000, 0x000100ffff00ff00, + 0x000100ffff00ff01, 0x000100ffff000000, 0x000100ffff000001, 0x000100ffff000101, + 0x000100ffff01ff00, 0x000100ffff010001, 0x000100ffff010100, 0x000100ff00ffffff, + 0x000100ff00ffff01, 0x000100ff00ff0000, 0x000100ff00ff01ff, 0x000100ff00ff0101, + 0x000100ff0000ff00, 0x000100ff000000ff, 0x000100ff00000000, 0x000100ff00000001, + 0x000100ff00000100, 0x000100ff00000101, 0x000100ff0001ffff, 0x000100ff0001ff01, + 0x000100ff00010000, 0x000100ff01ff00ff, 0x000100ff01ff0000, 0x000100ff01ff0100, + 0x000100ff0100ffff, 0x000100ff0100ff01, 0x000100ff010000ff, 0x000100ff01000000, + 0x000100ff01000001, 0x000100ff010001ff, 0x000100ff01000101, 0x000100ff0101ff00, + 0x000100ff010100ff, 0x000100ff01010100, 0x00010000ffff0000, 0x00010000ffff01ff, + 0x00010000ffff0101, 0x00010000ff00ff00, 0x00010000ff000000, 0x00010000ff000001, + 0x00010000ff000100, 0x0001000000ff00ff, 0x0001000000ff0000, 0x0001000000ff0001, + 0x0001000000ff0100, 0x000100000000ffff, 0x000100000000ff00, 0x00010000000000ff, + 0x0001000000000000, 0x0001000000000001, 0x0001000000000100, 0x000100000001ff00, + 0x00010000000100ff, 0x0001000000010000, 0x0001000000010001, 0x0001000000010100, + 0x0001000001ff0001, 0x0001000001ff0100, 0x0001000001ff0101, 0x000100000100ff00, + 0x0001000001000000, 0x0001000001000001, 0x0001000001000100, 0x0001000001000101, + 0x000100000101ff01, 0x0001000001010000, 0x0001000001010001, 0x00010000010101ff, + 0x00010001ffffff01, 0x00010001ffff0100, 0x00010001ff000000, 0x00010001ff01ffff, + 0x00010001ff010001, 0x00010001ff0101ff, 0x00010001ff010100, 0x0001000100ffffff, + 0x0001000100ff0000, 0x0001000100ff01ff, 0x0001000100ff0101, 0x000100010000ff00, + 0x00010001000000ff, 0x0001000100000000, 0x0001000100000001, 0x00010001000001ff, + 0x0001000100000101, 0x000100010001ffff, 0x0001000100010000, 0x00010001000101ff, + 0x0001000101ffffff, 0x0001000101ffff01, 0x0001000101ff0000, 0x0001000101ff0101, + 0x00010001010000ff, 0x0001000101000001, 0x00010001010001ff, 0x0001000101000100, + 0x000100010101ffff, 0x00010001010100ff, 0x0001000101010001, 0x0001000101010101, + 0x000101ffff000001, 0x000101ffff000100, 0x000101ffff010000, 0x000101ff00ffff00, + 0x000101ff0000ff01, 0x000101ff00000000, 0x000101ff00000101, 0x000101ff0001ff00, + 0x000101ff00010100, 0x000101ff01ff0000, 0x000101ff0100ff00, 0x000101ff010001ff, + 0x000101ff01010001, 0x00010100ffffff00, 0x00010100ffff00ff, 0x00010100ff00ffff, + 0x00010100ff000000, 0x00010100ff01ff00, 0x00010100ff0100ff, 0x00010100ff010001, + 0x00010100ff010100, 0x0001010000ffffff, 0x0001010000ffff00, 0x0001010000ff0000, + 0x0001010000ff0001, 0x0001010000ff01ff, 0x000101000000ff00, 0x00010100000000ff, + 0x0001010000000000, 0x0001010000000001, 0x0001010000000100, 0x000101000001ffff, + 0x0001010000010000, 0x0001010000010101, 0x0001010001ffff01, 0x0001010001ff00ff, + 0x0001010001ff0101, 0x0001010001000000, 0x000101000101ff00, 0x00010100010100ff, + 0x0001010001010000, 0x0001010001010100, 0x00010101ff00ff00, 0x00010101ff000001, + 0x00010101ff0001ff, 0x0001010100ffff00, 0x0001010100ff00ff, 0x0001010100ff0100, + 0x000101010000ffff, 0x0001010100000000, 0x00010101000001ff, 0x0001010100000101, + 0x00010101000100ff, 0x0001010100010000, 0x0001010100010100, 0x0001010101ff0001, + 0x00010101010000ff, 0x00010101010001ff, 0x0001010101000101, 0x0001010101010001, + 0x01ffffffffffffff, 0x01ffffffffffff01, 0x01ffffffffff01ff, 0x01ffffffffff0101, + 0x01ffffffff01ffff, 0x01ffffffff01ff01, 0x01ffffffff0101ff, 0x01ffffffff010101, + 0x01ffffff00ff0000, 0x01ffffff0000ffff, 0x01ffffff0000ff00, 0x01ffffff000000ff, + 0x01ffffff00000001, 0x01ffffff00000100, 0x01ffffff00010000, 0x01ffffff01ffffff, + 0x01ffffff01ffff01, 0x01ffffff01ff01ff, 0x01ffffff01ff0101, 0x01ffffff01000000, + 0x01ffffff0101ffff, 0x01ffffff0101ff01, 0x01ffffff010101ff, 0x01ffffff01010101, + 0x01ffff00ffff0000, 0x01ffff00ff00ff00, 0x01ffff00ff0000ff, 0x01ffff00ff000001, + 0x01ffff00ff000100, 0x01ffff00ff010000, 0x01ffff0000ffff00, 0x01ffff0000ff00ff, + 0x01ffff0000ff0100, 0x01ffff000000ffff, 0x01ffff000000ff01, 0x01ffff0000000000, + 0x01ffff0000000001, 0x01ffff00000001ff, 0x01ffff0000000100, 0x01ffff00000100ff, + 0x01ffff0000010001, 0x01ffff0000010100, 0x01ffff0001ff0000, 0x01ffff0001ff0100, + 0x01ffff00010000ff, 0x01ffff0001000001, 0x01ffff0001000100, 0x01ffff0001010000, + 0x01ffff01ffffffff, 0x01ffff01ffffff01, 0x01ffff01ffff01ff, 0x01ffff01ffff0101, + 0x01ffff01ff000000, 0x01ffff01ff01ffff, 0x01ffff01ff01ff01, 0x01ffff01ff0101ff, + 0x01ffff01ff010101, 0x01ffff010000ff00, 0x01ffff01000000ff, 0x01ffff0100000100, + 0x01ffff0100010000, 0x01ffff0101ffffff, 0x01ffff0101ffff01, 0x01ffff0101ff01ff, + 0x01ffff0101ff0101, 0x01ffff0101000000, 0x01ffff010101ffff, 0x01ffff010101ff01, + 0x01ffff01010101ff, 0x01ffff0101010101, 0x01ff00ffff0000ff, 0x01ff00ffff000100, + 0x01ff00ff00ffff00, 0x01ff00ff00ff00ff, 0x01ff00ff0000ff00, 0x01ff00ff00000000, + 0x01ff00ff00000101, 0x01ff00ff0001ff00, 0x01ff00ff000100ff, 0x01ff00ff00010100, + 0x01ff00ff010000ff, 0x01ff00ff01000100, 0x01ff0000ffffff00, 0x01ff0000ffff0100, + 0x01ff0000ff00ff01, 0x01ff0000ff000000, 0x01ff0000ff000101, 0x01ff0000ff010001, + 0x01ff0000ff010100, 0x01ff000000ffffff, 0x01ff000000ffff00, 0x01ff000000ff0000, + 0x01ff000000ff01ff, 0x01ff00000000ff00, 0x01ff0000000000ff, 0x01ff000000000000, + 0x01ff000000000001, 0x01ff000000000100, 0x01ff000000000101, 0x01ff000000010000, + 0x01ff000000010001, 0x01ff0000000101ff, 0x01ff000000010101, 0x01ff000001ffff00, + 0x01ff000001ff00ff, 0x01ff000001ff0001, 0x01ff000001ff0100, 0x01ff00000100ffff, + 0x01ff00000100ff01, 0x01ff000001000000, 0x01ff0000010001ff, 0x01ff000001010001, + 0x01ff0001ff00ff00, 0x01ff0001ff000001, 0x01ff0001ff000100, 0x01ff0001ff010000, + 0x01ff000100ffff00, 0x01ff000100ff00ff, 0x01ff000100ff0100, 0x01ff000100ff0101, + 0x01ff00010000ffff, 0x01ff000100000000, 0x01ff000100000100, 0x01ff000100000101, + 0x01ff00010001ff00, 0x01ff000100010001, 0x01ff000100010101, 0x01ff000101ff0000, + 0x01ff00010100ff00, 0x01ff000101000101, 0x01ff0001010100ff, 0x01ff01ffffffffff, + 0x01ff01ffffffff01, 0x01ff01ffffff01ff, 0x01ff01ffffff0101, 0x01ff01ffff000000, + 0x01ff01ffff01ffff, 0x01ff01ffff01ff01, 0x01ff01ffff0101ff, 0x01ff01ffff010101, + 0x01ff01ff00ffff00, 0x01ff01ff00ff0000, 0x01ff01ff0000ff00, 0x01ff01ff000000ff, + 0x01ff01ff00000100, 0x01ff01ff00010000, 0x01ff01ff00010100, 0x01ff01ff01ffffff, + 0x01ff01ff01ffff01, 0x01ff01ff01ff01ff, 0x01ff01ff01ff0101, 0x01ff01ff01000000, + 0x01ff01ff0101ffff, 0x01ff01ff0101ff01, 0x01ff01ff010101ff, 0x01ff01ff01010101, + 0x01ff0100ffff0000, 0x01ff0100ffff0001, 0x01ff0100ff00ff00, 0x01ff0100ff0000ff, + 0x01ff0100ff000001, 0x01ff0100ff010000, 0x01ff010000ffff00, 0x01ff010000ff00ff, + 0x01ff010000ff0001, 0x01ff010000ff0100, 0x01ff01000000ffff, 0x01ff01000000ff01, + 0x01ff010000000000, 0x01ff010000000101, 0x01ff01000001ff00, 0x01ff0100000100ff, + 0x01ff010001ff0000, 0x01ff010001000001, 0x01ff010001000100, 0x01ff010001010000, + 0x01ff0101ffffffff, 0x01ff0101ffffff01, 0x01ff0101ffff01ff, 0x01ff0101ffff0101, + 0x01ff0101ff000000, 0x01ff0101ff01ffff, 0x01ff0101ff01ff01, 0x01ff0101ff0101ff, + 0x01ff0101ff010101, 0x01ff010100ff0000, 0x01ff01010000ff00, 0x01ff0101000000ff, + 0x01ff010100000001, 0x01ff010101ffffff, 0x01ff010101ffff01, 0x01ff010101ff01ff, + 0x01ff010101ff0101, 0x01ff010101000000, 0x01ff01010101ffff, 0x01ff01010101ff01, + 0x01ff0101010101ff, 0x01ff010101010101, 0x0100ffffffff0000, 0x0100ffffff00ff00, + 0x0100ffffff000001, 0x0100ffffff0001ff, 0x0100ffffff000100, 0x0100ffffff010000, + 0x0100ffff00ffff00, 0x0100ffff00ff0001, 0x0100ffff00ff0100, 0x0100ffff00000000, + 0x0100ffff000001ff, 0x0100ffff00000101, 0x0100ffff00010100, 0x0100ffff00010101, + 0x0100ffff01ff0000, 0x0100ffff0100ff00, 0x0100ffff010000ff, 0x0100ffff01000001, + 0x0100ffff01000100, 0x0100ffff01010000, 0x0100ff00ffffff00, 0x0100ff00ffff00ff, + 0x0100ff00ffff0001, 0x0100ff00ffff0100, 0x0100ff00ff00ffff, 0x0100ff00ff000000, + 0x0100ff00ff0001ff, 0x0100ff00ff000101, 0x0100ff00ff01ff00, 0x0100ff00ff0100ff, + 0x0100ff00ff010001, 0x0100ff00ff010100, 0x0100ff0000ffffff, 0x0100ff0000ff0000, + 0x0100ff000000ffff, 0x0100ff000000ff00, 0x0100ff00000000ff, 0x0100ff0000000000, + 0x0100ff0000000001, 0x0100ff0000000100, 0x0100ff000001ff01, 0x0100ff0000010000, + 0x0100ff0001ff00ff, 0x0100ff0001ff0001, 0x0100ff000100ff01, 0x0100ff0001000000, + 0x0100ff00010001ff, 0x0100ff000101ff00, 0x0100ff00010100ff, 0x0100ff0001010001, + 0x0100ff0001010100, 0x0100ff01ffff0000, 0x0100ff01ff00ff00, 0x0100ff01ff0000ff, + 0x0100ff01ff000100, 0x0100ff01ff010000, 0x0100ff0100ff00ff, 0x0100ff0100ff0001, + 0x0100ff0100ff0100, 0x0100ff010000ffff, 0x0100ff010000ff01, 0x0100ff0100000000, + 0x0100ff01000001ff, 0x0100ff0100010001, 0x0100ff0100010100, 0x0100ff0101ff0000, + 0x0100ff01010000ff, 0x0100ff0101000001, 0x0100ff0101010100, 0x010000ffffffff00, + 0x010000ffffff00ff, 0x010000ffffff0001, 0x010000ffff00ffff, 0x010000ffff000000, + 0x010000ffff0001ff, 0x010000ffff010001, 0x010000ff00ffffff, 0x010000ff00ff0101, + 0x010000ff0000ff00, 0x010000ff000000ff, 0x010000ff00000000, 0x010000ff00000001, + 0x010000ff000001ff, 0x010000ff00000100, 0x010000ff0001ffff, 0x010000ff0001ff00, + 0x010000ff0001ff01, 0x010000ff00010000, 0x010000ff01ff00ff, 0x010000ff01ff0001, + 0x010000ff0100ff01, 0x010000ff010000ff, 0x010000ff01000000, 0x010000ff010001ff, + 0x010000ff0101ff00, 0x010000ff01010100, 0x01000000ffffffff, 0x01000000ffff0000, + 0x01000000ffff01ff, 0x01000000ffff0101, 0x01000000ff00ffff, 0x01000000ff00ff00, + 0x01000000ff0000ff, 0x01000000ff000000, 0x01000000ff000001, 0x01000000ff000100, + 0x01000000ff01ff00, 0x01000000ff010000, 0x01000000ff010100, 0x01000000ff010101, + 0x0100000000ffff00, 0x0100000000ff00ff, 0x0100000000ff0000, 0x0100000000ff0001, + 0x0100000000ff0100, 0x010000000000ffff, 0x010000000000ff00, 0x010000000000ff01, + 0x01000000000000ff, 0x0100000000000000, 0x0100000000000001, 0x01000000000001ff, + 0x0100000000000100, 0x0100000000000101, 0x010000000001ff00, 0x01000000000100ff, + 0x0100000000010000, 0x0100000000010001, 0x0100000000010100, 0x0100000001ffff00, + 0x0100000001ff0000, 0x0100000001ff01ff, 0x010000000100ff00, 0x010000000100ff01, + 0x01000000010000ff, 0x0100000001000000, 0x0100000001000001, 0x0100000001000100, + 0x0100000001000101, 0x010000000101ffff, 0x010000000101ff01, 0x0100000001010000, + 0x01000000010101ff, 0x0100000001010101, 0x01000001ffffff00, 0x01000001ffff00ff, + 0x01000001ff00ffff, 0x01000001ff000000, 0x01000001ff000100, 0x01000001ff01ffff, + 0x01000001ff010001, 0x01000001ff010100, 0x0100000100ff0000, 0x0100000100ff01ff, + 0x0100000100ff0100, 0x010000010000ff00, 0x010000010000ff01, 0x0100000100000000, + 0x0100000100000001, 0x0100000100000100, 0x0100000100010000, 0x01000001000101ff, + 0x0100000101ffff01, 0x0100000101ff00ff, 0x0100000101ff0100, 0x0100000101ff0101, + 0x010000010100ff01, 0x01000001010000ff, 0x0100000101000000, 0x01000001010100ff, + 0x0100000101010001, 0x0100000101010100, 0x010001ffffff0000, 0x010001ffff000001, + 0x010001ffff000100, 0x010001ffff010000, 0x010001ff00ffff00, 0x010001ff00ff0001, + 0x010001ff0000ffff, 0x010001ff0000ff01, 0x010001ff00000000, 0x010001ff00000001, + 0x010001ff00000101, 0x010001ff000100ff, 0x010001ff00010000, 0x010001ff01ff0000, + 0x010001ff0100ff00, 0x010001ff01000001, 0x010001ff01000100, 0x010001ff01010000, + 0x01000100ffff00ff, 0x01000100ffff0001, 0x01000100ffff0100, 0x01000100ff00ffff, + 0x01000100ff00ff01, 0x01000100ff000000, 0x01000100ff0001ff, 0x01000100ff000101, + 0x01000100ff01ffff, 0x01000100ff01ff00, 0x01000100ff0100ff, 0x01000100ff010001, + 0x0100010000ffffff, 0x0100010000ffff01, 0x0100010000ff0000, 0x0100010000ff01ff, + 0x0100010000ff0101, 0x010001000000ff00, 0x01000100000000ff, 0x0100010000000000, + 0x0100010000000001, 0x0100010000000100, 0x010001000001ff01, 0x0100010000010000, + 0x0100010000010001, 0x0100010000010101, 0x0100010001ffff00, 0x0100010001ff00ff, + 0x010001000100ffff, 0x010001000100ff01, 0x0100010001000000, 0x0100010001000101, + 0x010001000101ff00, 0x0100010001010001, 0x01000101ffff0000, 0x01000101ff000000, + 0x01000101ff010000, 0x0100010100ff00ff, 0x0100010100ff0001, 0x0100010100ff0100, + 0x010001010000ffff, 0x0100010100000000, 0x01000101000001ff, 0x010001010001ff00, + 0x0100010101ff0000, 0x010001010100ff00, 0x01000101010000ff, 0x0100010101000000, + 0x0100010101000001, 0x0101ffffffffffff, 0x0101ffffffffff01, 0x0101ffffffff01ff, + 0x0101ffffffff0101, 0x0101ffffff000000, 0x0101ffffff01ffff, 0x0101ffffff01ff01, + 0x0101ffffff0101ff, 0x0101ffffff010101, 0x0101ffff00ff0000, 0x0101ffff0000ff00, + 0x0101ffff000000ff, 0x0101ffff00000001, 0x0101ffff00000100, 0x0101ffff01ffffff, + 0x0101ffff01ffff01, 0x0101ffff01ff01ff, 0x0101ffff01ff0101, 0x0101ffff01000000, + 0x0101ffff0101ffff, 0x0101ffff0101ff01, 0x0101ffff010101ff, 0x0101ffff01010101, + 0x0101ff00ffff0000, 0x0101ff00ffff0100, 0x0101ff00ff00ff00, 0x0101ff00ff0000ff, + 0x0101ff00ff000001, 0x0101ff00ff000100, 0x0101ff00ff000101, 0x0101ff0000ff0001, + 0x0101ff0000ff0100, 0x0101ff000000ff00, 0x0101ff0000000000, 0x0101ff00000001ff, + 0x0101ff0000000101, 0x0101ff000001ff00, 0x0101ff00000100ff, 0x0101ff0001ff0000, + 0x0101ff000100ffff, 0x0101ff000100ff01, 0x0101ff0001000001, 0x0101ff0001000100, + 0x0101ff01ffffff01, 0x0101ff01ffff01ff, 0x0101ff01ffff0101, 0x0101ff01ff00ffff, + 0x0101ff01ff000100, 0x0101ff01ff01ff01, 0x0101ff01ff0101ff, 0x0101ff01ff010101, + 0x0101ff0100ff0000, 0x0101ff010000ff00, 0x0101ff0100000001, 0x0101ff0100000100, + 0x0101ff0100010000, 0x0101ff0101ffffff, 0x0101ff0101ffff01, 0x0101ff0101ff01ff, + 0x0101ff0101ff0101, 0x0101ff0101000000, 0x0101ff010101ffff, 0x0101ff010101ff01, + 0x0101ff01010101ff, 0x0101ff0101010101, 0x010100ffff000100, 0x010100ffff010000, + 0x010100ff00ffff00, 0x010100ff00ff00ff, 0x010100ff0000ffff, 0x010100ff000000ff, + 0x010100ff00000000, 0x010100ff000001ff, 0x010100ff00000101, 0x010100ff0001ff00, + 0x010100ff00010000, 0x010100ff00010001, 0x010100ff000101ff, 0x010100ff00010100, + 0x010100ff01ff0000, 0x01010000ffff0001, 0x01010000ffff0100, 0x01010000ff00ffff, + 0x01010000ff00ff01, 0x01010000ff000000, 0x01010000ff0001ff, 0x01010000ff010001, + 0x01010000ff010100, 0x0101000000ffff01, 0x0101000000ff0000, 0x010100000000ff00, + 0x01010000000000ff, 0x0101000000000000, 0x0101000000000001, 0x0101000000000100, + 0x0101000000010000, 0x0101000000010101, 0x0101000001ffff00, 0x0101000001ff00ff, + 0x0101000001ff0000, 0x0101000001ff0001, 0x0101000001ff0100, 0x010100000100ff01, + 0x0101000001000000, 0x01010000010001ff, 0x01010001ffff0000, 0x01010001ff00ff00, + 0x01010001ff000001, 0x01010001ff000101, 0x01010001ff01ff00, 0x01010001ff010000, + 0x0101000100ff00ff, 0x0101000100ff0001, 0x0101000100ff0101, 0x010100010000ff01, + 0x0101000100000000, 0x0101000100000001, 0x01010001000001ff, 0x010100010001ffff, + 0x010100010001ff01, 0x0101000101ff0001, 0x010100010100ffff, 0x0101000101000000, + 0x0101000101000001, 0x0101000101000100, 0x010100010101ff00, 0x01010001010100ff, + 0x0101000101010001, 0x010101ffffffffff, 0x010101ffffffff01, 0x010101ffffff01ff, + 0x010101ffffff0101, 0x010101ffff01ffff, 0x010101ffff01ff01, 0x010101ffff0101ff, + 0x010101ffff010101, 0x010101ff0000ff00, 0x010101ff000000ff, 0x010101ff00000001, + 0x010101ff00000100, 0x010101ff01ffffff, 0x010101ff01ffff01, 0x010101ff01ff01ff, + 0x010101ff01ff0101, 0x010101ff01000000, 0x010101ff0101ffff, 0x010101ff0101ff01, + 0x010101ff010101ff, 0x010101ff01010101, 0x01010100ffff0000, 0x01010100ff0000ff, + 0x01010100ff000100, 0x01010100ff01ff00, 0x01010100ff010000, 0x0101010000ffff00, + 0x010101000000ffff, 0x0101010000000000, 0x0101010000000101, 0x010101000001ff00, + 0x0101010000010001, 0x0101010000010100, 0x010101000100ffff, 0x0101010001000001, + 0x01010101ffffffff, 0x01010101ffffff01, 0x01010101ffff01ff, 0x01010101ffff0101, + 0x01010101ff01ffff, 0x01010101ff01ff01, 0x01010101ff0101ff, 0x01010101ff010101, + 0x010101010000ff00, 0x01010101000000ff, 0x0101010100000001, 0x0101010101ffffff, + 0x0101010101ffff01, 0x0101010101ff01ff, 0x0101010101ff0101, 0x0101010101000000, + 0x010101010101ffff, 0x010101010101ff01, 0x01010101010101ff, 0x0101010101010101, +GGML_TABLE_END() +#else +GGML_TABLE_BEGIN(uint32_t, iq1s_grid_gpu, NGRID_IQ1S) + 0x00000000, 0x00000002, 0x00000101, 0x00000200, 0x00000202, 0x00010001, 0x00010101, 0x00020000, + 0x00020002, 0x00020200, 0x00020202, 0x01000101, 0x01010001, 0x01010100, 0x01010102, 0x01020101, + 0x02000000, 0x02000002, 0x02000200, 0x02000202, 0x02010101, 0x02020000, 0x02020002, 0x02020200, + 0x02020202, 0x00000110, 0x00000111, 0x00010011, 0x00010110, 0x00010112, 0x00010211, 0x00010212, + 0x00020111, 0x01000011, 0x01000112, 0x01000211, 0x01010012, 0x01010111, 0x01010212, 0x01020011, + 0x01020110, 0x01020112, 0x01020210, 0x02000111, 0x02010011, 0x02010110, 0x02010112, 0x02020111, + 0x00000020, 0x00000022, 0x00000220, 0x00000222, 0x00010121, 0x00020020, 0x00020022, 0x00020220, + 0x00020222, 0x01000121, 0x01010021, 0x01010221, 0x01020120, 0x01020221, 0x02000020, 0x02000022, + 0x02000220, 0x02000222, 0x02010021, 0x02010121, 0x02010221, 0x02020020, 0x02020022, 0x02020220, + 0x02020222, 0x00011001, 0x00011100, 0x00011102, 0x00021101, 0x01001001, 0x01001201, 0x01011101, + 0x01011202, 0x01021100, 0x01021101, 0x02011001, 0x02011201, 0x02021101, 0x00001011, 0x00001110, + 0x00001111, 0x00001112, 0x00011111, 0x00011210, 0x00011212, 0x00021211, 0x01001010, 0x01001111, + 0x01001212, 0x01011010, 0x01011011, 0x01011110, 0x01011111, 0x01011112, 0x01011211, 0x01021010, + 0x01021012, 0x01021111, 0x01021210, 0x01021212, 0x02001011, 0x02011011, 0x02011111, 0x02011210, + 0x02011212, 0x02021011, 0x02021110, 0x02021111, 0x02021112, 0x02021211, 0x00011120, 0x00011221, + 0x01001021, 0x01001120, 0x01011020, 0x01011022, 0x01011121, 0x01011220, 0x01021020, 0x01021021, + 0x01021122, 0x01021221, 0x02001121, 0x02011021, 0x02011120, 0x02011221, 0x00002000, 0x00002002, + 0x00002200, 0x00002202, 0x00012101, 0x00022000, 0x00022002, 0x00022200, 0x00022202, 0x01002101, + 0x01012001, 0x01012102, 0x01022101, 0x02002000, 0x02002002, 0x02002200, 0x02002202, 0x02012101, + 0x02022000, 0x02022002, 0x02022200, 0x02022202, 0x00002111, 0x00012011, 0x00012110, 0x00012211, + 0x00022110, 0x00022111, 0x01002011, 0x01012010, 0x01012011, 0x01012111, 0x01022011, 0x01022110, + 0x01022211, 0x02012011, 0x02012110, 0x02012112, 0x02012211, 0x02022111, 0x00002020, 0x00002022, + 0x00002220, 0x00002222, 0x00012121, 0x00022020, 0x00022022, 0x00022220, 0x00022222, 0x01002121, + 0x01012021, 0x01012221, 0x01022021, 0x01022121, 0x02002020, 0x02002022, 0x02002121, 0x02002220, + 0x02002222, 0x02012121, 0x02022020, 0x02022022, 0x02022220, 0x02022222, 0x00110000, 0x00110001, + 0x00110100, 0x00110201, 0x00120100, 0x00120101, 0x01100001, 0x01100100, 0x01110000, 0x01110101, + 0x01110200, 0x01120001, 0x01120100, 0x01120101, 0x01120201, 0x02110001, 0x02110100, 0x02110102, + 0x02120001, 0x02120101, 0x00100011, 0x00100110, 0x00100112, 0x00100211, 0x00110010, 0x00110012, + 0x00110111, 0x00110210, 0x00120011, 0x00120110, 0x00120211, 0x01100111, 0x01100212, 0x01110010, + 0x01110011, 0x01110012, 0x01110110, 0x01110111, 0x01110112, 0x01110211, 0x01120010, 0x01120111, + 0x02100110, 0x02110012, 0x02110111, 0x02120011, 0x02120110, 0x00110021, 0x00110120, 0x00110122, + 0x00120121, 0x01100020, 0x01100122, 0x01100221, 0x01110022, 0x01110121, 0x01110220, 0x01110222, + 0x01120120, 0x01120122, 0x02100121, 0x02110021, 0x02110120, 0x02110122, 0x02120121, 0x00101001, + 0x00101102, 0x00101201, 0x00111100, 0x00111101, 0x00111200, 0x00111201, 0x00121001, 0x00121102, + 0x01101001, 0x01101101, 0x01101102, 0x01101200, 0x01101202, 0x01111001, 0x01111100, 0x01111101, + 0x01111102, 0x01111201, 0x01121002, 0x01121101, 0x01121200, 0x02101100, 0x02101201, 0x02111000, + 0x02111100, 0x02111101, 0x02111200, 0x02111201, 0x02111202, 0x02121001, 0x02121100, 0x02121101, + 0x02121201, 0x00101012, 0x00101111, 0x00101212, 0x00111011, 0x00111110, 0x00111111, 0x00111112, + 0x00111211, 0x00121010, 0x00121012, 0x00121111, 0x00121210, 0x00121212, 0x01101011, 0x01101110, + 0x01101111, 0x01101112, 0x01111011, 0x01111012, 0x01111110, 0x01111111, 0x01111112, 0x01111211, + 0x01111212, 0x01121011, 0x01121110, 0x01121111, 0x01121112, 0x01121211, 0x02101010, 0x02101012, + 0x02101110, 0x02101111, 0x02101210, 0x02101212, 0x02111010, 0x02111011, 0x02111110, 0x02111111, + 0x02111112, 0x02111211, 0x02111212, 0x02121010, 0x02121012, 0x02121111, 0x00101021, 0x00101120, + 0x00101121, 0x00101122, 0x00111121, 0x00111122, 0x00111220, 0x00111222, 0x00121021, 0x00121122, + 0x01101020, 0x01101022, 0x01101120, 0x01101121, 0x01101220, 0x01101222, 0x01111021, 0x01111121, + 0x01111122, 0x01111220, 0x01111221, 0x01121021, 0x01121120, 0x01121121, 0x01121220, 0x01121221, + 0x01121222, 0x02101122, 0x02101222, 0x02111022, 0x02111121, 0x02121120, 0x02121221, 0x00112001, + 0x00112102, 0x00122101, 0x01102001, 0x01102100, 0x01102102, 0x01102201, 0x01112000, 0x01112101, + 0x01112200, 0x01112202, 0x01122000, 0x01122001, 0x01122100, 0x01122102, 0x01122201, 0x02102101, + 0x02112001, 0x02112100, 0x02122101, 0x00112010, 0x00112012, 0x00112111, 0x00112212, 0x00122011, + 0x00122111, 0x01102012, 0x01102110, 0x01102111, 0x01102210, 0x01112011, 0x01112110, 0x01112111, + 0x01112112, 0x01112211, 0x01112212, 0x01122010, 0x01122111, 0x01122212, 0x02102211, 0x02112011, + 0x02112012, 0x02112111, 0x02112210, 0x02122011, 0x02122112, 0x02122211, 0x00102221, 0x00112122, + 0x00122120, 0x00122122, 0x01102120, 0x01102122, 0x01102221, 0x01112020, 0x01112022, 0x01112121, + 0x01112220, 0x01122021, 0x01122122, 0x01122221, 0x02102121, 0x02112021, 0x02112122, 0x02112222, + 0x00200000, 0x00200002, 0x00200200, 0x00200202, 0x00210101, 0x00220000, 0x00220002, 0x00220101, + 0x00220200, 0x00220202, 0x01200101, 0x01210001, 0x01210201, 0x01220001, 0x01220101, 0x02200000, + 0x02200002, 0x02200200, 0x02200202, 0x02210101, 0x02220000, 0x02220002, 0x02220101, 0x02220200, + 0x02220202, 0x00200111, 0x00210011, 0x00210110, 0x00210211, 0x00220111, 0x01200012, 0x01200110, + 0x01200211, 0x01210111, 0x01210210, 0x01210212, 0x01220011, 0x01220110, 0x01220111, 0x01220112, + 0x02200111, 0x02210010, 0x02210112, 0x02210211, 0x02220111, 0x00200021, 0x00200220, 0x00200222, + 0x00210021, 0x00210121, 0x00220020, 0x00220022, 0x00220220, 0x00220222, 0x01200121, 0x01210021, + 0x01210122, 0x01210221, 0x01220121, 0x02200021, 0x02200220, 0x02200222, 0x02210021, 0x02210121, + 0x02220020, 0x02220022, 0x02220220, 0x02220222, 0x00201101, 0x00211100, 0x00211102, 0x00211201, + 0x00221101, 0x01201100, 0x01201101, 0x01201102, 0x01201201, 0x01211002, 0x01211101, 0x01211200, + 0x01211202, 0x01221102, 0x02201101, 0x02211001, 0x02211100, 0x02211201, 0x02221001, 0x02221101, + 0x00201211, 0x00211111, 0x00221011, 0x00221211, 0x01201010, 0x01201111, 0x01201210, 0x01211011, + 0x01211110, 0x01211111, 0x01211211, 0x01221012, 0x01221111, 0x01221210, 0x02201211, 0x02211010, + 0x02211110, 0x02211111, 0x02211210, 0x02211212, 0x02221011, 0x02221110, 0x02221112, 0x02221211, + 0x00201121, 0x00211020, 0x00211022, 0x00211221, 0x00221121, 0x01201021, 0x01201221, 0x01211121, + 0x01221020, 0x01221021, 0x01221221, 0x02201120, 0x02201122, 0x02211020, 0x02211222, 0x00202000, + 0x00202002, 0x00202200, 0x00202202, 0x00212101, 0x00222000, 0x00222002, 0x00222200, 0x00222202, + 0x01202101, 0x01212001, 0x01212100, 0x01222101, 0x02202000, 0x02202002, 0x02202200, 0x02202202, + 0x02222000, 0x02222002, 0x02222200, 0x02222202, 0x00202211, 0x00212011, 0x00212110, 0x00212211, + 0x00222111, 0x01202112, 0x01202211, 0x01212012, 0x01212111, 0x01222011, 0x01222110, 0x01222112, + 0x01222211, 0x02202111, 0x02212010, 0x02212112, 0x02212211, 0x02222110, 0x02222111, 0x00202020, + 0x00202022, 0x00202220, 0x00202222, 0x00222020, 0x00222022, 0x00222220, 0x00222222, 0x01202121, + 0x01212021, 0x01212122, 0x01212221, 0x01222121, 0x02202020, 0x02202022, 0x02202220, 0x02202222, + 0x02212121, 0x02222020, 0x02222022, 0x02222220, 0x02222222, 0x10000101, 0x10010001, 0x10010102, + 0x10020101, 0x11000201, 0x11010002, 0x11010101, 0x11010200, 0x11010202, 0x11020001, 0x11020100, + 0x11020102, 0x12010100, 0x12010201, 0x12020001, 0x12020102, 0x10000010, 0x10000011, 0x10000110, + 0x10000112, 0x10000211, 0x10010012, 0x10010111, 0x10010112, 0x10010210, 0x10010212, 0x10020011, + 0x10020112, 0x10020211, 0x11000111, 0x11000210, 0x11000212, 0x11010011, 0x11010110, 0x11010111, + 0x11010112, 0x11010211, 0x11010212, 0x11020111, 0x11020210, 0x11020212, 0x12000011, 0x12000110, + 0x12000112, 0x12010010, 0x12010012, 0x12010111, 0x12020010, 0x12020011, 0x12020012, 0x10000121, + 0x10010021, 0x10010120, 0x10010122, 0x10020121, 0x11000021, 0x11010022, 0x11010121, 0x11010222, + 0x11020120, 0x11020221, 0x12000221, 0x12010120, 0x12020121, 0x10001001, 0x10011101, 0x10011201, + 0x10021201, 0x11001101, 0x11001200, 0x11001202, 0x11011001, 0x11011100, 0x11011101, 0x11011102, + 0x11021001, 0x11021002, 0x11021101, 0x11021200, 0x11021202, 0x12001001, 0x12001102, 0x12001201, + 0x12011000, 0x12011002, 0x12011101, 0x12021000, 0x12021001, 0x12021201, 0x10001011, 0x10001012, + 0x10001111, 0x10001212, 0x10011011, 0x10011110, 0x10011111, 0x10011112, 0x10011211, 0x10021010, + 0x10021111, 0x10021212, 0x11001011, 0x11001110, 0x11001111, 0x11001112, 0x11001211, 0x11011010, + 0x11011011, 0x11011110, 0x11011111, 0x11011112, 0x11011210, 0x11011211, 0x11021011, 0x11021110, + 0x11021111, 0x11021112, 0x11021211, 0x12001012, 0x12001110, 0x12001111, 0x12001210, 0x12011011, + 0x12011110, 0x12011111, 0x12011112, 0x12011211, 0x12011212, 0x12021111, 0x12021210, 0x12021212, + 0x10001021, 0x10001121, 0x10001221, 0x10011120, 0x10011121, 0x10011220, 0x10011222, 0x10021021, + 0x10021120, 0x10021221, 0x11001020, 0x11001022, 0x11001121, 0x11001220, 0x11011020, 0x11011021, + 0x11011022, 0x11011121, 0x11011122, 0x11011221, 0x11021022, 0x11021121, 0x11021220, 0x12001021, + 0x12001121, 0x12001222, 0x12011120, 0x12011121, 0x12021021, 0x12021120, 0x12021122, 0x10002101, + 0x10012001, 0x10012101, 0x10012202, 0x10022101, 0x11002002, 0x11002201, 0x11012000, 0x11012101, + 0x11012200, 0x11022001, 0x11022100, 0x11022102, 0x11022201, 0x12002101, 0x12012001, 0x12012100, + 0x12012102, 0x12012201, 0x12022101, 0x10002011, 0x10002111, 0x10002112, 0x10002212, 0x10012010, + 0x10012110, 0x10012111, 0x10012210, 0x10022011, 0x10022110, 0x10022112, 0x11002010, 0x11002111, + 0x11002212, 0x11012011, 0x11012012, 0x11012110, 0x11012111, 0x11012112, 0x11012211, 0x11022010, + 0x11022012, 0x11022111, 0x11022112, 0x11022212, 0x12002112, 0x12002211, 0x12012012, 0x12012111, + 0x12012112, 0x12012210, 0x12022011, 0x12022110, 0x12022112, 0x12022211, 0x10012122, 0x11002120, + 0x11002122, 0x11002221, 0x11012121, 0x11012220, 0x11012222, 0x11022120, 0x11022221, 0x12012120, + 0x12022121, 0x10100001, 0x10100100, 0x10100101, 0x10100102, 0x10100201, 0x10110002, 0x10110101, + 0x10110202, 0x10120001, 0x10120100, 0x10120201, 0x11100000, 0x11100101, 0x11100200, 0x11110001, + 0x11110100, 0x11110101, 0x11110102, 0x11110201, 0x11120101, 0x11120200, 0x12100102, 0x12100201, + 0x12110101, 0x12110200, 0x12120000, 0x12120001, 0x12120102, 0x12120201, 0x10100111, 0x10100210, + 0x10100211, 0x10100212, 0x10110011, 0x10110110, 0x10110111, 0x10110112, 0x10110210, 0x10110211, + 0x10120010, 0x10120111, 0x10120112, 0x10120210, 0x10120212, 0x11100011, 0x11100110, 0x11100111, + 0x11100112, 0x11100211, 0x11110010, 0x11110011, 0x11110012, 0x11110110, 0x11110111, 0x11110112, + 0x11110210, 0x11110211, 0x11110212, 0x11120011, 0x11120110, 0x11120111, 0x11120112, 0x11120211, + 0x12100012, 0x12100111, 0x12110011, 0x12110110, 0x12110111, 0x12110112, 0x12110211, 0x12120010, + 0x12120111, 0x12120212, 0x10100021, 0x10100122, 0x10110022, 0x10110121, 0x10110222, 0x10120021, + 0x10120120, 0x11100022, 0x11100121, 0x11100222, 0x11110021, 0x11110120, 0x11110121, 0x11110122, + 0x11110221, 0x11120022, 0x11120121, 0x12100121, 0x12110020, 0x12110022, 0x12110121, 0x12110221, + 0x12110222, 0x12120120, 0x10101100, 0x10101101, 0x10111001, 0x10111100, 0x10111101, 0x10111102, + 0x10111200, 0x10111201, 0x10121001, 0x10121101, 0x10121200, 0x10121202, 0x11101001, 0x11101100, + 0x11101101, 0x11101102, 0x11101201, 0x11101202, 0x11111000, 0x11111001, 0x11111100, 0x11111101, + 0x11111102, 0x11111200, 0x11111201, 0x11111202, 0x11121001, 0x11121002, 0x11121100, 0x11121101, + 0x11121102, 0x11121201, 0x12101000, 0x12101200, 0x12101202, 0x12111001, 0x12111100, 0x12111101, + 0x12111102, 0x12111201, 0x12121001, 0x12121100, 0x12121101, 0x12121202, 0x10101011, 0x10101012, + 0x10101110, 0x10101111, 0x10101112, 0x10101211, 0x10111010, 0x10111011, 0x10111012, 0x10111110, + 0x10111111, 0x10111112, 0x10111211, 0x10111212, 0x10121011, 0x10121110, 0x10121111, 0x10121112, + 0x10121211, 0x11101010, 0x11101011, 0x11101012, 0x11101110, 0x11101111, 0x11101112, 0x11101210, + 0x11101211, 0x11111010, 0x11111011, 0x11111012, 0x11111110, 0x11111111, 0x11111112, 0x11111210, + 0x11111211, 0x11111212, 0x11121010, 0x11121011, 0x11121110, 0x11121111, 0x11121112, 0x11121210, + 0x11121211, 0x11121212, 0x12101011, 0x12101110, 0x12101111, 0x12101211, 0x12101212, 0x12111010, + 0x12111011, 0x12111110, 0x12111111, 0x12111112, 0x12111210, 0x12111211, 0x12121011, 0x12121110, + 0x12121111, 0x12121112, 0x12121211, 0x10101020, 0x10101021, 0x10101022, 0x10101120, 0x10101122, + 0x10101220, 0x10101221, 0x10111021, 0x10111120, 0x10111121, 0x10111220, 0x10111221, 0x10121020, + 0x10121021, 0x10121022, 0x10121120, 0x10121121, 0x10121122, 0x10121220, 0x10121221, 0x11101021, + 0x11101121, 0x11101122, 0x11101220, 0x11101221, 0x11101222, 0x11111020, 0x11111021, 0x11111022, + 0x11111120, 0x11111121, 0x11111122, 0x11111220, 0x11111221, 0x11111222, 0x11121021, 0x11121120, + 0x11121121, 0x11121221, 0x12101022, 0x12101121, 0x12101122, 0x12101220, 0x12101221, 0x12101222, + 0x12111021, 0x12111121, 0x12111222, 0x12121022, 0x12121121, 0x12121122, 0x12121220, 0x12121221, + 0x10102100, 0x10102101, 0x10102102, 0x10102201, 0x10112000, 0x10112101, 0x10112200, 0x10122001, + 0x10122202, 0x11102101, 0x11102200, 0x11102202, 0x11112001, 0x11112100, 0x11112101, 0x11112102, + 0x11112200, 0x11112201, 0x11122000, 0x11122002, 0x11122100, 0x11122101, 0x12102002, 0x12102201, + 0x12112000, 0x12112002, 0x12112101, 0x12112200, 0x12122001, 0x12122201, 0x10102011, 0x10102012, + 0x10102111, 0x10102212, 0x10112011, 0x10112110, 0x10112111, 0x10112112, 0x10112211, 0x10122111, + 0x11102011, 0x11102110, 0x11102111, 0x11102112, 0x11102211, 0x11112010, 0x11112011, 0x11112012, + 0x11112110, 0x11112111, 0x11112112, 0x11112210, 0x11112211, 0x11112212, 0x11122011, 0x11122110, + 0x11122111, 0x11122112, 0x11122211, 0x12102011, 0x12102111, 0x12102211, 0x12112011, 0x12112110, + 0x12112111, 0x12112112, 0x12112210, 0x12112211, 0x12122111, 0x10102120, 0x10102220, 0x10112121, + 0x10112222, 0x10122020, 0x10122121, 0x10122122, 0x10122221, 0x11102121, 0x11102220, 0x11102221, + 0x11112021, 0x11112121, 0x11112122, 0x11112220, 0x11112221, 0x11122022, 0x11122121, 0x11122220, + 0x11122222, 0x12102021, 0x12102222, 0x12112022, 0x12112121, 0x12112122, 0x12112220, 0x12112222, + 0x12122021, 0x10200101, 0x10210100, 0x10210102, 0x10210201, 0x10220101, 0x11200100, 0x11210000, + 0x11210101, 0x11210102, 0x11210200, 0x11210202, 0x11220001, 0x11220100, 0x11220102, 0x11220201, + 0x12200001, 0x12210102, 0x12220101, 0x10200011, 0x10200110, 0x10200112, 0x10200211, 0x10210012, + 0x10210111, 0x10220011, 0x10220012, 0x10220112, 0x10220211, 0x11200111, 0x11200211, 0x11210011, + 0x11210111, 0x11210112, 0x11210211, 0x11220111, 0x11220112, 0x11220212, 0x12200110, 0x12200212, + 0x12210012, 0x12210111, 0x12220011, 0x12220112, 0x12220211, 0x10210021, 0x10210122, 0x10210221, + 0x11200020, 0x11200021, 0x11200122, 0x11210121, 0x11210122, 0x11210220, 0x11220020, 0x12200121, + 0x12210021, 0x12210122, 0x12220121, 0x10211001, 0x10211002, 0x10211101, 0x10211102, 0x10211202, + 0x10221001, 0x10221102, 0x10221201, 0x11201000, 0x11201002, 0x11201101, 0x11201200, 0x11201202, + 0x11211001, 0x11211100, 0x11211101, 0x11211102, 0x11211201, 0x11211202, 0x11221000, 0x11221002, + 0x11221101, 0x12201100, 0x12201101, 0x12201201, 0x12211000, 0x12211002, 0x12211100, 0x12211101, + 0x12211102, 0x12211200, 0x12211202, 0x12221001, 0x12221100, 0x12221201, 0x10201111, 0x10201210, + 0x10201212, 0x10211011, 0x10211111, 0x10211112, 0x10211211, 0x11201110, 0x11201111, 0x11201112, + 0x11201211, 0x11211010, 0x11211011, 0x11211110, 0x11211111, 0x11211112, 0x11211211, 0x11221011, + 0x11221110, 0x11221111, 0x11221112, 0x11221211, 0x12201112, 0x12201211, 0x12201212, 0x12211011, + 0x12211111, 0x12211112, 0x12211211, 0x12211212, 0x12221012, 0x12221111, 0x12221112, 0x12221210, + 0x10201022, 0x10201221, 0x10211121, 0x10221020, 0x10221122, 0x10221220, 0x10221221, 0x11201020, + 0x11201121, 0x11201220, 0x11201222, 0x11211021, 0x11211120, 0x11211121, 0x11211122, 0x11211220, + 0x11211222, 0x11221020, 0x11221121, 0x11221220, 0x12201020, 0x12201022, 0x12201121, 0x12201222, + 0x12211120, 0x12211122, 0x12211220, 0x12211221, 0x12221020, 0x12221120, 0x12221122, 0x12221222, + 0x10212102, 0x10212201, 0x10222101, 0x11202001, 0x11212002, 0x11212101, 0x11212202, 0x11222001, + 0x11222201, 0x12202101, 0x12212001, 0x12212200, 0x12222102, 0x10202011, 0x10202110, 0x10212010, + 0x10212111, 0x10222011, 0x10222110, 0x10222112, 0x10222211, 0x11202010, 0x11202011, 0x11202111, + 0x11202112, 0x11202210, 0x11212011, 0x11212110, 0x11212111, 0x11212112, 0x11212211, 0x11222010, + 0x11222111, 0x11222212, 0x12202012, 0x12202110, 0x12202212, 0x12212111, 0x12222011, 0x12222110, + 0x12222111, 0x12222211, 0x10212021, 0x10212122, 0x10212220, 0x11202021, 0x11202120, 0x11202221, + 0x11212020, 0x11212121, 0x11212220, 0x11212222, 0x11222120, 0x11222121, 0x11222221, 0x12202122, + 0x12212120, 0x12212220, 0x12212222, 0x12222122, 0x20000000, 0x20000002, 0x20000200, 0x20000202, + 0x20020000, 0x20020002, 0x20020200, 0x20020202, 0x21000101, 0x21010000, 0x21010001, 0x21010100, + 0x21010102, 0x21010201, 0x21020101, 0x22000000, 0x22000002, 0x22000200, 0x22000202, 0x22010101, + 0x22020000, 0x22020002, 0x22020200, 0x22020202, 0x20000111, 0x20010011, 0x20010110, 0x20010112, + 0x20010211, 0x20020111, 0x21000011, 0x21000110, 0x21000211, 0x21010010, 0x21010012, 0x21010111, + 0x21010112, 0x21010210, 0x21010211, 0x21020110, 0x21020112, 0x21020211, 0x22000111, 0x22000211, + 0x22010110, 0x22010112, 0x22010211, 0x22020111, 0x20000020, 0x20000022, 0x20000220, 0x20000222, + 0x20010121, 0x20020020, 0x20020022, 0x20020220, 0x20020222, 0x21010021, 0x21010120, 0x21010221, + 0x21020121, 0x22000020, 0x22000022, 0x22000220, 0x22000222, 0x22010121, 0x22020020, 0x22020022, + 0x22020220, 0x22020222, 0x20011100, 0x20011201, 0x21001001, 0x21001100, 0x21011001, 0x21011101, + 0x21011202, 0x21021001, 0x21021100, 0x21021201, 0x22011100, 0x22011201, 0x20001011, 0x20001211, + 0x20011012, 0x20011111, 0x20011212, 0x20021112, 0x20021211, 0x21001010, 0x21001011, 0x21001111, + 0x21001210, 0x21011011, 0x21011110, 0x21011111, 0x21011112, 0x21011211, 0x21011212, 0x21021111, + 0x21021112, 0x21021210, 0x21021212, 0x22001011, 0x22001110, 0x22001112, 0x22001211, 0x22011010, + 0x22011012, 0x22011111, 0x22011210, 0x22021112, 0x20011021, 0x20011122, 0x20011221, 0x20021121, + 0x21001021, 0x21001120, 0x21001221, 0x21001222, 0x21011020, 0x21011121, 0x21011221, 0x21011222, + 0x21021021, 0x21021122, 0x21021222, 0x22001121, 0x22011021, 0x22011222, 0x22021120, 0x20002000, + 0x20002002, 0x20002200, 0x20002202, 0x20012101, 0x20022000, 0x20022002, 0x20022200, 0x20022202, + 0x21002001, 0x21002101, 0x21012001, 0x21012100, 0x21012201, 0x21022101, 0x21022201, 0x22002000, + 0x22002002, 0x22002200, 0x22002202, 0x22012101, 0x22022000, 0x22022002, 0x22022200, 0x22022202, + 0x20002111, 0x20002112, 0x20012011, 0x20012110, 0x20012112, 0x20022111, 0x21002011, 0x21002110, + 0x21002112, 0x21002211, 0x21012010, 0x21012012, 0x21012111, 0x21012212, 0x21022011, 0x21022110, + 0x22002111, 0x22012112, 0x22012211, 0x22022111, 0x20002020, 0x20002022, 0x20002220, 0x20002222, + 0x20012121, 0x20022020, 0x20022022, 0x20022220, 0x20022222, 0x21002121, 0x21012021, 0x21012120, + 0x21012122, 0x22002020, 0x22002022, 0x22002220, 0x22002222, 0x22012121, 0x22022020, 0x22022022, + 0x22022220, 0x22022222, 0x20100101, 0x20110001, 0x20110102, 0x20110200, 0x20110201, 0x20120101, + 0x21100001, 0x21100102, 0x21100201, 0x21110101, 0x21110200, 0x21110202, 0x21120201, 0x21120202, + 0x22100101, 0x22110001, 0x22110100, 0x22110102, 0x22110201, 0x22120101, 0x20100011, 0x20100110, + 0x20100112, 0x20100211, 0x20110010, 0x20110111, 0x20110210, 0x20110212, 0x20120011, 0x20120110, + 0x20120112, 0x20120211, 0x21100010, 0x21100111, 0x21110010, 0x21110011, 0x21110110, 0x21110111, + 0x21110112, 0x21110211, 0x21120012, 0x21120111, 0x22100110, 0x22100112, 0x22110012, 0x22110111, + 0x22110210, 0x22120011, 0x22120110, 0x22120112, 0x22120211, 0x20100121, 0x20110021, 0x20110120, + 0x20110221, 0x20120121, 0x21100120, 0x21100122, 0x21100221, 0x21110020, 0x21110022, 0x21110121, + 0x21110220, 0x21120122, 0x21120221, 0x22100121, 0x22110120, 0x22110122, 0x22120221, 0x20101001, + 0x20101100, 0x20101102, 0x20111000, 0x20111101, 0x20111200, 0x20121102, 0x21101000, 0x21101202, + 0x21111001, 0x21111100, 0x21111101, 0x21111102, 0x21111200, 0x21111201, 0x21121000, 0x21121001, + 0x21121002, 0x21121101, 0x22101100, 0x22101102, 0x22111002, 0x22111100, 0x22111101, 0x22111200, + 0x22121001, 0x22121201, 0x20101010, 0x20101111, 0x20101210, 0x20101212, 0x20111010, 0x20111011, + 0x20111110, 0x20111111, 0x20111112, 0x20111211, 0x20121011, 0x20121111, 0x20121211, 0x20121212, + 0x21101011, 0x21101110, 0x21101111, 0x21101112, 0x21101211, 0x21111010, 0x21111011, 0x21111012, + 0x21111110, 0x21111111, 0x21111112, 0x21111210, 0x21111211, 0x21111212, 0x21121011, 0x21121110, + 0x21121111, 0x21121112, 0x21121211, 0x22101011, 0x22101111, 0x22101210, 0x22111011, 0x22111012, + 0x22111110, 0x22111111, 0x22111112, 0x22111211, 0x22111212, 0x22121010, 0x22121012, 0x22121111, + 0x22121210, 0x22121212, 0x20101021, 0x20101120, 0x20111020, 0x20111121, 0x20111221, 0x20121020, + 0x20121122, 0x20121221, 0x21101121, 0x21101220, 0x21101221, 0x21111021, 0x21111022, 0x21111121, + 0x21111122, 0x21111221, 0x21121121, 0x21121220, 0x22101022, 0x22101120, 0x22101221, 0x22101222, + 0x22111022, 0x22111120, 0x22111121, 0x22121120, 0x22121122, 0x22121221, 0x20102101, 0x20112102, + 0x20112201, 0x20122101, 0x21102001, 0x21102102, 0x21112000, 0x21112002, 0x21112101, 0x21112102, + 0x21112202, 0x21122100, 0x21122101, 0x22102101, 0x22112001, 0x22112102, 0x22112201, 0x22122101, + 0x20102110, 0x20102112, 0x20102211, 0x20112010, 0x20112012, 0x20112111, 0x20112210, 0x20112212, + 0x20122010, 0x20122011, 0x20122110, 0x20122112, 0x21102010, 0x21102012, 0x21102111, 0x21102210, + 0x21102212, 0x21112011, 0x21112110, 0x21112111, 0x21112112, 0x21112211, 0x21122012, 0x21122111, + 0x21122112, 0x21122212, 0x22102011, 0x22102110, 0x22112010, 0x22112012, 0x22112111, 0x22112212, + 0x22122011, 0x22122112, 0x20102121, 0x20112121, 0x20122121, 0x21102120, 0x21102122, 0x21102221, + 0x21112020, 0x21112121, 0x21112220, 0x21122021, 0x22102121, 0x22112021, 0x22112120, 0x22112121, + 0x22112122, 0x20200000, 0x20200002, 0x20200200, 0x20200202, 0x20210101, 0x20220000, 0x20220002, + 0x20220200, 0x20220202, 0x21200101, 0x21210001, 0x21210100, 0x21210102, 0x21210201, 0x22200000, + 0x22200002, 0x22200200, 0x22200202, 0x22210101, 0x22220000, 0x22220002, 0x22220200, 0x22220202, + 0x20200111, 0x20200211, 0x20210011, 0x20210110, 0x20210112, 0x20210211, 0x20210212, 0x21200112, + 0x21200211, 0x21210011, 0x21210111, 0x21210210, 0x21210212, 0x21220011, 0x21220110, 0x22200111, + 0x22210010, 0x22210012, 0x22210112, 0x22210211, 0x20200022, 0x20200220, 0x20200222, 0x20210020, + 0x20210221, 0x20220022, 0x20220220, 0x20220222, 0x21200121, 0x21210021, 0x21210122, 0x21210221, + 0x21220121, 0x22200020, 0x22200022, 0x22200220, 0x22200222, 0x22210121, 0x22220020, 0x22220022, + 0x22220220, 0x22220222, 0x20211201, 0x20221101, 0x21201001, 0x21201100, 0x21211000, 0x21211100, + 0x21211101, 0x21211200, 0x21211202, 0x21221001, 0x21221101, 0x21221102, 0x21221200, 0x21221201, + 0x22201101, 0x20201112, 0x20201211, 0x20211010, 0x20211012, 0x20211111, 0x20211210, 0x20221112, + 0x20221211, 0x21201012, 0x21201111, 0x21211011, 0x21211110, 0x21211111, 0x21211112, 0x21211211, + 0x21221111, 0x21221212, 0x22201011, 0x22201110, 0x22201111, 0x22201112, 0x22201211, 0x22211012, + 0x22211111, 0x22211210, 0x20201121, 0x20211021, 0x20211122, 0x20211222, 0x20221021, 0x20221121, + 0x21201120, 0x21201122, 0x21201222, 0x21211022, 0x21211121, 0x21211122, 0x21211220, 0x21221020, + 0x21221022, 0x22201122, 0x22211020, 0x22211121, 0x22211122, 0x22211221, 0x22221021, 0x22221120, + 0x22221122, 0x20202000, 0x20202002, 0x20202200, 0x20202202, 0x20222000, 0x20222002, 0x20222200, + 0x20222202, 0x21212001, 0x21212100, 0x21212102, 0x21212201, 0x22202000, 0x22202002, 0x22202200, + 0x22202202, 0x22212101, 0x22222000, 0x22222002, 0x22222200, 0x22222202, 0x20202111, 0x20212110, + 0x20212211, 0x20222011, 0x20222111, 0x21202011, 0x21212010, 0x21212111, 0x21212212, 0x21222011, + 0x21222112, 0x21222211, 0x22212010, 0x22212112, 0x20202020, 0x20202022, 0x20202220, 0x20202222, + 0x20222020, 0x20222022, 0x20222220, 0x20222222, 0x21212021, 0x21212120, 0x21212122, 0x22202020, + 0x22202022, 0x22202220, 0x22202222, 0x22212121, 0x22222020, 0x22222022, 0x22222220, 0x22222222, +GGML_TABLE_END() +#endif + +#endif // GGML_COMMON_IMPL +#endif // GGML_COMMON_IMPL + +#include + +using namespace metal; + +#define MAX(x, y) ((x) > (y) ? (x) : (y)) +#define MIN(x, y) ((x) < (y) ? (x) : (y)) +#define SWAP(x, y) { auto tmp = (x); (x) = (y); (y) = tmp; } + +#define N_SIMDWIDTH 32 // assuming SIMD group size is 32 + +enum ggml_sort_order { + GGML_SORT_ORDER_ASC, + GGML_SORT_ORDER_DESC, +}; + +// general-purpose kernel for addition, multiplication and division of two tensors +// pros: works for non-contiguous tensors, supports broadcast across all dims +// cons: not very efficient +kernel void kernel_add( + device const char * src0, + device const char * src1, + device char * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant uint64_t & nb13, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + constant int64_t & offs, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig.z; + const int64_t i02 = tgpig.y; + const int64_t i01 = tgpig.x; + + const int64_t i13 = i03 % ne13; + const int64_t i12 = i02 % ne12; + const int64_t i11 = i01 % ne11; + + device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + offs; + device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11; + device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + offs; + + for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) { + const int i10 = i0 % ne10; + *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) + *((device float *)(src1_ptr + i10*nb10)); + } +} + +kernel void kernel_mul( + device const char * src0, + device const char * src1, + device char * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant uint64_t & nb13, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig.z; + const int64_t i02 = tgpig.y; + const int64_t i01 = tgpig.x; + + const int64_t i13 = i03 % ne13; + const int64_t i12 = i02 % ne12; + const int64_t i11 = i01 % ne11; + + device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01; + device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11; + device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1; + + for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) { + const int i10 = i0 % ne10; + *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) * *((device float *)(src1_ptr + i10*nb10)); + } +} + +kernel void kernel_div( + device const char * src0, + device const char * src1, + device char * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant uint64_t & nb13, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig.z; + const int64_t i02 = tgpig.y; + const int64_t i01 = tgpig.x; + + const int64_t i13 = i03 % ne13; + const int64_t i12 = i02 % ne12; + const int64_t i11 = i01 % ne11; + + device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01; + device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11; + device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1; + + for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) { + const int i10 = i0 % ne10; + *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) / *((device float *)(src1_ptr + i10*nb10)); + } +} + +// assumption: src1 is a row +// broadcast src1 into src0 +kernel void kernel_add_row( + device const float4 * src0, + device const float4 * src1, + device float4 * dst, + constant uint64_t & nb [[buffer(28)]], + uint tpig[[thread_position_in_grid]]) { + dst[tpig] = src0[tpig] + src1[tpig % nb]; +} + +kernel void kernel_mul_row( + device const float4 * src0, + device const float4 * src1, + device float4 * dst, + constant uint64_t & nb [[buffer(28)]], + uint tpig[[thread_position_in_grid]]) { + dst[tpig] = src0[tpig] * src1[tpig % nb]; +} + +kernel void kernel_div_row( + device const float4 * src0, + device const float4 * src1, + device float4 * dst, + constant uint64_t & nb [[buffer(28)]], + uint tpig[[thread_position_in_grid]]) { + dst[tpig] = src0[tpig] / src1[tpig % nb]; +} + +kernel void kernel_scale( + device const float * src0, + device float * dst, + constant float & scale, + uint tpig[[thread_position_in_grid]]) { + dst[tpig] = src0[tpig] * scale; +} + +kernel void kernel_scale_4( + device const float4 * src0, + device float4 * dst, + constant float & scale, + uint tpig[[thread_position_in_grid]]) { + dst[tpig] = src0[tpig] * scale; +} + +kernel void kernel_clamp( + device const float * src0, + device float * dst, + constant float & min, + constant float & max, + uint tpig[[thread_position_in_grid]]) { + dst[tpig] = src0[tpig] < min ? min : (src0[tpig] > max ? max : src0[tpig]); +} + +kernel void kernel_relu( + device const float * src0, + device float * dst, + uint tpig[[thread_position_in_grid]]) { + dst[tpig] = max(0.0f, src0[tpig]); +} + +kernel void kernel_tanh( + device const float * src0, + device float * dst, + uint tpig[[thread_position_in_grid]]) { + device const float & x = src0[tpig]; + dst[tpig] = precise::tanh(x); +} + +constant float GELU_COEF_A = 0.044715f; +constant float GELU_QUICK_COEF = -1.702f; +constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f; + +kernel void kernel_gelu( + device const float * src0, + device float * dst, + uint tpig[[thread_position_in_grid]]) { + device const float & x = src0[tpig]; + + dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x))); +} + +kernel void kernel_gelu_4( + device const float4 * src0, + device float4 * dst, + uint tpig[[thread_position_in_grid]]) { + device const float4 & x = src0[tpig]; + + // BEWARE !!! + // Simply using "tanh" instead of "precise::tanh" will sometimes results in NaNs! + // This was observed with Falcon 7B and 40B models + // + dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x))); +} + +kernel void kernel_gelu_quick( + device const float * src0, + device float * dst, + uint tpig[[thread_position_in_grid]]) { + device const float & x = src0[tpig]; + + dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x))); +} + +kernel void kernel_gelu_quick_4( + device const float4 * src0, + device float4 * dst, + uint tpig[[thread_position_in_grid]]) { + device const float4 & x = src0[tpig]; + + dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x))); +} + +kernel void kernel_silu( + device const float * src0, + device float * dst, + uint tpig[[thread_position_in_grid]]) { + device const float & x = src0[tpig]; + dst[tpig] = x / (1.0f + exp(-x)); +} + +kernel void kernel_silu_4( + device const float4 * src0, + device float4 * dst, + uint tpig[[thread_position_in_grid]]) { + device const float4 & x = src0[tpig]; + dst[tpig] = x / (1.0f + exp(-x)); +} + +kernel void kernel_sqr( + device const float * src0, + device float * dst, + uint tpig[[thread_position_in_grid]]) { + dst[tpig] = src0[tpig] * src0[tpig]; +} + +kernel void kernel_sum_rows( + device const float * src0, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant uint64_t & nb13, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tpig[[thread_position_in_grid]]) { + int64_t i3 = tpig.z; + int64_t i2 = tpig.y; + int64_t i1 = tpig.x; + + if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) { + return; + } + + device const float * src_row = (device const float *) ((device const char *) src0 + i1*nb01 + i2*nb02 + i3*nb03); + device float * dst_row = (device float *) ((device char *) dst + i1*nb1 + i2*nb2 + i3*nb3); + + float row_sum = 0; + + for (int64_t i0 = 0; i0 < ne00; i0++) { + row_sum += src_row[i0]; + } + + dst_row[0] = row_sum; +} + +kernel void kernel_soft_max( + device const float * src0, + device const float * src1, + device const float * src2, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant float & scale, + constant float & max_bias, + constant float & m0, + constant float & m1, + constant uint32_t & n_head_log2, + threadgroup float * buf [[threadgroup(0)]], + uint tgpig[[threadgroup_position_in_grid]], + uint tpitg[[thread_position_in_threadgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]], + uint tiisg[[thread_index_in_simdgroup]], + uint ntg[[threads_per_threadgroup]]) { + const int64_t i03 = (tgpig) / (ne02*ne01); + const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01; + const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01); + + device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + device const float * pmask = src1 != src0 ? src1 + i01*ne00 : nullptr; + device const float * ppos = src2 != src0 ? src2 : nullptr; + device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + float slope = 0.0f; + + // ALiBi + if (max_bias > 0.0f) { + const int64_t h = i02; + + const float base = h < n_head_log2 ? m0 : m1; + const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; + + slope = pow(base, exp); + } + + // parallel max + float lmax = -INFINITY; + + for (int i00 = tpitg; i00 < ne00; i00 += ntg) { + lmax = MAX(lmax, psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f)); + } + + // find the max value in the block + float max_val = simd_max(lmax); + if (ntg > N_SIMDWIDTH) { + if (sgitg == 0) { + buf[tiisg] = -INFINITY; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + if (tiisg == 0) { + buf[sgitg] = max_val; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + max_val = buf[tiisg]; + max_val = simd_max(max_val); + } + + // parallel sum + float lsum = 0.0f; + for (int i00 = tpitg; i00 < ne00; i00 += ntg) { + const float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f)) - max_val); + lsum += exp_psrc0; + pdst[i00] = exp_psrc0; + } + + // This barrier fixes a failing test + // ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335 + threadgroup_barrier(mem_flags::mem_none); + + float sum = simd_sum(lsum); + + if (ntg > N_SIMDWIDTH) { + if (sgitg == 0) { + buf[tiisg] = 0.0f; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + if (tiisg == 0) { + buf[sgitg] = sum; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + sum = buf[tiisg]; + sum = simd_sum(sum); + } + + const float inv_sum = 1.0f/sum; + + for (int i00 = tpitg; i00 < ne00; i00 += ntg) { + pdst[i00] *= inv_sum; + } +} + +kernel void kernel_soft_max_4( + device const float * src0, + device const float * src1, + device const float * src2, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant float & scale, + constant float & max_bias, + constant float & m0, + constant float & m1, + constant uint32_t & n_head_log2, + threadgroup float * buf [[threadgroup(0)]], + uint tgpig[[threadgroup_position_in_grid]], + uint tpitg[[thread_position_in_threadgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]], + uint tiisg[[thread_index_in_simdgroup]], + uint ntg[[threads_per_threadgroup]]) { + const int64_t i03 = (tgpig) / (ne02*ne01); + const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01; + const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01); + + device const float4 * psrc4 = (device const float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00); + device const float4 * pmask = src1 != src0 ? (device const float4 *)(src1 + i01*ne00) : nullptr; + device const float4 * ppos = src2 != src0 ? (device const float4 *)(src2) : nullptr; + device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00); + + float slope = 0.0f; + + if (max_bias > 0.0f) { + const int64_t h = i02; + + const float base = h < n_head_log2 ? m0 : m1; + const int exp = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; + + slope = pow(base, exp); + } + + // parallel max + float4 lmax4 = -INFINITY; + + for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { + lmax4 = fmax(lmax4, psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f)); + } + + const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3])); + + float max_val = simd_max(lmax); + if (ntg > N_SIMDWIDTH) { + if (sgitg == 0) { + buf[tiisg] = -INFINITY; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + if (tiisg == 0) { + buf[sgitg] = max_val; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + max_val = buf[tiisg]; + max_val = simd_max(max_val); + } + + // parallel sum + float4 lsum4 = 0.0f; + for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { + const float4 exp_psrc4 = exp((psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f) + (ppos ? slope*ppos[i00] : 0.0f)) - max_val); + lsum4 += exp_psrc4; + pdst4[i00] = exp_psrc4; + } + + const float lsum = lsum4[0] + lsum4[1] + lsum4[2] + lsum4[3]; + + // This barrier fixes a failing test + // ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335 + threadgroup_barrier(mem_flags::mem_none); + + float sum = simd_sum(lsum); + + if (ntg > N_SIMDWIDTH) { + if (sgitg == 0) { + buf[tiisg] = 0.0f; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + if (tiisg == 0) { + buf[sgitg] = sum; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + sum = buf[tiisg]; + sum = simd_sum(sum); + } + + const float inv_sum = 1.0f/sum; + + for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { + pdst4[i00] *= inv_sum; + } +} + +kernel void kernel_diag_mask_inf( + device const float * src0, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int & n_past, + uint3 tpig[[thread_position_in_grid]]) { + const int64_t i02 = tpig[2]; + const int64_t i01 = tpig[1]; + const int64_t i00 = tpig[0]; + + if (i00 > n_past + i01) { + dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY; + } else { + dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00]; + } +} + +kernel void kernel_diag_mask_inf_8( + device const float4 * src0, + device float4 * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int & n_past, + uint3 tpig[[thread_position_in_grid]]) { + + const int64_t i = 2*tpig[0]; + + dst[i+0] = src0[i+0]; + dst[i+1] = src0[i+1]; + int64_t i4 = 4*i; + const int64_t i02 = i4/(ne00*ne01); i4 -= i02*ne00*ne01; + const int64_t i01 = i4/(ne00); i4 -= i01*ne00; + const int64_t i00 = i4; + for (int k = 3; k >= 0; --k) { + if (i00 + 4 + k <= n_past + i01) { + break; + } + dst[i+1][k] = -INFINITY; + if (i00 + k > n_past + i01) { + dst[i][k] = -INFINITY; + } + } +} + +kernel void kernel_norm( + device const void * src0, + device float * dst, + constant int64_t & ne00, + constant uint64_t & nb01, + constant float & eps, + threadgroup float * sum [[threadgroup(0)]], + uint tgpig[[threadgroup_position_in_grid]], + uint tpitg[[thread_position_in_threadgroup]], + uint ntg[[threads_per_threadgroup]]) { + device const float * x = (device const float *) ((device const char *) src0 + tgpig*nb01); + // MEAN + // parallel sum + sum[tpitg] = 0.0f; + for (int i00 = tpitg; i00 < ne00; i00 += ntg) { + sum[tpitg] += x[i00]; + } + // reduce + threadgroup_barrier(mem_flags::mem_threadgroup); + for (uint i = ntg/2; i > 0; i /= 2) { + if (tpitg < i) { + sum[tpitg] += sum[tpitg + i]; + } + threadgroup_barrier(mem_flags::mem_threadgroup); + } + const float mean = sum[0] / ne00; + + // recenter and VARIANCE + threadgroup_barrier(mem_flags::mem_threadgroup); + device float * y = dst + tgpig*ne00; + sum[tpitg] = 0.0f; + for (int i00 = tpitg; i00 < ne00; i00 += ntg) { + y[i00] = x[i00] - mean; + sum[tpitg] += y[i00] * y[i00]; + } + + // reduce + threadgroup_barrier(mem_flags::mem_threadgroup); + for (uint i = ntg/2; i > 0; i /= 2) { + if (tpitg < i) { + sum[tpitg] += sum[tpitg + i]; + } + threadgroup_barrier(mem_flags::mem_threadgroup); + } + const float variance = sum[0] / ne00; + + const float scale = 1.0f/sqrt(variance + eps); + for (int i00 = tpitg; i00 < ne00; i00 += ntg) { + y[i00] = y[i00] * scale; + } +} + +kernel void kernel_rms_norm( + device const void * src0, + device float * dst, + constant int64_t & ne00, + constant uint64_t & nb01, + constant float & eps, + threadgroup float * buf [[threadgroup(0)]], + uint tgpig[[threadgroup_position_in_grid]], + uint tpitg[[thread_position_in_threadgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]], + uint tiisg[[thread_index_in_simdgroup]], + uint ntg[[threads_per_threadgroup]]) { + device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01); + + float4 sumf = 0; + float all_sum = 0; + + // parallel sum + for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { + sumf += x[i00] * x[i00]; + } + all_sum = sumf[0] + sumf[1] + sumf[2] + sumf[3]; + all_sum = simd_sum(all_sum); + if (ntg > N_SIMDWIDTH) { + if (sgitg == 0) { + buf[tiisg] = 0.0f; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + if (tiisg == 0) { + buf[sgitg] = all_sum; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + all_sum = buf[tiisg]; + all_sum = simd_sum(all_sum); + } + + const float mean = all_sum/ne00; + const float scale = 1.0f/sqrt(mean + eps); + + device float4 * y = (device float4 *) (dst + tgpig*ne00); + for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) { + y[i00] = x[i00] * scale; + } +} + +kernel void kernel_group_norm( + device const float * src0, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int32_t & n_groups, + constant float & eps, + threadgroup float * buf [[threadgroup(0)]], + uint tgpig[[threadgroup_position_in_grid]], + uint tpitg[[thread_position_in_threadgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]], + uint tiisg[[thread_index_in_simdgroup]], + uint ntg[[threads_per_threadgroup]]) { + const int64_t ne = ne00*ne01*ne02; + const int64_t gs = ne00*ne01*((ne02 + n_groups - 1) / n_groups); + + int start = tgpig * gs; + int end = start + gs; + + start += tpitg; + + if (end >= ne) { + end = ne; + } + + float tmp = 0.0f; // partial sum for thread in warp + + for (int j = start; j < end; j += ntg) { + tmp += src0[j]; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + tmp = simd_sum(tmp); + if (ntg > N_SIMDWIDTH) { + if (sgitg == 0) { + buf[tiisg] = 0.0f; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + if (tiisg == 0) { + buf[sgitg] = tmp; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + tmp = buf[tiisg]; + tmp = simd_sum(tmp); + } + + const float mean = tmp / gs; + tmp = 0.0f; + + for (int j = start; j < end; j += ntg) { + float xi = src0[j] - mean; + dst[j] = xi; + tmp += xi * xi; + } + + tmp = simd_sum(tmp); + if (ntg > N_SIMDWIDTH) { + if (sgitg == 0) { + buf[tiisg] = 0.0f; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + if (tiisg == 0) { + buf[sgitg] = tmp; + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + tmp = buf[tiisg]; + tmp = simd_sum(tmp); + } + + const float variance = tmp / gs; + const float scale = 1.0f/sqrt(variance + eps); + for (int j = start; j < end; j += ntg) { + dst[j] *= scale; + } +} + +// function for calculate inner product between half a q4_0 block and 16 floats (yl), sumy is SUM(yl[i]) +// il indicates where the q4 quants begin (0 or QK4_0/4) +// we assume that the yl's have been multiplied with the appropriate scale factor +// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096) +inline float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl, int il) { + float d = qb_curr->d; + + float2 acc = 0.f; + + device const uint16_t * qs = ((device const uint16_t *)qb_curr + 1 + il/2); + + for (int i = 0; i < 8; i+=2) { + acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F) + + yl[i + 1] * (qs[i / 2] & 0x0F00); + acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0) + + yl[i + 9] * (qs[i / 2] & 0xF000); + } + return d * (sumy * -8.f + acc[0] + acc[1]); +} + +// function for calculate inner product between half a q4_1 block and 16 floats (yl), sumy is SUM(yl[i]) +// il indicates where the q4 quants begin (0 or QK4_0/4) +// we assume that the yl's have been multiplied with the appropriate scale factor +// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096) +inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl, int il) { + float d = qb_curr->d; + float m = qb_curr->m; + + float2 acc = 0.f; + + device const uint16_t * qs = ((device const uint16_t *)qb_curr + 2 + il/2); + + for (int i = 0; i < 8; i+=2) { + acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F) + + yl[i + 1] * (qs[i / 2] & 0x0F00); + acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0) + + yl[i + 9] * (qs[i / 2] & 0xF000); + } + return d * (acc[0] + acc[1]) + sumy * m; +} + +// function for calculate inner product between half a q5_0 block and 16 floats (yl), sumy is SUM(yl[i]) +// il indicates where the q5 quants begin (0 or QK5_0/4) +// we assume that the yl's have been multiplied with the appropriate scale factor +// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096) +inline float block_q_n_dot_y(device const block_q5_0 * qb_curr, float sumy, thread float * yl, int il) { + float d = qb_curr->d; + + float2 acc = 0.f; + + device const uint16_t * qs = ((device const uint16_t *)qb_curr + 3 + il/2); + const uint32_t qh = *((device const uint32_t *)qb_curr->qh); + + for (int i = 0; i < 8; i+=2) { + acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010)) + + yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000)); + acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100)) + + yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000)); + } + return d * (sumy * -16.f + acc[0] + acc[1]); +} + +// function for calculate inner product between half a q5_1 block and 16 floats (yl), sumy is SUM(yl[i]) +// il indicates where the q5 quants begin (0 or QK5_1/4) +// we assume that the yl's have been multiplied with the appropriate scale factor +// that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096) +inline float block_q_n_dot_y(device const block_q5_1 * qb_curr, float sumy, thread float * yl, int il) { + float d = qb_curr->d; + float m = qb_curr->m; + + float2 acc = 0.f; + + device const uint16_t * qs = ((device const uint16_t *)qb_curr + 4 + il/2); + const uint32_t qh = *((device const uint32_t *)qb_curr->qh); + + for (int i = 0; i < 8; i+=2) { + acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010)) + + yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000)); + acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100)) + + yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000)); + } + return d * (acc[0] + acc[1]) + sumy * m; +} + +// putting them in the kernel cause a significant performance penalty +#define N_DST 4 // each SIMD group works on 4 rows +#define N_SIMDGROUP 2 // number of SIMD groups in a thread group +//Note: This is a template, but strictly speaking it only applies to +// quantizations where the block size is 32. It also does not +// guard against the number of rows not being divisible by +// N_DST, so this is another explicit assumption of the implementation. +template +void mul_vec_q_n_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, uint tiisg, uint sgitg) { + const int nb = ne00/QK4_0; + + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + + const int first_row = (r0 * nsg + sgitg) * nr; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_q_type * x = (device const block_q_type *) src0 + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[16]; // src1 vector cache + float sumf[nr] = {0.f}; + + const int ix = (tiisg/2); + const int il = (tiisg%2)*8; + + device const float * yb = y + ix * QK4_0 + il; + + // each thread in a SIMD group deals with half a block. + for (int ib = ix; ib < nb; ib += nw/2) { + float sumy = 0; + for (int i = 0; i < 8; i += 2) { + sumy += yb[i] + yb[i+1]; + yl[i+0] = yb[i+ 0]; + yl[i+1] = yb[i+ 1]/256.f; + + sumy += yb[i+16] + yb[i+17]; + yl[i+8] = yb[i+16]/16.f; + yl[i+9] = yb[i+17]/4096.f; + } + + for (int row = 0; row < nr; row++) { + sumf[row] += block_q_n_dot_y(x+ib+row*nb, sumy, yl, il); + } + + yb += QK4_0 * 16; + } + + for (int row = 0; row < nr; ++row) { + const float tot = simd_sum(sumf[row]); + if (tiisg == 0 && first_row + row < ne01) { + dst[im*ne0*ne1 + r1*ne0 + first_row + row] = tot; + } + } +} + +kernel void kernel_mul_mv_q4_0_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + mul_vec_q_n_f32_impl(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,nullptr,tgpig,tiisg,sgitg); +} + +kernel void kernel_mul_mv_q4_1_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + mul_vec_q_n_f32_impl(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,nullptr,tgpig,tiisg,sgitg); +} + +kernel void kernel_mul_mv_q5_0_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + mul_vec_q_n_f32_impl(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,nullptr,tgpig,tiisg,sgitg); +} + +kernel void kernel_mul_mv_q5_1_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + mul_vec_q_n_f32_impl(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,nullptr,tgpig,tiisg,sgitg); +} + + +#define NB_Q8_0 8 + +void kernel_mul_mv_q8_0_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiisg, + uint sgitg) { + const int nr = N_DST; + const int nsg = N_SIMDGROUP; + const int nw = N_SIMDWIDTH; + + const int nb = ne00/QK8_0; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + + const int first_row = (r0 * nsg + sgitg) * nr; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_q8_0 * x = (device const block_q8_0 *) src0 + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[NB_Q8_0]; + float sumf[nr]={0.f}; + + const int ix = tiisg/4; + const int il = tiisg%4; + + device const float * yb = y + ix * QK8_0 + NB_Q8_0*il; + + // each thread in a SIMD group deals with NB_Q8_0 quants at a time + for (int ib = ix; ib < nb; ib += nw/4) { + for (int i = 0; i < NB_Q8_0; ++i) { + yl[i] = yb[i]; + } + + for (int row = 0; row < nr; row++) { + device const int8_t * qs = x[ib+row*nb].qs + NB_Q8_0*il; + float sumq = 0.f; + for (int iq = 0; iq < NB_Q8_0; ++iq) { + sumq += qs[iq] * yl[iq]; + } + sumf[row] += sumq*x[ib+row*nb].d; + } + + yb += NB_Q8_0 * nw; + } + + for (int row = 0; row < nr; ++row) { + const float tot = simd_sum(sumf[row]); + if (tiisg == 0 && first_row + row < ne01) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot; + } + } +} + +[[host_name("kernel_mul_mv_q8_0_f32")]] +kernel void kernel_mul_mv_q8_0_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + kernel_mul_mv_q8_0_f32_impl(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,nullptr,tgpig,tiisg,sgitg); +} + +#define N_F32_F32 4 + +void kernel_mul_mv_f32_f32_impl( + device const char * src0, + device const char * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + uint64_t nb00, + uint64_t nb01, + uint64_t nb02, + int64_t ne10, + int64_t ne11, + int64_t ne12, + uint64_t nb10, + uint64_t nb11, + uint64_t nb12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + uint3 tgpig, + uint tiisg) { + + const int64_t r0 = tgpig.x; + const int64_t rb = tgpig.y*N_F32_F32; + const int64_t im = tgpig.z; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02; + + device const float * x = (device const float *) (src0 + offset0); + + if (ne00 < 128) { + for (int row = 0; row < N_F32_F32; ++row) { + int r1 = rb + row; + if (r1 >= ne11) { + break; + } + + device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12); + + float sumf = 0; + for (int i = tiisg; i < ne00; i += 32) { + sumf += (float) x[i] * (float) y[i]; + } + + float all_sum = simd_sum(sumf); + if (tiisg == 0) { + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } + } else { + device const float4 * x4 = (device const float4 *)x; + for (int row = 0; row < N_F32_F32; ++row) { + int r1 = rb + row; + if (r1 >= ne11) { + break; + } + + device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12); + device const float4 * y4 = (device const float4 *) y; + + float sumf = 0; + for (int i = tiisg; i < ne00/4; i += 32) { + for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k]; + } + + float all_sum = simd_sum(sumf); + if (tiisg == 0) { + for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i]; + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } + } +} + +[[host_name("kernel_mul_mv_f32_f32")]] +kernel void kernel_mul_mv_f32_f32( + device const char * src0, + device const char * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]]) { + kernel_mul_mv_f32_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3, tgpig, tiisg); +} + +#define N_F16_F16 4 + +kernel void kernel_mul_mv_f16_f16( + device const char * src0, + device const char * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]]) { + + const int64_t r0 = tgpig.x; + const int64_t rb = tgpig.y*N_F16_F16; + const int64_t im = tgpig.z; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02; + + device const half * x = (device const half *) (src0 + offset0); + + if (ne00 < 128) { + for (int row = 0; row < N_F16_F16; ++row) { + int r1 = rb + row; + if (r1 >= ne11) { + break; + } + + device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12); + + float sumf = 0; + for (int i = tiisg; i < ne00; i += 32) { + sumf += (half) x[i] * (half) y[i]; + } + + float all_sum = simd_sum(sumf); + if (tiisg == 0) { + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } + } else { + device const half4 * x4 = (device const half4 *)x; + for (int row = 0; row < N_F16_F16; ++row) { + int r1 = rb + row; + if (r1 >= ne11) { + break; + } + + device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12); + device const half4 * y4 = (device const half4 *) y; + + float sumf = 0; + for (int i = tiisg; i < ne00/4; i += 32) { + for (int k = 0; k < 4; ++k) sumf += (half) x4[i][k] * y4[i][k]; + } + + float all_sum = simd_sum(sumf); + if (tiisg == 0) { + for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (half) x[i] * y[i]; + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } + } +} + +void kernel_mul_mv_f16_f32_1row_impl( + device const char * src0, + device const char * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]]) { + + const int64_t r0 = tgpig.x; + const int64_t r1 = tgpig.y; + const int64_t im = tgpig.z; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02; + + device const half * x = (device const half *) (src0 + offset0); + device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12); + + float sumf = 0; + if (ne00 < 128) { + for (int i = tiisg; i < ne00; i += 32) { + sumf += (float) x[i] * (float) y[i]; + } + float all_sum = simd_sum(sumf); + if (tiisg == 0) { + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } else { + device const half4 * x4 = (device const half4 *) x; + device const float4 * y4 = (device const float4 *) y; + for (int i = tiisg; i < ne00/4; i += 32) { + for (int k = 0; k < 4; ++k) sumf += (float)x4[i][k] * y4[i][k]; + } + float all_sum = simd_sum(sumf); + if (tiisg == 0) { + for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i]; + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } +} + +[[host_name("kernel_mul_mv_f16_f32_1row")]] +kernel void kernel_mul_mv_f16_f32_1row( + device const char * src0, + device const char * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]]) { + kernel_mul_mv_f16_f32_1row_impl(src0, src1, dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3, tgpig, tiisg); +} + +#define N_F16_F32 4 + +void kernel_mul_mv_f16_f32_impl( + device const char * src0, + device const char * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + uint64_t nb00, + uint64_t nb01, + uint64_t nb02, + int64_t ne10, + int64_t ne11, + int64_t ne12, + uint64_t nb10, + uint64_t nb11, + uint64_t nb12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + uint3 tgpig, + uint tiisg) { + + const int64_t r0 = tgpig.x; + const int64_t rb = tgpig.y*N_F16_F32; + const int64_t im = tgpig.z; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02; + + device const half * x = (device const half *) (src0 + offset0); + + if (ne00 < 128) { + for (int row = 0; row < N_F16_F32; ++row) { + int r1 = rb + row; + if (r1 >= ne11) { + break; + } + + device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12); + + float sumf = 0; + for (int i = tiisg; i < ne00; i += 32) { + sumf += (float) x[i] * (float) y[i]; + } + + float all_sum = simd_sum(sumf); + if (tiisg == 0) { + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } + } else { + device const half4 * x4 = (device const half4 *)x; + for (int row = 0; row < N_F16_F32; ++row) { + int r1 = rb + row; + if (r1 >= ne11) { + break; + } + + device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12); + device const float4 * y4 = (device const float4 *) y; + + float sumf = 0; + for (int i = tiisg; i < ne00/4; i += 32) { + for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k]; + } + + float all_sum = simd_sum(sumf); + if (tiisg == 0) { + for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i]; + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } + } +} + +[[host_name("kernel_mul_mv_f16_f32")]] +kernel void kernel_mul_mv_f16_f32( + device const char * src0, + device const char * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]]) { + kernel_mul_mv_f16_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3, tgpig, tiisg); +} + +// Assumes row size (ne00) is a multiple of 4 +kernel void kernel_mul_mv_f16_f32_l4( + device const char * src0, + device const char * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]]) { + + const int nrows = ne11; + const int64_t r0 = tgpig.x; + const int64_t im = tgpig.z; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02; + + device const half4 * x4 = (device const half4 *) (src0 + offset0); + + for (int r1 = 0; r1 < nrows; ++r1) { + device const float4 * y4 = (device const float4 *) (src1 + r1*nb11 + im*nb12); + + float sumf = 0; + for (int i = tiisg; i < ne00/4; i += 32) { + for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k]; + } + + float all_sum = simd_sum(sumf); + if (tiisg == 0) { + dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum; + } + } +} + +kernel void kernel_alibi_f32( + device const float * src0, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + constant float & m0, + constant float & m1, + constant int & n_heads_log2_floor, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig[2]; + const int64_t i02 = tgpig[1]; + const int64_t i01 = tgpig[0]; + + const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + const int64_t i3 = n / (ne2*ne1*ne0); + const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); + const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; + //const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0); + + const int64_t k = i3*ne3 + i2; + + float m_k; + if (k < n_heads_log2_floor) { + m_k = pow(m0, k + 1); + } else { + m_k = pow(m1, 2 * (k - n_heads_log2_floor) + 1); + } + + device char * dst_row = (device char *) dst + i3*nb3 + i2*nb2 + i1*nb1; + device const char * src_row = (device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01; + for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) { + const float src_v = *(device float *)(src_row + i00*nb00); + device float * dst_v = (device float *)(dst_row + i00*nb0); + *dst_v = i00 * m_k + src_v; + } +} + +static float rope_yarn_ramp(const float low, const float high, const int i0) { + const float y = (i0 / 2 - low) / max(0.001f, high - low); + return 1.0f - min(1.0f, max(0.0f, y)); +} + +// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn +// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng. +static void rope_yarn( + float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale, + thread float * cos_theta, thread float * sin_theta +) { + // Get n-d rotational scaling corrected for extrapolation + float theta_interp = freq_scale * theta_extrap; + float theta = theta_interp; + if (ext_factor != 0.0f) { + float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor; + theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix; + + // Get n-d magnitude scaling corrected for interpolation + mscale *= 1.0f + 0.1f * log(1.0f / freq_scale); + } + *cos_theta = cos(theta) * mscale; + *sin_theta = sin(theta) * mscale; +} + +// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get +// `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))` +static float rope_yarn_corr_factor(int n_dims, int n_orig_ctx, float n_rot, float base) { + return n_dims * log(n_orig_ctx / (n_rot * 2 * M_PI_F)) / (2 * log(base)); +} + +static void rope_yarn_corr_dims( + int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2] +) { + // start and end correction dims + dims[0] = max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_fast, freq_base))); + dims[1] = min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_slow, freq_base))); +} + +typedef void (rope_t)( + device const void * src0, + device const int32_t * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + constant int & n_past, + constant int & n_dims, + constant int & mode, + constant int & n_orig_ctx, + constant float & freq_base, + constant float & freq_scale, + constant float & ext_factor, + constant float & attn_factor, + constant float & beta_fast, + constant float & beta_slow, + uint tiitg[[thread_index_in_threadgroup]], + uint3 tptg[[threads_per_threadgroup]], + uint3 tgpig[[threadgroup_position_in_grid]]); + +template +kernel void kernel_rope( + device const void * src0, + device const int32_t * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + constant int & n_past, + constant int & n_dims, + constant int & mode, + constant int & n_orig_ctx, + constant float & freq_base, + constant float & freq_scale, + constant float & ext_factor, + constant float & attn_factor, + constant float & beta_fast, + constant float & beta_slow, + uint tiitg[[thread_index_in_threadgroup]], + uint3 tptg[[threads_per_threadgroup]], + uint3 tgpig[[threadgroup_position_in_grid]]) { + const int64_t i3 = tgpig[2]; + const int64_t i2 = tgpig[1]; + const int64_t i1 = tgpig[0]; + + const bool is_neox = mode & 2; + + float corr_dims[2]; + rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims); + + device const int32_t * pos = src1; + + const int64_t p = pos[i2]; + + const float theta_0 = (float)p; + const float inv_ndims = -1.f/n_dims; + + if (!is_neox) { + for (int64_t i0 = 2*tiitg; i0 < ne0; i0 += 2*tptg.x) { + + const float theta = theta_0 * pow(freq_base, inv_ndims*i0); + float cos_theta, sin_theta; + rope_yarn(theta, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta); + + device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + const T x0 = src[0]; + const T x1 = src[1]; + + dst_data[0] = x0*cos_theta - x1*sin_theta; + dst_data[1] = x0*sin_theta + x1*cos_theta; + } + } else { + for (int64_t ic = 2*tiitg; ic < ne0; ic += 2*tptg.x) { + if (ic < n_dims) { + const int64_t ib = 0; + + // simplified from `(ib * n_dims + ic) * inv_ndims` + const float cur_rot = inv_ndims*ic - ib; + + const float theta = theta_0 * pow(freq_base, cur_rot); + float cos_theta, sin_theta; + rope_yarn(theta, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta); + + const int64_t i0 = ib*n_dims + ic/2; + + device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + const float x0 = src[0]; + const float x1 = src[n_dims/2]; + + dst_data[0] = x0*cos_theta - x1*sin_theta; + dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta; + } else { + const int64_t i0 = ic; + + device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + dst_data[0] = src[0]; + dst_data[1] = src[1]; + } + } + } +} + +template [[host_name("kernel_rope_f32")]] kernel rope_t kernel_rope; +template [[host_name("kernel_rope_f16")]] kernel rope_t kernel_rope; + +typedef void (im2col_t)( + device const float * x, + device char * dst, + constant int32_t & ofs0, + constant int32_t & ofs1, + constant int32_t & IW, + constant int32_t & IH, + constant int32_t & CHW, + constant int32_t & s0, + constant int32_t & s1, + constant int32_t & p0, + constant int32_t & p1, + constant int32_t & d0, + constant int32_t & d1, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tgpg[[threadgroups_per_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]); + +template +kernel void kernel_im2col( + device const float * x, + device char * dst, + constant int32_t & ofs0, + constant int32_t & ofs1, + constant int32_t & IW, + constant int32_t & IH, + constant int32_t & CHW, + constant int32_t & s0, + constant int32_t & s1, + constant int32_t & p0, + constant int32_t & p1, + constant int32_t & d0, + constant int32_t & d1, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tgpg[[threadgroups_per_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int32_t iiw = tgpig[2] * s0 + tpitg[2] * d0 - p0; + const int32_t iih = tgpig[1] * s1 + tpitg[1] * d1 - p1; + + const int32_t offset_dst = + (tpitg[0] * tgpg[1] * tgpg[2] + tgpig[1] * tgpg[2] + tgpig[2]) * CHW + + (tgpig[0] * (ntg[1] * ntg[2]) + tpitg[1] * ntg[2] + tpitg[2]); + + device T * pdst = (device T *) (dst); + + if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) { + pdst[offset_dst] = 0.0f; + } else { + const int32_t offset_src = tpitg[0] * ofs0 + tgpig[0] * ofs1; + pdst[offset_dst] = x[offset_src + iih * IW + iiw]; + } +} + +template [[host_name("kernel_im2col_f32")]] kernel im2col_t kernel_im2col; +template [[host_name("kernel_im2col_f16")]] kernel im2col_t kernel_im2col; + +kernel void kernel_upscale_f32( + device const char * src0, + device char * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + constant int32_t & sf, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + + const int64_t i3 = tgpig.z; + const int64_t i2 = tgpig.y; + const int64_t i1 = tgpig.x; + + const int64_t i03 = i3; + const int64_t i02 = i2; + const int64_t i01 = i1/sf; + + device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01); + device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1); + + for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) { + dst_ptr[i0] = src0_ptr[i0/sf]; + } +} + +kernel void kernel_pad_f32( + device const char * src0, + device char * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + + const int64_t i3 = tgpig.z; + const int64_t i2 = tgpig.y; + const int64_t i1 = tgpig.x; + + const int64_t i03 = i3; + const int64_t i02 = i2; + const int64_t i01 = i1; + + device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01); + device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1); + + if (i1 < ne01 && i2 < ne02 && i3 < ne03) { + for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) { + if (i0 < ne00) { + dst_ptr[i0] = src0_ptr[i0]; + } else { + dst_ptr[i0] = 0.0f; + } + } + + return; + } + + for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) { + dst_ptr[i0] = 0.0f; + } +} + +kernel void kernel_arange_f32( + device char * dst, + constant int64_t & ne0, + constant float & start, + constant float & step, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + + device float * dst_ptr = (device float *) dst; + + for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) { + dst_ptr[i0] = start + step * i0; + } +} + +kernel void kernel_timestep_embedding_f32( + device const char * src0, + device char * dst, + constant uint64_t & nb1, + constant int & dim, + constant int & max_period, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + + int i = tgpig.x; + device float * embed_data = (device float *)(dst + i*nb1); + + int half_ = dim / 2; + for (int j = tpitg.x; j < half_; j += ntg.x) { + float timestep = ((device float *)src0)[i]; + float freq = (float)exp(-log((float)max_period) * j / half_); + float arg = timestep * freq; + embed_data[j ] = cos(arg); + embed_data[j + half_] = sin(arg); + } + + if (dim % 2 != 0 && tpitg.x == 0) { + embed_data[dim] = 0.f; + } +} + +// bitonic sort implementation following the CUDA kernels as reference +typedef void (argsort_t)( + device const float * x, + device int32_t * dst, + constant int64_t & ncols, + constant int64_t & ncols_pad, + threadgroup int32_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]]); + +template +kernel void kernel_argsort_f32_i32( + device const float * x, + device int32_t * dst, + constant int64_t & ncols, + constant int64_t & ncols_pad, + threadgroup int32_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]]) { + // bitonic sort + int col = tpitg[0]; + int row = tgpig[1]; + + if (col >= ncols_pad) return; + + device const float * x_row = x + row * ncols; + threadgroup int32_t * dst_row = shared_values; + + // initialize indices + dst_row[col] = col; + + threadgroup_barrier(mem_flags::mem_threadgroup); + + for (int k = 2; k <= ncols_pad; k *= 2) { + for (int j = k / 2; j > 0; j /= 2) { + int ixj = col ^ j; + if (ixj > col) { + if ((col & k) == 0) { + if (dst_row[col] >= ncols || + (dst_row[ixj] < ncols && (order == GGML_SORT_ORDER_ASC ? + x_row[dst_row[col]] > x_row[dst_row[ixj]] : + x_row[dst_row[col]] < x_row[dst_row[ixj]])) + ) { + SWAP(dst_row[col], dst_row[ixj]); + } + } else { + if (dst_row[ixj] >= ncols || + (dst_row[col] < ncols && (order == GGML_SORT_ORDER_ASC ? + x_row[dst_row[col]] < x_row[dst_row[ixj]] : + x_row[dst_row[col]] > x_row[dst_row[ixj]])) + ) { + SWAP(dst_row[col], dst_row[ixj]); + } + } + } + threadgroup_barrier(mem_flags::mem_threadgroup); + } + } + + // copy the result to dst without the padding + if (col < ncols) { + dst[row * ncols + col] = dst_row[col]; + } +} + +template [[host_name("kernel_argsort_f32_i32_asc")]] kernel argsort_t kernel_argsort_f32_i32; +template [[host_name("kernel_argsort_f32_i32_desc")]] kernel argsort_t kernel_argsort_f32_i32; + +kernel void kernel_leaky_relu_f32( + device const float * src0, + device float * dst, + constant float & slope, + uint tpig[[thread_position_in_grid]]) { + dst[tpig] = src0[tpig] > 0.0f ? src0[tpig] : src0[tpig] * slope; +} + +kernel void kernel_cpy_f16_f16( + device const half * src0, + device half * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig[2]; + const int64_t i02 = tgpig[1]; + const int64_t i01 = tgpig[0]; + + const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + const int64_t i3 = n / (ne2*ne1*ne0); + const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); + const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; + const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0); + + device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) { + device const half * src = (device half *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + dst_data[i00] = src[0]; + } +} + +kernel void kernel_cpy_f16_f32( + device const half * src0, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig[2]; + const int64_t i02 = tgpig[1]; + const int64_t i01 = tgpig[0]; + + const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + const int64_t i3 = n / (ne2*ne1*ne0); + const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); + const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; + const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0); + + device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) { + device const half * src = (device half *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + dst_data[i00] = src[0]; + } +} + +kernel void kernel_cpy_f32_f16( + device const float * src0, + device half * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig[2]; + const int64_t i02 = tgpig[1]; + const int64_t i01 = tgpig[0]; + + const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + const int64_t i3 = n / (ne2*ne1*ne0); + const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); + const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; + const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0); + + device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) { + device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + + dst_data[i00] = src[0]; + } +} + +kernel void kernel_cpy_f32_f32( + device const float * src0, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig[2]; + const int64_t i02 = tgpig[1]; + const int64_t i01 = tgpig[0]; + + const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + const int64_t i3 = n / (ne2*ne1*ne0); + const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); + const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; + const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0); + + device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) { + device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + + dst_data[i00] = src[0]; + } +} + +kernel void kernel_cpy_f32_q8_0( + device const float * src0, + device void * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig[2]; + const int64_t i02 = tgpig[1]; + const int64_t i01 = tgpig[0]; + + const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + const int64_t i3 = n / (ne2*ne1*ne0); + const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); + const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; + const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK8_0; + + device block_q8_0 * dst_data = (device block_q8_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + for (int64_t i00 = tpitg.x*QK8_0; i00 < ne00; i00 += ntg.x*QK8_0) { + device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + + float amax = 0.0f; // absolute max + + for (int j = 0; j < QK8_0; j++) { + const float v = src[j]; + amax = MAX(amax, fabs(v)); + } + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + + dst_data[i00/QK8_0].d = d; + + for (int j = 0; j < QK8_0; ++j) { + const float x0 = src[j]*id; + + dst_data[i00/QK8_0].qs[j] = round(x0); + } + } +} + +kernel void kernel_cpy_f32_q4_0( + device const float * src0, + device void * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig[2]; + const int64_t i02 = tgpig[1]; + const int64_t i01 = tgpig[0]; + + const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + const int64_t i3 = n / (ne2*ne1*ne0); + const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); + const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; + const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_0; + + device block_q4_0 * dst_data = (device block_q4_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + for (int64_t i00 = tpitg.x*QK4_0; i00 < ne00; i00 += ntg.x*QK4_0) { + device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + + float amax = 0.0f; // absolute max + float max = 0.0f; + + for (int j = 0; j < QK4_0; j++) { + const float v = src[j]; + if (amax < fabs(v)) { + amax = fabs(v); + max = v; + } + } + + const float d = max / -8; + const float id = d ? 1.0f/d : 0.0f; + + dst_data[i00/QK4_0].d = d; + + for (int j = 0; j < QK4_0/2; ++j) { + const float x0 = src[0 + j]*id; + const float x1 = src[QK4_0/2 + j]*id; + + const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f)); + const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f)); + + dst_data[i00/QK4_0].qs[j] = xi0; + dst_data[i00/QK4_0].qs[j] |= xi1 << 4; + } + } +} + +kernel void kernel_cpy_f32_q4_1( + device const float * src0, + device void * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig[2]; + const int64_t i02 = tgpig[1]; + const int64_t i01 = tgpig[0]; + + const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + const int64_t i3 = n / (ne2*ne1*ne0); + const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); + const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; + const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_1; + + device block_q4_1 * dst_data = (device block_q4_1 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + for (int64_t i00 = tpitg.x*QK4_1; i00 < ne00; i00 += ntg.x*QK4_1) { + device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + + float min = FLT_MAX; + float max = -FLT_MAX; + + for (int j = 0; j < QK4_1; j++) { + const float v = src[j]; + if (min > v) min = v; + if (max < v) max = v; + } + + const float d = (max - min) / ((1 << 4) - 1); + const float id = d ? 1.0f/d : 0.0f; + + dst_data[i00/QK4_1].d = d; + dst_data[i00/QK4_1].m = min; + + for (int j = 0; j < QK4_1/2; ++j) { + const float x0 = (src[0 + j] - min)*id; + const float x1 = (src[QK4_1/2 + j] - min)*id; + + const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f)); + const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f)); + + dst_data[i00/QK4_1].qs[j] = xi0; + dst_data[i00/QK4_1].qs[j] |= xi1 << 4; + } + } +} + +kernel void kernel_cpy_f32_q5_0( + device const float * src0, + device void * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig[2]; + const int64_t i02 = tgpig[1]; + const int64_t i01 = tgpig[0]; + + const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + const int64_t i3 = n / (ne2*ne1*ne0); + const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); + const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; + const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK5_0; + + device block_q5_0 * dst_data = (device block_q5_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + for (int64_t i00 = tpitg.x*QK5_0; i00 < ne00; i00 += ntg.x*QK5_0) { + device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + + float amax = 0.0f; // absolute max + float max = 0.0f; + + for (int j = 0; j < QK5_0; j++) { + const float v = src[j]; + if (amax < fabs(v)) { + amax = fabs(v); + max = v; + } + } + + const float d = max / -16; + const float id = d ? 1.0f/d : 0.0f; + + dst_data[i00/QK5_0].d = d; + + uint32_t qh = 0; + for (int j = 0; j < QK5_0/2; ++j) { + const float x0 = src[0 + j]*id; + const float x1 = src[QK5_0/2 + j]*id; + + const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f)); + const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f)); + + dst_data[i00/QK5_0].qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4); + qh |= ((xi0 & 0x10u) >> 4) << (j + 0); + qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2); + } + thread const uint8_t * qh8 = (thread const uint8_t *)&qh; + for (int j = 0; j < 4; ++j) { + dst_data[i00/QK5_0].qh[j] = qh8[j]; + } + } +} + +kernel void kernel_cpy_f32_q5_1( + device const float * src0, + device void * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig[2]; + const int64_t i02 = tgpig[1]; + const int64_t i01 = tgpig[0]; + + const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + const int64_t i3 = n / (ne2*ne1*ne0); + const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); + const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; + const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK5_1; + + device block_q5_1 * dst_data = (device block_q5_1 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + for (int64_t i00 = tpitg.x*QK5_1; i00 < ne00; i00 += ntg.x*QK5_1) { + device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + + float max = src[0]; + float min = src[0]; + + for (int j = 1; j < QK5_1; j++) { + const float v = src[j]; + min = v < min ? v : min; + max = v > max ? v : max; + } + + const float d = (max - min) / 31; + const float id = d ? 1.0f/d : 0.0f; + + dst_data[i00/QK5_1].d = d; + dst_data[i00/QK5_1].m = min; + + uint32_t qh = 0; + for (int j = 0; j < QK5_1/2; ++j) { + const float x0 = (src[0 + j] - min)*id; + const float x1 = (src[QK5_1/2 + j] - min)*id; + + const uint8_t xi0 = (uint8_t)(x0 + 0.5f); + const uint8_t xi1 = (uint8_t)(x1 + 0.5f); + + dst_data[i00/QK5_1].qs[j] = (xi0 & 0xf) | ((xi1 & 0xf) << 4); + qh |= ((xi0 & 0x10u) >> 4) << (j + 0); + qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_1/2); + } + thread const uint8_t * qh8 = (thread const uint8_t *)&qh; + for (int j = 0; j < 4; ++j) { + dst_data[i00/QK5_1].qh[j] = qh8[j]; + } + } +} + +static inline int best_index_int8(int n, constant float * val, float x) { + if (x <= val[0]) return 0; + if (x >= val[n-1]) return n-1; + int ml = 0, mu = n-1; + while (mu-ml > 1) { + int mav = (ml+mu)/2; + if (x < val[mav]) mu = mav; else ml = mav; + } + return x - val[mu-1] < val[mu] - x ? mu-1 : mu; +} + +constexpr constant static float kvalues_iq4nl_f[16] = { + -127.f, -104.f, -83.f, -65.f, -49.f, -35.f, -22.f, -10.f, 1.f, 13.f, 25.f, 38.f, 53.f, 69.f, 89.f, 113.f +}; + +kernel void kernel_cpy_f32_iq4_nl( + device const float * src0, + device void * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + const int64_t i03 = tgpig[2]; + const int64_t i02 = tgpig[1]; + const int64_t i01 = tgpig[0]; + + const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00; + + const int64_t i3 = n / (ne2*ne1*ne0); + const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0); + const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0; + const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_NL; + + device block_iq4_nl * dst_data = (device block_iq4_nl *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + for (int64_t i00 = tpitg.x*QK4_NL; i00 < ne00; i00 += ntg.x*QK4_NL) { + device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00); + + float amax = 0.0f; // absolute max + float max = 0.0f; + + for (int j = 0; j < QK4_0; j++) { + const float v = src[j]; + if (amax < fabs(v)) { + amax = fabs(v); + max = v; + } + } + + const float d = max / kvalues_iq4nl_f[0]; + const float id = d ? 1.0f/d : 0.0f; + + float sumqx = 0, sumq2 = 0; + for (int j = 0; j < QK4_NL/2; ++j) { + const float x0 = src[0 + j]*id; + const float x1 = src[QK4_NL/2 + j]*id; + + const uint8_t xi0 = best_index_int8(16, kvalues_iq4nl_f, x0); + const uint8_t xi1 = best_index_int8(16, kvalues_iq4nl_f, x1); + + dst_data[i00/QK4_NL].qs[j] = xi0 | (xi1 << 4); + + const float v0 = kvalues_iq4nl_f[xi0]; + const float v1 = kvalues_iq4nl_f[xi1]; + const float w0 = src[0 + j]*src[0 + j]; + const float w1 = src[QK4_NL/2 + j]*src[QK4_NL/2 + j]; + sumqx += w0*v0*src[j] + w1*v1*src[QK4_NL/2 + j]; + sumq2 += w0*v0*v0 + w1*v1*v1; + + } + + dst_data[i00/QK4_NL].d = sumq2 > 0 ? sumqx/sumq2 : d; + + } +} + +kernel void kernel_concat( + device const char * src0, + device const char * src1, + device char * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne03, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant uint64_t & nb03, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant uint64_t & nb13, + constant int64_t & ne0, + constant int64_t & ne1, + constant int64_t & ne2, + constant int64_t & ne3, + constant uint64_t & nb0, + constant uint64_t & nb1, + constant uint64_t & nb2, + constant uint64_t & nb3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint3 tpitg[[thread_position_in_threadgroup]], + uint3 ntg[[threads_per_threadgroup]]) { + + const int64_t i03 = tgpig.z; + const int64_t i02 = tgpig.y; + const int64_t i01 = tgpig.x; + + const int64_t i13 = i03 % ne13; + const int64_t i12 = i02 % ne12; + const int64_t i11 = i01 % ne11; + + device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + tpitg.x*nb00; + device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11 + tpitg.x*nb10; + device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + tpitg.x*nb0; + + for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) { + if (i02 < ne02) { + ((device float *)dst_ptr)[0] = ((device float *)src0_ptr)[0]; + src0_ptr += ntg.x*nb00; + } else { + ((device float *)dst_ptr)[0] = ((device float *)src1_ptr)[0]; + src1_ptr += ntg.x*nb10; + } + dst_ptr += ntg.x*nb0; + } +} + +void kernel_mul_mv_q2_K_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + + const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_q2_K * x = (device const block_q2_K *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[32]; + float sumf[N_DST]={0.f}, all_sum; + + const int step = sizeof(block_q2_K) * nb; + +#if QK_K == 256 + const int ix = tiisg/8; // 0...3 + const int it = tiisg%8; // 0...7 + const int iq = it/4; // 0 or 1 + const int ir = it%4; // 0...3 + const int is = (8*ir)/16;// 0 or 1 + + device const float * y4 = y + ix * QK_K + 128 * iq + 8 * ir; + + for (int ib = ix; ib < nb; ib += 4) { + + float4 sumy = {0.f, 0.f, 0.f, 0.f}; + for (int i = 0; i < 8; ++i) { + yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0]; + yl[i+ 8] = y4[i+32]; sumy[1] += yl[i+ 8]; + yl[i+16] = y4[i+64]; sumy[2] += yl[i+16]; + yl[i+24] = y4[i+96]; sumy[3] += yl[i+24]; + } + + device const uint8_t * sc = (device const uint8_t *)x[ib].scales + 8*iq + is; + device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 16 * iq + 4 * ir; + device const half * dh = &x[ib].d; + + for (int row = 0; row < N_DST; row++) { + + float4 acc1 = {0.f, 0.f, 0.f, 0.f}; + float4 acc2 = {0.f, 0.f, 0.f, 0.f}; + for (int i = 0; i < 8; i += 2) { + acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003); + acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300); + acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c); + acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00); + acc1[2] += yl[i+16] * (qs[i/2] & 0x0030); + acc2[2] += yl[i+17] * (qs[i/2] & 0x3000); + acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0); + acc2[3] += yl[i+25] * (qs[i/2] & 0xc000); + } + float dall = dh[0]; + float dmin = dh[1] * 1.f/16.f; + sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f + + (acc1[1] + 1.f/256.f * acc2[1]) * (sc[2] & 0xF) * 1.f/ 4.f + + (acc1[2] + 1.f/256.f * acc2[2]) * (sc[4] & 0xF) * 1.f/16.f + + (acc1[3] + 1.f/256.f * acc2[3]) * (sc[6] & 0xF) * 1.f/64.f) - + dmin * (sumy[0] * (sc[0] & 0xF0) + sumy[1] * (sc[2] & 0xF0) + sumy[2] * (sc[4] & 0xF0) + sumy[3] * (sc[6] & 0xF0)); + + qs += step/2; + sc += step; + dh += step/2; + } + + y4 += 4 * QK_K; + } +#else + const int ix = tiisg/2; // 0...15 + const int it = tiisg%2; // 0...1 + + device const float * y4 = y + ix * QK_K + 8 * it; + + for (int ib = ix; ib < nb; ib += 16) { + + float4 sumy = {0.f, 0.f, 0.f, 0.f}; + for (int i = 0; i < 8; ++i) { + yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0]; + yl[i+ 8] = y4[i+16]; sumy[1] += yl[i+ 8]; + yl[i+16] = y4[i+32]; sumy[2] += yl[i+16]; + yl[i+24] = y4[i+48]; sumy[3] += yl[i+24]; + } + + device const uint8_t * sc = (device const uint8_t *)x[ib].scales; + device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it; + device const half * dh = &x[ib].d; + + for (int row = 0; row < N_DST; row++) { + + float4 acc1 = {0.f, 0.f, 0.f, 0.f}; + float4 acc2 = {0.f, 0.f, 0.f, 0.f}; + for (int i = 0; i < 8; i += 2) { + acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003); + acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300); + acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c); + acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00); + acc1[2] += yl[i+16] * (qs[i/2] & 0x0030); + acc2[2] += yl[i+17] * (qs[i/2] & 0x3000); + acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0); + acc2[3] += yl[i+25] * (qs[i/2] & 0xc000); + } + + float dall = dh[0]; + float dmin = dh[1]; + sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f + + (acc1[1] + 1.f/256.f * acc2[1]) * (sc[1] & 0xF) * 1.f/ 4.f + + (acc1[2] + 1.f/256.f * acc2[2]) * (sc[2] & 0xF) * 1.f/16.f + + (acc1[3] + 1.f/256.f * acc2[3]) * (sc[3] & 0xF) * 1.f/64.f) - + dmin * (sumy[0] * (sc[0] >> 4) + sumy[1] * (sc[1] >> 4) + sumy[2] * (sc[2] >> 4) + sumy[3] * (sc[3] >> 4)); + + qs += step/2; + sc += step; + dh += step/2; + } + + y4 += 16 * QK_K; + } +#endif + + for (int row = 0; row < N_DST; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum; + } + } +} + +[[host_name("kernel_mul_mv_q2_K_f32")]] +kernel void kernel_mul_mv_q2_K_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_q2_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg); +} + +#if QK_K == 256 +void kernel_mul_mv_q3_K_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + const int nb = ne00/QK_K; + + const int64_t r0 = tgpig.x; + const int64_t r1 = tgpig.y; + const int64_t im = tgpig.z; + + const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_q3_K * x = (device const block_q3_K *) src0 + first_row*nb + offset0; + device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[32]; + + //const uint16_t kmask1 = 0x3030; + //const uint16_t kmask2 = 0x0f0f; + + const int tid = tiisg/4; + const int ix = tiisg%4; + const int ip = tid/4; // 0 or 1 + const int il = 2*((tid%4)/2); // 0 or 2 + const int ir = tid%2; + const int n = 8; + const int l0 = n*ir; + + // One would think that the Metal compiler would figure out that ip and il can only have + // 4 possible states, and optimize accordingly. Well, no. It needs help, and we do it + // with these two tales. + // + // Possible masks for the high bit + const ushort4 mm[4] = {{0x0001, 0x0100, 0x0002, 0x0200}, // ip = 0, il = 0 + {0x0004, 0x0400, 0x0008, 0x0800}, // ip = 0, il = 2 + {0x0010, 0x1000, 0x0020, 0x2000}, // ip = 1, il = 0 + {0x0040, 0x4000, 0x0080, 0x8000}}; // ip = 1, il = 2 + + // Possible masks for the low 2 bits + const int4 qm[2] = {{0x0003, 0x0300, 0x000c, 0x0c00}, {0x0030, 0x3000, 0x00c0, 0xc000}}; + + const ushort4 hm = mm[2*ip + il/2]; + + const int shift = 2*il; + const float v1 = il == 0 ? 4.f : 64.f; + const float v2 = 4.f * v1; + + const uint16_t s_shift1 = 4*ip; + const uint16_t s_shift2 = s_shift1 + il; + + const int q_offset = 32*ip + l0; + const int y_offset = 128*ip + 32*il + l0; + + const int step = sizeof(block_q3_K) * nb / 2; + + device const float * y1 = yy + ix*QK_K + y_offset; + + uint32_t scales32, aux32; + thread uint16_t * scales16 = (thread uint16_t *)&scales32; + thread const int8_t * scales = (thread const int8_t *)&scales32; + + float sumf1[2] = {0.f}; + float sumf2[2] = {0.f}; + for (int i = ix; i < nb; i += 4) { + + for (int l = 0; l < 8; ++l) { + yl[l+ 0] = y1[l+ 0]; + yl[l+ 8] = y1[l+16]; + yl[l+16] = y1[l+32]; + yl[l+24] = y1[l+48]; + } + + device const uint16_t * q = (device const uint16_t *)(x[i].qs + q_offset); + device const uint16_t * h = (device const uint16_t *)(x[i].hmask + l0); + device const uint16_t * a = (device const uint16_t *)(x[i].scales); + device const half * dh = &x[i].d; + + for (int row = 0; row < 2; ++row) { + + const float d_all = (float)dh[0]; + + scales16[0] = a[4]; + scales16[1] = a[5]; + aux32 = ((scales32 >> s_shift2) << 4) & 0x30303030; + scales16[0] = a[il+0]; + scales16[1] = a[il+1]; + scales32 = ((scales32 >> s_shift1) & 0x0f0f0f0f) | aux32; + + float s1 = 0, s2 = 0, s3 = 0, s4 = 0, s5 = 0, s6 = 0; + for (int l = 0; l < n; l += 2) { + const int32_t qs = q[l/2]; + s1 += yl[l+0] * (qs & qm[il/2][0]); + s2 += yl[l+1] * (qs & qm[il/2][1]); + s3 += ((h[l/2] & hm[0]) ? 0.f : yl[l+0]) + ((h[l/2] & hm[1]) ? 0.f : yl[l+1]); + s4 += yl[l+16] * (qs & qm[il/2][2]); + s5 += yl[l+17] * (qs & qm[il/2][3]); + s6 += ((h[l/2] & hm[2]) ? 0.f : yl[l+16]) + ((h[l/2] & hm[3]) ? 0.f : yl[l+17]); + } + float d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1); + float d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2); + sumf1[row] += d1 * (scales[0] - 32); + sumf2[row] += d2 * (scales[2] - 32); + + s1 = s2 = s3 = s4 = s5 = s6 = 0; + for (int l = 0; l < n; l += 2) { + const int32_t qs = q[l/2+8]; + s1 += yl[l+8] * (qs & qm[il/2][0]); + s2 += yl[l+9] * (qs & qm[il/2][1]); + s3 += ((h[l/2+8] & hm[0]) ? 0.f : yl[l+8]) + ((h[l/2+8] & hm[1]) ? 0.f : yl[l+9]); + s4 += yl[l+24] * (qs & qm[il/2][2]); + s5 += yl[l+25] * (qs & qm[il/2][3]); + s6 += ((h[l/2+8] & hm[2]) ? 0.f : yl[l+24]) + ((h[l/2+8] & hm[3]) ? 0.f : yl[l+25]); + } + d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1); + d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2); + sumf1[row] += d1 * (scales[1] - 32); + sumf2[row] += d2 * (scales[3] - 32); + + q += step; + h += step; + a += step; + dh += step; + + } + + y1 += 4 * QK_K; + + } + + for (int row = 0; row < 2; ++row) { + const float sumf = (sumf1[row] + 0.25f * sumf2[row]) / (1 << shift); + sumf1[row] = simd_sum(sumf); + } + if (tiisg == 0) { + for (int row = 0; row < 2; ++row) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = sumf1[row]; + } + } +} +#else +void kernel_mul_mv_q3_K_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne10, + constant int64_t & ne12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + const int nb = ne00/QK_K; + + const int64_t r0 = tgpig.x; + const int64_t r1 = tgpig.y; + const int64_t im = tgpig.z; + + const int row = 2 * r0 + sgitg; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_q3_K * x = (device const block_q3_K *) src0 + row*nb + offset0; + device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + const int ix = tiisg/4; + const int il = 4 * (tiisg%4);// 0, 4, 8, 12 + const int iq = il/8; // 0, 0, 1, 1 + const int in = il%8; // 0, 4, 0, 4 + + float2 sum = {0.f, 0.f}; + + for (int i = ix; i < nb; i += 8) { + + const float d_all = (float)(x[i].d); + + device const uint16_t * q = (device const uint16_t *)(x[i].qs + il); + device const uint16_t * h = (device const uint16_t *)(x[i].hmask + in); + device const uint16_t * s = (device const uint16_t *)(x[i].scales); + device const float * y = yy + i * QK_K + il; + + const float d1 = d_all * ((int32_t)(s[0] & 0x000F) - 8); + const float d2 = d_all * ((int32_t)(s[0] & 0x00F0) - 128) * 1.f/64.f; + const float d3 = d_all * ((int32_t)(s[0] & 0x0F00) - 2048) * 1.f/4096.f; + const float d4 = d_all * ((int32_t)(s[0] & 0xF000) - 32768) * 1.f/262144.f; + + for (int l = 0; l < 4; l += 2) { + const uint16_t hm = h[l/2] >> iq; + sum[0] += y[l+ 0] * d1 * ((int32_t)(q[l/2] & 0x0003) - ((hm & 0x0001) ? 0 : 4)) + + y[l+16] * d2 * ((int32_t)(q[l/2] & 0x000c) - ((hm & 0x0004) ? 0 : 16)) + + y[l+32] * d3 * ((int32_t)(q[l/2] & 0x0030) - ((hm & 0x0010) ? 0 : 64)) + + y[l+48] * d4 * ((int32_t)(q[l/2] & 0x00c0) - ((hm & 0x0040) ? 0 : 256)); + sum[1] += y[l+ 1] * d1 * ((int32_t)(q[l/2] & 0x0300) - ((hm & 0x0100) ? 0 : 1024)) + + y[l+17] * d2 * ((int32_t)(q[l/2] & 0x0c00) - ((hm & 0x0400) ? 0 : 4096)) + + y[l+33] * d3 * ((int32_t)(q[l/2] & 0x3000) - ((hm & 0x1000) ? 0 : 16384)) + + y[l+49] * d4 * ((int32_t)(q[l/2] & 0xc000) - ((hm & 0x4000) ? 0 : 65536)); + } + + } + const float sumf = sum[0] + sum[1] * 1.f/256.f; + + const float tot = simd_sum(sumf); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + row] = tot; + } + +} +#endif + +[[host_name("kernel_mul_mv_q3_K_f32")]] +kernel void kernel_mul_mv_q3_K_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_q3_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg); +} + +#if QK_K == 256 +void kernel_mul_mv_q4_K_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + const uint16_t kmask1 = 0x3f3f; + const uint16_t kmask2 = 0x0f0f; + const uint16_t kmask3 = 0xc0c0; + + const int ix = tiisg/8; // 0...3 + const int it = tiisg%8; // 0...7 + const int iq = it/4; // 0 or 1 + const int ir = it%4; // 0...3 + + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + //const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; + const int first_row = r0 * N_DST; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[16]; + float yh[16]; + float sumf[N_DST]={0.f}, all_sum; + + const int step = sizeof(block_q4_K) * nb / 2; + + device const float * y4 = y + ix * QK_K + 64 * iq + 8 * ir; + + uint16_t sc16[4]; + thread const uint8_t * sc8 = (thread const uint8_t *)sc16; + + for (int ib = ix; ib < nb; ib += 4) { + + float4 sumy = {0.f, 0.f, 0.f, 0.f}; + for (int i = 0; i < 8; ++i) { + yl[i+0] = y4[i+ 0]; sumy[0] += yl[i+0]; + yl[i+8] = y4[i+ 32]; sumy[1] += yl[i+8]; + yh[i+0] = y4[i+128]; sumy[2] += yh[i+0]; + yh[i+8] = y4[i+160]; sumy[3] += yh[i+8]; + } + + device const uint16_t * sc = (device const uint16_t *)x[ib].scales + iq; + device const uint16_t * q1 = (device const uint16_t *)x[ib].qs + 16 * iq + 4 * ir; + device const half * dh = &x[ib].d; + + for (int row = 0; row < N_DST; row++) { + + sc16[0] = sc[0] & kmask1; + sc16[1] = sc[2] & kmask1; + sc16[2] = ((sc[4] >> 0) & kmask2) | ((sc[0] & kmask3) >> 2); + sc16[3] = ((sc[4] >> 4) & kmask2) | ((sc[2] & kmask3) >> 2); + + device const uint16_t * q2 = q1 + 32; + + float4 acc1 = {0.f, 0.f, 0.f, 0.f}; + float4 acc2 = {0.f, 0.f, 0.f, 0.f}; + for (int i = 0; i < 8; i += 2) { + acc1[0] += yl[i+0] * (q1[i/2] & 0x000F); + acc1[1] += yl[i+1] * (q1[i/2] & 0x0F00); + acc1[2] += yl[i+8] * (q1[i/2] & 0x00F0); + acc1[3] += yl[i+9] * (q1[i/2] & 0xF000); + acc2[0] += yh[i+0] * (q2[i/2] & 0x000F); + acc2[1] += yh[i+1] * (q2[i/2] & 0x0F00); + acc2[2] += yh[i+8] * (q2[i/2] & 0x00F0); + acc2[3] += yh[i+9] * (q2[i/2] & 0xF000); + } + + float dall = dh[0]; + float dmin = dh[1]; + sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc8[0] + + (acc1[2] + 1.f/256.f * acc1[3]) * sc8[1] * 1.f/16.f + + (acc2[0] + 1.f/256.f * acc2[1]) * sc8[4] + + (acc2[2] + 1.f/256.f * acc2[3]) * sc8[5] * 1.f/16.f) - + dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]); + + q1 += step; + sc += step; + dh += step; + } + + y4 += 4 * QK_K; + } + + for (int row = 0; row < N_DST; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum; + } + } +} +#else +void kernel_mul_mv_q4_K_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant int64_t & ne10, + constant int64_t & ne12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + const int ix = tiisg/4; // 0...7 + const int it = tiisg%4; // 0...3 + + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + const int first_row = r0 * N_DST; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[8]; + float yh[8]; + float sumf[N_DST]={0.f}, all_sum; + + const int step = sizeof(block_q4_K) * nb / 2; + + device const float * y4 = y + ix * QK_K + 8 * it; + + uint16_t sc16[4]; + + for (int ib = ix; ib < nb; ib += 8) { + + float2 sumy = {0.f, 0.f}; + for (int i = 0; i < 8; ++i) { + yl[i] = y4[i+ 0]; sumy[0] += yl[i]; + yh[i] = y4[i+32]; sumy[1] += yh[i]; + } + + device const uint16_t * sc = (device const uint16_t *)x[ib].scales; + device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it; + device const half * dh = x[ib].d; + + for (int row = 0; row < N_DST; row++) { + + sc16[0] = sc[0] & 0x000f; + sc16[1] = sc[0] & 0x0f00; + sc16[2] = sc[0] & 0x00f0; + sc16[3] = sc[0] & 0xf000; + + float2 acc1 = {0.f, 0.f}; + float2 acc2 = {0.f, 0.f}; + for (int i = 0; i < 8; i += 2) { + acc1[0] += yl[i+0] * (qs[i/2] & 0x000F); + acc1[1] += yl[i+1] * (qs[i/2] & 0x0F00); + acc2[0] += yh[i+0] * (qs[i/2] & 0x00F0); + acc2[1] += yh[i+1] * (qs[i/2] & 0xF000); + } + + float dall = dh[0]; + float dmin = dh[1]; + sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc16[0] + + (acc2[0] + 1.f/256.f * acc2[1]) * sc16[1] * 1.f/4096.f) - + dmin * 1.f/16.f * (sumy[0] * sc16[2] + sumy[1] * sc16[3] * 1.f/256.f); + + qs += step; + sc += step; + dh += step; + } + + y4 += 8 * QK_K; + } + + for (int row = 0; row < N_DST; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum; + } + } +} +#endif + +[[host_name("kernel_mul_mv_q4_K_f32")]] +kernel void kernel_mul_mv_q4_K_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_q4_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg); +} + +void kernel_mul_mv_q5_K_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + const int nb = ne00/QK_K; + + const int64_t r0 = tgpig.x; + const int64_t r1 = tgpig.y; + const int im = tgpig.z; + + const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_q5_K * x = (device const block_q5_K *) src0 + first_row*nb + offset0; + device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float sumf[2]={0.f}; + + const int step = sizeof(block_q5_K) * nb; + +#if QK_K == 256 +# + float yl[16], yh[16]; + + const uint16_t kmask1 = 0x3f3f; + const uint16_t kmask2 = 0x0f0f; + const uint16_t kmask3 = 0xc0c0; + + const int tid = tiisg/4; + const int ix = tiisg%4; + const int iq = tid/4; + const int ir = tid%4; + const int n = 8; + + const int l0 = n*ir; + const int q_offset = 32*iq + l0; + const int y_offset = 64*iq + l0; + + const uint8_t hm1 = 1u << (2*iq); + const uint8_t hm2 = hm1 << 1; + const uint8_t hm3 = hm1 << 4; + const uint8_t hm4 = hm2 << 4; + + uint16_t sc16[4]; + thread const uint8_t * sc8 = (thread const uint8_t *)sc16; + + device const float * y1 = yy + ix*QK_K + y_offset; + + for (int i = ix; i < nb; i += 4) { + + device const uint8_t * q1 = x[i].qs + q_offset; + device const uint8_t * qh = x[i].qh + l0; + device const half * dh = &x[i].d; + device const uint16_t * a = (device const uint16_t *)x[i].scales + iq; + + device const float * y2 = y1 + 128; + float4 sumy = {0.f, 0.f, 0.f, 0.f}; + for (int l = 0; l < 8; ++l) { + yl[l+0] = y1[l+ 0]; sumy[0] += yl[l+0]; + yl[l+8] = y1[l+32]; sumy[1] += yl[l+8]; + yh[l+0] = y2[l+ 0]; sumy[2] += yh[l+0]; + yh[l+8] = y2[l+32]; sumy[3] += yh[l+8]; + } + + for (int row = 0; row < 2; ++row) { + + device const uint8_t * q2 = q1 + 64; + + sc16[0] = a[0] & kmask1; + sc16[1] = a[2] & kmask1; + sc16[2] = ((a[4] >> 0) & kmask2) | ((a[0] & kmask3) >> 2); + sc16[3] = ((a[4] >> 4) & kmask2) | ((a[2] & kmask3) >> 2); + + float4 acc1 = {0.f}; + float4 acc2 = {0.f}; + for (int l = 0; l < n; ++l) { + uint8_t h = qh[l]; + acc1[0] += yl[l+0] * (q1[l] & 0x0F); + acc1[1] += yl[l+8] * (q1[l] & 0xF0); + acc1[2] += yh[l+0] * (q2[l] & 0x0F); + acc1[3] += yh[l+8] * (q2[l] & 0xF0); + acc2[0] += h & hm1 ? yl[l+0] : 0.f; + acc2[1] += h & hm2 ? yl[l+8] : 0.f; + acc2[2] += h & hm3 ? yh[l+0] : 0.f; + acc2[3] += h & hm4 ? yh[l+8] : 0.f; + } + const float dall = dh[0]; + const float dmin = dh[1]; + sumf[row] += dall * (sc8[0] * (acc1[0] + 16.f*acc2[0]) + + sc8[1] * (acc1[1]/16.f + 16.f*acc2[1]) + + sc8[4] * (acc1[2] + 16.f*acc2[2]) + + sc8[5] * (acc1[3]/16.f + 16.f*acc2[3])) - + dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]); + + q1 += step; + qh += step; + dh += step/2; + a += step/2; + + } + + y1 += 4 * QK_K; + + } +#else + float yl[8], yh[8]; + + const int il = 4 * (tiisg/8); // 0, 4, 8, 12 + const int ix = tiisg%8; + const int iq = il/8; // 0, 0, 1, 1 + const int in = il%8; // 0, 4, 0, 4 + + device const float * y = yy + ix*QK_K + il; + + for (int i = ix; i < nb; i += 8) { + + for (int l = 0; l < 4; ++l) { + yl[l+0] = y[l+ 0]; + yl[l+4] = y[l+16]; + yh[l+0] = y[l+32]; + yh[l+4] = y[l+48]; + } + + device const half * dh = &x[i].d; + device const uint8_t * q = x[i].qs + il; + device const uint8_t * h = x[i].qh + in; + device const int8_t * s = x[i].scales; + + for (int row = 0; row < 2; ++row) { + + const float d = dh[0]; + + float2 acc = {0.f, 0.f}; + for (int l = 0; l < 4; ++l) { + const uint8_t hl = h[l] >> iq; + acc[0] += yl[l+0] * s[0] * ((int16_t)(q[l+ 0] & 0x0F) - (hl & 0x01 ? 0 : 16)) + + yl[l+4] * s[1] * ((int16_t)(q[l+16] & 0x0F) - (hl & 0x04 ? 0 : 16)); + acc[1] += yh[l+0] * s[2] * ((int16_t)(q[l+ 0] & 0xF0) - (hl & 0x10 ? 0 : 256)) + + yh[l+4] * s[3] * ((int16_t)(q[l+16] & 0xF0) - (hl & 0x40 ? 0 : 256)); + } + sumf[row] += d * (acc[0] + 1.f/16.f * acc[1]); + + q += step; + h += step; + s += step; + dh += step/2; + + } + + y += 8 * QK_K; + } +#endif + + for (int row = 0; row < 2; ++row) { + const float tot = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot; + } + } +} + +[[host_name("kernel_mul_mv_q5_K_f32")]] +kernel void kernel_mul_mv_q5_K_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_q5_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg); +} + +void kernel_mul_mv_q6_K_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + const uint8_t kmask1 = 0x03; + const uint8_t kmask2 = 0x0C; + const uint8_t kmask3 = 0x30; + const uint8_t kmask4 = 0xC0; + + const int nb = ne00/QK_K; + + const int64_t r0 = tgpig.x; + const int64_t r1 = tgpig.y; + const int im = tgpig.z; + + const int row = 2 * r0 + sgitg; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_q6_K * x = (device const block_q6_K *) src0 + row * nb + offset0; + device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float sumf = 0; + +#if QK_K == 256 + const int tid = tiisg/2; + const int ix = tiisg%2; + const int ip = tid/8; // 0 or 1 + const int il = tid%8; + const int n = 4; + const int l0 = n*il; + const int is = 8*ip + l0/16; + + const int y_offset = 128*ip + l0; + const int q_offset_l = 64*ip + l0; + const int q_offset_h = 32*ip + l0; + + for (int i = ix; i < nb; i += 2) { + + device const uint8_t * q1 = x[i].ql + q_offset_l; + device const uint8_t * q2 = q1 + 32; + device const uint8_t * qh = x[i].qh + q_offset_h; + device const int8_t * sc = x[i].scales + is; + + device const float * y = yy + i * QK_K + y_offset; + + const float dall = x[i].d; + + float4 sums = {0.f, 0.f, 0.f, 0.f}; + for (int l = 0; l < n; ++l) { + sums[0] += y[l+ 0] * ((int8_t)((q1[l] & 0xF) | ((qh[l] & kmask1) << 4)) - 32); + sums[1] += y[l+32] * ((int8_t)((q2[l] & 0xF) | ((qh[l] & kmask2) << 2)) - 32); + sums[2] += y[l+64] * ((int8_t)((q1[l] >> 4) | ((qh[l] & kmask3) << 0)) - 32); + sums[3] += y[l+96] * ((int8_t)((q2[l] >> 4) | ((qh[l] & kmask4) >> 2)) - 32); + } + + sumf += dall * (sums[0] * sc[0] + sums[1] * sc[2] + sums[2] * sc[4] + sums[3] * sc[6]); + + } + +#else + const int ix = tiisg/4; + const int il = 4*(tiisg%4); + + for (int i = ix; i < nb; i += 8) { + device const float * y = yy + i * QK_K + il; + device const uint8_t * ql = x[i].ql + il; + device const uint8_t * qh = x[i].qh + il; + device const int8_t * s = x[i].scales; + + const float d = x[i].d; + + float4 sums = {0.f, 0.f, 0.f, 0.f}; + for (int l = 0; l < 4; ++l) { + sums[0] += y[l+ 0] * ((int8_t)((ql[l+ 0] & 0xF) | ((qh[l] & kmask1) << 4)) - 32); + sums[1] += y[l+16] * ((int8_t)((ql[l+16] & 0xF) | ((qh[l] & kmask2) << 2)) - 32); + sums[2] += y[l+32] * ((int8_t)((ql[l+ 0] >> 4) | ((qh[l] & kmask3) >> 0)) - 32); + sums[3] += y[l+48] * ((int8_t)((ql[l+16] >> 4) | ((qh[l] & kmask4) >> 2)) - 32); + } + sumf += d * (sums[0] * s[0] + sums[1] * s[1] + sums[2] * s[2] + sums[3] * s[3]); + } + +#endif + + const float tot = simd_sum(sumf); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + row] = tot; + } +} + +[[host_name("kernel_mul_mv_q6_K_f32")]] +kernel void kernel_mul_mv_q6_K_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_q6_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg); +} + +// ======================= "True" 2-bit + +void kernel_mul_mv_iq2_xxs_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + + const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_iq2_xxs * x = (device const block_iq2_xxs *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[32]; + float sumf[N_DST]={0.f}, all_sum; + + const int nb32 = nb * (QK_K / 32); + + threadgroup uint64_t * values = (threadgroup uint64_t *)shared_values; + threadgroup uint8_t * shared_signs = (threadgroup uint8_t *)(values + 256); + { + int nval = 4; + int pos = (32*sgitg + tiisg)*nval; + for (int i = 0; i < nval; ++i) values[pos + i] = iq2xxs_grid[pos + i]; + nval = 2; + pos = (32*sgitg + tiisg)*nval; + for (int i = 0; i < nval; ++i) shared_signs[pos+i] = ksigns_iq2xs[pos+i]; + threadgroup_barrier(mem_flags::mem_threadgroup); + } + + const int ix = tiisg; + + device const float * y4 = y + 32 * ix; + + for (int ib32 = ix; ib32 < nb32; ib32 += 32) { + + for (int i = 0; i < 32; ++i) { + yl[i] = y4[i]; + } + + const int ibl = ib32 / (QK_K / 32); + const int ib = ib32 % (QK_K / 32); + + device const block_iq2_xxs * xr = x + ibl; + device const uint16_t * q2 = xr->qs + 4 * ib; + device const half * dh = &xr->d; + + for (int row = 0; row < N_DST; row++) { + + const float db = dh[0]; + device const uint8_t * aux8 = (device const uint8_t *)q2; + const uint32_t aux32 = q2[2] | (q2[3] << 16); + const float d = db * (0.5f + (aux32 >> 28)); + + float sum = 0; + for (int l = 0; l < 4; ++l) { + const threadgroup uint8_t * grid = (const threadgroup uint8_t *)(values + aux8[l]); + const uint8_t signs = shared_signs[(aux32 >> 7*l) & 127]; + for (int j = 0; j < 8; ++j) { + sum += yl[8*l + j] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f); + } + } + sumf[row] += d * sum; + + dh += nb*sizeof(block_iq2_xxs)/2; + q2 += nb*sizeof(block_iq2_xxs)/2; + } + + y4 += 32 * 32; + } + + for (int row = 0; row < N_DST; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum * 0.25f; + } + } +} + +[[host_name("kernel_mul_mv_iq2_xxs_f32")]] +kernel void kernel_mul_mv_iq2_xxs_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_iq2_xxs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); +} + +void kernel_mul_mv_iq2_xs_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + + const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_iq2_xs * x = (device const block_iq2_xs *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[32]; + float sumf[N_DST]={0.f}, all_sum; + + const int nb32 = nb * (QK_K / 32); + + threadgroup uint64_t * values = (threadgroup uint64_t *)shared_values; + threadgroup uint8_t * shared_signs = (threadgroup uint8_t *)(values + 512); + { + int nval = 8; + int pos = (32*sgitg + tiisg)*nval; + for (int i = 0; i < nval; ++i) values[pos + i] = iq2xs_grid[pos + i]; + nval = 2; + pos = (32*sgitg + tiisg)*nval; + for (int i = 0; i < nval; ++i) shared_signs[pos+i] = ksigns_iq2xs[pos+i]; + threadgroup_barrier(mem_flags::mem_threadgroup); + } + + const int ix = tiisg; + + device const float * y4 = y + 32 * ix; + + for (int ib32 = ix; ib32 < nb32; ib32 += 32) { + + for (int i = 0; i < 32; ++i) { + yl[i] = y4[i]; + } + + const int ibl = ib32 / (QK_K / 32); + const int ib = ib32 % (QK_K / 32); + + device const block_iq2_xs * xr = x + ibl; + device const uint16_t * q2 = xr->qs + 4 * ib; + device const uint8_t * sc = xr->scales + ib; + device const half * dh = &xr->d; + + for (int row = 0; row < N_DST; row++) { + + const float db = dh[0]; + const uint8_t ls1 = sc[0] & 0xf; + const uint8_t ls2 = sc[0] >> 4; + const float d1 = db * (0.5f + ls1); + const float d2 = db * (0.5f + ls2); + + float sum1 = 0, sum2 = 0; + for (int l = 0; l < 2; ++l) { + const threadgroup uint8_t * grid = (const threadgroup uint8_t *)(values + (q2[l] & 511)); + const uint8_t signs = shared_signs[(q2[l] >> 9)]; + for (int j = 0; j < 8; ++j) { + sum1 += yl[8*l + j] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f); + } + } + for (int l = 2; l < 4; ++l) { + const threadgroup uint8_t * grid = (const threadgroup uint8_t *)(values + (q2[l] & 511)); + const uint8_t signs = shared_signs[(q2[l] >> 9)]; + for (int j = 0; j < 8; ++j) { + sum2 += yl[8*l + j] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f); + } + } + sumf[row] += d1 * sum1 + d2 * sum2; + + dh += nb*sizeof(block_iq2_xs)/2; + q2 += nb*sizeof(block_iq2_xs)/2; + sc += nb*sizeof(block_iq2_xs); + } + + y4 += 32 * 32; + } + + for (int row = 0; row < N_DST; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum * 0.25f; + } + } +} + +[[host_name("kernel_mul_mv_iq2_xs_f32")]] +kernel void kernel_mul_mv_iq2_xs_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_iq2_xs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); +} + +void kernel_mul_mv_iq3_xxs_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + + const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_iq3_xxs * x = (device const block_iq3_xxs *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[32]; + float sumf[N_DST]={0.f}, all_sum; + + const int nb32 = nb * (QK_K / 32); + + threadgroup uint32_t * values = (threadgroup uint32_t *)shared_values; + threadgroup uint8_t * shared_signs = (threadgroup uint8_t *)(values + 256); + { + int nval = 4; + int pos = (32*sgitg + tiisg)*nval; + for (int i = 0; i < nval; ++i) values[pos + i] = iq3xxs_grid[pos + i]; + nval = 2; + pos = (32*sgitg + tiisg)*nval; + for (int i = 0; i < nval; ++i) shared_signs[pos+i] = ksigns_iq2xs[pos+i]; + threadgroup_barrier(mem_flags::mem_threadgroup); + } + + const int ix = tiisg; + + device const float * y4 = y + 32 * ix; + + for (int ib32 = ix; ib32 < nb32; ib32 += 32) { + + for (int i = 0; i < 32; ++i) { + yl[i] = y4[i]; + } + + const int ibl = ib32 / (QK_K / 32); + const int ib = ib32 % (QK_K / 32); + + device const block_iq3_xxs * xr = x + ibl; + device const uint8_t * q3 = xr->qs + 8 * ib; + device const uint16_t * gas = (device const uint16_t *)(xr->qs + QK_K/4) + 2 * ib; + device const half * dh = &xr->d; + + for (int row = 0; row < N_DST; row++) { + + const float db = dh[0]; + const uint32_t aux32 = gas[0] | (gas[1] << 16); + const float d = db * (0.5f + (aux32 >> 28)); + + float2 sum = {0}; + for (int l = 0; l < 4; ++l) { + const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(values + q3[2*l+0]); + const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(values + q3[2*l+1]); + const uint8_t signs = shared_signs[(aux32 >> 7*l) & 127]; + for (int j = 0; j < 4; ++j) { + sum[0] += yl[8*l + j + 0] * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f); + sum[1] += yl[8*l + j + 4] * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f); + } + } + sumf[row] += d * (sum[0] + sum[1]); + + dh += nb*sizeof(block_iq3_xxs)/2; + q3 += nb*sizeof(block_iq3_xxs); + gas += nb*sizeof(block_iq3_xxs)/2; + } + + y4 += 32 * 32; + } + + for (int row = 0; row < N_DST; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum * 0.5f; + } + } +} + +[[host_name("kernel_mul_mv_iq3_xxs_f32")]] +kernel void kernel_mul_mv_iq3_xxs_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_iq3_xxs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); +} + +void kernel_mul_mv_iq3_s_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + + const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_iq3_s * x = (device const block_iq3_s *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[32]; + float sumf[N_DST]={0.f}, all_sum; + + const int nb32 = nb * (QK_K / 32); + + threadgroup uint32_t * values = (threadgroup uint32_t *)shared_values; + { + int nval = 8; + int pos = (32*sgitg + tiisg)*nval; + for (int i = 0; i < nval; ++i) values[pos + i] = iq3s_grid[pos + i]; + threadgroup_barrier(mem_flags::mem_threadgroup); + } + + const int ix = tiisg; + + device const float * y4 = y + 32 * ix; + + for (int ib32 = ix; ib32 < nb32; ib32 += 32) { + + for (int i = 0; i < 32; ++i) { + yl[i] = y4[i]; + } + + const int ibl = ib32 / (QK_K / 32); + const int ib = ib32 % (QK_K / 32); + + device const block_iq3_s * xr = x + ibl; + device const uint8_t * qs = xr->qs + 8 * ib; + device const uint8_t * qh = xr->qh + ib; + device const uint8_t * sc = xr->scales + (ib/2); + device const uint8_t * signs = xr->signs + 4 * ib; + device const half * dh = &xr->d; + + for (int row = 0; row < N_DST; row++) { + + const float db = dh[0]; + const float d = db * (1 + 2*((sc[0] >> 4*(ib%2)) & 0xf)); + + float2 sum = {0}; + for (int l = 0; l < 4; ++l) { + const threadgroup uint32_t * table1 = qh[0] & kmask_iq2xs[2*l+0] ? values + 256 : values; + const threadgroup uint32_t * table2 = qh[0] & kmask_iq2xs[2*l+1] ? values + 256 : values; + const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(table1 + qs[2*l+0]); + const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(table2 + qs[2*l+1]); + for (int j = 0; j < 4; ++j) { + sum[0] += yl[8*l + j + 0] * grid1[j] * select(1, -1, signs[l] & kmask_iq2xs[j+0]); + sum[1] += yl[8*l + j + 4] * grid2[j] * select(1, -1, signs[l] & kmask_iq2xs[j+4]); + } + } + sumf[row] += d * (sum[0] + sum[1]); + + dh += nb*sizeof(block_iq3_s)/2; + qs += nb*sizeof(block_iq3_s); + qh += nb*sizeof(block_iq3_s); + sc += nb*sizeof(block_iq3_s); + signs += nb*sizeof(block_iq3_s); + } + + y4 += 32 * 32; + } + + for (int row = 0; row < N_DST; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum; + } + } +} + +[[host_name("kernel_mul_mv_iq3_s_f32")]] +kernel void kernel_mul_mv_iq3_s_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_iq3_s_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); +} + +void kernel_mul_mv_iq2_s_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + + const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + + device const block_iq2_s * x = (device const block_iq2_s *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[32]; + float sumf[N_DST]={0.f}, all_sum; + + const int nb32 = nb * (QK_K / 32); + + //threadgroup uint64_t * values = (threadgroup uint64_t *)shared_values; + //{ + // int nval = 32; + // int pos = (32*sgitg + tiisg)*nval; + // for (int i = 0; i < nval; ++i) values[pos + i] = iq2s_grid[pos + i]; + // threadgroup_barrier(mem_flags::mem_threadgroup); + //} + + const int ix = tiisg; + + device const float * y4 = y + 32 * ix; + + for (int ib32 = ix; ib32 < nb32; ib32 += 32) { + + for (int i = 0; i < 32; ++i) { + yl[i] = y4[i]; + } + + const int ibl = ib32 / (QK_K / 32); + const int ib = ib32 % (QK_K / 32); + + device const block_iq2_s * xr = x + ibl; + device const uint8_t * qs = xr->qs + 4 * ib; + device const uint8_t * qh = xr->qh + ib; + device const uint8_t * sc = xr->scales + ib; + device const uint8_t * signs = qs + QK_K/8; + device const half * dh = &xr->d; + + for (int row = 0; row < N_DST; row++) { + + const float db = dh[0]; + const float d1 = db * (0.5f + (sc[0] & 0xf)); + const float d2 = db * (0.5f + (sc[0] >> 4)); + + float2 sum = {0}; + for (int l = 0; l < 2; ++l) { + //const threadgroup uint8_t * grid1 = (const threadgroup uint8_t *)(values + (qs[l+0] | ((qh[0] << (8-2*l)) & 0x300))); + //const threadgroup uint8_t * grid2 = (const threadgroup uint8_t *)(values + (qs[l+2] | ((qh[0] << (4-2*l)) & 0x300))); + constant uint8_t * grid1 = (constant uint8_t *)(iq2s_grid + (qs[l+0] | ((qh[0] << (8-2*l)) & 0x300))); + constant uint8_t * grid2 = (constant uint8_t *)(iq2s_grid + (qs[l+2] | ((qh[0] << (4-2*l)) & 0x300))); + for (int j = 0; j < 8; ++j) { + sum[0] += yl[8*l + j + 0] * grid1[j] * select(1, -1, signs[l+0] & kmask_iq2xs[j]); + sum[1] += yl[8*l + j + 16] * grid2[j] * select(1, -1, signs[l+2] & kmask_iq2xs[j]); + } + } + sumf[row] += d1 * sum[0] + d2 * sum[1]; + + dh += nb*sizeof(block_iq2_s)/2; + qs += nb*sizeof(block_iq2_s); + qh += nb*sizeof(block_iq2_s); + sc += nb*sizeof(block_iq2_s); + signs += nb*sizeof(block_iq2_s); + } + + y4 += 32 * 32; + } + + for (int row = 0; row < N_DST; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum * 0.25f; + } + } +} + +[[host_name("kernel_mul_mv_iq2_s_f32")]] +kernel void kernel_mul_mv_iq2_s_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_iq2_s_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); +} + +void kernel_mul_mv_iq1_s_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_value, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + + const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + device const block_iq1_s * x = (device const block_iq1_s *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[32]; + float sumf[N_DST]={0.f}, all_sum; + + const int nb32 = nb * (QK_K / 32); + + const int ix = tiisg; + + device const float * y4 = y + 32 * ix; + + for (int ib32 = ix; ib32 < nb32; ib32 += 32) { + + float sumy = 0; + for (int i = 0; i < 32; ++i) { + yl[i] = y4[i]; + sumy += yl[i]; + } + + const int ibl = ib32 / (QK_K / 32); + const int ib = ib32 % (QK_K / 32); + + device const block_iq1_s * xr = x + ibl; + device const uint8_t * qs = xr->qs + 4 * ib; + device const uint16_t * qh = xr->qh + ib; + device const half * dh = &xr->d; + + for (int row = 0; row < N_DST; row++) { + + constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700))); + constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 5) & 0x700))); + constant uint8_t * grid3 = (constant uint8_t *)(iq1s_grid_gpu + (qs[2] | ((qh[0] << 2) & 0x700))); + constant uint8_t * grid4 = (constant uint8_t *)(iq1s_grid_gpu + (qs[3] | ((qh[0] >> 1) & 0x700))); + + float sum = 0; + for (int j = 0; j < 4; ++j) { + sum += yl[j+ 0] * (grid1[j] & 0xf) + yl[j+ 4] * (grid1[j] >> 4) + + yl[j+ 8] * (grid2[j] & 0xf) + yl[j+12] * (grid2[j] >> 4) + + yl[j+16] * (grid3[j] & 0xf) + yl[j+20] * (grid3[j] >> 4) + + yl[j+24] * (grid4[j] & 0xf) + yl[j+28] * (grid4[j] >> 4); + } + sumf[row] += (float)dh[0] * (sum + sumy * (qh[0] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA)) * (2*((qh[0] >> 12) & 7) + 1); + + dh += nb*sizeof(block_iq1_s)/2; + qs += nb*sizeof(block_iq1_s); + qh += nb*sizeof(block_iq1_s)/2; + } + + y4 += 32 * 32; + } + + for (int row = 0; row < N_DST; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum; + } + } +} + +void kernel_mul_mv_iq1_m_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_value, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + + const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + device const block_iq1_m * x = (device const block_iq1_m *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + float yl[32]; + float sumf[N_DST]={0.f}, all_sum; + + const int nb32 = nb * (QK_K / 32); + + const int ix = tiisg; + + device const float * y4 = y + 32 * ix; + +#if QK_K != 64 + iq1m_scale_t scale; +#endif + + for (int ib32 = ix; ib32 < nb32; ib32 += 32) { + + float4 sumy = {0.f}; + for (int i = 0; i < 8; ++i) { + yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0]; + yl[i+ 8] = y4[i+ 8]; sumy[1] += yl[i+ 8]; + yl[i+16] = y4[i+16]; sumy[2] += yl[i+16]; + yl[i+24] = y4[i+24]; sumy[3] += yl[i+24]; + } + + const int ibl = ib32 / (QK_K / 32); + const int ib = ib32 % (QK_K / 32); + + device const block_iq1_m * xr = x + ibl; + device const uint8_t * qs = xr->qs + 4 * ib; + device const uint8_t * qh = xr->qh + 2 * ib; + device const uint16_t * sc = (device const uint16_t *)xr->scales; + + for (int row = 0; row < N_DST; row++) { + +#if QK_K != 64 + scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); +#endif + + constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700))); + constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 4) & 0x700))); + constant uint8_t * grid3 = (constant uint8_t *)(iq1s_grid_gpu + (qs[2] | ((qh[1] << 8) & 0x700))); + constant uint8_t * grid4 = (constant uint8_t *)(iq1s_grid_gpu + (qs[3] | ((qh[1] << 4) & 0x700))); + + float2 sum = {0.f}; + for (int j = 0; j < 4; ++j) { + sum[0] += yl[j+ 0] * (grid1[j] & 0xf) + yl[j+ 4] * (grid1[j] >> 4) + + yl[j+ 8] * (grid2[j] & 0xf) + yl[j+12] * (grid2[j] >> 4); + sum[1] += yl[j+16] * (grid3[j] & 0xf) + yl[j+20] * (grid3[j] >> 4) + + yl[j+24] * (grid4[j] & 0xf) + yl[j+28] * (grid4[j] >> 4); + } + const float delta1 = sumy[0] * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[1] * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA); + const float delta2 = sumy[2] * (qh[1] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[3] * (qh[1] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA); +#if QK_K == 64 + const float d = (float) *((device const half *)(sc - 1)); + sumf[row] += d * ((sum[0] + delta1) * (2*((sc[0] >> (8*(ib%2)+0)) & 0xf) + 1) + + (sum[1] + delta2) * (2*((sc[0] >> (8*(ib%2)+4)) & 0xf) + 1)); +#else + sumf[row] += (float)scale.f16 * ((sum[0] + delta1) * (2*((sc[ib/2] >> (6*(ib%2)+0)) & 7) + 1) + + (sum[1] + delta2) * (2*((sc[ib/2] >> (6*(ib%2)+3)) & 7) + 1)); +#endif + + sc += nb*sizeof(block_iq1_m)/2; + qs += nb*sizeof(block_iq1_m); + qh += nb*sizeof(block_iq1_m); + } + + y4 += 32 * 32; + } + + for (int row = 0; row < N_DST; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum; + } + } +} + +void kernel_mul_mv_iq4_nl_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values_i8, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + threadgroup float * shared_values = (threadgroup float *)shared_values_i8; + const int nb = ne00/QK4_NL; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + const int first_row = (r0 * 2 + sgitg) * 2; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + device const block_iq4_nl * x = (device const block_iq4_nl *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + const int ix = tiisg/2; // 0...15 + const int it = tiisg%2; // 0 or 1 + + shared_values[tiisg] = kvalues_iq4nl_f[tiisg%16]; + threadgroup_barrier(mem_flags::mem_threadgroup); + + float4 yl[4]; + float sumf[2]={0.f}, all_sum; + + device const float * yb = y + ix * QK4_NL + it * 8; + + uint32_t aux32[2]; + thread const uint8_t * q8 = (thread const uint8_t *)aux32; + + float4 qf1, qf2; + + for (int ib = ix; ib < nb; ib += 16) { + + device const float4 * y4 = (device const float4 *)yb; + yl[0] = y4[0]; yl[1] = y4[4]; yl[2] = y4[1]; yl[3] = y4[5]; + + for (int row = 0; row < 2; ++row) { + + device const block_iq4_nl & xb = x[row*nb + ib]; + device const uint16_t * q4 = (device const uint16_t *)(xb.qs + 8*it); + + float4 acc1 = {0.f}, acc2 = {0.f}; + + aux32[0] = q4[0] | (q4[1] << 16); + aux32[1] = (aux32[0] >> 4) & 0x0f0f0f0f; + aux32[0] &= 0x0f0f0f0f; + qf1 = {shared_values[q8[0]], shared_values[q8[1]], shared_values[q8[2]], shared_values[q8[3]]}; + qf2 = {shared_values[q8[4]], shared_values[q8[5]], shared_values[q8[6]], shared_values[q8[7]]}; + acc1 += yl[0] * qf1; + acc2 += yl[1] * qf2; + + aux32[0] = q4[2] | (q4[3] << 16); + aux32[1] = (aux32[0] >> 4) & 0x0f0f0f0f; + aux32[0] &= 0x0f0f0f0f; + qf1 = {shared_values[q8[0]], shared_values[q8[1]], shared_values[q8[2]], shared_values[q8[3]]}; + qf2 = {shared_values[q8[4]], shared_values[q8[5]], shared_values[q8[6]], shared_values[q8[7]]}; + acc1 += yl[2] * qf1; + acc2 += yl[3] * qf2; + + acc1 += acc2; + + sumf[row] += (float)xb.d * (acc1[0] + acc1[1] + acc1[2] + acc1[3]); + + } + + yb += 16 * QK4_NL; + } + + for (int row = 0; row < 2; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum; + } + } +} + +#if QK_K != 64 +void kernel_mul_mv_iq4_xs_f32_impl( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values_i8, + uint3 tgpig, + uint tiisg, + uint sgitg) { + + threadgroup float * shared_values = (threadgroup float *)shared_values_i8; + const int nb = ne00/QK_K; + const int r0 = tgpig.x; + const int r1 = tgpig.y; + const int im = tgpig.z; + const int first_row = (r0 * 2 + sgitg) * 2; + const int ib_row = first_row * nb; + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02); + device const block_iq4_xs * x = (device const block_iq4_xs *) src0 + ib_row + offset0; + device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1; + + const int ix = tiisg/16; // 0 or 1 + const int it = tiisg%16; // 0...15 + const int ib = it/2; + const int il = it%2; + + shared_values[tiisg] = kvalues_iq4nl_f[tiisg%16]; + threadgroup_barrier(mem_flags::mem_threadgroup); + + float4 yl[4]; + float sumf[2]={0.f}, all_sum; + + device const float * yb = y + ix * QK_K + ib * 32 + il * 8; + + uint32_t aux32[2]; + thread const uint8_t * q8 = (thread const uint8_t *)aux32; + + float4 qf1, qf2; + + for (int ibl = ix; ibl < nb; ibl += 2) { + + device const float4 * y4 = (device const float4 *)yb; + yl[0] = y4[0]; yl[1] = y4[4]; yl[2] = y4[1]; yl[3] = y4[5]; + + for (int row = 0; row < 2; ++row) { + + device const block_iq4_xs & xb = x[row*nb + ibl]; + device const uint32_t * q4 = (device const uint32_t *)(xb.qs + 16*ib + 8*il); + + float4 acc1 = {0.f}, acc2 = {0.f}; + + aux32[0] = q4[0] & 0x0f0f0f0f; + aux32[1] = (q4[0] >> 4) & 0x0f0f0f0f; + qf1 = {shared_values[q8[0]], shared_values[q8[1]], shared_values[q8[2]], shared_values[q8[3]]}; + qf2 = {shared_values[q8[4]], shared_values[q8[5]], shared_values[q8[6]], shared_values[q8[7]]}; + acc1 += yl[0] * qf1; + acc2 += yl[1] * qf2; + + aux32[0] = q4[1] & 0x0f0f0f0f; + aux32[1] = (q4[1] >> 4) & 0x0f0f0f0f; + qf1 = {shared_values[q8[0]], shared_values[q8[1]], shared_values[q8[2]], shared_values[q8[3]]}; + qf2 = {shared_values[q8[4]], shared_values[q8[5]], shared_values[q8[6]], shared_values[q8[7]]}; + acc1 += yl[2] * qf1; + acc2 += yl[3] * qf2; + + acc1 += acc2; + + const int ls = (((xb.scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((xb.scales_h >> 2*ib) & 3) << 4)) - 32; + sumf[row] += (float)xb.d * ls * (acc1[0] + acc1[1] + acc1[2] + acc1[3]); + + } + + yb += 2 * QK_K; + } + + for (int row = 0; row < 2; ++row) { + all_sum = simd_sum(sumf[row]); + if (tiisg == 0) { + dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum; + } + } +} +#endif + +[[host_name("kernel_mul_mv_iq1_s_f32")]] +kernel void kernel_mul_mv_iq1_s_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_iq1_s_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg); +} + +[[host_name("kernel_mul_mv_iq1_m_f32")]] +kernel void kernel_mul_mv_iq1_m_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_iq1_m_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg); +} + +[[host_name("kernel_mul_mv_iq4_nl_f32")]] +kernel void kernel_mul_mv_iq4_nl_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + kernel_mul_mv_iq4_nl_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); +} + +[[host_name("kernel_mul_mv_iq4_xs_f32")]] +kernel void kernel_mul_mv_iq4_xs_f32( + device const void * src0, + device const float * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + +#if QK_K == 64 + kernel_mul_mv_iq4_nl_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); +#else + kernel_mul_mv_iq4_xs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg); +#endif +} + +//============================= templates and their specializations ============================= + +// NOTE: this is not dequantizing - we are simply fitting the template +template +void dequantize_f32(device const float4x4 * src, short il, thread type4x4 & reg) { + float4x4 temp = *(((device float4x4 *)src)); + for (int i = 0; i < 16; i++){ + reg[i/4][i%4] = temp[i/4][i%4]; + } +} + +template +void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg) { + half4x4 temp = *(((device half4x4 *)src)); + for (int i = 0; i < 16; i++){ + reg[i/4][i%4] = temp[i/4][i%4]; + } +} + +template +void dequantize_q4_0(device const block_q4_0 *xb, short il, thread type4x4 & reg) { + device const uint16_t * qs = ((device const uint16_t *)xb + 1); + const float d1 = il ? (xb->d / 16.h) : xb->d; + const float d2 = d1 / 256.f; + const float md = -8.h * xb->d; + const ushort mask0 = il ? 0x00F0 : 0x000F; + const ushort mask1 = mask0 << 8; + + for (int i=0;i<8;i++) { + reg[i/2][2*(i%2)+0] = d1 * (qs[i] & mask0) + md; + reg[i/2][2*(i%2)+1] = d2 * (qs[i] & mask1) + md; + } +} + +template +void dequantize_q4_1(device const block_q4_1 *xb, short il, thread type4x4 & reg) { + device const uint16_t * qs = ((device const uint16_t *)xb + 2); + const float d1 = il ? (xb->d / 16.h) : xb->d; + const float d2 = d1 / 256.f; + const float m = xb->m; + const ushort mask0 = il ? 0x00F0 : 0x000F; + const ushort mask1 = mask0 << 8; + + for (int i=0;i<8;i++) { + reg[i/2][2*(i%2)+0] = ((qs[i] & mask0) * d1) + m; + reg[i/2][2*(i%2)+1] = ((qs[i] & mask1) * d2) + m; + } +} + +template +void dequantize_q5_0(device const block_q5_0 *xb, short il, thread type4x4 & reg) { + device const uint16_t * qs = ((device const uint16_t *)xb + 3); + const float d = xb->d; + const float md = -16.h * xb->d; + const ushort mask = il ? 0x00F0 : 0x000F; + + const uint32_t qh = *((device const uint32_t *)xb->qh); + + const int x_mv = il ? 4 : 0; + + const int gh_mv = il ? 12 : 0; + const int gh_bk = il ? 0 : 4; + + for (int i = 0; i < 8; i++) { + // extract the 5-th bits for x0 and x1 + const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10; + const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10; + + // combine the 4-bits from qs with the 5th bit + const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0); + const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1); + + reg[i/2][2*(i%2)+0] = d * x0 + md; + reg[i/2][2*(i%2)+1] = d * x1 + md; + } +} + +template +void dequantize_q5_1(device const block_q5_1 *xb, short il, thread type4x4 & reg) { + device const uint16_t * qs = ((device const uint16_t *)xb + 4); + const float d = xb->d; + const float m = xb->m; + const ushort mask = il ? 0x00F0 : 0x000F; + + const uint32_t qh = *((device const uint32_t *)xb->qh); + + const int x_mv = il ? 4 : 0; + + const int gh_mv = il ? 12 : 0; + const int gh_bk = il ? 0 : 4; + + for (int i = 0; i < 8; i++) { + // extract the 5-th bits for x0 and x1 + const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10; + const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10; + + // combine the 4-bits from qs with the 5th bit + const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0); + const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1); + + reg[i/2][2*(i%2)+0] = d * x0 + m; + reg[i/2][2*(i%2)+1] = d * x1 + m; + } +} + +template +void dequantize_q8_0(device const block_q8_0 *xb, short il, thread type4x4 & reg) { + device const int8_t * qs = ((device const int8_t *)xb->qs); + const half d = xb->d; + + for (int i = 0; i < 16; i++) { + reg[i/4][i%4] = (qs[i + 16*il] * d); + } +} + +template +void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg) { + const float d = xb->d; + const float min = xb->dmin; + device const uint8_t * q = (device const uint8_t *)xb->qs; + float dl, ml; + uint8_t sc = xb->scales[il]; + +#if QK_K == 256 + q = q + 32*(il/8) + 16*(il&1); + il = (il/2)%4; +#endif + half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h); + uchar mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3); + dl = d * (sc & 0xF) * coef, ml = min * (sc >> 4); + for (int i = 0; i < 16; ++i) { + reg[i/4][i%4] = dl * (q[i] & mask) - ml; + } +} + +template +void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg) { + const half d_all = xb->d; + device const uint8_t * q = (device const uint8_t *)xb->qs; + device const uint8_t * h = (device const uint8_t *)xb->hmask; + device const int8_t * scales = (device const int8_t *)xb->scales; + +#if QK_K == 256 + q = q + 32 * (il/8) + 16 * (il&1); + h = h + 16 * (il&1); + uint8_t m = 1 << (il/2); + uint16_t kmask1 = (il/4)>1 ? ((il/4)>2 ? 192 : 48) : \ + ((il/4)>0 ? 12 : 3); + uint16_t kmask2 = il/8 ? 0xF0 : 0x0F; + uint16_t scale_2 = scales[il%8], scale_1 = scales[8 + il%4]; + int16_t dl_int = (il/4)&1 ? (scale_2&kmask2) | ((scale_1&kmask1) << 2) + : (scale_2&kmask2) | ((scale_1&kmask1) << 4); + float dl = il<8 ? d_all * (dl_int - 32.f) : d_all * (dl_int / 16.f - 32.f); + const float ml = 4.f * dl; + + il = (il/2) & 3; + const half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h); + const uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3); + dl *= coef; + + for (int i = 0; i < 16; ++i) { + reg[i/4][i%4] = dl * (q[i] & mask) - (h[i] & m ? 0 : ml); + } +#else + float kcoef = il&1 ? 1.f/16.f : 1.f; + uint16_t kmask = il&1 ? 0xF0 : 0x0F; + float dl = d_all * ((scales[il/2] & kmask) * kcoef - 8); + float coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h); + uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3); + uint8_t m = 1<<(il*2); + for (int i = 0; i < 16; ++i) { + reg[i/4][i%4] = coef * dl * ((q[i] & mask) - ((h[i%8] & (m * (1 + i/8))) ? 0 : 4.f/coef)); + } +#endif +} + +static inline uchar2 get_scale_min_k4_just2(int j, int k, device const uchar * q) { + return j < 4 ? uchar2{uchar(q[j+0+k] & 63), uchar(q[j+4+k] & 63)} + : uchar2{uchar((q[j+4+k] & 0xF) | ((q[j-4+k] & 0xc0) >> 2)), uchar((q[j+4+k] >> 4) | ((q[j-0+k] & 0xc0) >> 2))}; +} + +template +void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg) { + device const uchar * q = xb->qs; + +#if QK_K == 256 + short is = (il/4) * 2; + q = q + (il/4) * 32 + 16 * (il&1); + il = il & 3; + const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales); + const float d = il < 2 ? xb->d : xb->d / 16.h; + const float min = xb->dmin; + const float dl = d * sc[0]; + const float ml = min * sc[1]; +#else + (void) get_scale_min_k4_just2; + + q = q + 16 * (il&1); + device const uint8_t * s = xb->scales; + device const half2 * dh = (device const half2 *)xb->d; + const float2 d = (float2)dh[0]; + const float dl = il<2 ? d[0] * (s[0]&0xF) : d[0] * (s[1]&0xF)/16.h; + const float ml = il<2 ? d[1] * (s[0]>>4) : d[1] * (s[1]>>4); +#endif + const ushort mask = il<2 ? 0x0F : 0xF0; + for (int i = 0; i < 16; ++i) { + reg[i/4][i%4] = dl * (q[i] & mask) - ml; + } +} + +template +void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg) { + device const uint8_t * q = xb->qs; + device const uint8_t * qh = xb->qh; + +#if QK_K == 256 + short is = (il/4) * 2; + q = q + 32 * (il/4) + 16 * (il&1); + qh = qh + 16 * (il&1); + uint8_t ul = 1 << (il/2); + il = il & 3; + const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales); + const float d = il < 2 ? xb->d : xb->d / 16.f; + const float min = xb->dmin; + const float dl = d * sc[0]; + const float ml = min * sc[1]; + + const ushort mask = il<2 ? 0x0F : 0xF0; + const float qh_val = il<2 ? 16.f : 256.f; + for (int i = 0; i < 16; ++i) { + reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml; + } +#else + q = q + 16 * (il&1); + device const int8_t * s = xb->scales; + const float dl = xb->d * s[il]; + uint8_t m = 1<<(il*2); + const float coef = il<2 ? 1.f : 1.f/16.f; + const ushort mask = il<2 ? 0x0F : 0xF0; + for (int i = 0; i < 16; ++i) { + reg[i/4][i%4] = coef * dl * ((q[i] & mask) - (qh[i%8] & (m*(1+i/8)) ? 0.f : 16.f/coef)); + } +#endif +} + +template +void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg) { + const half d_all = xb->d; + device const uint8_t * ql = (device const uint8_t *)xb->ql; + device const uint8_t * qh = (device const uint8_t *)xb->qh; + device const int8_t * scales = (device const int8_t *)xb->scales; + +#if QK_K == 256 + ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1); + qh = qh + 32*(il/8) + 16*(il&1); + float sc = scales[(il%2) + 2 * ((il/2))]; + il = (il/2) & 3; +#else + ql = ql + 16 * (il&1); + float sc = scales[il]; +#endif + const uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3); + const uint16_t kmask2 = il>1 ? 0xF0 : 0x0F; + const float coef = il>1 ? 1.f/16.f : 1.f; + const float ml = d_all * sc * 32.f; + const float dl = d_all * sc * coef; + for (int i = 0; i < 16; ++i) { + const half q = il&1 ? ((ql[i] & kmask2) | ((qh[i] & kmask1) << 2)) + : ((ql[i] & kmask2) | ((qh[i] & kmask1) << 4)); + reg[i/4][i%4] = dl * q - ml; + } +} + +template +void dequantize_iq2_xxs(device const block_iq2_xxs * xb, short il, thread type4x4 & reg) { + // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 + const float d = xb->d; + const int ib32 = il/2; + il = il%2; + // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16 + // each block of 32 needs 2 uint32_t's for the quants & scale, so 4 uint16_t's. + device const uint16_t * q2 = xb->qs + 4*ib32; + const uint32_t aux32_g = q2[0] | (q2[1] << 16); + const uint32_t aux32_s = q2[2] | (q2[3] << 16); + thread const uint8_t * aux8 = (thread const uint8_t *)&aux32_g; + const float dl = d * (0.5f + (aux32_s >> 28)) * 0.25f; + constant uint8_t * grid = (constant uint8_t *)(iq2xxs_grid + aux8[2*il+0]); + uint8_t signs = ksigns_iq2xs[(aux32_s >> 14*il) & 127]; + for (int i = 0; i < 8; ++i) { + reg[i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f); + } + grid = (constant uint8_t *)(iq2xxs_grid + aux8[2*il+1]); + signs = ksigns_iq2xs[(aux32_s >> (14*il+7)) & 127]; + for (int i = 0; i < 8; ++i) { + reg[2+i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f); + } +} + +template +void dequantize_iq2_xs(device const block_iq2_xs * xb, short il, thread type4x4 & reg) { + // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 + const float d = xb->d; + const int ib32 = il/2; + il = il%2; + // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16 + device const uint16_t * q2 = xb->qs + 4*ib32; + const float dl = d * (0.5f + ((xb->scales[ib32] >> 4*il) & 0xf)) * 0.25f; + constant uint8_t * grid = (constant uint8_t *)(iq2xs_grid + (q2[2*il+0] & 511)); + uint8_t signs = ksigns_iq2xs[q2[2*il+0] >> 9]; + for (int i = 0; i < 8; ++i) { + reg[i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f); + } + grid = (constant uint8_t *)(iq2xs_grid + (q2[2*il+1] & 511)); + signs = ksigns_iq2xs[q2[2*il+1] >> 9]; + for (int i = 0; i < 8; ++i) { + reg[2+i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f); + } +} + +template +void dequantize_iq3_xxs(device const block_iq3_xxs * xb, short il, thread type4x4 & reg) { + // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 + const float d = xb->d; + const int ib32 = il/2; + il = il%2; + // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16 + device const uint8_t * q3 = xb->qs + 8*ib32; + device const uint16_t * gas = (device const uint16_t *)(xb->qs + QK_K/4) + 2*ib32; + const uint32_t aux32 = gas[0] | (gas[1] << 16); + const float dl = d * (0.5f + (aux32 >> 28)) * 0.5f; + constant uint8_t * grid1 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+0]); + constant uint8_t * grid2 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+1]); + uint8_t signs = ksigns_iq2xs[(aux32 >> 14*il) & 127]; + for (int i = 0; i < 4; ++i) { + reg[0][i] = dl * grid1[i] * (signs & kmask_iq2xs[i+0] ? -1.f : 1.f); + reg[1][i] = dl * grid2[i] * (signs & kmask_iq2xs[i+4] ? -1.f : 1.f); + } + grid1 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+2]); + grid2 = (constant uint8_t *)(iq3xxs_grid + q3[4*il+3]); + signs = ksigns_iq2xs[(aux32 >> (14*il+7)) & 127]; + for (int i = 0; i < 4; ++i) { + reg[2][i] = dl * grid1[i] * (signs & kmask_iq2xs[i+0] ? -1.f : 1.f); + reg[3][i] = dl * grid2[i] * (signs & kmask_iq2xs[i+4] ? -1.f : 1.f); + } +} + +template +void dequantize_iq3_s(device const block_iq3_s * xb, short il, thread type4x4 & reg) { + // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 + const float d = xb->d; + const int ib32 = il/2; + il = il%2; + // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16 + device const uint8_t * qs = xb->qs + 8*ib32; + device const uint8_t * signs = xb->signs + 4*ib32 + 2*il; + const uint8_t qh = xb->qh[ib32] >> 4*il; + const float dl = d * (1 + 2*((xb->scales[ib32/2] >> 4*(ib32%2)) & 0xf)); + constant uint8_t * grid1 = (constant uint8_t *)(iq3s_grid + (qs[4*il+0] | ((qh << 8) & 256))); + constant uint8_t * grid2 = (constant uint8_t *)(iq3s_grid + (qs[4*il+1] | ((qh << 7) & 256))); + for (int i = 0; i < 4; ++i) { + reg[0][i] = dl * grid1[i] * select(1, -1, signs[0] & kmask_iq2xs[i+0]); + reg[1][i] = dl * grid2[i] * select(1, -1, signs[0] & kmask_iq2xs[i+4]); + } + grid1 = (constant uint8_t *)(iq3s_grid + (qs[4*il+2] | ((qh << 6) & 256))); + grid2 = (constant uint8_t *)(iq3s_grid + (qs[4*il+3] | ((qh << 5) & 256))); + for (int i = 0; i < 4; ++i) { + reg[2][i] = dl * grid1[i] * select(1, -1, signs[1] & kmask_iq2xs[i+0]); + reg[3][i] = dl * grid2[i] * select(1, -1, signs[1] & kmask_iq2xs[i+4]); + } +} + +template +void dequantize_iq2_s(device const block_iq2_s * xb, short il, thread type4x4 & reg) { + // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 + const float d = xb->d; + const int ib32 = il/2; + il = il%2; + // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16 + device const uint8_t * qs = xb->qs + 4*ib32 + 2*il; + device const uint8_t * signs = qs + QK_K/8; + const uint8_t qh = xb->qh[ib32] >> 4*il; + const float dl = d * (0.5f + ((xb->scales[ib32] >> 4*il) & 0xf)) * 0.25f; + constant uint8_t * grid1 = (constant uint8_t *)(iq2s_grid + (qs[0] | ((qh << 8) & 0x300))); + constant uint8_t * grid2 = (constant uint8_t *)(iq2s_grid + (qs[1] | ((qh << 6) & 0x300))); + for (int i = 0; i < 8; ++i) { + reg[i/4+0][i%4] = dl * grid1[i] * select(1, -1, signs[0] & kmask_iq2xs[i]); + reg[i/4+2][i%4] = dl * grid2[i] * select(1, -1, signs[1] & kmask_iq2xs[i]); + } +} + +template +void dequantize_iq1_s(device const block_iq1_s * xb, short il, thread type4x4 & reg) { + // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 + const int ib32 = il/2; + il = il%2; + const float d = xb->d; + device const uint8_t * qs = xb->qs + 4*ib32 + 2*il; + device const uint16_t * qh = xb->qh; + const float dl = d * (2*((qh[ib32] >> 12) & 7) + 1); + const float ml = dl * (qh[ib32] & 0x8000 ? -1 - IQ1S_DELTA : -1 + IQ1S_DELTA); + const uint16_t h = qh[ib32] >> 6*il; + constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((h << 8) & 0x700))); + constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((h << 5) & 0x700))); + for (int i = 0; i < 4; ++i) { + reg[0][i] = dl * (grid1[i] & 0xf) + ml; + reg[1][i] = dl * (grid1[i] >> 4) + ml; + reg[2][i] = dl * (grid2[i] & 0xf) + ml; + reg[3][i] = dl * (grid2[i] >> 4) + ml; + } +} + +template +void dequantize_iq1_m(device const block_iq1_m * xb, short il, thread type4x4 & reg) { + // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 + const int ib32 = il/2; + il = il%2; + device const uint16_t * sc = (device const uint16_t *)xb->scales; +#if QK_K == 64 + const float d = xb->d; +#else + iq1m_scale_t scale; + scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); + const float d = scale.f16; +#endif + device const uint8_t * qs = xb->qs + 4*ib32 + 2*il; + device const uint8_t * qh = xb->qh + 2*ib32 + il; +#if QK_K == 64 + const float dl = d * (2*((sc[ib32/2] >> (8*(ib32%2)+4*il)) & 0xf) + 1); +#else + const float dl = d * (2*((sc[ib32/2] >> (6*(ib32%2)+3*il)) & 7) + 1); +#endif + const float ml1 = dl * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA); + const float ml2 = dl * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA); + constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700))); + constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 4) & 0x700))); + for (int i = 0; i < 4; ++i) { + reg[0][i] = dl * (grid1[i] & 0xf) + ml1; + reg[1][i] = dl * (grid1[i] >> 4) + ml1; + reg[2][i] = dl * (grid2[i] & 0xf) + ml2; + reg[3][i] = dl * (grid2[i] >> 4) + ml2; + } +} + +template +void dequantize_iq4_nl(device const block_iq4_nl * xb, short il, thread type4x4 & reg) { + device const uint16_t * q4 = (device const uint16_t *)xb->qs; + const float d = xb->d; + uint32_t aux32; + thread const uint8_t * q8 = (thread const uint8_t *)&aux32; + for (int i = 0; i < 4; ++i) { + aux32 = ((q4[2*i] | (q4[2*i+1] << 16)) >> 4*il) & 0x0f0f0f0f; + reg[i][0] = d * kvalues_iq4nl_f[q8[0]]; + reg[i][1] = d * kvalues_iq4nl_f[q8[1]]; + reg[i][2] = d * kvalues_iq4nl_f[q8[2]]; + reg[i][3] = d * kvalues_iq4nl_f[q8[3]]; + } +} + +template +void dequantize_iq4_xs(device const block_iq4_xs * xb, short il, thread type4x4 & reg) { +#if QK_K == 64 + dequantize_iq4_nl(xb, il, reg); +#else + // il is 0...15 for QK_K = 256 => index of block of 32 is il/2 + const int ib32 = il/2; + il = il%2; + // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16 + device const uint32_t * q4 = (device const uint32_t *)xb->qs + 4*ib32; + const int ls = ((xb->scales_l[ib32/2] >> 4*(ib32%2)) & 0xf) | (((xb->scales_h >> 2*ib32) & 3) << 4); + const float d = (float)xb->d * (ls - 32); + uint32_t aux32; + thread const uint8_t * q8 = (thread const uint8_t *)&aux32; + for (int i = 0; i < 4; ++i) { + aux32 = (q4[i] >> 4*il) & 0x0f0f0f0f; + reg[i][0] = d * kvalues_iq4nl_f[q8[0]]; + reg[i][1] = d * kvalues_iq4nl_f[q8[1]]; + reg[i][2] = d * kvalues_iq4nl_f[q8[2]]; + reg[i][3] = d * kvalues_iq4nl_f[q8[3]]; + } +#endif +} + +template +kernel void kernel_get_rows( + device const void * src0, + device const char * src1, + device float * dst, + constant int64_t & ne00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb1, + constant uint64_t & nb2, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiitg[[thread_index_in_threadgroup]], + uint3 tptg [[threads_per_threadgroup]]) { + //const int64_t i = tgpig; + //const int64_t r = ((device int32_t *) src1)[i]; + + const int64_t i10 = tgpig.x; + const int64_t i11 = tgpig.y; + + const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0]; + + const int64_t i02 = i11; + + for (int64_t ind = tiitg; ind < ne00/16; ind += tptg.x) { + float4x4 temp; + dequantize_func( + ((device const block_q *) ((device char *) src0 + r*nb01 + i02*nb02)) + ind/nl, ind%nl, temp); + *(((device float4x4 *) ((device char *) dst + i11*nb2 + i10*nb1)) + ind) = temp; + } +} + +kernel void kernel_get_rows_f32( + device const void * src0, + device const char * src1, + device float * dst, + constant int64_t & ne00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb1, + constant uint64_t & nb2, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiitg[[thread_index_in_threadgroup]], + uint3 tptg [[threads_per_threadgroup]]) { + const int64_t i10 = tgpig.x; + const int64_t i11 = tgpig.y; + + const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0]; + + const int64_t i02 = i11; + + for (int ind = tiitg; ind < ne00; ind += tptg.x) { + ((device float *) ((device char *) dst + i11*nb2 + i10*nb1))[ind] = + ((device float *) ((device char *) src0 + r*nb01 + i02*nb02))[ind]; + } +} + +kernel void kernel_get_rows_f16( + device const void * src0, + device const char * src1, + device float * dst, + constant int64_t & ne00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb1, + constant uint64_t & nb2, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiitg[[thread_index_in_threadgroup]], + uint3 tptg [[threads_per_threadgroup]]) { + const int64_t i10 = tgpig.x; + const int64_t i11 = tgpig.y; + + const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0]; + + const int64_t i02 = i11; + + for (int ind = tiitg; ind < ne00; ind += tptg.x) { + ((device float *) ((device char *) dst + i11*nb2 + i10*nb1))[ind] = + ((device half *) ((device char *) src0 + r*nb01 + i02*nb02))[ind]; + } +} + +kernel void kernel_get_rows_i32( + device const void * src0, + device const char * src1, + device int32_t * dst, + constant int64_t & ne00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb1, + constant uint64_t & nb2, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiitg[[thread_index_in_threadgroup]], + uint3 tptg [[threads_per_threadgroup]]) { + const int64_t i10 = tgpig.x; + const int64_t i11 = tgpig.y; + + const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0]; + + const int64_t i02 = i11; + + for (int ind = tiitg; ind < ne00; ind += tptg.x) { + ((device int32_t *) ((device char *) dst + i11*nb2 + i10*nb1))[ind] = + ((device int32_t *) ((device char *) src0 + r*nb01 + i02*nb02))[ind]; + } +} + + +#define BLOCK_SIZE_M 64 // 8 simdgroup matrices from matrix A +#define BLOCK_SIZE_N 32 // 4 simdgroup matrices from matrix B +#define BLOCK_SIZE_K 32 +#define THREAD_MAT_M 4 // each thread take 4 simdgroup matrices from matrix A +#define THREAD_MAT_N 2 // each thread take 2 simdgroup matrices from matrix B +#define THREAD_PER_BLOCK 128 +#define THREAD_PER_ROW 2 // 2 thread for each row in matrix A to load numbers +#define THREAD_PER_COL 4 // 4 thread for each row in matrix B to load numbers +#define SG_MAT_SIZE 64 // simdgroup matrix is of shape 8x8 +#define SG_MAT_ROW 8 + +// each block_q contains 16*nl weights +template +void kernel_mul_mm_impl(device const uchar * src0, + device const uchar * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne02, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup uchar * shared_memory [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiitg[[thread_index_in_threadgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + threadgroup half * sa = (threadgroup half *)(shared_memory); + threadgroup float * sb = (threadgroup float *)(shared_memory + 4096); + + const uint r0 = tgpig.y; + const uint r1 = tgpig.x; + const uint im = tgpig.z; + + // if this block is of 64x32 shape or smaller + short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M; + short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N; + + // a thread shouldn't load data outside of the matrix + short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1; + short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1; + + simdgroup_half8x8 ma[4]; + simdgroup_float8x8 mb[2]; + simdgroup_float8x8 c_res[8]; + for (int i = 0; i < 8; i++){ + c_res[i] = make_filled_simdgroup_matrix(0.f); + } + + short il = (tiitg % THREAD_PER_ROW); + + const uint i12 = im%ne12; + const uint i13 = im/ne12; + + uint offset0 = (i12/r2)*nb02 + (i13/r3)*(nb02*ne02); + ushort offset1 = il/nl; + + device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0) + offset1; + device const float * y = (device const float *)(src1 + + nb12 * im + + nb11 * (r1 * BLOCK_SIZE_N + thread_col) + + nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL))); + + for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) { + // load data and store to threadgroup memory + half4x4 temp_a; + dequantize_func(x, il, temp_a); + threadgroup_barrier(mem_flags::mem_threadgroup); + + #pragma unroll(16) + for (int i = 0; i < 16; i++) { + *(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \ + + (tiitg % THREAD_PER_ROW) * 16 + (i / 8) * 8) \ + + (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4]; + } + + *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y); + + il = (il + 2 < nl) ? il + 2 : il % 2; + x = (il < 2) ? x + (2+nl-1)/nl : x; + y += BLOCK_SIZE_K; + + threadgroup_barrier(mem_flags::mem_threadgroup); + + // load matrices from threadgroup memory and conduct outer products + threadgroup half * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2)); + threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2)); + + #pragma unroll(4) + for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) { + #pragma unroll(4) + for (int i = 0; i < 4; i++) { + simdgroup_load(ma[i],lsma + SG_MAT_SIZE * i); + } + simdgroup_barrier(mem_flags::mem_none); + #pragma unroll(2) + for (int i = 0; i < 2; i++) { + simdgroup_load(mb[i],lsmb + SG_MAT_SIZE * i); + } + + lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE; + lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE; + + #pragma unroll(8) + for (int i = 0; i < 8; i++){ + simdgroup_multiply_accumulate(c_res[i], mb[i/4], ma[i%4], c_res[i]); + } + } + } + + if ((r0 + 1) * BLOCK_SIZE_M <= ne0 && (r1 + 1) * BLOCK_SIZE_N <= ne1) { + device float * C = dst + (BLOCK_SIZE_M * r0 + 32 * (sgitg & 1)) \ + + (BLOCK_SIZE_N * r1 + 16 * (sgitg >> 1)) * ne0 + im*ne1*ne0; + for (int i = 0; i < 8; i++) { + simdgroup_store(c_res[i], C + 8 * (i%4) + 8 * ne0 * (i/4), ne0); + } + } else { + // block is smaller than 64x32, we should avoid writing data outside of the matrix + threadgroup_barrier(mem_flags::mem_threadgroup); + threadgroup float * temp_str = ((threadgroup float *)shared_memory) \ + + 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M; + for (int i = 0; i < 8; i++) { + simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M); + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + device float * C = dst + (BLOCK_SIZE_M * r0) + (BLOCK_SIZE_N * r1) * ne0 + im*ne1*ne0; + if (sgitg == 0) { + for (int i = 0; i < n_rows; i++) { + for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) { + *(C + i + j * ne0) = *(temp_str + i + j * BLOCK_SIZE_M); + } + } + } + } +} + +// same as kernel_mul_mm_impl, but src1 and dst are accessed via indices stored in rowids +template +void kernel_mul_mm_id_impl( + device const uchar * src0, + device const uchar * src1, + threadgroup ushort2 * rowids, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne02, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne11, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + int64_t ne1, + int64_t ne0ne1, + threadgroup uchar * shared_memory, + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiitg[[thread_index_in_threadgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + threadgroup half * sa = (threadgroup half *)(shared_memory); + threadgroup float * sb = (threadgroup float *)(shared_memory + 4096); + + const uint r0 = tgpig.y; + const uint r1 = tgpig.x; + + if (r1 * BLOCK_SIZE_N >= ne1) return; + + // if this block is of 64x32 shape or smaller + short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M; + short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N; + + // a thread shouldn't load data outside of the matrix + short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1; + short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1; + + simdgroup_half8x8 ma[4]; + simdgroup_float8x8 mb[2]; + simdgroup_float8x8 c_res[8]; + for (int i = 0; i < 8; i++){ + c_res[i] = make_filled_simdgroup_matrix(0.f); + } + short il = (tiitg % THREAD_PER_ROW); + + ushort offset1 = il/nl; + + threadgroup const auto & id = rowids[r1 * BLOCK_SIZE_N + thread_col]; + + device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01) + offset1; + device const float * y = (device const float *)(src1 + + nb12 * id[1] + + nb11 * (id[0] % ne11) + + nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL))); + + for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) { + // load data and store to threadgroup memory + half4x4 temp_a; + dequantize_func(x, il, temp_a); + threadgroup_barrier(mem_flags::mem_threadgroup); + + for (int i = 0; i < 16; i++) { + *(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \ + + (tiitg % THREAD_PER_ROW) * 16 + (i / 8) * 8) \ + + (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4]; + } + + *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y); + + il = (il + 2 < nl) ? il + 2 : il % 2; + x = (il < 2) ? x + (2+nl-1)/nl : x; + y += BLOCK_SIZE_K; + + threadgroup_barrier(mem_flags::mem_threadgroup); + + // load matrices from threadgroup memory and conduct outer products + threadgroup half * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2)); + threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2)); + + for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) { + for (int i = 0; i < 4; i++) { + simdgroup_load(ma[i], lsma + SG_MAT_SIZE * i); + } + simdgroup_barrier(mem_flags::mem_none); + for (int i = 0; i < 2; i++) { + simdgroup_load(mb[i], lsmb + SG_MAT_SIZE * i); + } + + lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE; + lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE; + + for (int i = 0; i < 8; i++){ + simdgroup_multiply_accumulate(c_res[i], mb[i/4], ma[i%4], c_res[i]); + } + } + } + + { + threadgroup_barrier(mem_flags::mem_threadgroup); + threadgroup float * temp_str = ((threadgroup float *)shared_memory) \ + + 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M; + for (int i = 0; i < 8; i++) { + simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M); + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + device float * C = dst + (BLOCK_SIZE_M * r0); + if (sgitg == 0) { + for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) { + threadgroup const auto & jid = rowids[r1 * BLOCK_SIZE_N + j]; + int joff = jid[0] * ne0 + jid[1] * ne0ne1; + for (int i = 0; i < n_rows; i++) { + *(C + i + joff) = *(temp_str + i + j * BLOCK_SIZE_M); + } + } + } + } +} + +template +kernel void kernel_mul_mm(device const uchar * src0, + device const uchar * src1, + device float * dst, + constant int64_t & ne00, + constant int64_t & ne02, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne12, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint & r2, + constant uint & r3, + threadgroup uchar * shared_memory [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiitg[[thread_index_in_threadgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + kernel_mul_mm_impl( + src0, + src1, + dst, + ne00, + ne02, + nb01, + nb02, + ne12, + nb10, + nb11, + nb12, + ne0, + ne1, + r2, + r3, + shared_memory, + tgpig, + tiitg, + sgitg); +} + +template +kernel void kernel_mul_mm_id( + device const uchar * src0s, + device const uchar * src1, + device float * dst, + device const uchar * ids, + constant int64_t & nei0, + constant int64_t & nei1, + constant uint64_t & nbi1, + constant int64_t & ne00, + constant int64_t & ne02, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint64_t & nb1, + threadgroup uchar * shared_memory [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiitg[[thread_index_in_threadgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + + const int32_t i02 = tgpig.z; + tgpig.z = 0; + + device const uchar * src0 = src0s + i02*nb02; + + // row indices + threadgroup ushort2 * rowids = (threadgroup ushort2 *)(shared_memory + 8192); + + // TODO: parallelize this loop + int64_t _ne1 = 0; + for (ushort ii1 = 0; ii1 < nei1; ii1++) { + for (ushort ii0 = 0; ii0 < nei0; ii0++) { + int32_t id = ((device int32_t *) (ids + ii1*nbi1))[ii0]; + if (id == i02) { + //if (tiitg == 0) { + rowids[_ne1] = ushort2(ii0, ii1); + //} + _ne1++; + } + } + } + + threadgroup_barrier(mem_flags::mem_threadgroup); + + kernel_mul_mm_id_impl( + src0, + src1, + rowids, + dst, + ne00, + ne02, + nb01, + nb02, + ne11, + ne12, + nb10, + nb11, + nb12, + ne0, + _ne1, + ne0*ne1, + shared_memory, + tgpig, + tiitg, + sgitg); +} + +#if QK_K == 256 +#define QK_NL 16 +#else +#define QK_NL 4 +#endif + +// +// get rows +// + +typedef void (get_rows_t)( + device const void * src0, + device const char * src1, + device float * dst, + constant int64_t & ne00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb1, + constant uint64_t & nb2, + uint3, uint, uint3); + +//template [[host_name("kernel_get_rows_f32")]] kernel get_rows_t kernel_get_rows; +//template [[host_name("kernel_get_rows_f16")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_q4_0")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_q4_1")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_q5_0")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_q5_1")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_q8_0")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_q2_K")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_q3_K")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_q4_K")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_q5_K")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_q6_K")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_iq2_xxs")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_iq2_xs")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_iq3_xxs")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_iq3_s")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_iq2_s")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_iq1_s")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_iq1_m")]] kernel get_rows_t kernel_get_rows; +template [[host_name("kernel_get_rows_iq4_nl")]] kernel get_rows_t kernel_get_rows; +#if QK_K == 64 +template [[host_name("kernel_get_rows_iq4_xs")]] kernel get_rows_t kernel_get_rows; +#else +template [[host_name("kernel_get_rows_iq4_xs")]] kernel get_rows_t kernel_get_rows; +#endif + +// +// matrix-matrix multiplication +// + +typedef decltype(kernel_mul_mm) mat_mm_t; + +template [[host_name("kernel_mul_mm_f32_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_q5_0_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_q5_1_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_q5_K_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_q6_K_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_iq2_xxs_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_iq2_xs_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_iq3_xxs_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_iq3_s_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_iq2_s_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_iq1_s_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_iq1_m_f32")]] kernel mat_mm_t kernel_mul_mm; +template [[host_name("kernel_mul_mm_iq4_nl_f32")]] kernel mat_mm_t kernel_mul_mm; +#if QK_K == 64 +template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_mm; +#else +template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_mm; +#endif + +// +// indirect matrix-matrix multiplication +// + +typedef decltype(kernel_mul_mm_id) mat_mm_id_t; + +template [[host_name("kernel_mul_mm_id_f32_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_f16_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_q4_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_q4_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_q5_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_q5_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_q8_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_q2_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_q3_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_q4_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_q5_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_q6_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_iq2_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_iq2_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_iq3_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_iq3_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_iq2_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_iq1_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_iq1_m_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +template [[host_name("kernel_mul_mm_id_iq4_nl_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +#if QK_K == 64 +template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +#else +template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id; +#endif + +// +// matrix-vector multiplication +// + +typedef void (kernel_mul_mv_impl_t)( + device const char * src0, + device const char * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + uint64_t nb00, + uint64_t nb01, + uint64_t nb02, + int64_t ne10, + int64_t ne11, + int64_t ne12, + uint64_t nb10, + uint64_t nb11, + uint64_t nb12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + uint3 tgpig, + uint tiisg); + +typedef void (kernel_mul_mv2_impl_t)( + device const void * src0, + device const float * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + int64_t ne10, + int64_t ne12, + int64_t ne0, + int64_t ne1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiisg, + uint sgitg); + +template +void mmv_fn( + device const char * src0, + device const char * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + uint64_t nb00, + uint64_t nb01, + uint64_t nb02, + int64_t ne10, + int64_t ne11, + int64_t ne12, + int64_t ne13, + uint64_t nb10, + uint64_t nb11, + uint64_t nb12, + int64_t ne0, + int64_t ne1, + uint64_t nb1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiitg, + uint tiisg, + uint sgitg) { + impl_fn(src0,src1,dst,ne00,ne01,ne02,nb00,nb01,nb02,ne10,ne11,ne12,nb10,nb11,nb12,ne0,ne1,r2,r3,tgpig,tiisg); +} + +template +void mmv_fn( + device const char * src0, + device const char * src1, + device float * dst, + int64_t ne00, + int64_t ne01, + int64_t ne02, + uint64_t nb00, + uint64_t nb01, + uint64_t nb02, + int64_t ne10, + int64_t ne11, + int64_t ne12, + int64_t ne13, + uint64_t nb10, + uint64_t nb11, + uint64_t nb12, + int64_t ne0, + int64_t ne1, + uint64_t nb1, + uint r2, + uint r3, + threadgroup int8_t * shared_values, + uint3 tgpig, + uint tiitg, + uint tiisg, + uint sgitg) { + impl_fn(src0,(const device float *)src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,shared_values,tgpig,tiisg,sgitg); +} + +typedef decltype(mmv_fn) mul_mv_impl_fn_t; + +template +kernel void kernel_mul_mv_id( + device const char * src0s, + device const char * src1, + device float * dst, + device const char * ids, + constant int64_t & nei0, + constant int64_t & nei1, + constant uint64_t & nbi1, + constant int64_t & ne00, + constant int64_t & ne01, + constant int64_t & ne02, + constant uint64_t & nb00, + constant uint64_t & nb01, + constant uint64_t & nb02, + constant int64_t & ne10, + constant int64_t & ne11, + constant int64_t & ne12, + constant int64_t & ne13, + constant uint64_t & nb10, + constant uint64_t & nb11, + constant uint64_t & nb12, + constant int64_t & ne0, + constant int64_t & ne1, + constant uint64_t & nb1, + threadgroup int8_t * shared_values [[threadgroup(0)]], + uint3 tgpig[[threadgroup_position_in_grid]], + uint tiitg[[thread_index_in_threadgroup]], + uint tiisg[[thread_index_in_simdgroup]], + uint sgitg[[simdgroup_index_in_threadgroup]]) { + const int iid1 = tgpig.z/nei0; + const int idx = tgpig.z%nei0; + + tgpig.z = 0; + + const int32_t i02 = ((device const int32_t *) (ids + iid1*nbi1))[idx]; + + const int64_t i11 = idx % ne11; + const int64_t i12 = iid1; + + const int64_t i1 = idx; + const int64_t i2 = i12; + + device const char * src0_cur = src0s + i02*nb02; + device const char * src1_cur = src1 + i11*nb11 + i12*nb12; + device float * dst_cur = dst + i1*ne0 + i2*ne1*ne0; + + impl_fn( + /* src0 */ src0_cur, + /* src1 */ src1_cur, + /* dst */ dst_cur, + /* ne00 */ ne00, + /* ne01 */ ne01, + /* ne02 */ 1,//ne02, + /* nb00 */ nb00, + /* nb01 */ nb01, + /* nb02 */ nb02, + /* ne10 */ ne10, + /* ne11 */ 1,//ne11, + /* ne12 */ 1,//ne12, + /* ne13 */ 1,//ne13, + /* nb10 */ nb10, + /* nb11 */ nb11, + /* nb12 */ nb12, + /* ne0 */ ne0, + /* ne1 */ 1,//ne1, + /* nb1 */ nb1, + /* r2 */ 1, + /* r3 */ 1, + shared_values, + tgpig, + tiitg, + tiisg, + sgitg); +} + +typedef decltype(kernel_mul_mv_id>) kernel_mul_mv_id_t; + +template [[host_name("kernel_mul_mv_id_f32_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_f16_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_q8_0_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_q4_0_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>>; +template [[host_name("kernel_mul_mv_id_q4_1_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>>; +template [[host_name("kernel_mul_mv_id_q5_0_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>>; +template [[host_name("kernel_mul_mv_id_q5_1_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>>; +template [[host_name("kernel_mul_mv_id_q2_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_q3_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_q4_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_q5_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_q6_K_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_iq1_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_iq1_m_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_iq2_xxs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_iq2_xs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_iq3_xxs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_iq3_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_iq2_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +template [[host_name("kernel_mul_mv_id_iq4_nl_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +#if QK_K != 64 +template [[host_name("kernel_mul_mv_id_iq4_xs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id>; +#endif + diff --git a/llama/ggml-metal-embed.o b/llama/ggml-metal-embed.o new file mode 100644 index 00000000..96bf8589 Binary files /dev/null and b/llama/ggml-metal-embed.o differ diff --git a/llama/ggml-metal.h b/llama/ggml-metal.h new file mode 100644 index 00000000..a5c54218 --- /dev/null +++ b/llama/ggml-metal.h @@ -0,0 +1,66 @@ +// An interface allowing to compute ggml_cgraph with Metal +// +// This is a fully functional interface that extends ggml with GPU support for Apple devices. +// A similar interface can be created for other GPU backends (e.g. Vulkan, CUDA, OpenCL, etc.) +// +// How it works? +// +// As long as your program can create and evaluate a ggml_cgraph on the CPU, you can use this +// interface to evaluate the same graph on the GPU. Instead of using ggml_graph_compute(), you +// use ggml_metal_graph_compute() (or ggml_vulkan_graph_compute(), etc.) +// +// You only need to make sure that all memory buffers that you used during the graph creation +// are mapped to the device memory with the ggml_metal_add_buffer() function. This mapping is +// used during the graph evaluation to determine the arguments of the compute kernels. +// +// Synchronization between device and host memory (for example for input and output tensors) +// is done with the ggml_metal_set_tensor() and ggml_metal_get_tensor() functions. +// + +#pragma once + +#include "ggml.h" +#include "ggml-backend.h" + +#include +#include + +// max memory buffers that can be mapped to the device +#define GGML_METAL_MAX_BUFFERS 64 + +struct ggml_tensor; +struct ggml_cgraph; + +#ifdef __cplusplus +extern "C" { +#endif + +// +// backend API +// user-code should use only these functions +// + +GGML_API void ggml_backend_metal_log_set_callback(ggml_log_callback log_callback, void * user_data); + +GGML_API ggml_backend_t ggml_backend_metal_init(void); + +GGML_API bool ggml_backend_is_metal(ggml_backend_t backend); + +GGML_API GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size); + +GGML_API void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb); + +GGML_API GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void); + +// helper to check if the device supports a specific family +// ideally, the user code should be doing these checks +// ref: https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf +GGML_API bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family); + +// capture all command buffers committed the next time `ggml_backend_graph_compute` is called +GGML_API void ggml_backend_metal_capture_next_compute(ggml_backend_t backend); + +#ifdef __cplusplus +} +#endif + diff --git a/llama/ggml-metal.m b/llama/ggml-metal.m new file mode 100644 index 00000000..9cb42198 --- /dev/null +++ b/llama/ggml-metal.m @@ -0,0 +1,2999 @@ +#import "ggml-metal.h" + +#import "ggml-backend-impl.h" +#import "ggml.h" + +#import + +#import + +#undef MIN +#undef MAX +#define MIN(a, b) ((a) < (b) ? (a) : (b)) +#define MAX(a, b) ((a) > (b) ? (a) : (b)) + +#ifdef GGML_METAL_NDEBUG +#define GGML_METAL_LOG_INFO(...) +#define GGML_METAL_LOG_WARN(...) +#define GGML_METAL_LOG_ERROR(...) +#else +#define GGML_METAL_LOG_INFO(...) ggml_metal_log(GGML_LOG_LEVEL_INFO, __VA_ARGS__) +#define GGML_METAL_LOG_WARN(...) ggml_metal_log(GGML_LOG_LEVEL_WARN, __VA_ARGS__) +#define GGML_METAL_LOG_ERROR(...) ggml_metal_log(GGML_LOG_LEVEL_ERROR, __VA_ARGS__) +#endif + +#define UNUSED(x) (void)(x) + +struct ggml_metal_kernel { + id pipeline; +}; + +enum ggml_metal_kernel_type { + GGML_METAL_KERNEL_TYPE_ADD, + GGML_METAL_KERNEL_TYPE_ADD_ROW, + GGML_METAL_KERNEL_TYPE_MUL, + GGML_METAL_KERNEL_TYPE_MUL_ROW, + GGML_METAL_KERNEL_TYPE_DIV, + GGML_METAL_KERNEL_TYPE_DIV_ROW, + GGML_METAL_KERNEL_TYPE_SCALE, + GGML_METAL_KERNEL_TYPE_SCALE_4, + GGML_METAL_KERNEL_TYPE_CLAMP, + GGML_METAL_KERNEL_TYPE_TANH, + GGML_METAL_KERNEL_TYPE_RELU, + GGML_METAL_KERNEL_TYPE_GELU, + GGML_METAL_KERNEL_TYPE_GELU_4, + GGML_METAL_KERNEL_TYPE_GELU_QUICK, + GGML_METAL_KERNEL_TYPE_GELU_QUICK_4, + GGML_METAL_KERNEL_TYPE_SILU, + GGML_METAL_KERNEL_TYPE_SILU_4, + GGML_METAL_KERNEL_TYPE_SOFT_MAX, + GGML_METAL_KERNEL_TYPE_SOFT_MAX_4, + GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, + GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8, + GGML_METAL_KERNEL_TYPE_GET_ROWS_F32, + GGML_METAL_KERNEL_TYPE_GET_ROWS_F16, + GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0, + GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1, + GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0, + GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1, + GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0, + GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K, + GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K, + GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K, + GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K, + GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K, + GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS, + GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS, + GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS, + GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S, + GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S, + GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S, + GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M, + GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL, + GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS, + GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, + GGML_METAL_KERNEL_TYPE_RMS_NORM, + GGML_METAL_KERNEL_TYPE_GROUP_NORM, + GGML_METAL_KERNEL_TYPE_NORM, + GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16, + GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW, + GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4, + GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, + //GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32, + //GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_1ROW, + //GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_L4, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32, + GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32, + GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, + GGML_METAL_KERNEL_TYPE_ROPE_F32, + GGML_METAL_KERNEL_TYPE_ROPE_F16, + GGML_METAL_KERNEL_TYPE_ALIBI_F32, + GGML_METAL_KERNEL_TYPE_IM2COL_F16, + GGML_METAL_KERNEL_TYPE_IM2COL_F32, + GGML_METAL_KERNEL_TYPE_UPSCALE_F32, + GGML_METAL_KERNEL_TYPE_PAD_F32, + GGML_METAL_KERNEL_TYPE_ARANGE_F32, + GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32, + GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, + GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, + GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, + GGML_METAL_KERNEL_TYPE_CPY_F32_F16, + GGML_METAL_KERNEL_TYPE_CPY_F32_F32, + GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, + GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0, + GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1, + GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0, + GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1, + GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL, + GGML_METAL_KERNEL_TYPE_CPY_F16_F16, + GGML_METAL_KERNEL_TYPE_CPY_F16_F32, + GGML_METAL_KERNEL_TYPE_CONCAT, + GGML_METAL_KERNEL_TYPE_SQR, + GGML_METAL_KERNEL_TYPE_SUM_ROWS, + + GGML_METAL_KERNEL_TYPE_COUNT +}; + +struct ggml_metal_context { + int n_cb; + + id device; + id queue; + + dispatch_queue_t d_queue; + + struct ggml_metal_kernel kernels[GGML_METAL_KERNEL_TYPE_COUNT]; + + bool support_simdgroup_reduction; + bool support_simdgroup_mm; + + bool should_capture_next_compute; +}; + +// MSL code +// TODO: move the contents here when ready +// for now it is easier to work in a separate file +// static NSString * const msl_library_source = @"see metal.metal"; + +// Here to assist with NSBundle Path Hack +@interface GGMLMetalClass : NSObject +@end +@implementation GGMLMetalClass +@end + +static void ggml_metal_default_log_callback(enum ggml_log_level level, const char * msg, void * user_data) { + fprintf(stderr, "%s", msg); + + UNUSED(level); + UNUSED(user_data); +} + +ggml_log_callback ggml_metal_log_callback = ggml_metal_default_log_callback; +void * ggml_metal_log_user_data = NULL; + +GGML_ATTRIBUTE_FORMAT(2, 3) +static void ggml_metal_log(enum ggml_log_level level, const char * format, ...){ + if (ggml_metal_log_callback != NULL) { + va_list args; + va_start(args, format); + char buffer[128]; + int len = vsnprintf(buffer, 128, format, args); + if (len < 128) { + ggml_metal_log_callback(level, buffer, ggml_metal_log_user_data); + } else { + char* buffer2 = malloc(len+1); + va_end(args); + va_start(args, format); + vsnprintf(buffer2, len+1, format, args); + buffer2[len] = 0; + ggml_metal_log_callback(level, buffer2, ggml_metal_log_user_data); + free(buffer2); + } + va_end(args); + } +} + +static void * ggml_metal_host_malloc(size_t n) { + void * data = NULL; + const int result = posix_memalign((void **) &data, sysconf(_SC_PAGESIZE), n); + if (result != 0) { + GGML_METAL_LOG_ERROR("%s: error: posix_memalign failed\n", __func__); + return NULL; + } + + return data; +} + +static struct ggml_metal_context * ggml_metal_init(int n_cb) { + GGML_METAL_LOG_INFO("%s: allocating\n", __func__); + +#if TARGET_OS_OSX && !GGML_METAL_NDEBUG + // Show all the Metal device instances in the system + NSArray * devices = MTLCopyAllDevices(); + for (id device in devices) { + GGML_METAL_LOG_INFO("%s: found device: %s\n", __func__, [[device name] UTF8String]); + } + [devices release]; // since it was created by a *Copy* C method +#endif + + // Pick and show default Metal device + id device = MTLCreateSystemDefaultDevice(); + GGML_METAL_LOG_INFO("%s: picking default device: %s\n", __func__, [[device name] UTF8String]); + + // Configure context + struct ggml_metal_context * ctx = malloc(sizeof(struct ggml_metal_context)); + ctx->device = device; + ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS); + ctx->queue = [ctx->device newCommandQueue]; + ctx->d_queue = dispatch_queue_create("ggml-metal", DISPATCH_QUEUE_CONCURRENT); + + id metal_library; + + // load library + // + // - first check if the library is embedded + // - then check if the library is in the bundle + // - if not found, load the source and compile it + // - if that fails, return NULL + { + NSBundle * bundle = nil; +#ifdef SWIFT_PACKAGE + bundle = SWIFTPM_MODULE_BUNDLE; +#else + bundle = [NSBundle bundleForClass:[GGMLMetalClass class]]; +#endif + + NSError * error = nil; + +#if GGML_METAL_EMBED_LIBRARY + const bool try_metallib = false; +#else + const bool try_metallib = true; +#endif + + NSString * path_lib = [bundle pathForResource:@"default" ofType:@"metallib"]; + if (try_metallib && path_lib != nil) { + // pre-compiled library found + NSURL * libURL = [NSURL fileURLWithPath:path_lib]; + GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [path_lib UTF8String]); + + metal_library = [ctx->device newLibraryWithURL:libURL error:&error]; + if (error) { + GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]); + return NULL; + } + } else { +#if GGML_METAL_EMBED_LIBRARY + GGML_METAL_LOG_INFO("%s: using embedded metal library\n", __func__); + + extern const char ggml_metallib_start[]; + extern const char ggml_metallib_end[]; + + NSString * src = [[NSString alloc] initWithBytes:ggml_metallib_start length:(ggml_metallib_end-ggml_metallib_start) encoding:NSUTF8StringEncoding]; +#else + GGML_METAL_LOG_INFO("%s: default.metallib not found, loading from source\n", __func__); + + NSString * path_source; + NSString * path_resource = [[NSProcessInfo processInfo].environment objectForKey:@"GGML_METAL_PATH_RESOURCES"]; + + GGML_METAL_LOG_INFO("%s: GGML_METAL_PATH_RESOURCES = %s\n", __func__, path_resource ? [path_resource UTF8String] : "nil"); + + if (path_resource) { + path_source = [path_resource stringByAppendingPathComponent:@"ggml-metal.metal"]; + } else { + path_source = [bundle pathForResource:@"ggml-metal" ofType:@"metal"]; + } + + if (path_source == nil) { + GGML_METAL_LOG_WARN("%s: error: could not use bundle path to find ggml-metal.metal, falling back to trying cwd\n", __func__); + path_source = @"ggml-metal.metal"; + } + + GGML_METAL_LOG_INFO("%s: loading '%s'\n", __func__, [path_source UTF8String]); + + NSString * src = [NSString stringWithContentsOfFile:path_source encoding:NSUTF8StringEncoding error:&error]; + if (error) { + GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]); + return NULL; + } +#endif // GGML_METAL_EMBED_LIBRARY + + @autoreleasepool { + // dictionary of preprocessor macros + NSMutableDictionary * prep = [NSMutableDictionary dictionary]; + +#ifdef GGML_QKK_64 + prep[@"GGML_QKK_64"] = @(1); +#endif + + MTLCompileOptions* options = [MTLCompileOptions new]; + options.preprocessorMacros = prep; + + //[options setFastMathEnabled:false]; + + metal_library = [ctx->device newLibraryWithSource:src options:options error:&error]; + if (error) { + GGML_METAL_LOG_ERROR("%s: error: %s\n", __func__, [[error description] UTF8String]); + return NULL; + } + } + } + } + + // print MTL GPU family: + GGML_METAL_LOG_INFO("%s: GPU name: %s\n", __func__, [[ctx->device name] UTF8String]); + + const NSInteger MTLGPUFamilyMetal3 = 5001; + + // determine max supported GPU family + // https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf + // https://developer.apple.com/metal/Metal-Feature-Set-Tables.pdf + { + for (int i = MTLGPUFamilyApple1 + 20; i >= MTLGPUFamilyApple1; --i) { + if ([ctx->device supportsFamily:i]) { + GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyApple%d (%d)\n", __func__, i - (int) MTLGPUFamilyApple1 + 1, i); + break; + } + } + + for (int i = MTLGPUFamilyCommon1 + 5; i >= MTLGPUFamilyCommon1; --i) { + if ([ctx->device supportsFamily:i]) { + GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyCommon%d (%d)\n", __func__, i - (int) MTLGPUFamilyCommon1 + 1, i); + break; + } + } + + for (int i = MTLGPUFamilyMetal3 + 5; i >= MTLGPUFamilyMetal3; --i) { + if ([ctx->device supportsFamily:i]) { + GGML_METAL_LOG_INFO("%s: GPU family: MTLGPUFamilyMetal%d (%d)\n", __func__, i - (int) MTLGPUFamilyMetal3 + 3, i); + break; + } + } + } + + ctx->support_simdgroup_reduction = [ctx->device supportsFamily:MTLGPUFamilyApple7]; + ctx->support_simdgroup_reduction |= [ctx->device supportsFamily:MTLGPUFamilyMetal3]; + + ctx->support_simdgroup_mm = [ctx->device supportsFamily:MTLGPUFamilyApple7]; + + GGML_METAL_LOG_INFO("%s: simdgroup reduction support = %s\n", __func__, ctx->support_simdgroup_reduction ? "true" : "false"); + GGML_METAL_LOG_INFO("%s: simdgroup matrix mul. support = %s\n", __func__, ctx->support_simdgroup_mm ? "true" : "false"); + GGML_METAL_LOG_INFO("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false"); + + ctx->should_capture_next_compute = false; + +#if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15) + if (@available(macOS 10.12, iOS 16.0, *)) { + GGML_METAL_LOG_INFO("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1e6); + } +#elif TARGET_OS_OSX + if (ctx->device.maxTransferRate != 0) { + GGML_METAL_LOG_INFO("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1e6); + } else { + GGML_METAL_LOG_INFO("%s: maxTransferRate = built-in GPU\n", __func__); + } +#endif + + // load kernels + { + NSError * error = nil; + + for (int i = 0; i < GGML_METAL_KERNEL_TYPE_COUNT; ++i) { + ctx->kernels[i].pipeline = nil; + } + + /* + GGML_METAL_LOG_INFO("%s: loaded %-32s %16p | th_max = %4d | th_width = %4d\n", __func__, "kernel_"#name, (void *) kernel->pipeline, \ + (int) kernel->pipeline.maxTotalThreadsPerThreadgroup, \ + (int) kernel->pipeline.threadExecutionWidth); \ + */ +#define GGML_METAL_ADD_KERNEL(e, name, supported) \ + if (supported) { \ + struct ggml_metal_kernel * kernel = &ctx->kernels[e]; \ + id metal_function = [metal_library newFunctionWithName:@"kernel_"#name]; \ + kernel->pipeline = [ctx->device newComputePipelineStateWithFunction:metal_function error:&error]; \ + [metal_function release]; \ + if (error) { \ + GGML_METAL_LOG_ERROR("%s: error: load pipeline error: %s\n", __func__, [[error description] UTF8String]); \ + [metal_library release]; \ + return NULL; \ + } \ + } else { \ + GGML_METAL_LOG_WARN("%s: skipping %-32s (not supported)\n", __func__, "kernel_"#name); \ + } + + // simd_sum and simd_max requires MTLGPUFamilyApple7 + + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD, add, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ADD_ROW, add_row, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL, mul, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_ROW, mul_row, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV, div, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIV_ROW, div_row, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE, scale, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SCALE_4, scale_4, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CLAMP, clamp, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TANH, tanh, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RELU, relu, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU, gelu, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_4, gelu_4, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK, gelu_quick, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GELU_QUICK_4, gelu_quick_4, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU, silu, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SILU_4, silu_4, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX, soft_max, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SOFT_MAX_4, soft_max_4, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF, diag_mask_inf, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8, diag_mask_inf_8, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F32, get_rows_f32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_F16, get_rows_f16, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0, get_rows_q4_0, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1, get_rows_q4_1, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0, get_rows_q5_0, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1, get_rows_q5_1, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0, get_rows_q8_0, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K, get_rows_q2_K, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K, get_rows_q3_K, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K, get_rows_q4_K, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K, get_rows_q5_K, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K, get_rows_q6_K, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS, get_rows_iq2_xxs, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS, get_rows_iq2_xs, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS, get_rows_iq3_xxs, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S, get_rows_iq3_s, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S, get_rows_iq2_s, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S, get_rows_iq1_s, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M, get_rows_iq1_m, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL, get_rows_iq4_nl, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS, get_rows_iq4_xs, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GET_ROWS_I32, get_rows_i32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_RMS_NORM, rms_norm, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_GROUP_NORM, group_norm, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_NORM, norm, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32, mul_mv_f32_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16, mul_mv_f16_f16, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32, mul_mv_f16_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW, mul_mv_f16_f32_1row, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4, mul_mv_f16_f32_l4, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32, mul_mv_q4_0_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32, mul_mv_q4_1_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32, mul_mv_q5_0_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32, mul_mv_q5_1_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32, mul_mv_q8_0_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32, mul_mv_q2_K_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32, mul_mv_q3_K_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32, mul_mv_q4_K_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32, mul_mv_q5_K_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32, mul_mv_q6_K_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32, mul_mv_iq2_xxs_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32, mul_mv_iq2_xs_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32, mul_mv_iq3_xxs_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32, mul_mv_iq3_s_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32, mul_mv_iq2_s_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32, mul_mv_iq1_s_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32, mul_mv_iq1_m_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32, mul_mv_iq4_nl_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32, mul_mv_iq4_xs_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32, mul_mv_id_f32_f32, ctx->support_simdgroup_reduction); + //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F16, mul_mv_id_f16_f16, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32, mul_mv_id_f16_f32, ctx->support_simdgroup_reduction); + //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_1ROW, mul_mv_id_f16_f32_1row, ctx->support_simdgroup_reduction); + //GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32_L4, mul_mv_id_f16_f32_l4, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32, mul_mv_id_q4_0_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32, mul_mv_id_q4_1_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32, mul_mv_id_q5_0_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32, mul_mv_id_q5_1_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32, mul_mv_id_q8_0_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32, mul_mv_id_q2_K_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32, mul_mv_id_q3_K_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32, mul_mv_id_q4_K_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32, mul_mv_id_q5_K_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32, mul_mv_id_q6_K_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32, mul_mv_id_iq2_xxs_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32, mul_mv_id_iq2_xs_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32, mul_mv_id_iq3_xxs_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32, mul_mv_id_iq3_s_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32, mul_mv_id_iq2_s_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32, mul_mv_id_iq1_s_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32, mul_mv_id_iq1_m_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32, mul_mv_id_iq4_nl_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32, mul_mv_id_iq4_xs_f32, ctx->support_simdgroup_reduction); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32, mul_mm_f32_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32, mul_mm_f16_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32, mul_mm_q4_0_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32, mul_mm_q4_1_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32, mul_mm_q5_0_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32, mul_mm_q5_1_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32, mul_mm_q8_0_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32, mul_mm_q2_K_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32, mul_mm_q3_K_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32, mul_mm_q4_K_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32, mul_mm_q5_K_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32, mul_mm_q6_K_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32, mul_mm_iq2_xxs_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32, mul_mm_iq2_xs_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32, mul_mm_iq3_xxs_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32, mul_mm_iq3_s_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32, mul_mm_iq2_s_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32, mul_mm_iq1_s_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32, mul_mm_iq1_m_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32, mul_mm_iq4_nl_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32, mul_mm_iq4_xs_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32, mul_mm_id_f32_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32, mul_mm_id_f16_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32, mul_mm_id_q4_0_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32, mul_mm_id_q4_1_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32, mul_mm_id_q5_0_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32, mul_mm_id_q5_1_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32, mul_mm_id_q8_0_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32, mul_mm_id_q2_K_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32, mul_mm_id_q3_K_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32, mul_mm_id_q4_K_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32, mul_mm_id_q5_K_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32, mul_mm_id_q6_K_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32, mul_mm_id_iq2_xxs_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32, mul_mm_id_iq2_xs_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32, mul_mm_id_iq3_xxs_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32, mul_mm_id_iq3_s_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32, mul_mm_id_iq2_s_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32, mul_mm_id_iq1_s_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32, mul_mm_id_iq1_m_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32, mul_mm_id_iq4_nl_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32, mul_mm_id_iq4_xs_f32, ctx->support_simdgroup_mm); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F32, rope_f32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F16, rope_f16, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ALIBI_F32, alibi_f32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F16, im2col_f16, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32, timestep_embedding_f32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARANGE_F32, arange_f32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC, argsort_f32_i32_desc, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32, leaky_relu_f32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F16, cpy_f32_f16, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_F32, cpy_f32_f32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0, cpy_f32_q8_0, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0, cpy_f32_q4_0, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1, cpy_f32_q4_1, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0, cpy_f32_q5_0, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1, cpy_f32_q5_1, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL, cpy_f32_iq4_nl, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F16, cpy_f16_f16, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CPY_F16_F32, cpy_f16_f32, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_CONCAT, concat, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SQR, sqr, true); + GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_SUM_ROWS, sum_rows, true); + } + + [metal_library release]; + return ctx; +} + +static void ggml_metal_free(struct ggml_metal_context * ctx) { + GGML_METAL_LOG_INFO("%s: deallocating\n", __func__); + + for (int i = 0; i < GGML_METAL_KERNEL_TYPE_COUNT; ++i) { + [ctx->kernels[i].pipeline release]; + } + + [ctx->queue release]; + [ctx->device release]; + + dispatch_release(ctx->d_queue); + + free(ctx); +} + +// temporarily defined here for compatibility between ggml-backend and the old API + +struct ggml_backend_metal_buffer { + void * data; + size_t size; + + id metal; +}; + +struct ggml_backend_metal_buffer_context { + void * all_data; + size_t all_size; + bool owned; + + // multiple buffers are used only to avoid the maximum buffer size limitation when using mmap + int n_buffers; + struct ggml_backend_metal_buffer buffers[GGML_METAL_MAX_BUFFERS]; +}; + +// finds the Metal buffer that contains the tensor data on the GPU device +// the assumption is that there is 1-to-1 mapping between the host and device memory buffers, so we can find the +// Metal buffer based on the host memory pointer +// +static id ggml_metal_get_buffer(struct ggml_tensor * t, size_t * offs) { + //GGML_METAL_LOG_INFO("%s: data tensor '%16s', offs_data = %8ld, offs_eval = %8ld, offs_cach = %8ld\n", __func__, t->name, offs_data, offs_eval, offs_cach); + + const int64_t tsize = ggml_nbytes(t); + + ggml_backend_buffer_t buffer = t->view_src ? t->view_src->buffer : t->buffer; + + struct ggml_backend_metal_buffer_context * buf_ctx = (struct ggml_backend_metal_buffer_context *) buffer->context; + + // find the view that contains the tensor fully + for (int i = 0; i < buf_ctx->n_buffers; ++i) { + const int64_t ioffs = (int64_t) t->data - (int64_t) buf_ctx->buffers[i].data; + + //GGML_METAL_LOG_INFO("ioffs = %10ld, tsize = %10ld, sum = %10ld, buf_ctx->buffers[%d].size = %10ld\n", ioffs, tsize, ioffs + tsize, i, buf_ctx->buffers[i].size); + if (ioffs >= 0 && ioffs + tsize <= (int64_t) buf_ctx->buffers[i].size) { + *offs = (size_t) ioffs; + + //GGML_METAL_LOG_INFO("%s: tensor '%16s', offs = %8ld\n", __func__, t->name, *offs); + + return buf_ctx->buffers[i].metal; + } + } + + GGML_METAL_LOG_ERROR("%s: error: tensor '%s' buffer is nil\n", __func__, t->name); + + return nil; +} + +static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const struct ggml_tensor * op) { + switch (op->op) { + case GGML_OP_UNARY: + switch (ggml_get_unary_op(op)) { + case GGML_UNARY_OP_TANH: + case GGML_UNARY_OP_RELU: + case GGML_UNARY_OP_GELU: + case GGML_UNARY_OP_GELU_QUICK: + case GGML_UNARY_OP_SILU: + return true; + default: + return false; + } + case GGML_OP_NONE: + case GGML_OP_RESHAPE: + case GGML_OP_VIEW: + case GGML_OP_TRANSPOSE: + case GGML_OP_PERMUTE: + case GGML_OP_CONCAT: + case GGML_OP_ADD: + case GGML_OP_ACC: + case GGML_OP_MUL: + case GGML_OP_DIV: + case GGML_OP_SCALE: + case GGML_OP_CLAMP: + case GGML_OP_SQR: + case GGML_OP_SUM_ROWS: + return true; + case GGML_OP_SOFT_MAX: + case GGML_OP_RMS_NORM: + case GGML_OP_GROUP_NORM: + return ctx->support_simdgroup_reduction; + case GGML_OP_NORM: + case GGML_OP_ALIBI: + case GGML_OP_ROPE: + case GGML_OP_IM2COL: + return true; + case GGML_OP_POOL_1D: + case GGML_OP_POOL_2D: + return false; + case GGML_OP_UPSCALE: + case GGML_OP_PAD: + case GGML_OP_ARANGE: + case GGML_OP_TIMESTEP_EMBEDDING: + case GGML_OP_ARGSORT: + case GGML_OP_LEAKY_RELU: + return true; + case GGML_OP_MUL_MAT: + case GGML_OP_MUL_MAT_ID: + return ctx->support_simdgroup_reduction && + (op->src[0]->type != GGML_TYPE_F32 || op->src[1]->type == GGML_TYPE_F32); + case GGML_OP_CPY: + case GGML_OP_DUP: + case GGML_OP_CONT: + { + switch (op->src[0]->type) { + case GGML_TYPE_F32: + switch (op->type) { + case GGML_TYPE_F16: + case GGML_TYPE_F32: + case GGML_TYPE_Q8_0: + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_IQ4_NL: + return true; + default: + return false; + } + case GGML_TYPE_F16: + switch (op->type) { + case GGML_TYPE_F16: + case GGML_TYPE_F32: + return true; + default: + return false; + } + default: + return false; + }; + } + case GGML_OP_DIAG_MASK_INF: + case GGML_OP_GET_ROWS: + { + return op->ne[3] == 1; + } + default: + return false; + } +} + +static enum ggml_status ggml_metal_graph_compute( + struct ggml_metal_context * ctx, + struct ggml_cgraph * gf) { + + @autoreleasepool { + MTLComputePassDescriptor * edesc = MTLComputePassDescriptor.computePassDescriptor; + edesc.dispatchType = MTLDispatchTypeSerial; + + // create multiple command buffers and enqueue them + // then, we encode the graph into the command buffers in parallel + + const int n_nodes = gf->n_nodes; + const int n_cb = ctx->n_cb; + const int n_nodes_per_cb = (n_nodes + n_cb - 1) / n_cb; + + const bool should_capture = ctx->should_capture_next_compute; + if (should_capture) { + ctx->should_capture_next_compute = false; + + MTLCaptureDescriptor * descriptor = [MTLCaptureDescriptor new]; + descriptor.captureObject = ctx->queue; + + NSError * error = nil; + if (![[MTLCaptureManager sharedCaptureManager] startCaptureWithDescriptor:descriptor error:&error]) { + GGML_METAL_LOG_ERROR("%s: error: unable to start capture '%s'\n", __func__, [[error localizedDescription] UTF8String]); + GGML_ASSERT(!"capture failed"); + } + } + + id command_buffer_builder[n_cb]; + for (int cb_idx = 0; cb_idx < n_cb; ++cb_idx) { + id command_buffer = [ctx->queue commandBufferWithUnretainedReferences]; + command_buffer_builder[cb_idx] = command_buffer; + + // enqueue the command buffers in order to specify their execution order + [command_buffer enqueue]; + } + + const id *command_buffers = command_buffer_builder; + + dispatch_apply(n_cb, ctx->d_queue, ^(size_t iter) { + const int cb_idx = iter; + + size_t offs_src0 = 0; + size_t offs_src1 = 0; + size_t offs_src2 = 0; + size_t offs_dst = 0; + + id command_buffer = command_buffers[cb_idx]; + id encoder = [command_buffer computeCommandEncoderWithDescriptor: edesc]; + + const int node_start = (cb_idx + 0) * n_nodes_per_cb; + const int node_end = MIN((cb_idx == n_cb - 1) ? n_nodes : (cb_idx + 1) * n_nodes_per_cb, n_nodes); + + for (int i = node_start; i < node_end; ++i) { + if (i == -1) { + [encoder memoryBarrierWithScope:MTLBarrierScopeBuffers]; + continue; + } + + //GGML_METAL_LOG_INFO("%s: encoding node %3d, op = %8s\n", __func__, i, ggml_op_name(gf->nodes[i]->op)); + + struct ggml_tensor * src0 = gf->nodes[i]->src[0]; + struct ggml_tensor * src1 = gf->nodes[i]->src[1]; + struct ggml_tensor * src2 = gf->nodes[i]->src[2]; + struct ggml_tensor * dst = gf->nodes[i]; + + if (ggml_is_empty(dst)) { + continue; + } + + switch (dst->op) { + case GGML_OP_NONE: + case GGML_OP_RESHAPE: + case GGML_OP_VIEW: + case GGML_OP_TRANSPOSE: + case GGML_OP_PERMUTE: + { + // noop -> next node + } continue; + default: + { + } break; + } + + if (!ggml_metal_supports_op(ctx, dst)) { + GGML_METAL_LOG_ERROR("%s: error: unsupported op '%s'\n", __func__, ggml_op_desc(dst)); + GGML_ASSERT(!"unsupported op"); + } + + if (should_capture) { + [encoder pushDebugGroup:[NSString stringWithCString:ggml_op_desc(dst) encoding:NSUTF8StringEncoding]]; + } + + const int64_t ne00 = src0 ? src0->ne[0] : 0; + const int64_t ne01 = src0 ? src0->ne[1] : 0; + const int64_t ne02 = src0 ? src0->ne[2] : 0; + const int64_t ne03 = src0 ? src0->ne[3] : 0; + + const uint64_t nb00 = src0 ? src0->nb[0] : 0; + const uint64_t nb01 = src0 ? src0->nb[1] : 0; + const uint64_t nb02 = src0 ? src0->nb[2] : 0; + const uint64_t nb03 = src0 ? src0->nb[3] : 0; + + const int64_t ne10 = src1 ? src1->ne[0] : 0; + const int64_t ne11 = src1 ? src1->ne[1] : 0; + const int64_t ne12 = src1 ? src1->ne[2] : 0; + const int64_t ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13); + + const uint64_t nb10 = src1 ? src1->nb[0] : 0; + const uint64_t nb11 = src1 ? src1->nb[1] : 0; + const uint64_t nb12 = src1 ? src1->nb[2] : 0; + const uint64_t nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13); + + const int64_t ne0 = dst ? dst->ne[0] : 0; + const int64_t ne1 = dst ? dst->ne[1] : 0; + const int64_t ne2 = dst ? dst->ne[2] : 0; + const int64_t ne3 = dst ? dst->ne[3] : 0; + + const uint64_t nb0 = dst ? dst->nb[0] : 0; + const uint64_t nb1 = dst ? dst->nb[1] : 0; + const uint64_t nb2 = dst ? dst->nb[2] : 0; + const uint64_t nb3 = dst ? dst->nb[3] : 0; + + const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT; + const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT; + const enum ggml_type dstt = dst ? dst->type : GGML_TYPE_COUNT; + + id id_src0 = src0 ? ggml_metal_get_buffer(src0, &offs_src0) : nil; + id id_src1 = src1 ? ggml_metal_get_buffer(src1, &offs_src1) : nil; + id id_src2 = src2 ? ggml_metal_get_buffer(src2, &offs_src2) : nil; + id id_dst = dst ? ggml_metal_get_buffer(dst, &offs_dst) : nil; + + //GGML_METAL_LOG_INFO("%s: op - %s\n", __func__, ggml_op_name(dst->op)); + //if (src0) { + // GGML_METAL_LOG_INFO("%s: src0 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src0t), ne00, ne01, ne02, + // ggml_is_contiguous(src0), src0->name); + //} + //if (src1) { + // GGML_METAL_LOG_INFO("%s: src1 - %4s [%5lld, %5lld, %5lld], %d, %s\n", __func__, ggml_type_name(src1t), ne10, ne11, ne12, + // ggml_is_contiguous(src1), src1->name); + //} + //if (dst) { + // GGML_METAL_LOG_INFO("%s: dst - %4s [%5lld, %5lld, %5lld], 1, %s\n", __func__, ggml_type_name(dstt), ne0, ne1, ne2, + // dst->name); + //} + + switch (dst->op) { + case GGML_OP_CONCAT: + { + const int64_t nb = ne00; + + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CONCAT].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; + [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6]; + [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7]; + [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8]; + [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9]; + [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10]; + [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11]; + [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12]; + [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13]; + [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14]; + [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15]; + [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16]; + [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17]; + [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18]; + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19]; + [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20]; + [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21]; + [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22]; + [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23]; + [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24]; + [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25]; + [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26]; + [encoder setBytes:&nb length:sizeof(nb) atIndex:27]; + + const int nth = MIN(1024, ne0); + + [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + case GGML_OP_ADD: + case GGML_OP_MUL: + case GGML_OP_DIV: + { + const size_t offs = 0; + + bool bcast_row = false; + + int64_t nb = ne00; + + id pipeline = nil; + + if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) { + GGML_ASSERT(ggml_is_contiguous(src0)); + + // src1 is a row + GGML_ASSERT(ne11 == 1); + + nb = ne00 / 4; + switch (dst->op) { + case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD_ROW].pipeline; break; + case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_ROW].pipeline; break; + case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV_ROW].pipeline; break; + default: GGML_ASSERT(false); + } + + bcast_row = true; + } else { + switch (dst->op) { + case GGML_OP_ADD: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD].pipeline; break; + case GGML_OP_MUL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL].pipeline; break; + case GGML_OP_DIV: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIV].pipeline; break; + default: GGML_ASSERT(false); + } + } + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; + [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6]; + [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7]; + [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:8]; + [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:9]; + [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:10]; + [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11]; + [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12]; + [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13]; + [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14]; + [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15]; + [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16]; + [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17]; + [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18]; + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19]; + [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20]; + [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21]; + [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22]; + [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23]; + [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:24]; + [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:25]; + [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:26]; + [encoder setBytes:&offs length:sizeof(offs) atIndex:27]; + [encoder setBytes:&nb length:sizeof(nb) atIndex:28]; + + if (bcast_row) { + const int64_t n = ggml_nelements(dst)/4; + + [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } else { + const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0); + + [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } + } break; + case GGML_OP_ACC: + { + GGML_ASSERT(src0t == GGML_TYPE_F32); + GGML_ASSERT(src1t == GGML_TYPE_F32); + GGML_ASSERT(dstt == GGML_TYPE_F32); + + GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(ggml_is_contiguous(src1)); + + const size_t pnb1 = ((int32_t *) dst->op_params)[0]; + const size_t pnb2 = ((int32_t *) dst->op_params)[1]; + const size_t pnb3 = ((int32_t *) dst->op_params)[2]; + const size_t offs = ((int32_t *) dst->op_params)[3]; + + const bool inplace = (bool) ((int32_t *) dst->op_params)[4]; + + if (!inplace) { + // run a separete kernel to cpy src->dst + // not sure how to avoid this + // TODO: make a simpler cpy_bytes kernel + + const id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; + [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; + [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; + [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; + [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; + [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; + [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; + [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; + [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; + [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; + [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; + [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; + [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; + [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; + [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; + [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; + + const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00); + + [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } + + const id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ADD].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; + [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:6]; + [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:7]; + [encoder setBytes:&pnb1 length:sizeof(pnb1) atIndex:8]; + [encoder setBytes:&pnb2 length:sizeof(pnb2) atIndex:9]; + [encoder setBytes:&pnb3 length:sizeof(pnb3) atIndex:10]; + [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:11]; + [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:12]; + [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:13]; + [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:14]; + [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:15]; + [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:16]; + [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:17]; + [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:18]; + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:19]; + [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:20]; + [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:21]; + [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:22]; + [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:23]; + [encoder setBytes:&pnb1 length:sizeof(pnb1) atIndex:24]; + [encoder setBytes:&pnb2 length:sizeof(pnb2) atIndex:25]; + [encoder setBytes:&pnb3 length:sizeof(pnb3) atIndex:26]; + [encoder setBytes:&offs length:sizeof(offs) atIndex:27]; + + const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne00); + + [encoder dispatchThreadgroups:MTLSizeMake(ne11, ne12, ne13) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + case GGML_OP_SCALE: + { + GGML_ASSERT(ggml_is_contiguous(src0)); + + float scale; + memcpy(&scale, dst->op_params, sizeof(scale)); + + int64_t n = ggml_nelements(dst); + + id pipeline = nil; + + if (n % 4 == 0) { + n /= 4; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SCALE_4].pipeline; + } else { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SCALE].pipeline; + } + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&scale length:sizeof(scale) atIndex:2]; + + [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + case GGML_OP_CLAMP: + { + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CLAMP].pipeline; + + float min; + float max; + memcpy(&min, ((int32_t *) dst->op_params) + 0, sizeof(float)); + memcpy(&max, ((int32_t *) dst->op_params) + 1, sizeof(float)); + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&min length:sizeof(min) atIndex:2]; + [encoder setBytes:&max length:sizeof(max) atIndex:3]; + + const int64_t n = ggml_nelements(dst); + + [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + case GGML_OP_UNARY: + switch (ggml_get_unary_op(gf->nodes[i])) { + // we are not taking into account the strides, so for now require contiguous tensors + GGML_ASSERT(ggml_is_contiguous(src0)); + + case GGML_UNARY_OP_TANH: + { + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TANH].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + + const int64_t n = ggml_nelements(dst); + + [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + case GGML_UNARY_OP_RELU: + { + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RELU].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + + const int64_t n = ggml_nelements(dst); + + [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + case GGML_UNARY_OP_GELU: + { + int64_t n = ggml_nelements(dst); + + id pipeline = nil; + + if (n % 4 == 0) { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_4].pipeline; + n /= 4; + } else { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU].pipeline; + } + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + + [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + case GGML_UNARY_OP_GELU_QUICK: + { + int64_t n = ggml_nelements(dst); + + id pipeline = nil; + + if (n % 4 == 0) { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK_4].pipeline; + n /= 4; + } else { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GELU_QUICK].pipeline; + } + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + + [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + case GGML_UNARY_OP_SILU: + { + int64_t n = ggml_nelements(dst); + + id pipeline = nil; + + if (n % 4 == 0) { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU_4].pipeline; + n /= 4; + } else { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SILU].pipeline; + } + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + + [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + default: + { + GGML_METAL_LOG_WARN("%s: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); + GGML_ASSERT(false); + } + } break; + case GGML_OP_SQR: + { + GGML_ASSERT(ggml_is_contiguous(src0)); + + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SQR].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + + const int64_t n = ggml_nelements(dst); + + [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + case GGML_OP_SUM_ROWS: + { + GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type)); + + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SUM_ROWS].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; + [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5]; + [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6]; + [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7]; + [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8]; + [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9]; + [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:10]; + [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:11]; + [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:12]; + [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:13]; + [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14]; + [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15]; + [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16]; + [encoder setBytes:&nb13 length:sizeof(nb13) atIndex:17]; + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:18]; + [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:19]; + [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:20]; + [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:21]; + [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:22]; + [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:23]; + [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:24]; + [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:25]; + + [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + case GGML_OP_SOFT_MAX: + { + int nth = 32; // SIMD width + + id pipeline = nil; + + if (ne00%4 == 0) { + while (nth < ne00/4 && nth < 256) { + nth *= 2; + } + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX_4].pipeline; + } else { + while (nth < ne00 && nth < 1024) { + nth *= 2; + } + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_SOFT_MAX].pipeline; + } + + float scale; + float max_bias; + + memcpy(&scale, ((int32_t *) dst->op_params) + 0, sizeof(scale)); + memcpy(&max_bias, ((int32_t *) dst->op_params) + 1, sizeof(max_bias)); + + const int64_t nrows_x = ggml_nrows(src0); + const int64_t nrows_y = src0->ne[1]; + + const uint32_t n_head_kv = nrows_x/nrows_y; + const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head_kv)); + + const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); + const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + if (id_src1) { + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + } else { + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:1]; + } + if (id_src2) { + [encoder setBuffer:id_src2 offset:offs_src2 atIndex:2]; + } else { + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:2]; + } + [encoder setBuffer:id_dst offset:offs_dst atIndex:3]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:4]; + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:5]; + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:6]; + [encoder setBytes:&scale length:sizeof(scale) atIndex:7]; + [encoder setBytes:&max_bias length:sizeof(max_bias) atIndex:8]; + [encoder setBytes:&m0 length:sizeof(m0) atIndex:9]; + [encoder setBytes:&m1 length:sizeof(m1) atIndex:10]; + [encoder setBytes:&n_head_log2 length:sizeof(n_head_log2) atIndex:11]; + [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0]; + + [encoder dispatchThreadgroups:MTLSizeMake(ne01*ne02*ne03, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + case GGML_OP_DIAG_MASK_INF: + { + const int n_past = ((int32_t *)(dst->op_params))[0]; + + id pipeline = nil; + + if (ne00%8 == 0) { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF_8].pipeline; + } else { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_DIAG_MASK_INF].pipeline; + } + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; + [encoder setBytes:&n_past length:sizeof(int) atIndex:4]; + + if (ne00%8 == 0) { + [encoder dispatchThreadgroups:MTLSizeMake(ne00*ne01*ne02/8, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } + else { + [encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } + } break; + case GGML_OP_MUL_MAT: + { + GGML_ASSERT(ne00 == ne10); + + // TODO: assert that dim2 and dim3 are contiguous + GGML_ASSERT(ne12 % ne02 == 0); + GGML_ASSERT(ne13 % ne03 == 0); + + const uint r2 = ne12/ne02; + const uint r3 = ne13/ne03; + + // find the break-even point where the matrix-matrix kernel becomes more efficient compared + // to the matrix-vector kernel + int ne11_mm_min = 1; + +#if 0 + // the numbers below are measured on M2 Ultra for 7B and 13B models + // these numbers do not translate to other devices or model sizes + // TODO: need to find a better approach + if ([ctx->device.name isEqualToString:@"Apple M2 Ultra"]) { + switch (src0t) { + case GGML_TYPE_F16: ne11_mm_min = 2; break; + case GGML_TYPE_Q8_0: ne11_mm_min = 7; break; + case GGML_TYPE_Q2_K: ne11_mm_min = 15; break; + case GGML_TYPE_Q3_K: ne11_mm_min = 7; break; + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: ne11_mm_min = 15; break; + case GGML_TYPE_Q4_K: ne11_mm_min = 11; break; + case GGML_TYPE_Q5_0: // not tested yet + case GGML_TYPE_Q5_1: ne11_mm_min = 13; break; // not tested yet + case GGML_TYPE_Q5_K: ne11_mm_min = 7; break; + case GGML_TYPE_Q6_K: ne11_mm_min = 7; break; + default: ne11_mm_min = 1; break; + } + } +#endif + + // for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs + // AMD GPU and older A-chips will reuse matrix-vector multiplication kernel + if ([ctx->device supportsFamily:MTLGPUFamilyApple7] && + !ggml_is_transposed(src0) && + !ggml_is_transposed(src1) && + src1t == GGML_TYPE_F32 && + ne00 % 32 == 0 && ne00 >= 64 && + (ne11 > ne11_mm_min || (ggml_is_quantized(src0t) && ne12 > 1))) { + //printf("matrix: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12); + + // some Metal matrix data types require aligned pointers + // ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5) + switch (src0->type) { + case GGML_TYPE_F32: GGML_ASSERT(nb01 % 16 == 0); break; + case GGML_TYPE_F16: GGML_ASSERT(nb01 % 8 == 0); break; + default: break; + } + + id pipeline = nil; + + switch (src0->type) { + case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F32_F32 ].pipeline; break; + case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_F16_F32 ].pipeline; break; + case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_0_F32 ].pipeline; break; + case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_1_F32 ].pipeline; break; + case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_0_F32 ].pipeline; break; + case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_1_F32 ].pipeline; break; + case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q8_0_F32 ].pipeline; break; + case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q2_K_F32 ].pipeline; break; + case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q3_K_F32 ].pipeline; break; + case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q4_K_F32 ].pipeline; break; + case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q5_K_F32 ].pipeline; break; + case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_Q6_K_F32 ].pipeline; break; + case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XXS_F32].pipeline; break; + case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_XS_F32 ].pipeline; break; + case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_XXS_F32].pipeline; break; + case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ3_S_F32 ].pipeline; break; + case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ2_S_F32 ].pipeline; break; + case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_S_F32 ].pipeline; break; + case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ1_M_F32 ].pipeline; break; + case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_NL_F32 ].pipeline; break; + case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_IQ4_XS_F32 ].pipeline; break; + default: GGML_ASSERT(false && "MUL MAT-MAT not implemented"); + } + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; + [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:5]; + [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:6]; + [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:7]; + [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:8]; + [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:9]; + [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:10]; + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:11]; + [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:12]; + [encoder setBytes:&r2 length:sizeof(r2) atIndex:13]; + [encoder setBytes:&r3 length:sizeof(r3) atIndex:14]; + [encoder setThreadgroupMemoryLength:8192 atIndex:0]; + [encoder dispatchThreadgroups:MTLSizeMake( (ne11 + 31)/32, (ne01 + 63)/64, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)]; + } else { + int nth0 = 32; + int nth1 = 1; + int nrows = 1; + //printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12); + + id pipeline = nil; + + // use custom matrix x vector kernel + switch (src0t) { + case GGML_TYPE_F32: + { + GGML_ASSERT(src1t == GGML_TYPE_F32); + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F32_F32].pipeline; + nrows = 4; + } break; + case GGML_TYPE_F16: + { + nth0 = 32; + nth1 = 1; + if (src1t == GGML_TYPE_F32) { + if (ne11 * ne12 < 4) { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_1ROW].pipeline; + } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32_L4].pipeline; + nrows = ne11; + } else { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F32].pipeline; + nrows = 4; + } + } else { + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_F16_F16].pipeline; + nrows = 4; + } + } break; + case GGML_TYPE_Q4_0: + { + nth0 = 8; + nth1 = 8; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_0_F32].pipeline; + } break; + case GGML_TYPE_Q4_1: + { + nth0 = 8; + nth1 = 8; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_1_F32].pipeline; + } break; + case GGML_TYPE_Q5_0: + { + nth0 = 8; + nth1 = 8; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_0_F32].pipeline; + } break; + case GGML_TYPE_Q5_1: + { + nth0 = 8; + nth1 = 8; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_1_F32].pipeline; + } break; + case GGML_TYPE_Q8_0: + { + nth0 = 8; + nth1 = 8; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q8_0_F32].pipeline; + } break; + case GGML_TYPE_Q2_K: + { + nth0 = 2; + nth1 = 32; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q2_K_F32].pipeline; + } break; + case GGML_TYPE_Q3_K: + { + nth0 = 2; + nth1 = 32; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q3_K_F32].pipeline; + } break; + case GGML_TYPE_Q4_K: + { + nth0 = 4; //1; + nth1 = 8; //32; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q4_K_F32].pipeline; + } break; + case GGML_TYPE_Q5_K: + { + nth0 = 2; + nth1 = 32; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q5_K_F32].pipeline; + } break; + case GGML_TYPE_Q6_K: + { + nth0 = 2; + nth1 = 32; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_Q6_K_F32].pipeline; + } break; + case GGML_TYPE_IQ2_XXS: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XXS_F32].pipeline; + } break; + case GGML_TYPE_IQ2_XS: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_XS_F32].pipeline; + } break; + case GGML_TYPE_IQ3_XXS: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_XXS_F32].pipeline; + } break; + case GGML_TYPE_IQ3_S: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ3_S_F32].pipeline; + } break; + case GGML_TYPE_IQ2_S: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ2_S_F32].pipeline; + } break; + case GGML_TYPE_IQ1_S: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_S_F32].pipeline; + } break; + case GGML_TYPE_IQ1_M: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ1_M_F32].pipeline; + } break; + case GGML_TYPE_IQ4_NL: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_NL_F32].pipeline; + } break; + case GGML_TYPE_IQ4_XS: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_IQ4_XS_F32].pipeline; + } break; + default: + { + GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src0t); + GGML_ASSERT(false && "not implemented"); + } + }; + + if (ggml_is_quantized(src0t)) { + GGML_ASSERT(ne00 >= nth0*nth1); + } + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:3]; + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:4]; + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:5]; + [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6]; + [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7]; + [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8]; + [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:9]; + [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:10]; + [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:11]; + [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:12]; + [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:13]; + [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:14]; + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:15]; + [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:16]; + [encoder setBytes:&r2 length:sizeof(r2) atIndex:17]; + [encoder setBytes:&r3 length:sizeof(r3) atIndex:18]; + + if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q5_0 || + src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 || src0t == GGML_TYPE_Q2_K || + src0t == GGML_TYPE_IQ1_S || src0t == GGML_TYPE_IQ1_M || src0t == GGML_TYPE_IQ2_S) { + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } + else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) { + const int mem_size = src0t == GGML_TYPE_IQ2_XXS ? 256*8+128 : 512*8+128; + [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } + else if (src0t == GGML_TYPE_IQ3_XXS || src0t == GGML_TYPE_IQ3_S) { + const int mem_size = src0t == GGML_TYPE_IQ3_XXS ? 256*4+128 : 512*4; + [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } + else if (src0t == GGML_TYPE_IQ4_NL || src0t == GGML_TYPE_IQ4_XS) { + const int mem_size = 32*sizeof(float); + [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } + else if (src0t == GGML_TYPE_Q4_K) { + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } + else if (src0t == GGML_TYPE_Q3_K) { +#ifdef GGML_QKK_64 + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; +#else + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; +#endif + } + else if (src0t == GGML_TYPE_Q5_K) { + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } + else if (src0t == GGML_TYPE_Q6_K) { + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } else { + const int64_t ny = (ne11 + nrows - 1)/nrows; + [encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } + } + } break; + case GGML_OP_MUL_MAT_ID: + { + const int n_as = src0->ne[2]; + + // src2 = ids + const int64_t ne20 = src2->ne[0]; + const int64_t ne21 = src2->ne[1]; + const int64_t ne22 = src2->ne[2]; GGML_UNUSED(ne22); + const int64_t ne23 = src2->ne[3]; GGML_UNUSED(ne23); + + const uint64_t nb20 = src2->nb[0]; GGML_UNUSED(nb20); + const uint64_t nb21 = src2->nb[1]; + const uint64_t nb22 = src2->nb[2]; GGML_UNUSED(nb22); + const uint64_t nb23 = src2->nb[3]; GGML_UNUSED(nb23); + + const enum ggml_type src2t = src2->type; GGML_UNUSED(src2t); + + GGML_ASSERT(src2t == GGML_TYPE_I32); + + GGML_ASSERT(!ggml_is_transposed(src0)); + GGML_ASSERT(!ggml_is_transposed(src1)); + + GGML_ASSERT(src1t == GGML_TYPE_F32); + + // find the break-even point where the matrix-matrix kernel becomes more efficient compared + // to the matrix-vector kernel + // ne20 = n_used_experts + // ne21 = n_rows + const int dst_rows = ne20*ne21; + const int dst_rows_min = n_as; + + // max size of the rowids array in the kernel shared buffer + GGML_ASSERT(dst_rows <= 2048); + + // for now the matrix-matrix multiplication kernel only works on A14+/M1+ SoCs + // AMD GPU and older A-chips will reuse matrix-vector multiplication kernel + // !!! + // TODO: for now, always use mat-vec kernels until we figure out how to improve the + // indirect matrix multiplication + // !!! + if ([ctx->device supportsFamily:MTLGPUFamilyApple7] && + ne00 % 32 == 0 && ne00 >= 64 && + dst_rows > dst_rows_min) { + + // some Metal matrix data types require aligned pointers + // ref: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf (Table 2.5) + switch (src0->type) { + case GGML_TYPE_F32: GGML_ASSERT(nb01 % 16 == 0); break; + case GGML_TYPE_F16: GGML_ASSERT(nb01 % 8 == 0); break; + default: break; + } + + id pipeline = nil; + + switch (src0->type) { + case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F32_F32 ].pipeline; break; + case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_F16_F32 ].pipeline; break; + case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_0_F32 ].pipeline; break; + case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_1_F32 ].pipeline; break; + case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_0_F32 ].pipeline; break; + case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_1_F32 ].pipeline; break; + case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q8_0_F32 ].pipeline; break; + case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q2_K_F32 ].pipeline; break; + case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q3_K_F32 ].pipeline; break; + case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q4_K_F32 ].pipeline; break; + case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q5_K_F32 ].pipeline; break; + case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_Q6_K_F32 ].pipeline; break; + case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XXS_F32].pipeline; break; + case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_XS_F32 ].pipeline; break; + case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_XXS_F32].pipeline; break; + case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ3_S_F32 ].pipeline; break; + case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ2_S_F32 ].pipeline; break; + case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_S_F32 ].pipeline; break; + case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ1_M_F32 ].pipeline; break; + case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_NL_F32 ].pipeline; break; + case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MM_ID_IQ4_XS_F32 ].pipeline; break; + default: GGML_ASSERT(false && "MUL_MAT_ID not implemented"); + } + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + [encoder setBuffer:id_src2 offset:offs_src2 atIndex:3]; + [encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4]; + [encoder setBytes:&ne21 length:sizeof(ne21) atIndex:5]; + [encoder setBytes:&nb21 length:sizeof(nb21) atIndex:6]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:7]; + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:8]; + [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:9]; + [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:10]; + [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:11]; + [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:12]; + [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:13]; + [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:14]; + [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:15]; + [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:16]; + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:17]; + [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:18]; + [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:19]; + + [encoder setThreadgroupMemoryLength:GGML_PAD(8192 + dst_rows*4/*sizeof(ushort2)*/, 16) atIndex:0]; + + [encoder dispatchThreadgroups:MTLSizeMake((ne21 + 31)/32, (ne01 + 63)/64, n_as) threadsPerThreadgroup:MTLSizeMake(128, 1, 1)]; + } else { + int nth0 = 32; + int nth1 = 1; + int nrows = 1; + //printf("vector: ne00 = %6d, ne01 = %6d, ne02 = %6d, ne11 = %6d, ne12 = %6d\n", ne00, ne01, ne02, ne11, ne12); + + id pipeline = nil; + + // use custom matrix x vector kernel + switch (src0t) { + case GGML_TYPE_F32: + { + GGML_ASSERT(src1t == GGML_TYPE_F32); + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F32_F32].pipeline; + } break; + case GGML_TYPE_F16: + { + GGML_ASSERT(src1t == GGML_TYPE_F32); + nth0 = 32; + nth1 = 1; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_F16_F32].pipeline; + } break; + case GGML_TYPE_Q4_0: + { + nth0 = 8; + nth1 = 8; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_0_F32].pipeline; + } break; + case GGML_TYPE_Q4_1: + { + nth0 = 8; + nth1 = 8; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_1_F32].pipeline; + } break; + case GGML_TYPE_Q5_0: + { + nth0 = 8; + nth1 = 8; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_0_F32].pipeline; + } break; + case GGML_TYPE_Q5_1: + { + nth0 = 8; + nth1 = 8; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_1_F32].pipeline; + } break; + case GGML_TYPE_Q8_0: + { + nth0 = 8; + nth1 = 8; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q8_0_F32].pipeline; + } break; + case GGML_TYPE_Q2_K: + { + nth0 = 2; + nth1 = 32; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q2_K_F32].pipeline; + } break; + case GGML_TYPE_Q3_K: + { + nth0 = 2; + nth1 = 32; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q3_K_F32].pipeline; + } break; + case GGML_TYPE_Q4_K: + { + nth0 = 4; //1; + nth1 = 8; //32; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q4_K_F32].pipeline; + } break; + case GGML_TYPE_Q5_K: + { + nth0 = 2; + nth1 = 32; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q5_K_F32].pipeline; + } break; + case GGML_TYPE_Q6_K: + { + nth0 = 2; + nth1 = 32; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_Q6_K_F32].pipeline; + } break; + case GGML_TYPE_IQ2_XXS: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XXS_F32].pipeline; + } break; + case GGML_TYPE_IQ2_XS: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_XS_F32].pipeline; + } break; + case GGML_TYPE_IQ3_XXS: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_XXS_F32].pipeline; + } break; + case GGML_TYPE_IQ3_S: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ3_S_F32].pipeline; + } break; + case GGML_TYPE_IQ2_S: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ2_S_F32].pipeline; + } break; + case GGML_TYPE_IQ1_S: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_S_F32].pipeline; + } break; + case GGML_TYPE_IQ1_M: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ1_M_F32].pipeline; + } break; + case GGML_TYPE_IQ4_NL: + { + nth0 = 4; + nth1 = 16; + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32].pipeline; + } break; + case GGML_TYPE_IQ4_XS: + { + nth0 = 4; + nth1 = 16; + #if QK_K == 64 + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32].pipeline; + #else + pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32].pipeline; + #endif + + } break; + default: + { + GGML_METAL_LOG_ERROR("Asserting on type %d\n", (int)src2t); + GGML_ASSERT(false && "not implemented"); + } + }; + + if (ggml_is_quantized(src0t)) { + GGML_ASSERT(ne00 >= nth0*nth1); + } + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + [encoder setBuffer:id_src2 offset:offs_src2 atIndex:3]; + [encoder setBytes:&ne20 length:sizeof(ne20) atIndex:4]; + [encoder setBytes:&ne21 length:sizeof(ne21) atIndex:5]; + [encoder setBytes:&nb21 length:sizeof(nb21) atIndex:6]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:7]; + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:8]; + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:9]; + [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:10]; + [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:11]; + [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:12]; + [encoder setBytes:&ne10 length:sizeof(ne10) atIndex:13]; + [encoder setBytes:&ne11 length:sizeof(ne11) atIndex:14]; + [encoder setBytes:&ne12 length:sizeof(ne12) atIndex:15]; + [encoder setBytes:&ne13 length:sizeof(ne13) atIndex:16]; + [encoder setBytes:&nb10 length:sizeof(nb10) atIndex:17]; + [encoder setBytes:&nb11 length:sizeof(nb11) atIndex:18]; + [encoder setBytes:&nb12 length:sizeof(nb12) atIndex:19]; + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:20]; + [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:21]; + [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:22]; + + const int64_t _ne1 = 1; + const int tgz = dst_rows; + + if (src0t == GGML_TYPE_Q4_0 || src0t == GGML_TYPE_Q4_1 || src0t == GGML_TYPE_Q5_0 || + src0t == GGML_TYPE_Q5_1 || src0t == GGML_TYPE_Q8_0 || src0t == GGML_TYPE_Q2_K || + src0t == GGML_TYPE_IQ1_S || src0t == GGML_TYPE_IQ1_M || src0t == GGML_TYPE_IQ2_S) { + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } + else if (src0t == GGML_TYPE_IQ2_XXS || src0t == GGML_TYPE_IQ2_XS) { + const int mem_size = src0t == GGML_TYPE_IQ2_XXS ? 256*8+128 : 512*8+128; + [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } + else if (src0t == GGML_TYPE_IQ3_XXS || src0t == GGML_TYPE_IQ3_S) { + const int mem_size = src0t == GGML_TYPE_IQ3_XXS ? 256*4+128 : 512*4; + [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 7)/8, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } + else if (src0t == GGML_TYPE_IQ4_NL || src0t == GGML_TYPE_IQ4_XS) { + const int mem_size = 32*sizeof(float); + [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } + else if (src0t == GGML_TYPE_Q4_K) { + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } + else if (src0t == GGML_TYPE_Q3_K) { +#ifdef GGML_QKK_64 + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; +#else + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; +#endif + } + else if (src0t == GGML_TYPE_Q5_K) { + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } + else if (src0t == GGML_TYPE_Q6_K) { + [encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } else { + const int64_t ny = (_ne1 + nrows - 1)/nrows; // = _ne1 + [encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)]; + } + } + } break; + case GGML_OP_GET_ROWS: + { + id pipeline = nil; + + switch (src0->type) { + case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_F32 ].pipeline; break; + case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_F16 ].pipeline; break; + case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_0 ].pipeline; break; + case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_1 ].pipeline; break; + case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_0 ].pipeline; break; + case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_1 ].pipeline; break; + case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q8_0 ].pipeline; break; + case GGML_TYPE_Q2_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q2_K ].pipeline; break; + case GGML_TYPE_Q3_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q3_K ].pipeline; break; + case GGML_TYPE_Q4_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q4_K ].pipeline; break; + case GGML_TYPE_Q5_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q5_K ].pipeline; break; + case GGML_TYPE_Q6_K: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_Q6_K ].pipeline; break; + case GGML_TYPE_IQ2_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XXS].pipeline; break; + case GGML_TYPE_IQ2_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_XS ].pipeline; break; + case GGML_TYPE_IQ3_XXS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_XXS].pipeline; break; + case GGML_TYPE_IQ3_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ3_S ].pipeline; break; + case GGML_TYPE_IQ2_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ2_S ].pipeline; break; + case GGML_TYPE_IQ1_S: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_S ].pipeline; break; + case GGML_TYPE_IQ1_M: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ1_M ].pipeline; break; + case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_NL ].pipeline; break; + case GGML_TYPE_IQ4_XS: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_IQ4_XS ].pipeline; break; + case GGML_TYPE_I32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GET_ROWS_I32 ].pipeline; break; + default: GGML_ASSERT(false && "not implemented"); + } + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3]; + [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:4]; + [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:5]; + [encoder setBytes:&ne10 length:sizeof( int64_t) atIndex:6]; + [encoder setBytes:&nb10 length:sizeof( int64_t) atIndex:7]; + [encoder setBytes:&nb11 length:sizeof( int64_t) atIndex:8]; + [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:9]; + [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:10]; + + [encoder dispatchThreadgroups:MTLSizeMake(ne10, ne11, 1) threadsPerThreadgroup:MTLSizeMake(32, 1, 1)]; + } break; + case GGML_OP_RMS_NORM: + { + GGML_ASSERT(ne00 % 4 == 0); + + float eps; + memcpy(&eps, dst->op_params, sizeof(float)); + + int nth = 32; // SIMD width + + while (nth < ne00/4 && nth < 1024) { + nth *= 2; + } + + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_RMS_NORM].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; + [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3]; + [encoder setBytes:&eps length:sizeof( float) atIndex:4]; + [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0]; + + const int64_t nrows = ggml_nrows(src0); + + [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + case GGML_OP_GROUP_NORM: + { + GGML_ASSERT(ne00 % 4 == 0); + + //float eps; + //memcpy(&eps, dst->op_params, sizeof(float)); + + const float eps = 1e-6f; // TODO: temporarily hardcoded + + const int32_t n_groups = ((int32_t *) dst->op_params)[0]; + + int nth = 32; // SIMD width + + //while (nth < ne00/4 && nth < 1024) { + // nth *= 2; + //} + + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_GROUP_NORM].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; + [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; + [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; + [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:5]; + [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:6]; + [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:7]; + [encoder setBytes:&n_groups length:sizeof( int32_t) atIndex:8]; + [encoder setBytes:&eps length:sizeof( float) atIndex:9]; + [encoder setThreadgroupMemoryLength:32*sizeof(float) atIndex:0]; + + [encoder dispatchThreadgroups:MTLSizeMake(n_groups, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + case GGML_OP_NORM: + { + float eps; + memcpy(&eps, dst->op_params, sizeof(float)); + + const int nth = MIN(256, ne00); + + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_NORM].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; + [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:3]; + [encoder setBytes:&eps length:sizeof( float) atIndex:4]; + [encoder setThreadgroupMemoryLength:GGML_PAD(nth*sizeof(float), 16) atIndex:0]; + + const int64_t nrows = ggml_nrows(src0); + + [encoder dispatchThreadgroups:MTLSizeMake(nrows, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + case GGML_OP_ALIBI: + { + GGML_ASSERT((src0t == GGML_TYPE_F32)); + + const int nth = MIN(1024, ne00); + + //const int n_past = ((int32_t *) dst->op_params)[0]; + const int n_head = ((int32_t *) dst->op_params)[1]; + + float max_bias; + memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); + + const int n_heads_log2_floor = 1 << (int) floor(log2(n_head)); + const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); + const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor); + + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ALIBI_F32].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; + [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; + [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; + [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; + [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; + [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; + [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; + [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; + [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; + [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; + [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; + [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; + [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; + [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; + [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; + [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; + [encoder setBytes:&m0 length:sizeof( float) atIndex:18]; + [encoder setBytes:&m1 length:sizeof( float) atIndex:19]; + [encoder setBytes:&n_heads_log2_floor length:sizeof(int) atIndex:20]; + + [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + case GGML_OP_ROPE: + { + GGML_ASSERT(ne10 == ne02); + + const int nth = MIN(1024, ne00); + + const int n_past = ((int32_t *) dst->op_params)[0]; + const int n_dims = ((int32_t *) dst->op_params)[1]; + const int mode = ((int32_t *) dst->op_params)[2]; + // skip 3, n_ctx, used in GLM RoPE, unimplemented in metal + const int n_orig_ctx = ((int32_t *) dst->op_params)[4]; + + float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; + memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); + memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); + memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); + memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); + memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); + memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); + + id pipeline = nil; + + switch (src0->type) { + case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_F32].pipeline; break; + case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ROPE_F16].pipeline; break; + default: GGML_ASSERT(false); + }; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:1]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:2]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:3]; + [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:4]; + [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:5]; + [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:6]; + [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:7]; + [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:8]; + [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:9]; + [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:10]; + [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:11]; + [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:12]; + [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:13]; + [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:14]; + [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:15]; + [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:16]; + [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:17]; + [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:18]; + [encoder setBytes:&n_past length:sizeof( int) atIndex:19]; + [encoder setBytes:&n_dims length:sizeof( int) atIndex:20]; + [encoder setBytes:&mode length:sizeof( int) atIndex:21]; + [encoder setBytes:&n_orig_ctx length:sizeof( int) atIndex:22]; + [encoder setBytes:&freq_base length:sizeof( float) atIndex:23]; + [encoder setBytes:&freq_scale length:sizeof( float) atIndex:24]; + [encoder setBytes:&ext_factor length:sizeof( float) atIndex:25]; + [encoder setBytes:&attn_factor length:sizeof( float) atIndex:26]; + [encoder setBytes:&beta_fast length:sizeof( float) atIndex:27]; + [encoder setBytes:&beta_slow length:sizeof( float) atIndex:28]; + + [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + case GGML_OP_IM2COL: + { + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32); + + const int32_t s0 = ((const int32_t *)(dst->op_params))[0]; + const int32_t s1 = ((const int32_t *)(dst->op_params))[1]; + const int32_t p0 = ((const int32_t *)(dst->op_params))[2]; + const int32_t p1 = ((const int32_t *)(dst->op_params))[3]; + const int32_t d0 = ((const int32_t *)(dst->op_params))[4]; + const int32_t d1 = ((const int32_t *)(dst->op_params))[5]; + + const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1; + + const int32_t N = src1->ne[is_2D ? 3 : 2]; + const int32_t IC = src1->ne[is_2D ? 2 : 1]; + const int32_t IH = is_2D ? src1->ne[1] : 1; + const int32_t IW = src1->ne[0]; + + const int32_t KH = is_2D ? src0->ne[1] : 1; + const int32_t KW = src0->ne[0]; + + const int32_t OH = is_2D ? dst->ne[2] : 1; + const int32_t OW = dst->ne[1]; + + const int32_t CHW = IC * KH * KW; + + const int32_t ofs0 = src1->nb[is_2D ? 3 : 2] / 4; + const int32_t ofs1 = src1->nb[is_2D ? 2 : 1] / 4; + + id pipeline = nil; + + switch (dst->type) { + case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F32].pipeline; break; + case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F16].pipeline; break; + default: GGML_ASSERT(false); + }; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src1 offset:offs_src1 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ofs0 length:sizeof( int32_t) atIndex:2]; + [encoder setBytes:&ofs1 length:sizeof( int32_t) atIndex:3]; + [encoder setBytes:&IW length:sizeof( int32_t) atIndex:4]; + [encoder setBytes:&IH length:sizeof( int32_t) atIndex:5]; + [encoder setBytes:&CHW length:sizeof( int32_t) atIndex:6]; + [encoder setBytes:&s0 length:sizeof( int32_t) atIndex:7]; + [encoder setBytes:&s1 length:sizeof( int32_t) atIndex:8]; + [encoder setBytes:&p0 length:sizeof( int32_t) atIndex:9]; + [encoder setBytes:&p1 length:sizeof( int32_t) atIndex:10]; + [encoder setBytes:&d0 length:sizeof( int32_t) atIndex:11]; + [encoder setBytes:&d1 length:sizeof( int32_t) atIndex:12]; + + [encoder dispatchThreadgroups:MTLSizeMake(IC, OH, OW) threadsPerThreadgroup:MTLSizeMake(N, KH, KW)]; + } break; + case GGML_OP_UPSCALE: + { + GGML_ASSERT(src0->type == GGML_TYPE_F32); + + const int sf = dst->op_params[0]; + + const id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_UPSCALE_F32].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; + [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5]; + [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6]; + [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7]; + [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8]; + [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9]; + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10]; + [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11]; + [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12]; + [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13]; + [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14]; + [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15]; + [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16]; + [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17]; + [encoder setBytes:&sf length:sizeof(sf) atIndex:18]; + + const int nth = MIN((int) pipeline.maxTotalThreadsPerThreadgroup, ne0); + + [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + case GGML_OP_PAD: + { + GGML_ASSERT(src0->type == GGML_TYPE_F32); + + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_PAD_F32].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2]; + [encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3]; + [encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4]; + [encoder setBytes:&ne03 length:sizeof(ne03) atIndex:5]; + [encoder setBytes:&nb00 length:sizeof(nb00) atIndex:6]; + [encoder setBytes:&nb01 length:sizeof(nb01) atIndex:7]; + [encoder setBytes:&nb02 length:sizeof(nb02) atIndex:8]; + [encoder setBytes:&nb03 length:sizeof(nb03) atIndex:9]; + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:10]; + [encoder setBytes:&ne1 length:sizeof(ne1) atIndex:11]; + [encoder setBytes:&ne2 length:sizeof(ne2) atIndex:12]; + [encoder setBytes:&ne3 length:sizeof(ne3) atIndex:13]; + [encoder setBytes:&nb0 length:sizeof(nb0) atIndex:14]; + [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:15]; + [encoder setBytes:&nb2 length:sizeof(nb2) atIndex:16]; + [encoder setBytes:&nb3 length:sizeof(nb3) atIndex:17]; + + const int nth = MIN(1024, ne0); + + [encoder dispatchThreadgroups:MTLSizeMake(ne1, ne2, ne3) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + case GGML_OP_ARANGE: + { + GGML_ASSERT(dst->type == GGML_TYPE_F32); + + float start; + float step; + + memcpy(&start, ((int32_t *) dst->op_params) + 0, sizeof(float)); + memcpy(&step, ((int32_t *) dst->op_params) + 2, sizeof(float)); + + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARANGE_F32].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:0]; + [encoder setBytes:&ne0 length:sizeof(ne0) atIndex:1]; + [encoder setBytes:&start length:sizeof(start) atIndex:2]; + [encoder setBytes:&step length:sizeof(step) atIndex:3]; + + const int nth = MIN(1024, ne0); + + [encoder dispatchThreadgroups:MTLSizeMake(1, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + case GGML_OP_TIMESTEP_EMBEDDING: + { + GGML_ASSERT(src0->type == GGML_TYPE_F32); + + const int dim = dst->op_params[0]; + const int max_period = dst->op_params[1]; + + const int half = dim / 2; + + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_TIMESTEP_EMBEDDING_F32].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&nb1 length:sizeof(nb1) atIndex:2]; + [encoder setBytes:&dim length:sizeof(dim) atIndex:3]; + [encoder setBytes:&max_period length:sizeof(max_period) atIndex:4]; + + const int nth = MIN(1024, half); + + [encoder dispatchThreadgroups:MTLSizeMake(ne00, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + case GGML_OP_ARGSORT: + { + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_I32); + + const int nrows = ggml_nrows(src0); + + enum ggml_sort_order order = (enum ggml_sort_order) dst->op_params[0]; + + // bitonic sort requires the number of elements to be power of 2 + int64_t ne00_padded = 1; + while (ne00_padded < ne00) { + ne00_padded *= 2; + } + + // Metal kernels require the buffer size to be multiple of 16 bytes + // https://developer.apple.com/documentation/metal/mtlcomputecommandencoder/1443142-setthreadgroupmemorylength + const int mem_size = GGML_PAD(ne00_padded*sizeof(int32_t), 16); + + id pipeline = nil; + + switch (order) { + case GGML_SORT_ORDER_ASC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC].pipeline; break; + case GGML_SORT_ORDER_DESC: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_DESC].pipeline; break; + default: GGML_ASSERT(false); + }; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; + [encoder setBytes:&ne00_padded length:sizeof( int64_t) atIndex:3]; + [encoder setThreadgroupMemoryLength:mem_size atIndex:0]; + + [encoder dispatchThreadgroups:MTLSizeMake(1, nrows, 1) threadsPerThreadgroup:MTLSizeMake(ne00_padded, 1, 1)]; + } break; + case GGML_OP_LEAKY_RELU: + { + GGML_ASSERT(src0->type == GGML_TYPE_F32); + + float slope; + memcpy(&slope, dst->op_params, sizeof(float)); + + id pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_LEAKY_RELU_F32].pipeline; + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&slope length:sizeof(slope) atIndex:2]; + + const int64_t n = ggml_nelements(dst); + + [encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)]; + } break; + case GGML_OP_DUP: + case GGML_OP_CPY: + case GGML_OP_CONT: + { + GGML_ASSERT(ne00 % ggml_blck_size(src0->type) == 0); + + int nth = MIN(1024, ne00/ggml_blck_size(src0->type)); + + id pipeline = nil; + + switch (src0t) { + case GGML_TYPE_F32: + { + GGML_ASSERT(ne0 % ggml_blck_size(dst->type) == 0); + + switch (dstt) { + case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F16].pipeline; break; + case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_F32].pipeline; break; + case GGML_TYPE_Q8_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q8_0].pipeline; break; + case GGML_TYPE_Q4_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_0].pipeline; break; + case GGML_TYPE_Q4_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q4_1].pipeline; break; + case GGML_TYPE_Q5_0: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_0].pipeline; break; + case GGML_TYPE_Q5_1: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_Q5_1].pipeline; break; + case GGML_TYPE_IQ4_NL: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F32_IQ4_NL].pipeline; break; + default: GGML_ASSERT(false && "not implemented"); + }; + } break; + case GGML_TYPE_F16: + { + switch (dstt) { + case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F16].pipeline; break; + case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_CPY_F16_F32].pipeline; break; + default: GGML_ASSERT(false && "not implemented"); + }; + } break; + default: GGML_ASSERT(false && "not implemented"); + } + + [encoder setComputePipelineState:pipeline]; + [encoder setBuffer:id_src0 offset:offs_src0 atIndex:0]; + [encoder setBuffer:id_dst offset:offs_dst atIndex:1]; + [encoder setBytes:&ne00 length:sizeof( int64_t) atIndex:2]; + [encoder setBytes:&ne01 length:sizeof( int64_t) atIndex:3]; + [encoder setBytes:&ne02 length:sizeof( int64_t) atIndex:4]; + [encoder setBytes:&ne03 length:sizeof( int64_t) atIndex:5]; + [encoder setBytes:&nb00 length:sizeof(uint64_t) atIndex:6]; + [encoder setBytes:&nb01 length:sizeof(uint64_t) atIndex:7]; + [encoder setBytes:&nb02 length:sizeof(uint64_t) atIndex:8]; + [encoder setBytes:&nb03 length:sizeof(uint64_t) atIndex:9]; + [encoder setBytes:&ne0 length:sizeof( int64_t) atIndex:10]; + [encoder setBytes:&ne1 length:sizeof( int64_t) atIndex:11]; + [encoder setBytes:&ne2 length:sizeof( int64_t) atIndex:12]; + [encoder setBytes:&ne3 length:sizeof( int64_t) atIndex:13]; + [encoder setBytes:&nb0 length:sizeof(uint64_t) atIndex:14]; + [encoder setBytes:&nb1 length:sizeof(uint64_t) atIndex:15]; + [encoder setBytes:&nb2 length:sizeof(uint64_t) atIndex:16]; + [encoder setBytes:&nb3 length:sizeof(uint64_t) atIndex:17]; + + [encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)]; + } break; + default: + { + GGML_METAL_LOG_ERROR("%s: error: node %3d, op = %8s not implemented\n", __func__, i, ggml_op_name(dst->op)); + GGML_ASSERT(false); + } + } + + if (should_capture) { + [encoder popDebugGroup]; + } + } + + [encoder endEncoding]; + + [command_buffer commit]; + }); + + // Wait for completion and check status of each command buffer + // needed to detect if the device ran out-of-memory for example (#1881) + + for (int i = 0; i < n_cb; ++i) { + id command_buffer = command_buffers[i]; + [command_buffer waitUntilCompleted]; + + MTLCommandBufferStatus status = [command_buffer status]; + if (status != MTLCommandBufferStatusCompleted) { + GGML_METAL_LOG_INFO("%s: command buffer %d failed with status %lu\n", __func__, i, status); + return GGML_STATUS_FAILED; + } + } + + if (should_capture) { + [[MTLCaptureManager sharedCaptureManager] stopCapture]; + } + + } + return GGML_STATUS_SUCCESS; +} + +//////////////////////////////////////////////////////////////////////////////// + +// backend interface + +// default buffer +static id g_backend_device = nil; +static int g_backend_device_ref_count = 0; + +static id ggml_backend_metal_get_device(void) { + if (g_backend_device == nil) { + g_backend_device = MTLCreateSystemDefaultDevice(); + } + + g_backend_device_ref_count++; + + return g_backend_device; +} + +static void ggml_backend_metal_free_device(void) { + assert(g_backend_device_ref_count > 0); + + g_backend_device_ref_count--; + + if (g_backend_device_ref_count == 0) { + [g_backend_device release]; + g_backend_device = nil; + } +} + +GGML_CALL static const char * ggml_backend_metal_buffer_get_name(ggml_backend_buffer_t buffer) { + return "Metal"; + + UNUSED(buffer); +} + +GGML_CALL static void ggml_backend_metal_buffer_free_buffer(ggml_backend_buffer_t buffer) { + struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context; + + for (int i = 0; i < ctx->n_buffers; i++) { + [ctx->buffers[i].metal release]; + } + ggml_backend_metal_free_device(); + + if (ctx->owned) { + free(ctx->all_data); + } + + free(ctx); +} + +GGML_CALL static void * ggml_backend_metal_buffer_get_base(ggml_backend_buffer_t buffer) { + struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context; + + return ctx->all_data; +} + +GGML_CALL static void ggml_backend_metal_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) { + memcpy((char *)tensor->data + offset, data, size); + + UNUSED(buffer); +} + +GGML_CALL static void ggml_backend_metal_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) { + memcpy(data, (const char *)tensor->data + offset, size); + + UNUSED(buffer); +} + +GGML_CALL static bool ggml_backend_metal_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) { + if (ggml_backend_buffer_is_host(src->buffer)) { + memcpy(dst->data, src->data, ggml_nbytes(src)); + return true; + } + return false; + + UNUSED(buffer); +} + +GGML_CALL static void ggml_backend_metal_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) { + struct ggml_backend_metal_buffer_context * ctx = (struct ggml_backend_metal_buffer_context *)buffer->context; + + memset(ctx->all_data, value, ctx->all_size); +} + +static struct ggml_backend_buffer_i ggml_backend_metal_buffer_i = { + /* .get_name = */ ggml_backend_metal_buffer_get_name, + /* .free_buffer = */ ggml_backend_metal_buffer_free_buffer, + /* .get_base = */ ggml_backend_metal_buffer_get_base, + /* .init_tensor = */ NULL, + /* .set_tensor = */ ggml_backend_metal_buffer_set_tensor, + /* .get_tensor = */ ggml_backend_metal_buffer_get_tensor, + /* .cpy_tensor = */ ggml_backend_metal_buffer_cpy_tensor, + /* .clear = */ ggml_backend_metal_buffer_clear, + /* .reset = */ NULL, +}; + +// default buffer type + +GGML_CALL static const char * ggml_backend_metal_buffer_type_get_name(ggml_backend_buffer_type_t buft) { + return "Metal"; + + UNUSED(buft); +} + +static void ggml_backend_metal_log_allocated_size(id device) { +#if TARGET_OS_OSX || (TARGET_OS_IOS && __clang_major__ >= 15) + if (@available(macOS 10.12, iOS 16.0, *)) { + GGML_METAL_LOG_INFO(", (%8.2f / %8.2f)", + device.currentAllocatedSize / 1024.0 / 1024.0, + device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0); + + if (device.currentAllocatedSize > device.recommendedMaxWorkingSetSize) { + GGML_METAL_LOG_WARN("%s: warning: current allocated size is greater than the recommended max working set size\n", __func__); + } else { + GGML_METAL_LOG_INFO("\n"); + } + } else { + GGML_METAL_LOG_INFO(", (%8.2f)\n", device.currentAllocatedSize / 1024.0 / 1024.0); + } +#endif + UNUSED(device); +} + +GGML_CALL static ggml_backend_buffer_t ggml_backend_metal_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) { + struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context)); + + const size_t size_page = sysconf(_SC_PAGESIZE); + + size_t size_aligned = size; + if ((size_aligned % size_page) != 0) { + size_aligned += (size_page - (size_aligned % size_page)); + } + + id device = ggml_backend_metal_get_device(); + + ctx->all_data = ggml_metal_host_malloc(size_aligned); + ctx->all_size = size_aligned; + ctx->owned = true; + ctx->n_buffers = 1; + + ctx->buffers[0].data = ctx->all_data; + ctx->buffers[0].size = size; + ctx->buffers[0].metal = [device newBufferWithBytesNoCopy:ctx->all_data + length:size_aligned + options:MTLResourceStorageModeShared + deallocator:nil]; + + if (ctx->buffers[0].metal == nil) { + GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0); + free(ctx); + ggml_backend_metal_free_device(); + return NULL; + } + + GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB", __func__, size_aligned / 1024.0 / 1024.0); + ggml_backend_metal_log_allocated_size(device); + + return ggml_backend_buffer_init(buft, ggml_backend_metal_buffer_i, ctx, size); +} + +GGML_CALL static size_t ggml_backend_metal_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) { + return 32; + UNUSED(buft); +} + +GGML_CALL static size_t ggml_backend_metal_buffer_type_get_max_size(ggml_backend_buffer_type_t buft) { + id device = ggml_backend_metal_get_device(); + size_t max_size = device.maxBufferLength; + ggml_backend_metal_free_device(); + + return max_size; + + UNUSED(buft); +} + +GGML_CALL static bool ggml_backend_metal_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) { + return ggml_backend_is_metal(backend) || ggml_backend_is_cpu(backend); + + UNUSED(buft); +} + +GGML_CALL static bool ggml_backend_metal_buffer_type_is_host(ggml_backend_buffer_type_t buft) { + return true; + + UNUSED(buft); +} + +GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void) { + static struct ggml_backend_buffer_type ggml_backend_buffer_type_metal = { + /* .iface = */ { + /* .get_name = */ ggml_backend_metal_buffer_type_get_name, + /* .alloc_buffer = */ ggml_backend_metal_buffer_type_alloc_buffer, + /* .get_alignment = */ ggml_backend_metal_buffer_type_get_alignment, + /* .get_max_size = */ ggml_backend_metal_buffer_type_get_max_size, + /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes + /* .supports_backend = */ ggml_backend_metal_buffer_type_supports_backend, + /* .is_host = */ ggml_backend_metal_buffer_type_is_host, + }, + /* .context = */ NULL, + }; + + return &ggml_backend_buffer_type_metal; +} + +// buffer from ptr + +GGML_CALL ggml_backend_buffer_t ggml_backend_metal_buffer_from_ptr(void * data, size_t size, size_t max_size) { + struct ggml_backend_metal_buffer_context * ctx = malloc(sizeof(struct ggml_backend_metal_buffer_context)); + + ctx->all_data = data; + ctx->all_size = size; + ctx->owned = false; + ctx->n_buffers = 0; + + const size_t size_page = sysconf(_SC_PAGESIZE); + + // page-align the data ptr + { + const uintptr_t offs = (uintptr_t) data % size_page; + data = (void *) ((char *) data - offs); + size += offs; + } + + size_t size_aligned = size; + if ((size_aligned % size_page) != 0) { + size_aligned += (size_page - (size_aligned % size_page)); + } + + id device = ggml_backend_metal_get_device(); + + // the buffer fits into the max buffer size allowed by the device + if (size_aligned <= device.maxBufferLength) { + ctx->buffers[ctx->n_buffers].data = data; + ctx->buffers[ctx->n_buffers].size = size; + + ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:data length:size_aligned options:MTLResourceStorageModeShared deallocator:nil]; + + if (ctx->buffers[ctx->n_buffers].metal == nil) { + GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_aligned / 1024.0 / 1024.0); + return false; + } + + GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB", __func__, size_aligned / 1024.0 / 1024.0); + + ++ctx->n_buffers; + } else { + // this overlap between the views will guarantee that the tensor with the maximum size will fully fit into + // one of the views + const size_t size_ovlp = ((max_size + size_page - 1) / size_page + 1) * size_page; // round-up 2 pages just in case + const size_t size_step = device.maxBufferLength - size_ovlp; + const size_t size_view = device.maxBufferLength; + + for (size_t i = 0; i < size; i += size_step) { + const size_t size_step_aligned = (i + size_view <= size) ? size_view : (size_aligned - i); + + ctx->buffers[ctx->n_buffers].data = (void *) ((uint8_t *) data + i); + ctx->buffers[ctx->n_buffers].size = size_step_aligned; + + ctx->buffers[ctx->n_buffers].metal = [device newBufferWithBytesNoCopy:(void *) ((uint8_t *) data + i) length:size_step_aligned options:MTLResourceStorageModeShared deallocator:nil]; + + if (ctx->buffers[ctx->n_buffers].metal == nil) { + GGML_METAL_LOG_ERROR("%s: error: failed to allocate buffer, size = %8.2f MiB\n", __func__, size_step_aligned / 1024.0 / 1024.0); + return false; + } + + GGML_METAL_LOG_INFO("%s: allocated buffer, size = %8.2f MiB, offs = %12ld", __func__, size_step_aligned / 1024.0 / 1024.0, i); + if (i + size_step < size) { + GGML_METAL_LOG_INFO("\n"); + } + + ++ctx->n_buffers; + } + } + + ggml_backend_metal_log_allocated_size(device); + + return ggml_backend_buffer_init(ggml_backend_metal_buffer_type(), ggml_backend_metal_buffer_i, ctx, size); +} + +// backend + +GGML_CALL static const char * ggml_backend_metal_name(ggml_backend_t backend) { + return "Metal"; + + UNUSED(backend); +} + +GGML_CALL static void ggml_backend_metal_free(ggml_backend_t backend) { + struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context; + ggml_metal_free(ctx); + free(backend); +} + +GGML_CALL static ggml_backend_buffer_type_t ggml_backend_metal_get_default_buffer_type(ggml_backend_t backend) { + return ggml_backend_metal_buffer_type(); + + UNUSED(backend); +} + +GGML_CALL static enum ggml_status ggml_backend_metal_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) { + struct ggml_metal_context * metal_ctx = (struct ggml_metal_context *)backend->context; + + return ggml_metal_graph_compute(metal_ctx, cgraph); +} + +GGML_CALL static bool ggml_backend_metal_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) { + struct ggml_metal_context * metal_ctx = (struct ggml_metal_context *)backend->context; + + return ggml_metal_supports_op(metal_ctx, op); +} + +static struct ggml_backend_i ggml_backend_metal_i = { + /* .get_name = */ ggml_backend_metal_name, + /* .free = */ ggml_backend_metal_free, + /* .get_default_buffer_type = */ ggml_backend_metal_get_default_buffer_type, + /* .set_tensor_async = */ NULL, + /* .get_tensor_async = */ NULL, + /* .cpy_tensor_async = */ NULL, + /* .synchronize = */ NULL, + /* .graph_plan_create = */ NULL, + /* .graph_plan_free = */ NULL, + /* .graph_plan_compute = */ NULL, + /* .graph_compute = */ ggml_backend_metal_graph_compute, + /* .supports_op = */ ggml_backend_metal_supports_op, + /* .offload_op = */ NULL, + /* .event_new = */ NULL, + /* .event_free = */ NULL, + /* .event_record = */ NULL, + /* .event_wait = */ NULL, + /* .event_synchronize = */ NULL, +}; + +void ggml_backend_metal_log_set_callback(ggml_log_callback log_callback, void * user_data) { + ggml_metal_log_callback = log_callback; + ggml_metal_log_user_data = user_data; +} + +static ggml_guid_t ggml_backend_metal_guid(void) { + static ggml_guid guid = { 0x81, 0xa1, 0x8b, 0x1e, 0x71, 0xec, 0x79, 0xed, 0x2b, 0x85, 0xdc, 0x8a, 0x61, 0x98, 0x30, 0xe6 }; + return &guid; +} + +ggml_backend_t ggml_backend_metal_init(void) { + struct ggml_metal_context * ctx = ggml_metal_init(GGML_DEFAULT_N_THREADS); + + if (ctx == NULL) { + return NULL; + } + + ggml_backend_t metal_backend = malloc(sizeof(struct ggml_backend)); + + *metal_backend = (struct ggml_backend) { + /* .guid = */ ggml_backend_metal_guid(), + /* .interface = */ ggml_backend_metal_i, + /* .context = */ ctx, + }; + + return metal_backend; +} + +bool ggml_backend_is_metal(ggml_backend_t backend) { + return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_metal_guid()); +} + +void ggml_backend_metal_set_n_cb(ggml_backend_t backend, int n_cb) { + GGML_ASSERT(ggml_backend_is_metal(backend)); + + struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context; + + ctx->n_cb = MIN(n_cb, GGML_METAL_MAX_BUFFERS); +} + +bool ggml_backend_metal_supports_family(ggml_backend_t backend, int family) { + GGML_ASSERT(ggml_backend_is_metal(backend)); + + struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context; + + return [ctx->device supportsFamily:(MTLGPUFamilyApple1 + family - 1)]; +} + +void ggml_backend_metal_capture_next_compute(ggml_backend_t backend) { + GGML_ASSERT(ggml_backend_is_metal(backend)); + + struct ggml_metal_context * ctx = (struct ggml_metal_context *)backend->context; + ctx->should_capture_next_compute = true; +} + +GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data); // silence warning + +GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data) { + return ggml_backend_metal_init(); + + GGML_UNUSED(params); + GGML_UNUSED(user_data); +} diff --git a/llama/ggml-quants.c b/llama/ggml-quants.c new file mode 100644 index 00000000..32360a1f --- /dev/null +++ b/llama/ggml-quants.c @@ -0,0 +1,12678 @@ +#define GGML_COMMON_IMPL_C +#include "ggml-common.h" + +#include "ggml-quants.h" +#include "ggml-impl.h" + +#define GGML_COMMON_IMPL_C +#include "ggml-common.h" + +#include +#include +#include +#include +#include // for qsort +#include // for GGML_ASSERT + +#ifdef __ARM_NEON + +// if YCM cannot find , make a symbolic link to it, for example: +// +// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/ +// +#include + +#else + +#ifdef __wasm_simd128__ +#include +#else +#if defined(__POWER9_VECTOR__) || defined(__powerpc64__) +#include +#undef bool +#define bool _Bool +#else +#if defined(_MSC_VER) || defined(__MINGW32__) +#include +#else +#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) +#if !defined(__riscv) +#include +#endif +#endif +#endif +#endif +#endif +#endif + +#ifdef __riscv_v_intrinsic +#include +#endif + +#undef MIN +#undef MAX + +#define MIN(a, b) ((a) < (b) ? (a) : (b)) +#define MAX(a, b) ((a) > (b) ? (a) : (b)) + +#define UNUSED GGML_UNUSED + +// some compilers don't provide _mm256_set_m128i, e.g. gcc 7 +#define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1) + +#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) +// multiply int8_t, add results pairwise twice +static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) { + // Get absolute values of x vectors + const __m128i ax = _mm_sign_epi8(x, x); + // Sign the values of the y vectors + const __m128i sy = _mm_sign_epi8(y, x); + // Perform multiplication and create 16-bit values + const __m128i dot = _mm_maddubs_epi16(ax, sy); + const __m128i ones = _mm_set1_epi16(1); + return _mm_madd_epi16(ones, dot); +} + +#if __AVX__ || __AVX2__ || __AVX512F__ +// horizontally add 8 floats +static inline float hsum_float_8(const __m256 x) { + __m128 res = _mm256_extractf128_ps(x, 1); + res = _mm_add_ps(res, _mm256_castps256_ps128(x)); + res = _mm_add_ps(res, _mm_movehl_ps(res, res)); + res = _mm_add_ss(res, _mm_movehdup_ps(res)); + return _mm_cvtss_f32(res); +} + +// horizontally add 8 int32_t +static inline int hsum_i32_8(const __m256i a) { + const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1)); + const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128); + const __m128i sum64 = _mm_add_epi32(hi64, sum128); + const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1)); + return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32)); +} + +// horizontally add 4 int32_t +static inline int hsum_i32_4(const __m128i a) { + const __m128i hi64 = _mm_unpackhi_epi64(a, a); + const __m128i sum64 = _mm_add_epi32(hi64, a); + const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1)); + return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32)); +} + +#if defined(__AVX2__) || defined(__AVX512F__) +// spread 32 bits to 32 bytes { 0x00, 0xFF } +static inline __m256i bytes_from_bits_32(const uint8_t * x) { + uint32_t x32; + memcpy(&x32, x, sizeof(uint32_t)); + const __m256i shuf_mask = _mm256_set_epi64x( + 0x0303030303030303, 0x0202020202020202, + 0x0101010101010101, 0x0000000000000000); + __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask); + const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe); + bytes = _mm256_or_si256(bytes, bit_mask); + return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1)); +} + +// Unpack 32 4-bit fields into 32 bytes +// The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval +static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi) +{ + const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi); + const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp); + const __m256i lowMask = _mm256_set1_epi8( 0xF ); + return _mm256_and_si256(lowMask, bytes); +} + +// add int16_t pairwise and return as float vector +static inline __m256 sum_i16_pairs_float(const __m256i x) { + const __m256i ones = _mm256_set1_epi16(1); + const __m256i summed_pairs = _mm256_madd_epi16(ones, x); + return _mm256_cvtepi32_ps(summed_pairs); +} + +static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) { +#if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__)) + const __m256i zero = _mm256_setzero_si256(); + const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy); + return _mm256_cvtepi32_ps(summed_pairs); +#else + // Perform multiplication and create 16-bit values + const __m256i dot = _mm256_maddubs_epi16(ax, sy); + return sum_i16_pairs_float(dot); +#endif +} + +// multiply int8_t, add results pairwise twice and return as float vector +static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) { +#if __AVXVNNIINT8__ + const __m256i zero = _mm256_setzero_si256(); + const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y); + return _mm256_cvtepi32_ps(summed_pairs); +#else + // Get absolute values of x vectors + const __m256i ax = _mm256_sign_epi8(x, x); + // Sign the values of the y vectors + const __m256i sy = _mm256_sign_epi8(y, x); + return mul_sum_us8_pairs_float(ax, sy); +#endif +} + +static inline __m128i packNibbles( __m256i bytes ) +{ + // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh +#if __AVX512F__ + const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000 + bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh + return _mm256_cvtepi16_epi8(bytes); // abcd_efgh +#else + const __m256i lowByte = _mm256_set1_epi16( 0xFF ); + __m256i high = _mm256_andnot_si256( lowByte, bytes ); + __m256i low = _mm256_and_si256( lowByte, bytes ); + high = _mm256_srli_epi16( high, 4 ); + bytes = _mm256_or_si256( low, high ); + + // Compress uint16_t lanes into bytes + __m128i r0 = _mm256_castsi256_si128( bytes ); + __m128i r1 = _mm256_extracti128_si256( bytes, 1 ); + return _mm_packus_epi16( r0, r1 ); +#endif +} +#elif defined(__AVX__) +// spread 32 bits to 32 bytes { 0x00, 0xFF } +static inline __m256i bytes_from_bits_32(const uint8_t * x) { + uint32_t x32; + memcpy(&x32, x, sizeof(uint32_t)); + const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000); + const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202); + __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl); + __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh); + const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe); + bytesl = _mm_or_si128(bytesl, bit_mask); + bytesh = _mm_or_si128(bytesh, bit_mask); + bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1)); + bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1)); + return MM256_SET_M128I(bytesh, bytesl); +} + +// Unpack 32 4-bit fields into 32 bytes +// The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval +static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi) +{ + // Load 16 bytes from memory + __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi); + __m128i tmph = _mm_srli_epi16(tmpl, 4); + const __m128i lowMask = _mm_set1_epi8(0xF); + tmpl = _mm_and_si128(lowMask, tmpl); + tmph = _mm_and_si128(lowMask, tmph); + return MM256_SET_M128I(tmph, tmpl); +} + +// add int16_t pairwise and return as float vector +static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) { + const __m128i ones = _mm_set1_epi16(1); + const __m128i summed_pairsl = _mm_madd_epi16(ones, xl); + const __m128i summed_pairsh = _mm_madd_epi16(ones, xh); + const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl); + return _mm256_cvtepi32_ps(summed_pairs); +} + +static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) { + const __m128i axl = _mm256_castsi256_si128(ax); + const __m128i axh = _mm256_extractf128_si256(ax, 1); + const __m128i syl = _mm256_castsi256_si128(sy); + const __m128i syh = _mm256_extractf128_si256(sy, 1); + // Perform multiplication and create 16-bit values + const __m128i dotl = _mm_maddubs_epi16(axl, syl); + const __m128i doth = _mm_maddubs_epi16(axh, syh); + return sum_i16_pairs_float(doth, dotl); +} + +// multiply int8_t, add results pairwise twice and return as float vector +static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) { + const __m128i xl = _mm256_castsi256_si128(x); + const __m128i xh = _mm256_extractf128_si256(x, 1); + const __m128i yl = _mm256_castsi256_si128(y); + const __m128i yh = _mm256_extractf128_si256(y, 1); + // Get absolute values of x vectors + const __m128i axl = _mm_sign_epi8(xl, xl); + const __m128i axh = _mm_sign_epi8(xh, xh); + // Sign the values of the y vectors + const __m128i syl = _mm_sign_epi8(yl, xl); + const __m128i syh = _mm_sign_epi8(yh, xh); + // Perform multiplication and create 16-bit values + const __m128i dotl = _mm_maddubs_epi16(axl, syl); + const __m128i doth = _mm_maddubs_epi16(axh, syh); + return sum_i16_pairs_float(doth, dotl); +} + +static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 ) +{ + // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh + const __m128i lowByte = _mm_set1_epi16( 0xFF ); + __m128i high = _mm_andnot_si128( lowByte, bytes1 ); + __m128i low = _mm_and_si128( lowByte, bytes1 ); + high = _mm_srli_epi16( high, 4 ); + bytes1 = _mm_or_si128( low, high ); + high = _mm_andnot_si128( lowByte, bytes2 ); + low = _mm_and_si128( lowByte, bytes2 ); + high = _mm_srli_epi16( high, 4 ); + bytes2 = _mm_or_si128( low, high ); + + return _mm_packus_epi16( bytes1, bytes2); +} +#endif +#elif defined(__SSSE3__) +// horizontally add 4x4 floats +static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) { + __m128 res_0 =_mm_hadd_ps(a, b); + __m128 res_1 =_mm_hadd_ps(c, d); + __m128 res =_mm_hadd_ps(res_0, res_1); + res =_mm_hadd_ps(res, res); + res =_mm_hadd_ps(res, res); + + return _mm_cvtss_f32(res); +} +#endif // __AVX__ || __AVX2__ || __AVX512F__ +#endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) + +#if defined(__ARM_NEON) + +#ifdef _MSC_VER + +#define ggml_vld1q_u32(w,x,y,z) { ((w) + ((uint64_t)(x) << 32)), ((y) + ((uint64_t)(z) << 32)) } + +#else + +#define ggml_vld1q_u32(w,x,y,z) { (w), (x), (y), (z) } + +#endif + +#if !defined(__aarch64__) + +// 64-bit compatibility + +// vaddvq_s16 +// vpaddq_s16 +// vpaddq_s32 +// vaddvq_s32 +// vaddvq_f32 +// vmaxvq_f32 +// vcvtnq_s32_f32 +// vzip1_u8 +// vzip2_u8 + +inline static int32_t vaddvq_s16(int16x8_t v) { + return + (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) + + (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) + + (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) + + (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7); +} + +inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) { + int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a)); + int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b)); + return vcombine_s16(a0, b0); +} + +inline static int32x4_t vpaddq_s32(int32x4_t a, int32x4_t b) { + int32x2_t a0 = vpadd_s32(vget_low_s32(a), vget_high_s32(a)); + int32x2_t b0 = vpadd_s32(vget_low_s32(b), vget_high_s32(b)); + return vcombine_s32(a0, b0); +} + +inline static int32_t vaddvq_s32(int32x4_t v) { + return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3); +} + +inline static float vaddvq_f32(float32x4_t v) { + return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3); +} + +inline static float vmaxvq_f32(float32x4_t v) { + return + MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)), + MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3))); +} + +inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) { + int32x4_t res; + + res[0] = roundf(vgetq_lane_f32(v, 0)); + res[1] = roundf(vgetq_lane_f32(v, 1)); + res[2] = roundf(vgetq_lane_f32(v, 2)); + res[3] = roundf(vgetq_lane_f32(v, 3)); + + return res; +} + +inline static uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) { + uint8x8_t res; + + res[0] = a[0]; res[1] = b[0]; + res[2] = a[1]; res[3] = b[1]; + res[4] = a[2]; res[5] = b[2]; + res[6] = a[3]; res[7] = b[3]; + + return res; +} + +inline static uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) { + uint8x8_t res; + + res[0] = a[4]; res[1] = b[4]; + res[2] = a[5]; res[3] = b[5]; + res[4] = a[6]; res[5] = b[6]; + res[6] = a[7]; res[7] = b[7]; + + return res; +} + +// vld1q_s16_x2 +// vld1q_u8_x2 +// vld1q_u8_x4 +// vld1q_s8_x2 +// vld1q_s8_x4 +// TODO: double-check these work correctly + +typedef struct ggml_int16x8x2_t { + int16x8_t val[2]; +} ggml_int16x8x2_t; + +inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) { + ggml_int16x8x2_t res; + + res.val[0] = vld1q_s16(ptr + 0); + res.val[1] = vld1q_s16(ptr + 8); + + return res; +} + +typedef struct ggml_uint8x16x2_t { + uint8x16_t val[2]; +} ggml_uint8x16x2_t; + +inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) { + ggml_uint8x16x2_t res; + + res.val[0] = vld1q_u8(ptr + 0); + res.val[1] = vld1q_u8(ptr + 16); + + return res; +} + +typedef struct ggml_uint8x16x4_t { + uint8x16_t val[4]; +} ggml_uint8x16x4_t; + +inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) { + ggml_uint8x16x4_t res; + + res.val[0] = vld1q_u8(ptr + 0); + res.val[1] = vld1q_u8(ptr + 16); + res.val[2] = vld1q_u8(ptr + 32); + res.val[3] = vld1q_u8(ptr + 48); + + return res; +} + +typedef struct ggml_int8x16x2_t { + int8x16_t val[2]; +} ggml_int8x16x2_t; + +inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) { + ggml_int8x16x2_t res; + + res.val[0] = vld1q_s8(ptr + 0); + res.val[1] = vld1q_s8(ptr + 16); + + return res; +} + +typedef struct ggml_int8x16x4_t { + int8x16_t val[4]; +} ggml_int8x16x4_t; + +inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) { + ggml_int8x16x4_t res; + + res.val[0] = vld1q_s8(ptr + 0); + res.val[1] = vld1q_s8(ptr + 16); + res.val[2] = vld1q_s8(ptr + 32); + res.val[3] = vld1q_s8(ptr + 48); + + return res; +} + +// NOTE: not tested +inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) { + int8x16_t res; + + res[ 0] = a[b[ 0]]; + res[ 1] = a[b[ 1]]; + res[ 2] = a[b[ 2]]; + res[ 3] = a[b[ 3]]; + res[ 4] = a[b[ 4]]; + res[ 5] = a[b[ 5]]; + res[ 6] = a[b[ 6]]; + res[ 7] = a[b[ 7]]; + res[ 8] = a[b[ 8]]; + res[ 9] = a[b[ 9]]; + res[10] = a[b[10]]; + res[11] = a[b[11]]; + res[12] = a[b[12]]; + res[13] = a[b[13]]; + res[14] = a[b[14]]; + res[15] = a[b[15]]; + + return res; +} + +// NOTE: not tested +inline static uint8x16_t ggml_vqtbl1q_u8(uint8x16_t a, uint8x16_t b) { + uint8x16_t res; + + res[ 0] = a[b[ 0]]; + res[ 1] = a[b[ 1]]; + res[ 2] = a[b[ 2]]; + res[ 3] = a[b[ 3]]; + res[ 4] = a[b[ 4]]; + res[ 5] = a[b[ 5]]; + res[ 6] = a[b[ 6]]; + res[ 7] = a[b[ 7]]; + res[ 8] = a[b[ 8]]; + res[ 9] = a[b[ 9]]; + res[10] = a[b[10]]; + res[11] = a[b[11]]; + res[12] = a[b[12]]; + res[13] = a[b[13]]; + res[14] = a[b[14]]; + res[15] = a[b[15]]; + + return res; +} + +#else + +#define ggml_int16x8x2_t int16x8x2_t +#define ggml_uint8x16x2_t uint8x16x2_t +#define ggml_uint8x16x4_t uint8x16x4_t +#define ggml_int8x16x2_t int8x16x2_t +#define ggml_int8x16x4_t int8x16x4_t + +#define ggml_vld1q_s16_x2 vld1q_s16_x2 +#define ggml_vld1q_u8_x2 vld1q_u8_x2 +#define ggml_vld1q_u8_x4 vld1q_u8_x4 +#define ggml_vld1q_s8_x2 vld1q_s8_x2 +#define ggml_vld1q_s8_x4 vld1q_s8_x4 +#define ggml_vqtbl1q_s8 vqtbl1q_s8 +#define ggml_vqtbl1q_u8 vqtbl1q_u8 + +#endif + +#if !defined(__ARM_FEATURE_DOTPROD) + +inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) { + const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b)); + const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b)); + + return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1))); +} + +#else + +#define ggml_vdotq_s32(a, b, c) vdotq_s32(a, b, c) + +#endif + +#endif + +#if defined(__ARM_NEON) || defined(__wasm_simd128__) +#define B1(c,s,n) 0x ## n ## c , 0x ## n ## s +#define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s) +#define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s) +#define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s) +#define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s) +#define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s) +#define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s) +#define B8(c,s ) B7(c,s, c), B7(c,s, s) + +// precomputed tables for expanding 8bits to 8 bytes: +static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4 +static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4 +#endif + +// reference implementation for deterministic creation of model files +void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int64_t k) { + static const int qk = QK4_0; + + assert(k % qk == 0); + + const int nb = k / qk; + + for (int i = 0; i < nb; i++) { + float amax = 0.0f; // absolute max + float max = 0.0f; + + for (int j = 0; j < qk; j++) { + const float v = x[i*qk + j]; + if (amax < fabsf(v)) { + amax = fabsf(v); + max = v; + } + } + + const float d = max / -8; + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = GGML_FP32_TO_FP16(d); + + for (int j = 0; j < qk/2; ++j) { + const float x0 = x[i*qk + 0 + j]*id; + const float x1 = x[i*qk + qk/2 + j]*id; + + const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f)); + const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f)); + + y[i].qs[j] = xi0; + y[i].qs[j] |= xi1 << 4; + } + } +} + +void quantize_row_q4_0(const float * restrict x, void * restrict y, int64_t k) { + quantize_row_q4_0_reference(x, y, k); +} + + +void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int64_t k) { + const int qk = QK4_1; + + assert(k % qk == 0); + + const int nb = k / qk; + + for (int i = 0; i < nb; i++) { + float min = FLT_MAX; + float max = -FLT_MAX; + + for (int j = 0; j < qk; j++) { + const float v = x[i*qk + j]; + + if (v < min) min = v; + if (v > max) max = v; + } + + const float d = (max - min) / ((1 << 4) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = GGML_FP32_TO_FP16(d); + y[i].m = GGML_FP32_TO_FP16(min); + + for (int j = 0; j < qk/2; ++j) { + const float x0 = (x[i*qk + 0 + j] - min)*id; + const float x1 = (x[i*qk + qk/2 + j] - min)*id; + + const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f)); + const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f)); + + y[i].qs[j] = xi0; + y[i].qs[j] |= xi1 << 4; + } + } +} + +void quantize_row_q4_1(const float * restrict x, void * restrict y, int64_t k) { + quantize_row_q4_1_reference(x, y, k); +} + +void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int64_t k) { + static const int qk = QK5_0; + + assert(k % qk == 0); + + const int nb = k / qk; + + for (int i = 0; i < nb; i++) { + float amax = 0.0f; // absolute max + float max = 0.0f; + + for (int j = 0; j < qk; j++) { + const float v = x[i*qk + j]; + if (amax < fabsf(v)) { + amax = fabsf(v); + max = v; + } + } + + const float d = max / -16; + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = GGML_FP32_TO_FP16(d); + + uint32_t qh = 0; + + for (int j = 0; j < qk/2; ++j) { + const float x0 = x[i*qk + 0 + j]*id; + const float x1 = x[i*qk + qk/2 + j]*id; + + const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f)); + const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f)); + + y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4); + + // get the 5-th bit and store it in qh at the right position + qh |= ((xi0 & 0x10u) >> 4) << (j + 0); + qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2); + } + + memcpy(&y[i].qh, &qh, sizeof(qh)); + } +} + +void quantize_row_q5_0(const float * restrict x, void * restrict y, int64_t k) { + quantize_row_q5_0_reference(x, y, k); +} + +void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int64_t k) { + const int qk = QK5_1; + + assert(k % qk == 0); + + const int nb = k / qk; + + for (int i = 0; i < nb; i++) { + float min = FLT_MAX; + float max = -FLT_MAX; + + for (int j = 0; j < qk; j++) { + const float v = x[i*qk + j]; + + if (v < min) min = v; + if (v > max) max = v; + } + + const float d = (max - min) / ((1 << 5) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = GGML_FP32_TO_FP16(d); + y[i].m = GGML_FP32_TO_FP16(min); + + uint32_t qh = 0; + + for (int j = 0; j < qk/2; ++j) { + const float x0 = (x[i*qk + 0 + j] - min)*id; + const float x1 = (x[i*qk + qk/2 + j] - min)*id; + + const uint8_t xi0 = (uint8_t)(x0 + 0.5f); + const uint8_t xi1 = (uint8_t)(x1 + 0.5f); + + y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4); + + // get the 5-th bit and store it in qh at the right position + qh |= ((xi0 & 0x10u) >> 4) << (j + 0); + qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2); + } + + memcpy(&y[i].qh, &qh, sizeof(y[i].qh)); + } +} + +void quantize_row_q5_1(const float * restrict x, void * restrict y, int64_t k) { + quantize_row_q5_1_reference(x, y, k); +} + +// reference implementation for deterministic creation of model files +void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int64_t k) { + assert(k % QK8_0 == 0); + const int nb = k / QK8_0; + + for (int i = 0; i < nb; i++) { + float amax = 0.0f; // absolute max + + for (int j = 0; j < QK8_0; j++) { + const float v = x[i*QK8_0 + j]; + amax = MAX(amax, fabsf(v)); + } + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = GGML_FP32_TO_FP16(d); + + for (int j = 0; j < QK8_0; ++j) { + const float x0 = x[i*QK8_0 + j]*id; + + y[i].qs[j] = roundf(x0); + } + } +} + +void quantize_row_q8_0(const float * restrict x, void * restrict vy, int64_t k) { + assert(QK8_0 == 32); + assert(k % QK8_0 == 0); + const int nb = k / QK8_0; + + block_q8_0 * restrict y = vy; + +#if defined(__ARM_NEON) + for (int i = 0; i < nb; i++) { + float32x4_t srcv [8]; + float32x4_t asrcv[8]; + float32x4_t amaxv[8]; + + for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j); + for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]); + + for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]); + for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]); + for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]); + + const float amax = vmaxvq_f32(amaxv[0]); + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = GGML_FP32_TO_FP16(d); + + for (int j = 0; j < 8; j++) { + const float32x4_t v = vmulq_n_f32(srcv[j], id); + const int32x4_t vi = vcvtnq_s32_f32(v); + + y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0); + y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1); + y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2); + y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3); + } + } +#elif defined(__wasm_simd128__) + for (int i = 0; i < nb; i++) { + v128_t srcv [8]; + v128_t asrcv[8]; + v128_t amaxv[8]; + + for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j); + for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]); + + for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]); + for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]); + for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]); + + const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0), + wasm_f32x4_extract_lane(amaxv[0], 1)), + MAX(wasm_f32x4_extract_lane(amaxv[0], 2), + wasm_f32x4_extract_lane(amaxv[0], 3))); + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = GGML_FP32_TO_FP16(d); + + for (int j = 0; j < 8; j++) { + const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id)); + const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v); + + y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0); + y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1); + y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2); + y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3); + } + } +#elif defined(__AVX2__) || defined(__AVX__) + for (int i = 0; i < nb; i++) { + // Load elements into 4 AVX vectors + __m256 v0 = _mm256_loadu_ps( x ); + __m256 v1 = _mm256_loadu_ps( x + 8 ); + __m256 v2 = _mm256_loadu_ps( x + 16 ); + __m256 v3 = _mm256_loadu_ps( x + 24 ); + x += 32; + + // Compute max(abs(e)) for the block + const __m256 signBit = _mm256_set1_ps( -0.0f ); + __m256 maxAbs = _mm256_andnot_ps( signBit, v0 ); + maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) ); + maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) ); + maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) ); + + __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) ); + max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) ); + max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) ); + const float maxScalar = _mm_cvtss_f32( max4 ); + + // Quantize these floats + const float d = maxScalar / 127.f; + y[i].d = GGML_FP32_TO_FP16(d); + const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f; + const __m256 mul = _mm256_set1_ps( id ); + + // Apply the multiplier + v0 = _mm256_mul_ps( v0, mul ); + v1 = _mm256_mul_ps( v1, mul ); + v2 = _mm256_mul_ps( v2, mul ); + v3 = _mm256_mul_ps( v3, mul ); + + // Round to nearest integer + v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST ); + v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST ); + v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST ); + v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST ); + + // Convert floats to integers + __m256i i0 = _mm256_cvtps_epi32( v0 ); + __m256i i1 = _mm256_cvtps_epi32( v1 ); + __m256i i2 = _mm256_cvtps_epi32( v2 ); + __m256i i3 = _mm256_cvtps_epi32( v3 ); + +#if defined(__AVX2__) + // Convert int32 to int16 + i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15 + i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31 + // Convert int16 to int8 + i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 + + // We got our precious signed bytes, but the order is now wrong + // These AVX2 pack instructions process 16-byte pieces independently + // The following instruction is fixing the order + const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 ); + i0 = _mm256_permutevar8x32_epi32( i0, perm ); + + _mm256_storeu_si256((__m256i *)y[i].qs, i0); +#else + // Since we don't have in AVX some necessary functions, + // we split the registers in half and call AVX2 analogs from SSE + __m128i ni0 = _mm256_castsi256_si128( i0 ); + __m128i ni1 = _mm256_extractf128_si256( i0, 1); + __m128i ni2 = _mm256_castsi256_si128( i1 ); + __m128i ni3 = _mm256_extractf128_si256( i1, 1); + __m128i ni4 = _mm256_castsi256_si128( i2 ); + __m128i ni5 = _mm256_extractf128_si256( i2, 1); + __m128i ni6 = _mm256_castsi256_si128( i3 ); + __m128i ni7 = _mm256_extractf128_si256( i3, 1); + + // Convert int32 to int16 + ni0 = _mm_packs_epi32( ni0, ni1 ); + ni2 = _mm_packs_epi32( ni2, ni3 ); + ni4 = _mm_packs_epi32( ni4, ni5 ); + ni6 = _mm_packs_epi32( ni6, ni7 ); + // Convert int16 to int8 + ni0 = _mm_packs_epi16( ni0, ni2 ); + ni4 = _mm_packs_epi16( ni4, ni6 ); + + _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0); + _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4); +#endif + } +#elif defined(__riscv_v_intrinsic) + + size_t vl = __riscv_vsetvl_e32m4(QK8_0); + + for (int i = 0; i < nb; i++) { + // load elements + vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_0, vl); + + vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl); + vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0f, vl); + vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl); + float amax = __riscv_vfmv_f_s_f32m1_f32(vmax); + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = GGML_FP32_TO_FP16(d); + + vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl); + + // convert to integer + vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl); + vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl); + + // store result + __riscv_vse8_v_i8m1(y[i].qs , vs, vl); + } +#else + GGML_UNUSED(nb); + // scalar + quantize_row_q8_0_reference(x, y, k); +#endif +} + +// reference implementation for deterministic creation of model files +void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int64_t k) { + assert(QK8_1 == 32); + assert(k % QK8_1 == 0); + const int nb = k / QK8_1; + + for (int i = 0; i < nb; i++) { + float amax = 0.0f; // absolute max + + for (int j = 0; j < QK8_1; j++) { + const float v = x[i*QK8_1 + j]; + amax = MAX(amax, fabsf(v)); + } + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = GGML_FP32_TO_FP16(d); + + int sum = 0; + + for (int j = 0; j < QK8_1/2; ++j) { + const float v0 = x[i*QK8_1 + j]*id; + const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id; + + y[i].qs[ j] = roundf(v0); + y[i].qs[QK8_1/2 + j] = roundf(v1); + + sum += y[i].qs[ j]; + sum += y[i].qs[QK8_1/2 + j]; + } + + y[i].s = GGML_FP32_TO_FP16(sum*d); + } +} + +void quantize_row_q8_1(const float * restrict x, void * restrict vy, int64_t k) { + assert(k % QK8_1 == 0); + const int nb = k / QK8_1; + + block_q8_1 * restrict y = vy; + +#if defined(__ARM_NEON) + for (int i = 0; i < nb; i++) { + float32x4_t srcv [8]; + float32x4_t asrcv[8]; + float32x4_t amaxv[8]; + + for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j); + for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]); + + for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]); + for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]); + for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]); + + const float amax = vmaxvq_f32(amaxv[0]); + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = GGML_FP32_TO_FP16(d); + + int32x4_t accv = vdupq_n_s32(0); + + for (int j = 0; j < 8; j++) { + const float32x4_t v = vmulq_n_f32(srcv[j], id); + const int32x4_t vi = vcvtnq_s32_f32(v); + + y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0); + y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1); + y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2); + y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3); + + accv = vaddq_s32(accv, vi); + } + + y[i].s = GGML_FP32_TO_FP16(d * vaddvq_s32(accv)); + } +#elif defined(__wasm_simd128__) + for (int i = 0; i < nb; i++) { + v128_t srcv [8]; + v128_t asrcv[8]; + v128_t amaxv[8]; + + for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j); + for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]); + + for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]); + for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]); + for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]); + + const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0), + wasm_f32x4_extract_lane(amaxv[0], 1)), + MAX(wasm_f32x4_extract_lane(amaxv[0], 2), + wasm_f32x4_extract_lane(amaxv[0], 3))); + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = GGML_FP32_TO_FP16(d); + + v128_t accv = wasm_i32x4_splat(0); + + for (int j = 0; j < 8; j++) { + const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id)); + const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v); + + y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0); + y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1); + y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2); + y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3); + + accv = wasm_i32x4_add(accv, vi); + } + + y[i].s = GGML_FP32_TO_FP16( + d * (wasm_i32x4_extract_lane(accv, 0) + + wasm_i32x4_extract_lane(accv, 1) + + wasm_i32x4_extract_lane(accv, 2) + + wasm_i32x4_extract_lane(accv, 3))); + } +#elif defined(__AVX2__) || defined(__AVX__) + for (int i = 0; i < nb; i++) { + // Load elements into 4 AVX vectors + __m256 v0 = _mm256_loadu_ps( x ); + __m256 v1 = _mm256_loadu_ps( x + 8 ); + __m256 v2 = _mm256_loadu_ps( x + 16 ); + __m256 v3 = _mm256_loadu_ps( x + 24 ); + x += 32; + + // Compute max(abs(e)) for the block + const __m256 signBit = _mm256_set1_ps( -0.0f ); + __m256 maxAbs = _mm256_andnot_ps( signBit, v0 ); + maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) ); + maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) ); + maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) ); + + __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) ); + max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) ); + max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) ); + const float maxScalar = _mm_cvtss_f32( max4 ); + + // Quantize these floats + const float d = maxScalar / 127.f; + y[i].d = GGML_FP32_TO_FP16(d); + const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f; + const __m256 mul = _mm256_set1_ps( id ); + + // Apply the multiplier + v0 = _mm256_mul_ps( v0, mul ); + v1 = _mm256_mul_ps( v1, mul ); + v2 = _mm256_mul_ps( v2, mul ); + v3 = _mm256_mul_ps( v3, mul ); + + // Round to nearest integer + v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST ); + v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST ); + v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST ); + v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST ); + + // Convert floats to integers + __m256i i0 = _mm256_cvtps_epi32( v0 ); + __m256i i1 = _mm256_cvtps_epi32( v1 ); + __m256i i2 = _mm256_cvtps_epi32( v2 ); + __m256i i3 = _mm256_cvtps_epi32( v3 ); + +#if defined(__AVX2__) + // Compute the sum of the quants and set y[i].s + y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)))); + + // Convert int32 to int16 + i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15 + i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31 + // Convert int16 to int8 + i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31 + + // We got our precious signed bytes, but the order is now wrong + // These AVX2 pack instructions process 16-byte pieces independently + // The following instruction is fixing the order + const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 ); + i0 = _mm256_permutevar8x32_epi32( i0, perm ); + + _mm256_storeu_si256((__m256i *)y[i].qs, i0); +#else + // Since we don't have in AVX some necessary functions, + // we split the registers in half and call AVX2 analogs from SSE + __m128i ni0 = _mm256_castsi256_si128( i0 ); + __m128i ni1 = _mm256_extractf128_si256( i0, 1); + __m128i ni2 = _mm256_castsi256_si128( i1 ); + __m128i ni3 = _mm256_extractf128_si256( i1, 1); + __m128i ni4 = _mm256_castsi256_si128( i2 ); + __m128i ni5 = _mm256_extractf128_si256( i2, 1); + __m128i ni6 = _mm256_castsi256_si128( i3 ); + __m128i ni7 = _mm256_extractf128_si256( i3, 1); + + // Compute the sum of the quants and set y[i].s + const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3)); + const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7)); + y[i].s = GGML_FP32_TO_FP16(d * hsum_i32_4(_mm_add_epi32(s0, s1))); + + // Convert int32 to int16 + ni0 = _mm_packs_epi32( ni0, ni1 ); + ni2 = _mm_packs_epi32( ni2, ni3 ); + ni4 = _mm_packs_epi32( ni4, ni5 ); + ni6 = _mm_packs_epi32( ni6, ni7 ); + // Convert int16 to int8 + ni0 = _mm_packs_epi16( ni0, ni2 ); + ni4 = _mm_packs_epi16( ni4, ni6 ); + + _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0); + _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4); +#endif + } +#elif defined(__riscv_v_intrinsic) + + size_t vl = __riscv_vsetvl_e32m4(QK8_1); + + for (int i = 0; i < nb; i++) { + // load elements + vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_1, vl); + + vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl); + vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0, vl); + vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl); + float amax = __riscv_vfmv_f_s_f32m1_f32(vmax); + + const float d = amax / ((1 << 7) - 1); + const float id = d ? 1.0f/d : 0.0f; + + y[i].d = GGML_FP32_TO_FP16(d); + + vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl); + + // convert to integer + vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl); + vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl); + + // store result + __riscv_vse8_v_i8m1(y[i].qs , vs, vl); + + // compute sum for y[i].s + vint16m1_t tmp2 = __riscv_vmv_v_x_i16m1(0, vl); + vint16m1_t vwrs = __riscv_vwredsum_vs_i8m1_i16m1(vs, tmp2, vl); + + // set y[i].s + int sum = __riscv_vmv_x_s_i16m1_i16(vwrs); + y[i].s = GGML_FP32_TO_FP16(sum*d); + } +#else + GGML_UNUSED(nb); + // scalar + quantize_row_q8_1_reference(x, y, k); +#endif +} + +void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int64_t k) { + static const int qk = QK4_0; + + assert(k % qk == 0); + + const int nb = k / qk; + + for (int i = 0; i < nb; i++) { + const float d = GGML_FP16_TO_FP32(x[i].d); + + for (int j = 0; j < qk/2; ++j) { + const int x0 = (x[i].qs[j] & 0x0F) - 8; + const int x1 = (x[i].qs[j] >> 4) - 8; + + y[i*qk + j + 0 ] = x0*d; + y[i*qk + j + qk/2] = x1*d; + } + } +} + +void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int64_t k) { + static const int qk = QK4_1; + + assert(k % qk == 0); + + const int nb = k / qk; + + for (int i = 0; i < nb; i++) { + const float d = GGML_FP16_TO_FP32(x[i].d); + const float m = GGML_FP16_TO_FP32(x[i].m); + + for (int j = 0; j < qk/2; ++j) { + const int x0 = (x[i].qs[j] & 0x0F); + const int x1 = (x[i].qs[j] >> 4); + + y[i*qk + j + 0 ] = x0*d + m; + y[i*qk + j + qk/2] = x1*d + m; + } + } +} + +void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int64_t k) { + static const int qk = QK5_0; + + assert(k % qk == 0); + + const int nb = k / qk; + + for (int i = 0; i < nb; i++) { + const float d = GGML_FP16_TO_FP32(x[i].d); + + uint32_t qh; + memcpy(&qh, x[i].qh, sizeof(qh)); + + for (int j = 0; j < qk/2; ++j) { + const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10; + const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10; + + const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16; + const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16; + + y[i*qk + j + 0 ] = x0*d; + y[i*qk + j + qk/2] = x1*d; + } + } +} + +void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int64_t k) { + static const int qk = QK5_1; + + assert(k % qk == 0); + + const int nb = k / qk; + + for (int i = 0; i < nb; i++) { + const float d = GGML_FP16_TO_FP32(x[i].d); + const float m = GGML_FP16_TO_FP32(x[i].m); + + uint32_t qh; + memcpy(&qh, x[i].qh, sizeof(qh)); + + for (int j = 0; j < qk/2; ++j) { + const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10; + const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10; + + const int x0 = (x[i].qs[j] & 0x0F) | xh_0; + const int x1 = (x[i].qs[j] >> 4) | xh_1; + + y[i*qk + j + 0 ] = x0*d + m; + y[i*qk + j + qk/2] = x1*d + m; + } + } +} + +void dequantize_row_q8_0(const block_q8_0 * restrict x, float * restrict y, int64_t k) { + static const int qk = QK8_0; + + assert(k % qk == 0); + + const int nb = k / qk; + + for (int i = 0; i < nb; i++) { + const float d = GGML_FP16_TO_FP32(x[i].d); + + for (int j = 0; j < qk; ++j) { + y[i*qk + j] = x[i].qs[j]*d; + } + } +} + +// +// 2-6 bit quantization in super-blocks +// + +// +// ===================== Helper functions +// +static inline int nearest_int(float fval) { + assert(fval <= 4194303.f); + float val = fval + 12582912.f; + int i; memcpy(&i, &val, sizeof(int)); + return (i & 0x007fffff) - 0x00400000; +} + +static float make_qx_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, int rmse_type, + const float * restrict qw) { + float max = 0; + float amax = 0; + for (int i = 0; i < n; ++i) { + float ax = fabsf(x[i]); + if (ax > amax) { amax = ax; max = x[i]; } + } + if (amax < 1e-30f) { // all zero + for (int i = 0; i < n; ++i) { + L[i] = 0; + } + return 0.f; + } + float iscale = -nmax / max; + if (rmse_type == 0) { + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale * x[i]); + L[i] = nmax + MAX(-nmax, MIN(nmax-1, l)); + } + return 1/iscale; + } + bool return_early = false; + if (rmse_type < 0) { + rmse_type = -rmse_type; + return_early = true; + } + float sumlx = 0; + float suml2 = 0; +#ifdef HAVE_BUGGY_APPLE_LINKER + // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7 + for (volatile int i = 0; i < n; ++i) { +#else + for (int i = 0; i < n; ++i) { +#endif + int l = nearest_int(iscale * x[i]); + l = MAX(-nmax, MIN(nmax-1, l)); + L[i] = l + nmax; + float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i])); + sumlx += w*x[i]*l; + suml2 += w*l*l; + } + float scale = sumlx/suml2; + if (return_early) return suml2 > 0 ? 0.5f*(scale + 1/iscale) : 1/iscale; + float best = scale * sumlx; + for (int is = -9; is <= 9; ++is) { + if (is == 0) { + continue; + } + iscale = -(nmax + 0.1f*is) / max; + sumlx = suml2 = 0; + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale * x[i]); + l = MAX(-nmax, MIN(nmax-1, l)); + float w = qw ? qw[i] : rmse_type == 1 ? x[i] * x[i] : rmse_type == 2 ? 1 : rmse_type == 3 ? fabsf(x[i]) : sqrtf(fabsf(x[i])); + sumlx += w*x[i]*l; + suml2 += w*l*l; + } + if (suml2 > 0 && sumlx*sumlx > best*suml2) { + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale * x[i]); + L[i] = nmax + MAX(-nmax, MIN(nmax-1, l)); + } + scale = sumlx/suml2; best = scale*sumlx; + } + } + return scale; +} + +static float make_q3_quants(int n, int nmax, const float * restrict x, int8_t * restrict L, bool do_rmse) { + float max = 0; + float amax = 0; + for (int i = 0; i < n; ++i) { + float ax = fabsf(x[i]); + if (ax > amax) { amax = ax; max = x[i]; } + } + if (!amax) { // all zero + for (int i = 0; i < n; ++i) { L[i] = 0; } + return 0.f; + } + float iscale = -nmax / max; + if (do_rmse) { + float sumlx = 0; + float suml2 = 0; + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale * x[i]); + l = MAX(-nmax, MIN(nmax-1, l)); + L[i] = l; + float w = x[i]*x[i]; + sumlx += w*x[i]*l; + suml2 += w*l*l; + } + for (int itry = 0; itry < 5; ++itry) { + int n_changed = 0; + for (int i = 0; i < n; ++i) { + float w = x[i]*x[i]; + float slx = sumlx - w*x[i]*L[i]; + if (slx > 0) { + float sl2 = suml2 - w*L[i]*L[i]; + int new_l = nearest_int(x[i] * sl2 / slx); + new_l = MAX(-nmax, MIN(nmax-1, new_l)); + if (new_l != L[i]) { + slx += w*x[i]*new_l; + sl2 += w*new_l*new_l; + if (sl2 > 0 && slx*slx*suml2 > sumlx*sumlx*sl2) { + L[i] = new_l; sumlx = slx; suml2 = sl2; + ++n_changed; + } + } + } + } + if (!n_changed) { + break; + } + } + for (int i = 0; i < n; ++i) { + L[i] += nmax; + } + return sumlx / suml2; + } + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale * x[i]); + l = MAX(-nmax, MIN(nmax-1, l)); + L[i] = l + nmax; + } + return 1/iscale; +} + +static float make_qkx1_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, float * restrict the_min, + int ntry, float alpha) { + float min = x[0]; + float max = x[0]; + for (int i = 1; i < n; ++i) { + if (x[i] < min) min = x[i]; + if (x[i] > max) max = x[i]; + } + if (max == min) { + for (int i = 0; i < n; ++i) L[i] = 0; + *the_min = 0; + return 0.f; + } + if (min > 0) min = 0; + float iscale = nmax/(max - min); + float scale = 1/iscale; + for (int itry = 0; itry < ntry; ++itry) { + float sumlx = 0; int suml2 = 0; + bool did_change = false; + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale*(x[i] - min)); + l = MAX(0, MIN(nmax, l)); + if (l != L[i]) { + L[i] = l; + did_change = true; + } + sumlx += (x[i] - min)*l; + suml2 += l*l; + } + scale = sumlx/suml2; + float sum = 0; + for (int i = 0; i < n; ++i) { + sum += x[i] - scale*L[i]; + } + min = alpha*min + (1 - alpha)*sum/n; + if (min > 0) min = 0; + iscale = 1/scale; + if (!did_change) break; + } + *the_min = -min; + return scale; +} + +static float make_qkx2_quants(int n, int nmax, const float * restrict x, const float * restrict weights, + uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux, + float rmin, float rdelta, int nstep, bool use_mad) { + float min = x[0]; + float max = x[0]; + float sum_w = weights[0]; + float sum_x = sum_w * x[0]; +#ifdef HAVE_BUGGY_APPLE_LINKER + // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7 + for (volatile int i = 1; i < n; ++i) { +#else + for (int i = 1; i < n; ++i) { +#endif + if (x[i] < min) min = x[i]; + if (x[i] > max) max = x[i]; + float w = weights[i]; + sum_w += w; + sum_x += w * x[i]; + } + if (min > 0) min = 0; + if (max == min) { + for (int i = 0; i < n; ++i) L[i] = 0; + *the_min = -min; + return 0.f; + } + float iscale = nmax/(max - min); + float scale = 1/iscale; + float best_mad = 0; + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale*(x[i] - min)); + L[i] = MAX(0, MIN(nmax, l)); + float diff = scale * L[i] + min - x[i]; + diff = use_mad ? fabsf(diff) : diff * diff; + float w = weights[i]; + best_mad += w * diff; + } + if (nstep < 1) { + *the_min = -min; + return scale; + } + for (int is = 0; is <= nstep; ++is) { + iscale = (rmin + rdelta*is + nmax)/(max - min); + float sum_l = 0, sum_l2 = 0, sum_xl = 0; + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale*(x[i] - min)); + l = MAX(0, MIN(nmax, l)); + Laux[i] = l; + float w = weights[i]; + sum_l += w*l; + sum_l2 += w*l*l; + sum_xl += w*l*x[i]; + } + float D = sum_w * sum_l2 - sum_l * sum_l; + if (D > 0) { + float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D; + float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D; + if (this_min > 0) { + this_min = 0; + this_scale = sum_xl / sum_l2; + } + float mad = 0; + for (int i = 0; i < n; ++i) { + float diff = this_scale * Laux[i] + this_min - x[i]; + diff = use_mad ? fabsf(diff) : diff * diff; + float w = weights[i]; + mad += w * diff; + } + if (mad < best_mad) { + for (int i = 0; i < n; ++i) { + L[i] = Laux[i]; + } + best_mad = mad; + scale = this_scale; + min = this_min; + } + } + } + *the_min = -min; + return scale; +} + +#if QK_K == 256 +static inline void get_scale_min_k4(int j, const uint8_t * restrict q, uint8_t * restrict d, uint8_t * restrict m) { + if (j < 4) { + *d = q[j] & 63; *m = q[j + 4] & 63; + } else { + *d = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4); + *m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4); + } +} +#endif + +//========================- 2-bit (de)-quantization + +void quantize_row_q2_K_reference(const float * restrict x, block_q2_K * restrict y, int64_t k) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + + uint8_t L[QK_K]; + uint8_t Laux[16]; + float weights[16]; + float mins[QK_K/16]; + float scales[QK_K/16]; + + const float q4scale = 15.f; + + for (int i = 0; i < nb; i++) { + float max_scale = 0; // as we are deducting the min, scales are always positive + float max_min = 0; + for (int j = 0; j < QK_K/16; ++j) { + for (int l = 0; l < 16; ++l) weights[l] = fabsf(x[16*j + l]); + scales[j] = make_qkx2_quants(16, 3, x + 16*j, weights, L + 16*j, &mins[j], Laux, -0.5f, 0.1f, 15, true); + float scale = scales[j]; + if (scale > max_scale) { + max_scale = scale; + } + float min = mins[j]; + if (min > max_min) { + max_min = min; + } + } + + if (max_scale > 0) { + float iscale = q4scale/max_scale; + for (int j = 0; j < QK_K/16; ++j) { + int l = nearest_int(iscale*scales[j]); + y[i].scales[j] = l; + } + y[i].d = GGML_FP32_TO_FP16(max_scale/q4scale); + } else { + for (int j = 0; j < QK_K/16; ++j) y[i].scales[j] = 0; + y[i].d = GGML_FP32_TO_FP16(0.f); + } + if (max_min > 0) { + float iscale = q4scale/max_min; + for (int j = 0; j < QK_K/16; ++j) { + int l = nearest_int(iscale*mins[j]); + y[i].scales[j] |= (l << 4); + } + y[i].dmin = GGML_FP32_TO_FP16(max_min/q4scale); + } else { + y[i].dmin = GGML_FP32_TO_FP16(0.f); + } + for (int j = 0; j < QK_K/16; ++j) { + const float d = GGML_FP16_TO_FP32(y[i].d) * (y[i].scales[j] & 0xF); + if (!d) continue; + const float dm = GGML_FP16_TO_FP32(y[i].dmin) * (y[i].scales[j] >> 4); + for (int ii = 0; ii < 16; ++ii) { + int l = nearest_int((x[16*j + ii] + dm)/d); + l = MAX(0, MIN(3, l)); + L[16*j + ii] = l; + } + } + +#if QK_K == 256 + for (int j = 0; j < QK_K; j += 128) { + for (int l = 0; l < 32; ++l) { + y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6); + } + } +#else + for (int l = 0; l < 16; ++l) { + y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6); + } +#endif + + x += QK_K; + + } +} + +void dequantize_row_q2_K(const block_q2_K * restrict x, float * restrict y, int64_t k) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + + for (int i = 0; i < nb; i++) { + + const float d = GGML_FP16_TO_FP32(x[i].d); + const float min = GGML_FP16_TO_FP32(x[i].dmin); + + const uint8_t * q = x[i].qs; + +#if QK_K == 256 + int is = 0; + float dl, ml; + for (int n = 0; n < QK_K; n += 128) { + int shift = 0; + for (int j = 0; j < 4; ++j) { + + uint8_t sc = x[i].scales[is++]; + dl = d * (sc & 0xF); ml = min * (sc >> 4); + for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml; + + sc = x[i].scales[is++]; + dl = d * (sc & 0xF); ml = min * (sc >> 4); + for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml; + + shift += 2; + } + q += 32; + } +#else + float dl1 = d * (x[i].scales[0] & 0xF), ml1 = min * (x[i].scales[0] >> 4); + float dl2 = d * (x[i].scales[1] & 0xF), ml2 = min * (x[i].scales[1] >> 4); + float dl3 = d * (x[i].scales[2] & 0xF), ml3 = min * (x[i].scales[2] >> 4); + float dl4 = d * (x[i].scales[3] & 0xF), ml4 = min * (x[i].scales[3] >> 4); + for (int l = 0; l < 16; ++l) { + y[l+ 0] = dl1 * ((int8_t)((q[l] >> 0) & 3)) - ml1; + y[l+16] = dl2 * ((int8_t)((q[l] >> 2) & 3)) - ml2; + y[l+32] = dl3 * ((int8_t)((q[l] >> 4) & 3)) - ml3; + y[l+48] = dl4 * ((int8_t)((q[l] >> 6) & 3)) - ml4; + } + y += QK_K; +#endif + } +} + +void quantize_row_q2_K(const float * restrict x, void * restrict vy, int64_t k) { + quantize_row_q2_K_reference(x, vy, k); +} + +static float make_qkx3_quants(int n, int nmax, const float * restrict x, const float * restrict weights, + uint8_t * restrict L, float * restrict the_min, uint8_t * restrict Laux, + float rmin, float rdelta, int nstep, bool use_mad) { + float min = x[0]; + float max = x[0]; + float sum_w = weights ? weights[0] : x[0]*x[0]; + float sum_x = sum_w * x[0]; +#ifdef HAVE_BUGGY_APPLE_LINKER + // use 'volatile' to prevent unroll and work around a bug in Apple ld64 1015.7 + for (volatile int i = 1; i < n; ++i) { +#else + for (int i = 1; i < n; ++i) { +#endif + if (x[i] < min) min = x[i]; + if (x[i] > max) max = x[i]; + float w = weights ? weights[i] : x[i]*x[i]; + sum_w += w; + sum_x += w * x[i]; + } + if (min > 0) { + min = 0; + } + if (max <= min) { + memset(L, 0, n); + *the_min = -min; + return 0.f; + } + float iscale = nmax/(max - min); + float scale = 1/iscale; + float best_mad = 0; + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale*(x[i] - min)); + L[i] = MAX(0, MIN(nmax, l)); + float diff = scale * L[i] + min - x[i]; + diff = use_mad ? fabsf(diff) : diff*diff; + float w = weights ? weights[i] : x[i]*x[i]; + best_mad += w * diff; + } + if (nstep < 1) { + *the_min = -min; + return scale; + } + for (int is = 0; is <= nstep; ++is) { + iscale = (rmin + rdelta*is + nmax)/(max - min); + float sum_l = 0, sum_l2 = 0, sum_xl = 0; + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale*(x[i] - min)); + l = MAX(0, MIN(nmax, l)); + Laux[i] = l; + float w = weights ? weights[i] : x[i]*x[i]; + sum_l += w*l; + sum_l2 += w*l*l; + sum_xl += w*l*x[i]; + } + float D = sum_w * sum_l2 - sum_l * sum_l; + if (D > 0) { + float this_scale = (sum_w * sum_xl - sum_x * sum_l)/D; + float this_min = (sum_l2 * sum_x - sum_l * sum_xl)/D; + if (this_min > 0) { + this_min = 0; + this_scale = sum_xl / sum_l2; + } + float mad = 0; + for (int i = 0; i < n; ++i) { + float diff = this_scale * Laux[i] + this_min - x[i]; + diff = use_mad ? fabsf(diff) : diff*diff; + float w = weights ? weights[i] : x[i]*x[i]; + mad += w * diff; + } + if (mad < best_mad) { + for (int i = 0; i < n; ++i) { + L[i] = Laux[i]; + } + best_mad = mad; + scale = this_scale; + min = this_min; + } + } + } + *the_min = -min; + return scale; +} + +static float make_qp_quants(int n, int nmax, const float * restrict x, uint8_t * restrict L, const float * quant_weights) { + float max = 0; + for (int i = 0; i < n; ++i) { + max = MAX(max, x[i]); + } + if (!max) { // all zero + for (int i = 0; i < n; ++i) { L[i] = 0; } + return 0.f; + } + float iscale = nmax / max; + for (int i = 0; i < n; ++i) { + L[i] = nearest_int(iscale * x[i]); + } + float scale = 1/iscale; + float best_mse = 0; + for (int i = 0; i < n; ++i) { + float diff = x[i] - scale*L[i]; + float w = quant_weights[i]; + best_mse += w*diff*diff; + } + for (int is = -4; is <= 4; ++is) { + if (is == 0) continue; + float iscale_is = (0.1f*is + nmax)/max; + float scale_is = 1/iscale_is; + float mse = 0; + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale_is*x[i]); + l = MIN(nmax, l); + float diff = x[i] - scale_is*l; + float w = quant_weights[i]; + mse += w*diff*diff; + } + if (mse < best_mse) { + best_mse = mse; + iscale = iscale_is; + } + } + float sumlx = 0; + float suml2 = 0; + for (int i = 0; i < n; ++i) { + int l = nearest_int(iscale * x[i]); + l = MIN(nmax, l); + L[i] = l; + float w = quant_weights[i]; + sumlx += w*x[i]*l; + suml2 += w*l*l; + } + for (int itry = 0; itry < 5; ++itry) { + int n_changed = 0; + for (int i = 0; i < n; ++i) { + float w = quant_weights[i]; + float slx = sumlx - w*x[i]*L[i]; + float sl2 = suml2 - w*L[i]*L[i]; + if (slx > 0 && sl2 > 0) { + int new_l = nearest_int(x[i] * sl2 / slx); + new_l = MIN(nmax, new_l); + if (new_l != L[i]) { + slx += w*x[i]*new_l; + sl2 += w*new_l*new_l; + if (slx*slx*suml2 > sumlx*sumlx*sl2) { + L[i] = new_l; sumlx = slx; suml2 = sl2; + ++n_changed; + } + } + } + } + if (!n_changed) { + break; + } + } + return sumlx / suml2; +} + +static void quantize_row_q2_K_impl(const float * restrict x, block_q2_K * restrict y, int k, const float * restrict quant_weights) { + GGML_ASSERT(quant_weights); + assert(k % QK_K == 0); + const int nb = k / QK_K; + const bool requantize = true; + + uint8_t L[QK_K]; + uint8_t Laux[16]; + float mins[QK_K/16]; + float scales[QK_K/16]; + float sw[QK_K/16]; + float weight[16]; + uint8_t Ls[QK_K/16], Lm[QK_K/16]; + + for (int i = 0; i < nb; i++) { + memset(sw, 0, QK_K/16*sizeof(float)); + float sumx2 = 0; + for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j]; + float sigma2 = sumx2/QK_K; + for (int j = 0; j < QK_K/16; ++j) { + const float * restrict qw = quant_weights + QK_K * i + 16*j; + for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j + l]*x[16*j + l]); + for (int l = 0; l < QK_K/16; ++l) sw[j] += weight[l]; + scales[j] = make_qkx3_quants(16, 3, x + 16*j, weight, L + 16*j, &mins[j], Laux, -0.9f, 0.05f, 36, false); + } + + float dm, mm; +#if QK_K == 64 + float max_scale = 0, max_min = 0; + for (int j = 0; j < QK_K/16; ++j) { + max_scale = MAX(max_scale, scales[j]); + max_min = MAX(max_min, mins[j]); + } + dm = max_scale/15; + mm = max_min/15; + if (max_scale) { + float id = 1/dm; + for (int j = 0; j < QK_K/16; ++j) { + int l = nearest_int(id*scales[j]); + Ls[j] = MAX(0, MIN(15, l)); + } + } else { + memset(Ls, 0, QK_K/16); + } + if (max_min) { + float id = 1/mm; + for (int j = 0; j < QK_K/16; ++j) { + int l = nearest_int(id*mins[j]); + Lm[j] = MAX(0, MIN(15, l)); + } + } else { + memset(Lm, 0, QK_K/16); + } +#else + dm = make_qp_quants(QK_K/16, 15, scales, Ls, sw); + mm = make_qp_quants(QK_K/16, 15, mins, Lm, sw); +#endif + y[i].d = GGML_FP32_TO_FP16(dm); + y[i].dmin = GGML_FP32_TO_FP16(mm); + dm = GGML_FP16_TO_FP32(y[i].d); + mm = GGML_FP16_TO_FP32(y[i].dmin); + + for (int j = 0; j < QK_K/16; ++j) { + y[i].scales[j] = Ls[j] | (Lm[j] << 4); + } + + if (requantize) { + for (int j = 0; j < QK_K/16; ++j) { + const float d = dm * (y[i].scales[j] & 0xF); + if (!d) continue; + const float m = mm * (y[i].scales[j] >> 4); + for (int ii = 0; ii < 16; ++ii) { + int l = nearest_int((x[16*j + ii] + m)/d); + l = MAX(0, MIN(3, l)); + L[16*j + ii] = l; + } + } + } + +#if QK_K == 256 + for (int j = 0; j < QK_K; j += 128) { + for (int l = 0; l < 32; ++l) { + y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6); + } + } +#else + for (int l = 0; l < 16; ++l) { + y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6); + } +#endif + + x += QK_K; + + } +} + +size_t quantize_q2_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { + size_t row_size = ggml_row_size(GGML_TYPE_Q2_K, n_per_row); + if (!quant_weights) { + quantize_row_q2_K_reference(src, dst, (int64_t)nrow*n_per_row); + } + else { + char * qrow = (char *)dst; + for (int64_t row = 0; row < nrow; ++row) { + quantize_row_q2_K_impl(src, (block_q2_K*)qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += row_size; + } + } + return nrow * row_size; +} + +//========================= 3-bit (de)-quantization + +void quantize_row_q3_K_reference(const float * restrict x, block_q3_K * restrict y, int64_t k) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + + int8_t L[QK_K]; + float scales[QK_K / 16]; + + for (int i = 0; i < nb; i++) { + + float max_scale = 0; + float amax = 0; + for (int j = 0; j < QK_K/16; ++j) { + scales[j] = make_q3_quants(16, 4, x + 16*j, L + 16*j, true); + float scale = fabsf(scales[j]); + if (scale > amax) { + amax = scale; max_scale = scales[j]; + } + } + +#if QK_K == 256 + memset(y[i].scales, 0, 12); + if (max_scale) { + float iscale = -32.f/max_scale; + for (int j = 0; j < QK_K/16; ++j) { + int8_t l = nearest_int(iscale*scales[j]); + l = MAX(-32, MIN(31, l)) + 32; + if (j < 8) { + y[i].scales[j] = l & 0xF; + } else { + y[i].scales[j-8] |= ((l & 0xF) << 4); + } + l >>= 4; + y[i].scales[j%4 + 8] |= (l << (2*(j/4))); + } + y[i].d = GGML_FP32_TO_FP16(1/iscale); + } else { + y[i].d = GGML_FP32_TO_FP16(0.f); + } + + int8_t sc; + for (int j = 0; j < QK_K/16; ++j) { + sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4; + sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32; + float d = GGML_FP16_TO_FP32(y[i].d) * sc; + if (!d) { + continue; + } + for (int ii = 0; ii < 16; ++ii) { + int l = nearest_int(x[16*j + ii]/d); + l = MAX(-4, MIN(3, l)); + L[16*j + ii] = l + 4; + } + } +#else + if (max_scale) { + float iscale = -8.f/max_scale; + for (int j = 0; j < QK_K/16; j+=2) { + int l1 = nearest_int(iscale*scales[j]); + l1 = 8 + MAX(-8, MIN(7, l1)); + int l2 = nearest_int(iscale*scales[j+1]); + l2 = 8 + MAX(-8, MIN(7, l2)); + y[i].scales[j/2] = l1 | (l2 << 4); + } + y[i].d = GGML_FP32_TO_FP16(1/iscale); + } else { + for (int j = 0; j < QK_K/16; j+=2) { + y[i].scales[j/2] = 0; + } + y[i].d = GGML_FP32_TO_FP16(0.f); + } + for (int j = 0; j < QK_K/16; ++j) { + int s = j%2 == 0 ? y[i].scales[j/2] & 0xF : y[i].scales[j/2] >> 4; + float d = GGML_FP16_TO_FP32(y[i].d) * (s - 8); + if (!d) { + continue; + } + for (int ii = 0; ii < 16; ++ii) { + int l = nearest_int(x[16*j + ii]/d); + l = MAX(-4, MIN(3, l)); + L[16*j + ii] = l + 4; + } + } +#endif + + memset(y[i].hmask, 0, QK_K/8); + // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc. + int m = 0; + uint8_t hm = 1; + for (int j = 0; j < QK_K; ++j) { + if (L[j] > 3) { + y[i].hmask[m] |= hm; + L[j] -= 4; + } + if (++m == QK_K/8) { + m = 0; hm <<= 1; + } + } +#if QK_K == 256 + for (int j = 0; j < QK_K; j += 128) { + for (int l = 0; l < 32; ++l) { + y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6); + } + } +#else + for (int l = 0; l < 16; ++l) { + y[i].qs[l] = L[l] | (L[l + 16] << 2) | (L[l + 32] << 4) | (L[l + 48] << 6); + } +#endif + + x += QK_K; + } +} + +#if QK_K == 256 +void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int64_t k) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + + const uint32_t kmask1 = 0x03030303; + const uint32_t kmask2 = 0x0f0f0f0f; + + uint32_t aux[4]; + const int8_t * scales = (const int8_t*)aux; + + for (int i = 0; i < nb; i++) { + + const float d_all = GGML_FP16_TO_FP32(x[i].d); + + const uint8_t * restrict q = x[i].qs; + const uint8_t * restrict hm = x[i].hmask; + uint8_t m = 1; + + memcpy(aux, x[i].scales, 12); + uint32_t tmp = aux[2]; + aux[2] = ((aux[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4); + aux[3] = ((aux[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4); + aux[0] = (aux[0] & kmask2) | (((tmp >> 0) & kmask1) << 4); + aux[1] = (aux[1] & kmask2) | (((tmp >> 2) & kmask1) << 4); + + int is = 0; + float dl; + for (int n = 0; n < QK_K; n += 128) { + int shift = 0; + for (int j = 0; j < 4; ++j) { + + dl = d_all * (scales[is++] - 32); + for (int l = 0; l < 16; ++l) { + *y++ = dl * ((int8_t)((q[l+ 0] >> shift) & 3) - ((hm[l+ 0] & m) ? 0 : 4)); + } + + dl = d_all * (scales[is++] - 32); + for (int l = 0; l < 16; ++l) { + *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3) - ((hm[l+16] & m) ? 0 : 4)); + } + + shift += 2; + m <<= 1; + } + q += 32; + } + + } +} +#else +void dequantize_row_q3_K(const block_q3_K * restrict x, float * restrict y, int64_t k) { + assert(k % QK_K == 0); + assert(QK_K == 64); + const int nb = k / QK_K; + + for (int i = 0; i < nb; i++) { + + const float d_all = GGML_FP16_TO_FP32(x[i].d); + + const uint8_t * restrict q = x[i].qs; + const uint8_t * restrict hm = x[i].hmask; + + const float d1 = d_all * ((x[i].scales[0] & 0xF) - 8); + const float d2 = d_all * ((x[i].scales[0] >> 4) - 8); + const float d3 = d_all * ((x[i].scales[1] & 0xF) - 8); + const float d4 = d_all * ((x[i].scales[1] >> 4) - 8); + + for (int l=0; l<8; ++l) { + uint8_t h = hm[l]; + y[l+ 0] = d1 * ((int8_t)((q[l+0] >> 0) & 3) - ((h & 0x01) ? 0 : 4)); + y[l+ 8] = d1 * ((int8_t)((q[l+8] >> 0) & 3) - ((h & 0x02) ? 0 : 4)); + y[l+16] = d2 * ((int8_t)((q[l+0] >> 2) & 3) - ((h & 0x04) ? 0 : 4)); + y[l+24] = d2 * ((int8_t)((q[l+8] >> 2) & 3) - ((h & 0x08) ? 0 : 4)); + y[l+32] = d3 * ((int8_t)((q[l+0] >> 4) & 3) - ((h & 0x10) ? 0 : 4)); + y[l+40] = d3 * ((int8_t)((q[l+8] >> 4) & 3) - ((h & 0x20) ? 0 : 4)); + y[l+48] = d4 * ((int8_t)((q[l+0] >> 6) & 3) - ((h & 0x40) ? 0 : 4)); + y[l+56] = d4 * ((int8_t)((q[l+8] >> 6) & 3) - ((h & 0x80) ? 0 : 4)); + } + y += QK_K; + } +} +#endif + +void quantize_row_q3_K(const float * restrict x, void * restrict vy, int64_t k) { + quantize_row_q3_K_reference(x, vy, k); +} + +static void quantize_row_q3_K_impl(const float * restrict x, block_q3_K * restrict y, int64_t n_per_row, const float * restrict quant_weights) { +#if QK_K != 256 + (void)quant_weights; + quantize_row_q3_K_reference(x, y, n_per_row); +#else + assert(n_per_row % QK_K == 0); + const int nb = n_per_row / QK_K; + + int8_t L[QK_K]; + float scales[QK_K / 16]; + float weight[16]; + float sw[QK_K / 16]; + int8_t Ls[QK_K / 16]; + + for (int i = 0; i < nb; i++) { + + float sumx2 = 0; + for (int j = 0; j < QK_K; ++j) sumx2 += x[j]*x[j]; + float sigma2 = 2*sumx2/QK_K; + + for (int j = 0; j < QK_K/16; ++j) { + if (quant_weights) { + const float * qw = quant_weights ? quant_weights + QK_K * i + 16*j : NULL; + for (int l = 0; l < 16; ++l) weight[l] = qw[l] * sqrtf(sigma2 + x[16*j+l]*x[16*j+l]); + } else { + for (int l = 0; l < 16; ++l) weight[l] = x[16*j+l]*x[16*j+l]; + } + float sumw = 0; + for (int l = 0; l < 16; ++l) sumw += weight[l]; + sw[j] = sumw; + + scales[j] = make_qx_quants(16, 4, x + 16*j, L + 16*j, 1, weight); + + } + + memset(y[i].scales, 0, 12); + + float d_block = make_qx_quants(QK_K/16, 32, scales, Ls, 1, sw); + for (int j = 0; j < QK_K/16; ++j) { + int l = Ls[j]; + if (j < 8) { + y[i].scales[j] = l & 0xF; + } else { + y[i].scales[j-8] |= ((l & 0xF) << 4); + } + l >>= 4; + y[i].scales[j%4 + 8] |= (l << (2*(j/4))); + } + y[i].d = GGML_FP32_TO_FP16(d_block); + + int8_t sc; + for (int j = 0; j < QK_K/16; ++j) { + sc = j < 8 ? y[i].scales[j] & 0xF : y[i].scales[j-8] >> 4; + sc = (sc | (((y[i].scales[8 + j%4] >> (2*(j/4))) & 3) << 4)) - 32; + float d = GGML_FP16_TO_FP32(y[i].d) * sc; + if (!d) { + continue; + } + for (int ii = 0; ii < 16; ++ii) { + int l = nearest_int(x[16*j + ii]/d); + l = MAX(-4, MIN(3, l)); + L[16*j + ii] = l + 4; + } + } + + memset(y[i].hmask, 0, QK_K/8); + // We put the high-bit for the 1st 8 quants into bit 0, the next 8 into bit 1, etc. + int m = 0; + uint8_t hm = 1; + for (int j = 0; j < QK_K; ++j) { + if (L[j] > 3) { + y[i].hmask[m] |= hm; + L[j] -= 4; + } + if (++m == QK_K/8) { + m = 0; hm <<= 1; + } + } + for (int j = 0; j < QK_K; j += 128) { + for (int l = 0; l < 32; ++l) { + y[i].qs[j/4 + l] = L[j + l] | (L[j + l + 32] << 2) | (L[j + l + 64] << 4) | (L[j + l + 96] << 6); + } + } + + x += QK_K; + } +#endif +} + +size_t quantize_q3_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { + size_t row_size = ggml_row_size(GGML_TYPE_Q3_K, n_per_row); + if (!quant_weights) { + quantize_row_q3_K_reference(src, dst, (int64_t)nrow*n_per_row); + } + else { + char * qrow = (char *)dst; + for (int64_t row = 0; row < nrow; ++row) { + quantize_row_q3_K_impl(src, (block_q3_K*)qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += row_size; + } + } + return nrow * row_size; +} + +// ====================== 4-bit (de)-quantization + +void quantize_row_q4_K_reference(const float * restrict x, block_q4_K * restrict y, int64_t k) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + + uint8_t L[QK_K]; + uint8_t Laux[32]; + float weights[32]; + float mins[QK_K/32]; + float scales[QK_K/32]; + + for (int i = 0; i < nb; i++) { + + float max_scale = 0; // as we are deducting the min, scales are always positive + float max_min = 0; + for (int j = 0; j < QK_K/32; ++j) { + //scales[j] = make_qkx1_quants(32, 15, x + 32*j, L + 32*j, &mins[j], 9, 0.5f); + float sum_x2 = 0; + for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l]; + float av_x = sqrtf(sum_x2/32); + for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]); + scales[j] = make_qkx2_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -1.f, 0.1f, 20, false); + float scale = scales[j]; + if (scale > max_scale) { + max_scale = scale; + } + float min = mins[j]; + if (min > max_min) { + max_min = min; + } + } + +#if QK_K == 256 + float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f; + float inv_min = max_min > 0 ? 63.f/max_min : 0.f; + for (int j = 0; j < QK_K/32; ++j) { + uint8_t ls = nearest_int(inv_scale*scales[j]); + uint8_t lm = nearest_int(inv_min*mins[j]); + ls = MIN(63, ls); + lm = MIN(63, lm); + if (j < 4) { + y[i].scales[j] = ls; + y[i].scales[j+4] = lm; + } else { + y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4); + y[i].scales[j-4] |= ((ls >> 4) << 6); + y[i].scales[j-0] |= ((lm >> 4) << 6); + } + } + y[i].d = GGML_FP32_TO_FP16(max_scale/63.f); + y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f); + + uint8_t sc, m; + for (int j = 0; j < QK_K/32; ++j) { + get_scale_min_k4(j, y[i].scales, &sc, &m); + const float d = GGML_FP16_TO_FP32(y[i].d) * sc; + if (!d) continue; + const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m; + for (int ii = 0; ii < 32; ++ii) { + int l = nearest_int((x[32*j + ii] + dm)/d); + l = MAX(0, MIN(15, l)); + L[32*j + ii] = l; + } + } +#else + const float s_factor = 15.f; + float inv_scale = max_scale > 0 ? s_factor/max_scale : 0.f; + float inv_min = max_min > 0 ? s_factor/max_min : 0.f; + int d1 = nearest_int(inv_scale*scales[0]); + int m1 = nearest_int(inv_min*mins[0]); + int d2 = nearest_int(inv_scale*scales[1]); + int m2 = nearest_int(inv_min*mins[1]); + y[i].scales[0] = d1 | (m1 << 4); + y[i].scales[1] = d2 | (m2 << 4); + y[i].d[0] = GGML_FP32_TO_FP16(max_scale/s_factor); + y[i].d[1] = GGML_FP32_TO_FP16(max_min/s_factor); + + float sumlx = 0; + int suml2 = 0; + for (int j = 0; j < QK_K/32; ++j) { + const uint8_t sd = y[i].scales[j] & 0xF; + const uint8_t sm = y[i].scales[j] >> 4; + const float d = GGML_FP16_TO_FP32(y[i].d[0]) * sd; + if (!d) continue; + const float m = GGML_FP16_TO_FP32(y[i].d[1]) * sm; + for (int ii = 0; ii < 32; ++ii) { + int l = nearest_int((x[32*j + ii] + m)/d); + l = MAX(0, MIN(15, l)); + L[32*j + ii] = l; + sumlx += (x[32*j + ii] + m)*l*sd; + suml2 += l*l*sd*sd; + } + } + if (suml2) { + y[i].d[0] = GGML_FP32_TO_FP16(sumlx/suml2); + } +#endif + uint8_t * q = y[i].qs; + for (int j = 0; j < QK_K; j += 64) { + for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4); + q += 32; + } + + x += QK_K; + + } +} + +void dequantize_row_q4_K(const block_q4_K * restrict x, float * restrict y, int64_t k) { + assert(k % QK_K == 0); + const int nb = k / QK_K; + + for (int i = 0; i < nb; i++) { + + const uint8_t * q = x[i].qs; + +#if QK_K == 256 + + const float d = GGML_FP16_TO_FP32(x[i].d); + const float min = GGML_FP16_TO_FP32(x[i].dmin); + + int is = 0; + uint8_t sc, m; + for (int j = 0; j < QK_K; j += 64) { + get_scale_min_k4(is + 0, x[i].scales, &sc, &m); + const float d1 = d * sc; const float m1 = min * m; + get_scale_min_k4(is + 1, x[i].scales, &sc, &m); + const float d2 = d * sc; const float m2 = min * m; + for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1; + for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2; + q += 32; is += 2; + } +#else + const float dall = GGML_FP16_TO_FP32(x[i].d[0]); + const float mall = GGML_FP16_TO_FP32(x[i].d[1]); + const float d1 = dall * (x[i].scales[0] & 0xF), m1 = mall * (x[i].scales[0] >> 4); + const float d2 = dall * (x[i].scales[1] & 0xF), m2 = mall * (x[i].scales[1] >> 4); + for (int l = 0; l < 32; ++l) { + y[l+ 0] = d1 * (q[l] & 0xF) - m1; + y[l+32] = d2 * (q[l] >> 4) - m2; + } + y += QK_K; +#endif + + } +} + +void quantize_row_q4_K(const float * restrict x, void * restrict vy, int64_t k) { + assert(k % QK_K == 0); + block_q4_K * restrict y = vy; + quantize_row_q4_K_reference(x, y, k); +} + +static void quantize_row_q4_K_impl(const float * restrict x, block_q4_K * restrict y, int64_t n_per_row, const float * quant_weights) { +#if QK_K != 256 + (void)quant_weights; + quantize_row_q4_K_reference(x, y, n_per_row); +#else + assert(n_per_row % QK_K == 0); + const int64_t nb = n_per_row / QK_K; + + uint8_t L[QK_K]; + uint8_t Laux[32]; + uint8_t Ls[QK_K/32]; + uint8_t Lm[QK_K/32]; + float weights[32]; + float sw[QK_K/32]; + float mins[QK_K/32]; + float scales[QK_K/32]; + + for (int i = 0; i < nb; i++) { + + float sum_x2 = 0; + for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l]; + float sigma2 = 2*sum_x2/QK_K; + float av_x = sqrtf(sigma2); + + for (int j = 0; j < QK_K/32; ++j) { + if (quant_weights) { + const float * qw = quant_weights + QK_K*i + 32*j; + for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]); + } else { + for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]); + } + float sumw = 0; + for (int l = 0; l < 32; ++l) sumw += weights[l]; + sw[j] = sumw; + scales[j] = make_qkx3_quants(32, 15, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false); + } + + float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw); + float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw); + for (int j = 0; j < QK_K/32; ++j) { + uint8_t ls = Ls[j]; + uint8_t lm = Lm[j]; + if (j < 4) { + y[i].scales[j] = ls; + y[i].scales[j+4] = lm; + } else { + y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4); + y[i].scales[j-4] |= ((ls >> 4) << 6); + y[i].scales[j-0] |= ((lm >> 4) << 6); + } + } + y[i].d = GGML_FP32_TO_FP16(d_block); + y[i].dmin = GGML_FP32_TO_FP16(m_block); + + uint8_t sc, m; + for (int j = 0; j < QK_K/32; ++j) { + get_scale_min_k4(j, y[i].scales, &sc, &m); + const float d = GGML_FP16_TO_FP32(y[i].d) * sc; + if (!d) continue; + const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m; + for (int ii = 0; ii < 32; ++ii) { + int l = nearest_int((x[32*j + ii] + dm)/d); + l = MAX(0, MIN(15, l)); + L[32*j + ii] = l; + } + } + uint8_t * q = y[i].qs; + for (int j = 0; j < QK_K; j += 64) { + for (int l = 0; l < 32; ++l) q[l] = L[j + l] | (L[j + l + 32] << 4); + q += 32; + } + + x += QK_K; + + } +#endif +} + +size_t quantize_q4_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { + size_t row_size = ggml_row_size(GGML_TYPE_Q4_K, n_per_row); + if (!quant_weights) { + quantize_row_q4_K_reference(src, dst, (int64_t)nrow*n_per_row); + } + else { + char * qrow = (char *)dst; + for (int64_t row = 0; row < nrow; ++row) { + quantize_row_q4_K_impl(src, (block_q4_K*)qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += row_size; + } + } + return nrow * row_size; +} + +// ====================== 5-bit (de)-quantization + +void quantize_row_q5_K_reference(const float * restrict x, block_q5_K * restrict y, int64_t k) { + assert(k % QK_K == 0); + const int64_t nb = k / QK_K; + +#if QK_K == 256 + uint8_t L[QK_K]; + float mins[QK_K/32]; + float scales[QK_K/32]; + float weights[32]; + uint8_t Laux[32]; +#else + int8_t L[QK_K]; + float scales[QK_K/16]; +#endif + + for (int i = 0; i < nb; i++) { + +#if QK_K == 256 + + float max_scale = 0; // as we are deducting the min, scales are always positive + float max_min = 0; + for (int j = 0; j < QK_K/32; ++j) { + //scales[j] = make_qkx1_quants(32, 31, x + 32*j, L + 32*j, &mins[j], 9, 0.5f); + float sum_x2 = 0; + for (int l = 0; l < 32; ++l) sum_x2 += x[32*j + l] * x[32*j + l]; + float av_x = sqrtf(sum_x2/32); + for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]); + scales[j] = make_qkx2_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.5f, 0.1f, 15, false); + float scale = scales[j]; + if (scale > max_scale) { + max_scale = scale; + } + float min = mins[j]; + if (min > max_min) { + max_min = min; + } + } + + float inv_scale = max_scale > 0 ? 63.f/max_scale : 0.f; + float inv_min = max_min > 0 ? 63.f/max_min : 0.f; + for (int j = 0; j < QK_K/32; ++j) { + uint8_t ls = nearest_int(inv_scale*scales[j]); + uint8_t lm = nearest_int(inv_min*mins[j]); + ls = MIN(63, ls); + lm = MIN(63, lm); + if (j < 4) { + y[i].scales[j] = ls; + y[i].scales[j+4] = lm; + } else { + y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4); + y[i].scales[j-4] |= ((ls >> 4) << 6); + y[i].scales[j-0] |= ((lm >> 4) << 6); + } + } + y[i].d = GGML_FP32_TO_FP16(max_scale/63.f); + y[i].dmin = GGML_FP32_TO_FP16(max_min/63.f); + + uint8_t sc, m; + for (int j = 0; j < QK_K/32; ++j) { + get_scale_min_k4(j, y[i].scales, &sc, &m); + const float d = GGML_FP16_TO_FP32(y[i].d) * sc; + if (!d) continue; + const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m; + for (int ii = 0; ii < 32; ++ii) { + int l = nearest_int((x[32*j + ii] + dm)/d); + l = MAX(0, MIN(31, l)); + L[32*j + ii] = l; + } + } + + uint8_t * restrict qh = y[i].qh; + uint8_t * restrict ql = y[i].qs; + memset(qh, 0, QK_K/8); + + uint8_t m1 = 1, m2 = 2; + for (int n = 0; n < QK_K; n += 64) { + for (int j = 0; j < 32; ++j) { + int l1 = L[n + j]; + if (l1 > 15) { + l1 -= 16; qh[j] |= m1; + } + int l2 = L[n + j + 32]; + if (l2 > 15) { + l2 -= 16; qh[j] |= m2; + } + ql[j] = l1 | (l2 << 4); + } + m1 <<= 2; m2 <<= 2; + ql += 32; + } +#else + float max_scale = 0, amax = 0; + for (int j = 0; j < QK_K/16; ++j) { + scales[j] = make_qx_quants(16, 16, x + 16*j, L + 16*j, 1, NULL); + float abs_scale = fabsf(scales[j]); + if (abs_scale > amax) { + amax = abs_scale; + max_scale = scales[j]; + } + } + + float iscale = -128.f/max_scale; + for (int j = 0; j < QK_K/16; ++j) { + int l = nearest_int(iscale*scales[j]); + y[i].scales[j] = MAX(-128, MIN(127, l)); + } + y[i].d = GGML_FP32_TO_FP16(1/iscale); + + for (int j = 0; j < QK_K/16; ++j) { + const float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j]; + if (!d) continue; + for (int ii = 0; ii < 16; ++ii) { + int l = nearest_int(x[16*j + ii]/d); + l = MAX(-16, MIN(15, l)); + L[16*j + ii] = l + 16; + } + } + + uint8_t * restrict qh = y[i].qh; + uint8_t * restrict ql = y[i].qs; + memset(qh, 0, QK_K/8); + + for (int j = 0; j < 32; ++j) { + int jm = j%8; + int is = j/8; + int l1 = L[j]; + if (l1 > 15) { + l1 -= 16; qh[jm] |= (1 << is); + } + int l2 = L[j + 32]; + if (l2 > 15) { + l2 -= 16; qh[jm] |= (1 << (4 + is)); + } + ql[j] = l1 | (l2 << 4); + } +#endif + + x += QK_K; + + } +} + +void dequantize_row_q5_K(const block_q5_K * restrict x, float * restrict y, int64_t k) { + assert(k % QK_K == 0); + const int64_t nb = k / QK_K; + + for (int i = 0; i < nb; i++) { + + const uint8_t * ql = x[i].qs; + const uint8_t * qh = x[i].qh; + +#if QK_K == 256 + + const float d = GGML_FP16_TO_FP32(x[i].d); + const float min = GGML_FP16_TO_FP32(x[i].dmin); + + int is = 0; + uint8_t sc, m; + uint8_t u1 = 1, u2 = 2; + for (int j = 0; j < QK_K; j += 64) { + get_scale_min_k4(is + 0, x[i].scales, &sc, &m); + const float d1 = d * sc; const float m1 = min * m; + get_scale_min_k4(is + 1, x[i].scales, &sc, &m); + const float d2 = d * sc; const float m2 = min * m; + for (int l = 0; l < 32; ++l) *y++ = d1 * ((ql[l] & 0xF) + (qh[l] & u1 ? 16 : 0)) - m1; + for (int l = 0; l < 32; ++l) *y++ = d2 * ((ql[l] >> 4) + (qh[l] & u2 ? 16 : 0)) - m2; + ql += 32; is += 2; + u1 <<= 2; u2 <<= 2; + } +#else + float d = GGML_FP16_TO_FP32(x[i].d); + const int8_t * restrict s = x[i].scales; + for (int l = 0; l < 8; ++l) { + y[l+ 0] = d * s[0] * ((ql[l+ 0] & 0xF) - (qh[l] & 0x01 ? 0 : 16)); + y[l+ 8] = d * s[0] * ((ql[l+ 8] & 0xF) - (qh[l] & 0x02 ? 0 : 16)); + y[l+16] = d * s[1] * ((ql[l+16] & 0xF) - (qh[l] & 0x04 ? 0 : 16)); + y[l+24] = d * s[1] * ((ql[l+24] & 0xF) - (qh[l] & 0x08 ? 0 : 16)); + y[l+32] = d * s[2] * ((ql[l+ 0] >> 4) - (qh[l] & 0x10 ? 0 : 16)); + y[l+40] = d * s[2] * ((ql[l+ 8] >> 4) - (qh[l] & 0x20 ? 0 : 16)); + y[l+48] = d * s[3] * ((ql[l+16] >> 4) - (qh[l] & 0x40 ? 0 : 16)); + y[l+56] = d * s[3] * ((ql[l+24] >> 4) - (qh[l] & 0x80 ? 0 : 16)); + } + y += QK_K; +#endif + } +} + +void quantize_row_q5_K(const float * restrict x, void * restrict vy, int64_t k) { + assert(k % QK_K == 0); + block_q5_K * restrict y = vy; + quantize_row_q5_K_reference(x, y, k); +} + +static void quantize_row_q5_K_impl(const float * restrict x, block_q5_K * restrict y, int64_t n_per_row, const float * quant_weights) { +#if QK_K != 256 + (void)quant_weights; + quantize_row_q5_K_reference(x, y, n_per_row); +#else + assert(n_per_row % QK_K == 0); + const int64_t nb = n_per_row / QK_K; + + uint8_t L[QK_K]; + uint8_t Laux[32]; + uint8_t Ls[QK_K/32]; + uint8_t Lm[QK_K/32]; + float mins[QK_K/32]; + float scales[QK_K/32]; + float sw[QK_K/32]; + float weights[32]; + + for (int i = 0; i < nb; i++) { + + float sum_x2 = 0; + for (int l = 0; l < QK_K; ++l) sum_x2 += x[l] * x[l]; + float sigma2 = 2*sum_x2/QK_K; + float av_x = sqrtf(sigma2); + + for (int j = 0; j < QK_K/32; ++j) { + if (quant_weights) { + const float * qw = quant_weights + QK_K*i + 32*j; + for (int l = 0; l < 32; ++l) weights[l] = qw[l] * sqrtf(sigma2 + x[32*j + l]*x[32*j + l]); + } else { + for (int l = 0; l < 32; ++l) weights[l] = av_x + fabsf(x[32*j + l]); + } + float sumw = 0; + for (int l = 0; l < 32; ++l) sumw += weights[l]; + sw[j] = sumw; + + scales[j] = make_qkx3_quants(32, 31, x + 32*j, weights, L + 32*j, &mins[j], Laux, -0.9f, 0.05f, 36, false); + } + + float d_block = make_qp_quants(QK_K/32, 63, scales, Ls, sw); + float m_block = make_qp_quants(QK_K/32, 63, mins, Lm, sw); + + for (int j = 0; j < QK_K/32; ++j) { + uint8_t ls = Ls[j]; + uint8_t lm = Lm[j]; + ls = MIN(63, ls); + lm = MIN(63, lm); + if (j < 4) { + y[i].scales[j] = ls; + y[i].scales[j+4] = lm; + } else { + y[i].scales[j+4] = (ls & 0xF) | ((lm & 0xF) << 4); + y[i].scales[j-4] |= ((ls >> 4) << 6); + y[i].scales[j-0] |= ((lm >> 4) << 6); + } + } + y[i].d = GGML_FP32_TO_FP16(d_block); + y[i].dmin = GGML_FP32_TO_FP16(m_block); + + uint8_t sc, m; + for (int j = 0; j < QK_K/32; ++j) { + get_scale_min_k4(j, y[i].scales, &sc, &m); + const float d = GGML_FP16_TO_FP32(y[i].d) * sc; + if (!d) continue; + const float dm = GGML_FP16_TO_FP32(y[i].dmin) * m; + for (int ii = 0; ii < 32; ++ii) { + int l = nearest_int((x[32*j + ii] + dm)/d); + l = MAX(0, MIN(31, l)); + L[32*j + ii] = l; + } + } + + uint8_t * restrict qh = y[i].qh; + uint8_t * restrict ql = y[i].qs; + memset(qh, 0, QK_K/8); + + uint8_t m1 = 1, m2 = 2; + for (int n = 0; n < QK_K; n += 64) { + for (int j = 0; j < 32; ++j) { + int l1 = L[n + j]; + if (l1 > 15) { + l1 -= 16; qh[j] |= m1; + } + int l2 = L[n + j + 32]; + if (l2 > 15) { + l2 -= 16; qh[j] |= m2; + } + ql[j] = l1 | (l2 << 4); + } + m1 <<= 2; m2 <<= 2; + ql += 32; + } + + x += QK_K; + + } +#endif +} + +size_t quantize_q5_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { + size_t row_size = ggml_row_size(GGML_TYPE_Q5_K, n_per_row); + if (!quant_weights) { + quantize_row_q5_K_reference(src, dst, (int64_t)nrow*n_per_row); + } + else { + char * qrow = (char *)dst; + for (int64_t row = 0; row < nrow; ++row) { + quantize_row_q5_K_impl(src, (block_q5_K*)qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += row_size; + } + } + return nrow * row_size; +} + +// ====================== 6-bit (de)-quantization + +void quantize_row_q6_K_reference(const float * restrict x, block_q6_K * restrict y, int64_t k) { + assert(k % QK_K == 0); + const int64_t nb = k / QK_K; + + int8_t L[QK_K]; + float scales[QK_K/16]; + + for (int i = 0; i < nb; i++) { + + float max_scale = 0; + float max_abs_scale = 0; + + for (int ib = 0; ib < QK_K/16; ++ib) { + + const float scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL); + scales[ib] = scale; + + const float abs_scale = fabsf(scale); + if (abs_scale > max_abs_scale) { + max_abs_scale = abs_scale; + max_scale = scale; + } + + } + + if (!max_abs_scale) { + memset(&y[i], 0, sizeof(block_q6_K)); + y[i].d = GGML_FP32_TO_FP16(0.f); + x += QK_K; + continue; + } + + float iscale = -128.f/max_scale; + y[i].d = GGML_FP32_TO_FP16(1/iscale); + for (int ib = 0; ib < QK_K/16; ++ib) { + y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib])); + } + + for (int j = 0; j < QK_K/16; ++j) { + float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j]; + if (!d) { + continue; + } + for (int ii = 0; ii < 16; ++ii) { + int l = nearest_int(x[16*j + ii]/d); + l = MAX(-32, MIN(31, l)); + L[16*j + ii] = l + 32; + } + } + + uint8_t * restrict ql = y[i].ql; + uint8_t * restrict qh = y[i].qh; +#if QK_K == 256 + for (int j = 0; j < QK_K; j += 128) { + for (int l = 0; l < 32; ++l) { + const uint8_t q1 = L[j + l + 0] & 0xF; + const uint8_t q2 = L[j + l + 32] & 0xF; + const uint8_t q3 = L[j + l + 64] & 0xF; + const uint8_t q4 = L[j + l + 96] & 0xF; + ql[l+ 0] = q1 | (q3 << 4); + ql[l+32] = q2 | (q4 << 4); + qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6); + } + ql += 64; + qh += 32; + } +#else + for (int l = 0; l < 32; ++l) { + const uint8_t q1 = L[l + 0] & 0xF; + const uint8_t q2 = L[l + 32] & 0xF; + ql[l] = q1 | (q2 << 4); + } + for (int l = 0; l < 16; ++l) { + qh[l] = (L[l] >> 4) | ((L[l + 16] >> 4) << 2) | ((L[l + 32] >> 4) << 4) | ((L[l + 48] >> 4) << 6); + } +#endif + + x += QK_K; + + } +} + +void dequantize_row_q6_K(const block_q6_K * restrict x, float * restrict y, int64_t k) { + assert(k % QK_K == 0); + const int64_t nb = k / QK_K; + + for (int i = 0; i < nb; i++) { + + const float d = GGML_FP16_TO_FP32(x[i].d); + + const uint8_t * restrict ql = x[i].ql; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict sc = x[i].scales; + +#if QK_K == 256 + for (int n = 0; n < QK_K; n += 128) { + for (int l = 0; l < 32; ++l) { + int is = l/16; + const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32; + const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32; + const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32; + const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32; + y[l + 0] = d * sc[is + 0] * q1; + y[l + 32] = d * sc[is + 2] * q2; + y[l + 64] = d * sc[is + 4] * q3; + y[l + 96] = d * sc[is + 6] * q4; + } + y += 128; + ql += 64; + qh += 32; + sc += 8; + } +#else + for (int l = 0; l < 16; ++l) { + const int8_t q1 = (int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32; + const int8_t q2 = (int8_t)((ql[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32; + const int8_t q3 = (int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32; + const int8_t q4 = (int8_t)((ql[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32; + y[l+ 0] = d * sc[0] * q1; + y[l+16] = d * sc[1] * q2; + y[l+32] = d * sc[2] * q3; + y[l+48] = d * sc[3] * q4; + } + y += 64; +#endif + + } +} + +void quantize_row_q6_K(const float * restrict x, void * restrict vy, int64_t k) { + assert(k % QK_K == 0); + block_q6_K * restrict y = vy; + quantize_row_q6_K_reference(x, y, k); +} + +static void quantize_row_q6_K_impl(const float * restrict x, block_q6_K * restrict y, int64_t n_per_row, const float * quant_weights) { +#if QK_K != 256 + (void)quant_weights; + quantize_row_q6_K_reference(x, y, n_per_row); +#else + assert(n_per_row % QK_K == 0); + const int64_t nb = n_per_row / QK_K; + + int8_t L[QK_K]; + float scales[QK_K/16]; + //float weights[16]; + + for (int i = 0; i < nb; i++) { + + //float sum_x2 = 0; + //for (int j = 0; j < QK_K; ++j) sum_x2 += x[j]*x[j]; + //float sigma2 = sum_x2/QK_K; + + float max_scale = 0; + float max_abs_scale = 0; + + for (int ib = 0; ib < QK_K/16; ++ib) { + + float scale; + if (quant_weights) { + const float * qw = quant_weights + QK_K*i + 16*ib; + //for (int j = 0; j < 16; ++j) weights[j] = qw[j] * sqrtf(sigma2 + x[16*ib + j]*x[16*ib + j]); + //scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, weights); + scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, qw); + } else { + scale = make_qx_quants(16, 32, x + 16*ib, L + 16*ib, 1, NULL); + } + scales[ib] = scale; + + const float abs_scale = fabsf(scale); + if (abs_scale > max_abs_scale) { + max_abs_scale = abs_scale; + max_scale = scale; + } + + } + + if (!max_abs_scale) { + memset(&y[i], 0, sizeof(block_q6_K)); + y[i].d = GGML_FP32_TO_FP16(0.f); + x += QK_K; + continue; + } + + float iscale = -128.f/max_scale; + y[i].d = GGML_FP32_TO_FP16(1/iscale); + for (int ib = 0; ib < QK_K/16; ++ib) { + y[i].scales[ib] = MIN(127, nearest_int(iscale*scales[ib])); + } + + for (int j = 0; j < QK_K/16; ++j) { + float d = GGML_FP16_TO_FP32(y[i].d) * y[i].scales[j]; + if (!d) { + continue; + } + for (int ii = 0; ii < 16; ++ii) { + int l = nearest_int(x[16*j + ii]/d); + l = MAX(-32, MIN(31, l)); + L[16*j + ii] = l + 32; + } + } + + uint8_t * restrict ql = y[i].ql; + uint8_t * restrict qh = y[i].qh; + for (int j = 0; j < QK_K; j += 128) { + for (int l = 0; l < 32; ++l) { + const uint8_t q1 = L[j + l + 0] & 0xF; + const uint8_t q2 = L[j + l + 32] & 0xF; + const uint8_t q3 = L[j + l + 64] & 0xF; + const uint8_t q4 = L[j + l + 96] & 0xF; + ql[l+ 0] = q1 | (q3 << 4); + ql[l+32] = q2 | (q4 << 4); + qh[l] = (L[j + l] >> 4) | ((L[j + l + 32] >> 4) << 2) | ((L[j + l + 64] >> 4) << 4) | ((L[j + l + 96] >> 4) << 6); + } + ql += 64; + qh += 32; + } + + x += QK_K; + + } +#endif +} + +size_t quantize_q6_K(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { + size_t row_size = ggml_row_size(GGML_TYPE_Q6_K, n_per_row); + if (!quant_weights) { + quantize_row_q6_K_reference(src, dst, (int64_t)nrow*n_per_row); + } + else { + char * qrow = (char *)dst; + for (int64_t row = 0; row < nrow; ++row) { + quantize_row_q6_K_impl(src, (block_q6_K*)qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += row_size; + } + } + return nrow * row_size; +} + +static void quantize_row_q4_0_impl(const float * restrict x, block_q4_0 * restrict y, int64_t n_per_row, const float * quant_weights) { + static_assert(QK4_0 == 32, "QK4_0 must be 32"); + + if (!quant_weights) { + quantize_row_q4_0_reference(x, y, n_per_row); + return; + } + + float weight[QK4_0]; + int8_t L[QK4_0]; + + float sum_x2 = 0; + for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j]; + float sigma2 = sum_x2/n_per_row; + + const int64_t nb = n_per_row/QK4_0; + for (int ib = 0; ib < nb; ++ib) { + const float * xb = x + QK4_0 * ib; + const float * qw = quant_weights + QK4_0 * ib; + for (int j = 0; j < QK4_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); + float d = make_qx_quants(QK4_0, 8, xb, L, 1, weight); + y[ib].d = GGML_FP32_TO_FP16(d); + for (int j = 0; j < 16; ++j) { + y[ib].qs[j] = L[j] | (L[j+16] << 4); + } + } +} + +size_t quantize_q4_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { + if (!quant_weights) { + quantize_row_q4_0_reference(src, dst, (int64_t)nrow*n_per_row); + return nrow * ggml_row_size(GGML_TYPE_Q4_0, n_per_row); + } + size_t row_size = ggml_row_size(GGML_TYPE_Q4_0, n_per_row); + char * qrow = (char *)dst; + for (int64_t row = 0; row < nrow; ++row) { + quantize_row_q4_0_impl(src, (block_q4_0*)qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += row_size; + } + return nrow * row_size; +} + +static void quantize_row_q4_1_impl(const float * restrict x, block_q4_1 * restrict y, int64_t n_per_row, const float * quant_weights) { + static_assert(QK4_1 == 32, "QK4_1 must be 32"); + + if (!quant_weights) { + quantize_row_q4_1_reference(x, y, n_per_row); + return; + } + + float weight[QK4_1]; + uint8_t L[QK4_1], Laux[QK4_1]; + + float sum_x2 = 0; + for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j]; + float sigma2 = sum_x2/n_per_row; + + const int64_t nb = n_per_row/QK4_1; + for (int ib = 0; ib < nb; ++ib) { + const float * xb = x + QK4_1 * ib; + const float * qw = quant_weights + QK4_1 * ib; + for (int j = 0; j < QK4_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); + float min; + float d = make_qkx3_quants(QK4_1, 15, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false); + y[ib].d = GGML_FP32_TO_FP16(d); + y[ib].m = GGML_FP32_TO_FP16(-min); + for (int j = 0; j < 16; ++j) { + y[ib].qs[j] = L[j] | (L[j+16] << 4); + } + } +} + +size_t quantize_q4_1(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { + if (!quant_weights) { + quantize_row_q4_1_reference(src, dst, (int64_t)nrow*n_per_row); + return nrow * ggml_row_size(GGML_TYPE_Q4_1, n_per_row); + } + size_t row_size = ggml_row_size(GGML_TYPE_Q4_1, n_per_row); + char * qrow = (char *)dst; + for (int64_t row = 0; row < nrow; ++row) { + quantize_row_q4_1_impl(src, (block_q4_1*)qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += row_size; + } + return nrow * row_size; +} + +static void quantize_row_q5_0_impl(const float * restrict x, block_q5_0 * restrict y, int64_t n_per_row, const float * quant_weights) { + static_assert(QK5_0 == 32, "QK5_0 must be 32"); + + if (!quant_weights) { + quantize_row_q5_0_reference(x, y, n_per_row); + return; + } + + float weight[QK5_0]; + int8_t L[QK5_0]; + + float sum_x2 = 0; + for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j]; + float sigma2 = sum_x2/n_per_row; + + const int64_t nb = n_per_row/QK5_0; + for (int ib = 0; ib < nb; ++ib) { + const float * xb = x + QK5_0 * ib; + const float * qw = quant_weights + QK5_0 * ib; + for (int j = 0; j < QK5_0; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); + float d = make_qx_quants(QK5_0, 16, xb, L, 1, weight); + y[ib].d = GGML_FP32_TO_FP16(d); + + uint32_t qh = 0; + + for (int j = 0; j < 16; ++j) { + const uint8_t xi0 = L[j]; + const uint8_t xi1 = L[j+16]; + y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4); + + // get the 5-th bit and store it in qh at the right position + qh |= ((xi0 & 0x10u) >> 4) << (j + 0); + qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2); + } + + memcpy(&y[ib].qh, &qh, sizeof(qh)); + } +} + +size_t quantize_q5_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { + if (!quant_weights) { + quantize_row_q5_0_reference(src, dst, (int64_t)nrow*n_per_row); + return nrow * ggml_row_size(GGML_TYPE_Q5_0, n_per_row); + } + size_t row_size = ggml_row_size(GGML_TYPE_Q5_0, n_per_row); + char * qrow = (char *)dst; + for (int64_t row = 0; row < nrow; ++row) { + quantize_row_q5_0_impl(src, (block_q5_0*)qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += row_size; + } + return nrow * row_size; +} + +static void quantize_row_q5_1_impl(const float * restrict x, block_q5_1 * restrict y, int64_t n_per_row, const float * quant_weights) { + static_assert(QK5_1 == 32, "QK5_1 must be 32"); + + if (!quant_weights) { + quantize_row_q5_1_reference(x, y, n_per_row); + return; + } + + float weight[QK5_1]; + uint8_t L[QK5_1], Laux[QK5_1]; + + float sum_x2 = 0; + for (int j = 0; j < n_per_row; ++j) sum_x2 += x[j]*x[j]; + float sigma2 = sum_x2/n_per_row; + + const int64_t nb = n_per_row/QK5_1; + for (int ib = 0; ib < nb; ++ib) { + const float * xb = x + QK5_1 * ib; + const float * qw = quant_weights + QK5_1 * ib; + for (int j = 0; j < QK5_1; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); + float min; + float d = make_qkx3_quants(QK5_1, 31, xb, weight, L, &min, Laux, -0.9f, 0.05f, 36, false); + y[ib].d = GGML_FP32_TO_FP16(d); + y[ib].m = GGML_FP32_TO_FP16(-min); + + uint32_t qh = 0; + for (int j = 0; j < 16; ++j) { + const uint8_t xi0 = L[j]; + const uint8_t xi1 = L[j+16]; + y[ib].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4); + // get the 5-th bit and store it in qh at the right position + qh |= ((xi0 & 0x10u) >> 4) << (j + 0); + qh |= ((xi1 & 0x10u) >> 4) << (j + QK5_0/2); + } + memcpy(&y[ib].qh, &qh, sizeof(qh)); + } +} + +size_t quantize_q5_1(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { + if (!quant_weights) { + quantize_row_q5_1_reference(src, dst, (int64_t)nrow*n_per_row); + return nrow * ggml_row_size(GGML_TYPE_Q5_1, n_per_row); + } + size_t row_size = ggml_row_size(GGML_TYPE_Q5_1, n_per_row); + char * qrow = (char *)dst; + for (int64_t row = 0; row < nrow; ++row) { + quantize_row_q5_1_impl(src, (block_q5_1*)qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += row_size; + } + return nrow * row_size; +} + +size_t quantize_q8_0(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { + (void)quant_weights; // not used + const size_t row_size = ggml_row_size(GGML_TYPE_Q8_0, n_per_row); + quantize_row_q8_0_reference(src, dst, (int64_t)nrow*n_per_row); + return nrow * row_size; +} + +// ====================== "True" 2-bit (de)-quantization + +void dequantize_row_iq2_xxs(const block_iq2_xxs * restrict x, float * restrict y, int64_t k) { + assert(k % QK_K == 0); + const int64_t nb = k / QK_K; + + uint32_t aux32[2]; + const uint8_t * aux8 = (const uint8_t *)aux32; + + for (int i = 0; i < nb; i++) { + + const float d = GGML_FP16_TO_FP32(x[i].d); + + for (int ib32 = 0; ib32 < QK_K/32; ++ib32) { + memcpy(aux32, x[i].qs + 4*ib32, 2*sizeof(uint32_t)); + const float db = d * (0.5f + (aux32[1] >> 28)) * 0.25f; + for (int l = 0; l < 4; ++l) { + const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]); + const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127]; + for (int j = 0; j < 8; ++j) { + y[j] = db * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f); + } + y += 8; + } + } + } +} + +// ====================== 2.3125 bpw (de)-quantization + +void dequantize_row_iq2_xs(const block_iq2_xs * restrict x, float * restrict y, int64_t k) { + assert(k % QK_K == 0); + const int64_t nb = k / QK_K; + + float db[2]; + + for (int i = 0; i < nb; i++) { + + const float d = GGML_FP16_TO_FP32(x[i].d); + + for (int ib32 = 0; ib32 < QK_K/32; ++ib32) { + db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f; + db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f; + for (int l = 0; l < 4; ++l) { + const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (x[i].qs[4*ib32 + l] & 511)); + const uint8_t signs = ksigns_iq2xs[x[i].qs[4*ib32 + l] >> 9]; + for (int j = 0; j < 8; ++j) { + y[j] = db[l/2] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f); + } + y += 8; + } + } + } +} + +// ====================== 2.5625 bpw (de)-quantization + +void dequantize_row_iq2_s(const block_iq2_s * restrict x, float * restrict y, int64_t k) { + assert(k % QK_K == 0); + const int64_t nb = k / QK_K; + + float db[2]; + + for (int i = 0; i < nb; i++) { + + const float d = GGML_FP16_TO_FP32(x[i].d); + const uint8_t * qs = x[i].qs; + const uint8_t * qh = x[i].qh; + const uint8_t * signs = qs + QK_K/8; + + for (int ib32 = 0; ib32 < QK_K/32; ++ib32) { + db[0] = d * (0.5f + (x[i].scales[ib32] & 0xf)) * 0.25f; + db[1] = d * (0.5f + (x[i].scales[ib32] >> 4)) * 0.25f; + for (int l = 0; l < 4; ++l) { + const float dl = db[l/2]; + const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300))); + for (int j = 0; j < 8; ++j) { + y[j] = dl * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1.f : 1.f); + } + y += 8; + } + qs += 4; + signs += 4; + } + } +} + +// ====================== 3.0625 bpw (de)-quantization + +void dequantize_row_iq3_xxs(const block_iq3_xxs * restrict x, float * restrict y, int64_t k) { + assert(k % QK_K == 0); + const int64_t nb = k / QK_K; + + uint32_t aux32; + + for (int i = 0; i < nb; i++) { + + const float d = GGML_FP16_TO_FP32(x[i].d); + const uint8_t * qs = x[i].qs; + const uint8_t * scales_and_signs = qs + QK_K/4; + + for (int ib32 = 0; ib32 < QK_K/32; ++ib32) { + memcpy(&aux32, scales_and_signs + 4*ib32, sizeof(uint32_t)); + const float db = d * (0.5f + (aux32 >> 28)) * 0.5f; + for (int l = 0; l < 4; ++l) { + const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127]; + const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + qs[2*l+0]); + const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + qs[2*l+1]); + for (int j = 0; j < 4; ++j) { + y[j+0] = db * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f); + y[j+4] = db * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f); + } + y += 8; + } + qs += 8; + } + } +} + +// ====================== 3.3125 bpw (de)-quantization + +void dequantize_row_iq3_s(const block_iq3_s * restrict x, float * restrict y, int64_t k) { + assert(k % QK_K == 0); + const int64_t nb = k / QK_K; + + for (int i = 0; i < nb; i++) { + + const float d = GGML_FP16_TO_FP32(x[i].d); + const uint8_t * qs = x[i].qs; + const uint8_t * qh = x[i].qh; + const uint8_t * signs = x[i].signs; + + for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { + const float db1 = d * (1 + 2*(x[i].scales[ib32/2] & 0xf)); + const float db2 = d * (1 + 2*(x[i].scales[ib32/2] >> 4)); + for (int l = 0; l < 4; ++l) { + const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[0] << (8-2*l)) & 256))); + const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[0] << (7-2*l)) & 256))); + for (int j = 0; j < 4; ++j) { + y[j+0] = db1 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f); + y[j+4] = db1 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f); + } + y += 8; + } + qs += 8; + signs += 4; + for (int l = 0; l < 4; ++l) { + const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[1] << (8-2*l)) & 256))); + const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[1] << (7-2*l)) & 256))); + for (int j = 0; j < 4; ++j) { + y[j+0] = db2 * grid1[j] * (signs[l] & kmask_iq2xs[j+0] ? -1.f : 1.f); + y[j+4] = db2 * grid2[j] * (signs[l] & kmask_iq2xs[j+4] ? -1.f : 1.f); + } + y += 8; + } + qh += 2; + qs += 8; + signs += 4; + } + } +} + +// ====================== 1.5625 bpw (de)-quantization + +void dequantize_row_iq1_s(const block_iq1_s * restrict x, float * restrict y, int64_t k) { + assert(k % QK_K == 0); + const int64_t nb = k / QK_K; + + for (int i = 0; i < nb; i++) { + + const float d = GGML_FP16_TO_FP32(x[i].d); + const uint8_t * qs = x[i].qs; + const uint16_t * qh = x[i].qh; + + for (int ib = 0; ib < QK_K/32; ++ib) { + const float dl = d * (2*((qh[ib] >> 12) & 7) + 1); + const float delta = qh[ib] & 0x8000 ? -IQ1S_DELTA : IQ1S_DELTA; + for (int l = 0; l < 4; ++l) { + const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8))); + for (int j = 0; j < 8; ++j) { + y[j] = dl * (grid[j] + delta); + } + y += 8; + } + qs += 4; + } + } +} + +void dequantize_row_iq1_m(const block_iq1_m * restrict x, float * restrict y, int64_t k) { + assert(k % QK_K == 0); + const int64_t nb = k / QK_K; + + float delta[4]; + uint16_t idx[4]; + +#if QK_K != 64 + iq1m_scale_t scale; +#endif + + for (int i = 0; i < nb; i++) { + + const uint16_t * sc = (const uint16_t *)x[i].scales; +#if QK_K == 64 + const float d = GGML_FP16_TO_FP32(x[i].d); +#else + scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); + const float d = GGML_FP16_TO_FP32(scale.f16); +#endif + const uint8_t * qs = x[i].qs; + const uint8_t * qh = x[i].qh; + + for (int ib = 0; ib < QK_K/32; ++ib) { +#if QK_K == 64 + const float dl1 = d * (2*((sc[ib/2] >> (8*(ib%2)+0)) & 0xf) + 1); + const float dl2 = d * (2*((sc[ib/2] >> (8*(ib%2)+4)) & 0xf) + 1); +#else + const float dl1 = d * (2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1); + const float dl2 = d * (2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1); +#endif + idx[0] = qs[0] | ((qh[0] << 8) & 0x700); + idx[1] = qs[1] | ((qh[0] << 4) & 0x700); + idx[2] = qs[2] | ((qh[1] << 8) & 0x700); + idx[3] = qs[3] | ((qh[1] << 4) & 0x700); + delta[0] = qh[0] & 0x08 ? -IQ1S_DELTA : IQ1S_DELTA; + delta[1] = qh[0] & 0x80 ? -IQ1S_DELTA : IQ1S_DELTA; + delta[2] = qh[1] & 0x08 ? -IQ1S_DELTA : IQ1S_DELTA; + delta[3] = qh[1] & 0x80 ? -IQ1S_DELTA : IQ1S_DELTA; + for (int l = 0; l < 2; ++l) { + const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]); + for (int j = 0; j < 8; ++j) { + y[j] = dl1 * (grid[j] + delta[l]); + } + y += 8; + } + for (int l = 2; l < 4; ++l) { + const int8_t * grid = (const int8_t *)(iq1s_grid + idx[l]); + for (int j = 0; j < 8; ++j) { + y[j] = dl2 * (grid[j] + delta[l]); + } + y += 8; + } + qs += 4; + qh += 2; + } + } +} + +static const int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113}; + +void dequantize_row_iq4_nl(const block_iq4_nl * restrict x, float * restrict y, int64_t k) { + assert(k % QK4_NL == 0); + const int64_t nb = k / QK4_NL; + + for (int i = 0; i < nb; i++) { + + const uint8_t * qs = x[i].qs; + + const float d = GGML_FP16_TO_FP32(x[i].d); + for (int j = 0; j < QK4_NL/2; ++j) { + y[j+ 0] = d * kvalues_iq4nl[qs[j] & 0xf]; + y[j+QK4_NL/2] = d * kvalues_iq4nl[qs[j] >> 4]; + } + y += QK4_NL; + qs += QK4_NL/2; + } +} + +void dequantize_row_iq4_xs(const block_iq4_xs * restrict x, float * restrict y, int64_t k) { + assert(k % QK_K == 0); +#if QK_K == 64 + dequantize_row_iq4_nl((const block_iq4_nl *)x, y, k); +#else + const int64_t nb = k / QK_K; + + for (int i = 0; i < nb; i++) { + + const uint8_t * qs = x[i].qs; + + const float d = GGML_FP16_TO_FP32(x[i].d); + + for (int ib = 0; ib < QK_K/32; ++ib) { + const int ls = ((x[i].scales_l[ib/2] >> 4*(ib%2)) & 0xf) | (((x[i].scales_h >> 2*ib) & 3) << 4); + const float dl = d * (ls - 32); + for (int j = 0; j < 16; ++j) { + y[j+ 0] = dl * kvalues_iq4nl[qs[j] & 0xf]; + y[j+16] = dl * kvalues_iq4nl[qs[j] >> 4]; + } + y += 32; + qs += 16; + } + } +#endif +} + +//===================================== Q8_K ============================================== + +void quantize_row_q8_K_reference(const float * restrict x, block_q8_K * restrict y, int64_t k) { + assert(k % QK_K == 0); + const int64_t nb = k / QK_K; + + for (int i = 0; i < nb; i++) { + + float max = 0; + float amax = 0; + for (int j = 0; j < QK_K; ++j) { + float ax = fabsf(x[j]); + if (ax > amax) { + amax = ax; max = x[j]; + } + } + if (!amax) { + y[i].d = 0; + memset(y[i].qs, 0, QK_K); + x += QK_K; + continue; + } + //const float iscale = -128.f/max; + // We need this change for IQ2_XXS, else the AVX implementation becomes very awkward + const float iscale = -127.f/max; + for (int j = 0; j < QK_K; ++j) { + int v = nearest_int(iscale*x[j]); + y[i].qs[j] = MIN(127, v); + } + for (int j = 0; j < QK_K/16; ++j) { + int sum = 0; + for (int ii = 0; ii < 16; ++ii) { + sum += y[i].qs[j*16 + ii]; + } + y[i].bsums[j] = sum; + } + y[i].d = 1/iscale; + x += QK_K; + } +} + +void dequantize_row_q8_K(const block_q8_K * restrict x, float * restrict y, int64_t k) { + assert(k % QK_K == 0); + const int64_t nb = k / QK_K; + + for (int i = 0; i < nb; i++) { + for (int j = 0; j < QK_K; ++j) { + *y++ = x[i].d * x[i].qs[j]; + } + } +} + +void quantize_row_q8_K(const float * restrict x, void * restrict y, int64_t k) { + quantize_row_q8_K_reference(x, y, k); +} + +//===================================== Dot ptoducts ================================= + +// +// Helper functions +// +#if __AVX__ || __AVX2__ || __AVX512F__ + +// shuffles to pick the required scales in dot products +static inline __m256i get_scale_shuffle_q3k(int i) { + static const uint8_t k_shuffle[128] = { + 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, + 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, + 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11, + 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15, + }; + return _mm256_loadu_si256((const __m256i*)k_shuffle + i); +} +static inline __m256i get_scale_shuffle_k4(int i) { + static const uint8_t k_shuffle[256] = { + 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, + 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, + 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, + 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, + 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, + 10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11,10,11, + 12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13,12,13, + 14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15,14,15 + }; + return _mm256_loadu_si256((const __m256i*)k_shuffle + i); +} +static inline __m128i get_scale_shuffle(int i) { + static const uint8_t k_shuffle[128] = { + 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, + 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, + 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, + 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, + 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, + 10,10,10,10,10,10,10,10, 11,11,11,11,11,11,11,11, + 12,12,12,12,12,12,12,12, 13,13,13,13,13,13,13,13, + 14,14,14,14,14,14,14,14, 15,15,15,15,15,15,15,15 + }; + return _mm_loadu_si128((const __m128i*)k_shuffle + i); +} +#endif + +void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + const int qk = QK8_0; + const int nb = n / qk; + + assert(n % qk == 0); +#if defined(__ARM_FEATURE_MATMUL_INT8) + assert((nrc == 2) || (nrc == 1)); +#else + assert(nrc == 1); +#endif + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + const block_q4_0 * restrict x = vx; + const block_q8_0 * restrict y = vy; + +#if defined(__ARM_FEATURE_MATMUL_INT8) + if (nrc == 2) { + const block_q4_0 * restrict vx0 = vx; + const block_q4_0 * restrict vx1 = vx + bx; + + const block_q8_0 * restrict vy0 = vy; + const block_q8_0 * restrict vy1 = vy + by; + + float32x4_t sumv0 = vdupq_n_f32(0.0f); + + for (int i = 0; i < nb; i++) { + const block_q4_0 * restrict b_x0 = &vx0[i]; + const block_q4_0 * restrict b_x1 = &vx1[i]; + const block_q8_0 * restrict b_y0 = &vy0[i]; + const block_q8_0 * restrict b_y1 = &vy1[i]; + + const uint8x16_t m4b = vdupq_n_u8(0x0F); + const int8x16_t s8b = vdupq_n_s8(0x8); + + const uint8x16_t v0_0 = vld1q_u8(b_x0->qs); + const uint8x16_t v0_1 = vld1q_u8(b_x1->qs); + + // 4-bit -> 8-bit + const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b)); + const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); + const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); + const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); + + // sub 8 + const int8x16_t x0_l = vsubq_s8(v0_0l, s8b); + const int8x16_t x0_h = vsubq_s8(v0_0h, s8b); + const int8x16_t x1_l = vsubq_s8(v0_1l, s8b); + const int8x16_t x1_h = vsubq_s8(v0_1h, s8b); + + // load y + const int8x16_t y0_l = vld1q_s8(b_y0->qs); + const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16); + const int8x16_t y1_l = vld1q_s8(b_y1->qs); + const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16); + + float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d), + GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d), + GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d), + GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)}; + + int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l))); + int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l))); + + int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h))); + int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h))); + + int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l))); + int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l))); + + int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h))); + int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h))); + + sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)), + l1, r1)), l2, r2)), l3, r3))), scale); + } + float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2); + float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1); + + vst1_f32(s, vget_low_f32(sumv2)); + vst1_f32(s + bs, vget_high_f32(sumv2)); + return; + } +#endif +#if defined(__ARM_NEON) + float32x4_t sumv0 = vdupq_n_f32(0.0f); + float32x4_t sumv1 = vdupq_n_f32(0.0f); + + assert(nb % 2 == 0); // TODO: handle odd nb + + for (int i = 0; i < nb; i += 2) { + const block_q4_0 * restrict x0 = &x[i + 0]; + const block_q4_0 * restrict x1 = &x[i + 1]; + const block_q8_0 * restrict y0 = &y[i + 0]; + const block_q8_0 * restrict y1 = &y[i + 1]; + + const uint8x16_t m4b = vdupq_n_u8(0x0F); + const int8x16_t s8b = vdupq_n_s8(0x8); + + const uint8x16_t v0_0 = vld1q_u8(x0->qs); + const uint8x16_t v0_1 = vld1q_u8(x1->qs); + + // 4-bit -> 8-bit + const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b)); + const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); + const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); + const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); + + // sub 8 + const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b); + const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b); + const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b); + const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b); + + // load y + const int8x16_t v1_0l = vld1q_s8(y0->qs); + const int8x16_t v1_0h = vld1q_s8(y0->qs + 16); + const int8x16_t v1_1l = vld1q_s8(y1->qs); + const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); + + // dot product into int32x4_t + const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h); + const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h); + + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d)); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d)); + } + + *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1); +#elif defined(__AVX2__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + + // Main loop + for (int i = 0; i < nb; ++i) { + /* Compute combined scale for the block */ + const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) ); + + __m256i qx = bytes_from_nibbles_32(x[i].qs); + + // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval. + const __m256i off = _mm256_set1_epi8( 8 ); + qx = _mm256_sub_epi8( qx, off ); + + __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs); + + const __m256 q = mul_sum_i8_pairs_float(qx, qy); + + /* Multiply q with scale and accumulate */ + acc = _mm256_fmadd_ps( d, q, acc ); + } + + *s = hsum_float_8(acc); +#elif defined(__AVX__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + + // Main loop + for (int i = 0; i < nb; ++i) { + // Compute combined scale for the block + const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) ); + + const __m128i lowMask = _mm_set1_epi8(0xF); + const __m128i off = _mm_set1_epi8(8); + + const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs); + + __m128i bx_0 = _mm_and_si128(lowMask, tmp); + __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs); + bx_0 = _mm_sub_epi8(bx_0, off); + const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0); + + bx_0 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4)); + by_0 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16)); + bx_0 = _mm_sub_epi8(bx_0, off); + const __m128i i32_1 = mul_sum_i8_pairs(bx_0, by_0); + + // Convert int32_t to float + __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1)); + + // Apply the scale, and accumulate + acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc); + } + + *s = hsum_float_8(acc); +#elif defined(__SSSE3__) + // set constants + const __m128i lowMask = _mm_set1_epi8(0xF); + const __m128i off = _mm_set1_epi8(8); + + // Initialize accumulator with zeros + __m128 acc_0 = _mm_setzero_ps(); + __m128 acc_1 = _mm_setzero_ps(); + __m128 acc_2 = _mm_setzero_ps(); + __m128 acc_3 = _mm_setzero_ps(); + + // First round without accumulation + { + _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0); + _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0); + + // Compute combined scale for the block 0 and 1 + const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) ); + + const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs); + + __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1); + __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs); + bx_0 = _mm_sub_epi8(bx_0, off); + const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0); + + __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4)); + __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16)); + bx_1 = _mm_sub_epi8(bx_1, off); + const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1); + + _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0); + _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0); + + // Compute combined scale for the block 2 and 3 + const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) ); + + const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs); + + __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3); + __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs); + bx_2 = _mm_sub_epi8(bx_2, off); + const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2); + + __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4)); + __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16)); + bx_3 = _mm_sub_epi8(bx_3, off); + const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3); + + // Convert int32_t to float + __m128 p0 = _mm_cvtepi32_ps(i32_0); + __m128 p1 = _mm_cvtepi32_ps(i32_1); + __m128 p2 = _mm_cvtepi32_ps(i32_2); + __m128 p3 = _mm_cvtepi32_ps(i32_3); + + // Apply the scale + acc_0 = _mm_mul_ps( d_0_1, p0 ); + acc_1 = _mm_mul_ps( d_0_1, p1 ); + acc_2 = _mm_mul_ps( d_2_3, p2 ); + acc_3 = _mm_mul_ps( d_2_3, p3 ); + } + + assert(nb % 2 == 0); // TODO: handle odd nb + + // Main loop + for (int i = 2; i < nb; i+=2) { + _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0); + _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0); + + // Compute combined scale for the block 0 and 1 + const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) ); + + const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs); + + __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1); + __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs); + bx_0 = _mm_sub_epi8(bx_0, off); + const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0); + + __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4)); + __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16)); + bx_1 = _mm_sub_epi8(bx_1, off); + const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1); + + _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0); + _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0); + + // Compute combined scale for the block 2 and 3 + const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) ); + + const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs); + + __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3); + __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs); + bx_2 = _mm_sub_epi8(bx_2, off); + const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2); + + __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4)); + __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16)); + bx_3 = _mm_sub_epi8(bx_3, off); + const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3); + + // Convert int32_t to float + __m128 p0 = _mm_cvtepi32_ps(i32_0); + __m128 p1 = _mm_cvtepi32_ps(i32_1); + __m128 p2 = _mm_cvtepi32_ps(i32_2); + __m128 p3 = _mm_cvtepi32_ps(i32_3); + + // Apply the scale + __m128 p0_d = _mm_mul_ps( d_0_1, p0 ); + __m128 p1_d = _mm_mul_ps( d_0_1, p1 ); + __m128 p2_d = _mm_mul_ps( d_2_3, p2 ); + __m128 p3_d = _mm_mul_ps( d_2_3, p3 ); + + // Acummulate + acc_0 = _mm_add_ps(p0_d, acc_0); + acc_1 = _mm_add_ps(p1_d, acc_1); + acc_2 = _mm_add_ps(p2_d, acc_2); + acc_3 = _mm_add_ps(p3_d, acc_3); + } + + *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3); +#elif defined(__riscv_v_intrinsic) + float sumf = 0.0; + + size_t vl = __riscv_vsetvl_e8m1(qk/2); + + for (int i = 0; i < nb; i++) { + // load elements + vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl); + + vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl); + vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl); + + // mask and store lower part of x, and then upper part + vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl); + vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl); + + vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a); + vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l); + + // subtract offset + vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 8, vl); + vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 8, vl); + + vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl); + vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl); + + vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl); + + vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl); + vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl); + + int sumi = __riscv_vmv_x_s_i32m1_i32(vs2); + + sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d); + } + + *s = sumf; +#else + // scalar + float sumf = 0.0; + + for (int i = 0; i < nb; i++) { + int sumi = 0; + + for (int j = 0; j < qk/2; ++j) { + const int v0 = (x[i].qs[j] & 0x0F) - 8; + const int v1 = (x[i].qs[j] >> 4) - 8; + + sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]); + } + + sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d); + } + + *s = sumf; +#endif +} + +void ggml_vec_dot_q4_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + const int qk = QK8_1; + const int nb = n / qk; + + assert(n % qk == 0); +#if defined(__ARM_FEATURE_MATMUL_INT8) + assert((nrc == 2) || (nrc == 1)); +#else + assert(nrc == 1); +#endif + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + const block_q4_1 * restrict x = vx; + const block_q8_1 * restrict y = vy; + +#if defined(__ARM_FEATURE_MATMUL_INT8) + if (nrc == 2) { + const block_q4_1 * restrict vx0 = vx; + const block_q4_1 * restrict vx1 = vx + bx; + const block_q8_1 * restrict vy0 = vy; + const block_q8_1 * restrict vy1 = vy + by; + + float32x4_t sumv0 = vdupq_n_f32(0.0f); + float32x4_t summs0 = vdupq_n_f32(0.0f); + + for (int i = 0; i < nb; i++) { + const block_q4_1 * restrict b_x0 = &vx0[i]; + const block_q4_1 * restrict b_x1 = &vx1[i]; + const block_q8_1 * restrict b_y0 = &vy0[i]; + const block_q8_1 * restrict b_y1 = &vy1[i]; + + float32x4_t summs_t = {GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y0->s), + GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y0->s), + GGML_FP16_TO_FP32(b_x0->m) * GGML_FP16_TO_FP32(b_y1->s), + GGML_FP16_TO_FP32(b_x1->m) * GGML_FP16_TO_FP32(b_y1->s)}; + summs0 += summs_t; + + const uint8x16_t m4b = vdupq_n_u8(0x0F); + + const uint8x16_t v0_0 = vld1q_u8(b_x0->qs); + const uint8x16_t v0_1 = vld1q_u8(b_x1->qs); + + // 4-bit -> 8-bit + const int8x16_t x0_l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b)); + const int8x16_t x0_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); + const int8x16_t x1_l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); + const int8x16_t x1_h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); + + // load y + const int8x16_t y0_l = vld1q_s8(b_y0->qs); + const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16); + const int8x16_t y1_l = vld1q_s8(b_y1->qs); + const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16); + + // mmla into int32x4_t + float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*b_y0->d, + GGML_FP16_TO_FP32(b_x0->d)*b_y1->d, + GGML_FP16_TO_FP32(b_x1->d)*b_y0->d, + GGML_FP16_TO_FP32(b_x1->d)*b_y1->d}; + + int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l))); + int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l))); + + int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h))); + int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h))); + + int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l))); + int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l))); + + int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h))); + int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h))); + sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)), + l1, r1)), l2, r2)), l3, r3))), scale); + } + + float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2); + float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1); + sumv2 = sumv2 + summs0; + + vst1_f32(s, vget_low_f32(sumv2)); + vst1_f32(s + bs, vget_high_f32(sumv2)); + return; + } +#endif + // TODO: add WASM SIMD +#if defined(__ARM_NEON) + float32x4_t sumv0 = vdupq_n_f32(0.0f); + float32x4_t sumv1 = vdupq_n_f32(0.0f); + + float summs = 0; + + assert(nb % 2 == 0); // TODO: handle odd nb + + for (int i = 0; i < nb; i += 2) { + const block_q4_1 * restrict x0 = &x[i + 0]; + const block_q4_1 * restrict x1 = &x[i + 1]; + const block_q8_1 * restrict y0 = &y[i + 0]; + const block_q8_1 * restrict y1 = &y[i + 1]; + + summs += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s) + GGML_FP16_TO_FP32(x1->m) * GGML_FP16_TO_FP32(y1->s); + + const uint8x16_t m4b = vdupq_n_u8(0x0F); + + const uint8x16_t v0_0 = vld1q_u8(x0->qs); + const uint8x16_t v0_1 = vld1q_u8(x1->qs); + + // 4-bit -> 8-bit + const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b)); + const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); + const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); + const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); + + // load y + const int8x16_t v1_0l = vld1q_s8(y0->qs); + const int8x16_t v1_0h = vld1q_s8(y0->qs + 16); + const int8x16_t v1_1l = vld1q_s8(y1->qs); + const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); + + // dot product into int32x4_t + const int32x4_t p_0 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h); + const int32x4_t p_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h); + + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d)); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d)); + } + + *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs; +#elif defined(__AVX2__) || defined(__AVX__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + + float summs = 0; + + // Main loop + for (int i = 0; i < nb; ++i) { + const float d0 = GGML_FP16_TO_FP32(x[i].d); + const float d1 = GGML_FP16_TO_FP32(y[i].d); + + summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s); + + const __m256 d0v = _mm256_set1_ps( d0 ); + const __m256 d1v = _mm256_set1_ps( d1 ); + + // Compute combined scales + const __m256 d0d1 = _mm256_mul_ps( d0v, d1v ); + + // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes + const __m256i qx = bytes_from_nibbles_32(x[i].qs); + const __m256i qy = _mm256_loadu_si256( (const __m256i *)y[i].qs ); + + const __m256 xy = mul_sum_us8_pairs_float(qx, qy); + + // Accumulate d0*d1*x*y +#if defined(__AVX2__) + acc = _mm256_fmadd_ps( d0d1, xy, acc ); +#else + acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc ); +#endif + } + + *s = hsum_float_8(acc) + summs; +#elif defined(__riscv_v_intrinsic) + float sumf = 0.0; + + size_t vl = __riscv_vsetvl_e8m1(qk/2); + + for (int i = 0; i < nb; i++) { + // load elements + vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl); + + vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl); + vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl); + + // mask and store lower part of x, and then upper part + vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl); + vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl); + + vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a); + vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l); + + vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl); + vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl); + + vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl); + + vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl); + vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl); + + int sumi = __riscv_vmv_x_s_i32m1_i32(vs2); + + sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d))*sumi + GGML_FP16_TO_FP32(x[i].m)*GGML_FP16_TO_FP32(y[i].s); + } + + *s = sumf; +#else + // scalar + float sumf = 0.0; + + for (int i = 0; i < nb; i++) { + int sumi = 0; + + for (int j = 0; j < qk/2; ++j) { + const int v0 = (x[i].qs[j] & 0x0F); + const int v1 = (x[i].qs[j] >> 4); + + sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]); + } + + sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d))*sumi + GGML_FP16_TO_FP32(x[i].m)*GGML_FP16_TO_FP32(y[i].s); + } + + *s = sumf; +#endif +} + +void ggml_vec_dot_q5_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + const int qk = QK8_0; + const int nb = n / qk; + + assert(n % qk == 0); + assert(qk == QK5_0); + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + const block_q5_0 * restrict x = vx; + const block_q8_0 * restrict y = vy; + +#if defined(__ARM_NEON) + float32x4_t sumv0 = vdupq_n_f32(0.0f); + float32x4_t sumv1 = vdupq_n_f32(0.0f); + + uint32_t qh0; + uint32_t qh1; + + uint64_t tmp0[4]; + uint64_t tmp1[4]; + + assert(nb % 2 == 0); // TODO: handle odd nb + + for (int i = 0; i < nb; i += 2) { + const block_q5_0 * restrict x0 = &x[i]; + const block_q5_0 * restrict x1 = &x[i + 1]; + const block_q8_0 * restrict y0 = &y[i]; + const block_q8_0 * restrict y1 = &y[i + 1]; + + const uint8x16_t m4b = vdupq_n_u8(0x0F); + + // extract the 5th bit via lookup table ((!b) << 4) + memcpy(&qh0, x0->qh, sizeof(qh0)); + memcpy(&qh1, x1->qh, sizeof(qh1)); + + tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF]; + tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF]; + tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF]; + tmp0[3] = table_b2b_1[(qh0 >> 24) ]; + + tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF]; + tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF]; + tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF]; + tmp1[3] = table_b2b_1[(qh1 >> 24) ]; + + const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0)); + const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2)); + const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0)); + const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2)); + + const uint8x16_t v0_0 = vld1q_u8(x0->qs); + const uint8x16_t v0_1 = vld1q_u8(x1->qs); + + // 4-bit -> 8-bit + int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b)); + int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); + int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); + int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); + + // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero) + const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0); + const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0); + const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1); + const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1); + + // load y + const int8x16_t v1_0l = vld1q_s8(y0->qs); + const int8x16_t v1_0h = vld1q_s8(y0->qs + 16); + const int8x16_t v1_1l = vld1q_s8(y1->qs); + const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); + + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32( + ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l), + ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d)); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32( + ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l), + ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d)); + } + + *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1); +#elif defined(__wasm_simd128__) + v128_t sumv = wasm_f32x4_splat(0.0f); + + uint32_t qh; + uint64_t tmp[4]; + + // TODO: check if unrolling this is better + for (int i = 0; i < nb; ++i) { + const block_q5_0 * restrict x0 = &x[i]; + const block_q8_0 * restrict y0 = &y[i]; + + const v128_t m4b = wasm_i8x16_splat(0x0F); + + // extract the 5th bit + memcpy(&qh, x0->qh, sizeof(qh)); + + tmp[0] = table_b2b_1[(qh >> 0) & 0xFF]; + tmp[1] = table_b2b_1[(qh >> 8) & 0xFF]; + tmp[2] = table_b2b_1[(qh >> 16) & 0xFF]; + tmp[3] = table_b2b_1[(qh >> 24) ]; + + const v128_t qhl = wasm_v128_load(tmp + 0); + const v128_t qhh = wasm_v128_load(tmp + 2); + + const v128_t v0 = wasm_v128_load(x0->qs); + + // 4-bit -> 8-bit + const v128_t v0l = wasm_v128_and (v0, m4b); + const v128_t v0h = wasm_u8x16_shr(v0, 4); + + // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero) + const v128_t v0lf = wasm_i8x16_sub(v0l, qhl); + const v128_t v0hf = wasm_i8x16_sub(v0h, qhh); + + // load y + const v128_t v1l = wasm_v128_load(y0->qs); + const v128_t v1h = wasm_v128_load(y0->qs + 16); + + // int8x16 -> int16x8 + const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf); + const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf); + const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf); + const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf); + + const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l); + const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l); + const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h); + const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h); + + // dot product + sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4( + wasm_i32x4_add( + wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll), + wasm_i32x4_dot_i16x8(v0lfh, v1lh)), + wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl), + wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), + wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d)))); + } + + *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) + + wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3); +#elif defined(__AVX2__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + + // Main loop + for (int i = 0; i < nb; i++) { + /* Compute combined scale for the block */ + const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d)); + + __m256i qx = bytes_from_nibbles_32(x[i].qs); + __m256i bxhi = bytes_from_bits_32(x[i].qh); + bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0)); + qx = _mm256_or_si256(qx, bxhi); + + __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs); + + const __m256 q = mul_sum_i8_pairs_float(qx, qy); + + /* Multiply q with scale and accumulate */ + acc = _mm256_fmadd_ps(d, q, acc); + } + + *s = hsum_float_8(acc); +#elif defined(__AVX__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + __m128i mask = _mm_set1_epi8((char)0xF0); + + // Main loop + for (int i = 0; i < nb; i++) { + /* Compute combined scale for the block */ + const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d)); + + __m256i bx_0 = bytes_from_nibbles_32(x[i].qs); + const __m256i bxhi = bytes_from_bits_32(x[i].qh); + __m128i bxhil = _mm256_castsi256_si128(bxhi); + __m128i bxhih = _mm256_extractf128_si256(bxhi, 1); + bxhil = _mm_andnot_si128(bxhil, mask); + bxhih = _mm_andnot_si128(bxhih, mask); + __m128i bxl = _mm256_castsi256_si128(bx_0); + __m128i bxh = _mm256_extractf128_si256(bx_0, 1); + bxl = _mm_or_si128(bxl, bxhil); + bxh = _mm_or_si128(bxh, bxhih); + bx_0 = MM256_SET_M128I(bxh, bxl); + + const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[i].qs); + + const __m256 q = mul_sum_i8_pairs_float(bx_0, by_0); + + /* Multiply q with scale and accumulate */ + acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc); + } + + *s = hsum_float_8(acc); +#elif defined(__riscv_v_intrinsic) + float sumf = 0.0; + + uint32_t qh; + + size_t vl = __riscv_vsetvl_e8m1(qk/2); + + // These temporary registers are for masking and shift operations + vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl); + vuint32m2_t vt_2 = __riscv_vsll_vv_u32m2(__riscv_vmv_v_x_u32m2(1, vl), vt_1, vl); + + vuint32m2_t vt_3 = __riscv_vsll_vx_u32m2(vt_2, 16, vl); + vuint32m2_t vt_4 = __riscv_vadd_vx_u32m2(vt_1, 12, vl); + + for (int i = 0; i < nb; i++) { + memcpy(&qh, x[i].qh, sizeof(uint32_t)); + + // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4; + vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(vt_2, qh, vl); + vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(xha_0, vt_1, vl); + vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl); + + // ((qh & (1u << (j + 16))) >> (j + 12)); + vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(vt_3, qh, vl); + vuint32m2_t xhl_1 = __riscv_vsrl_vv_u32m2(xha_1, vt_4, vl); + + // narrowing + vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xhl_0, vl); + vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl); + + vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xhl_1, vl); + vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl); + + // load + vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl); + + vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl); + vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl); + + vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl); + vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl); + + vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl); + vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl); + + vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a); + vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l); + + vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 16, vl); + vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 16, vl); + + vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl); + vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl); + + vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl); + + vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl); + vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl); + + int sumi = __riscv_vmv_x_s_i32m1_i32(vs2); + + sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi; + } + + *s = sumf; +#else + // scalar + float sumf = 0.0; + + for (int i = 0; i < nb; i++) { + uint32_t qh; + memcpy(&qh, x[i].qh, sizeof(qh)); + + int sumi = 0; + + for (int j = 0; j < qk/2; ++j) { + const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4; + const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12)); + + const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16; + const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16; + + sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]); + } + + sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi; + } + + *s = sumf; +#endif +} + +void ggml_vec_dot_q5_1_q8_1(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + const int qk = QK8_1; + const int nb = n / qk; + + assert(n % qk == 0); + assert(qk == QK5_1); + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + const block_q5_1 * restrict x = vx; + const block_q8_1 * restrict y = vy; + +#if defined(__ARM_NEON) + float32x4_t sumv0 = vdupq_n_f32(0.0f); + float32x4_t sumv1 = vdupq_n_f32(0.0f); + + float summs0 = 0.0f; + float summs1 = 0.0f; + + uint32_t qh0; + uint32_t qh1; + + uint64_t tmp0[4]; + uint64_t tmp1[4]; + + assert(nb % 2 == 0); // TODO: handle odd nb + + for (int i = 0; i < nb; i += 2) { + const block_q5_1 * restrict x0 = &x[i]; + const block_q5_1 * restrict x1 = &x[i + 1]; + const block_q8_1 * restrict y0 = &y[i]; + const block_q8_1 * restrict y1 = &y[i + 1]; + + const uint8x16_t m4b = vdupq_n_u8(0x0F); + + summs0 += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s); + summs1 += GGML_FP16_TO_FP32(x1->m) * GGML_FP16_TO_FP32(y1->s); + + // extract the 5th bit via lookup table ((b) << 4) + memcpy(&qh0, x0->qh, sizeof(qh0)); + memcpy(&qh1, x1->qh, sizeof(qh1)); + + tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF]; + tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF]; + tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF]; + tmp0[3] = table_b2b_0[(qh0 >> 24) ]; + + tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF]; + tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF]; + tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF]; + tmp1[3] = table_b2b_0[(qh1 >> 24) ]; + + const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0)); + const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2)); + const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0)); + const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2)); + + const uint8x16_t v0_0 = vld1q_u8(x0->qs); + const uint8x16_t v0_1 = vld1q_u8(x1->qs); + + // 4-bit -> 8-bit + const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b)); + const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4)); + const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b)); + const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4)); + + // add high bit + const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0); + const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0); + const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1); + const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1); + + // load y + const int8x16_t v1_0l = vld1q_s8(y0->qs); + const int8x16_t v1_0h = vld1q_s8(y0->qs + 16); + const int8x16_t v1_1l = vld1q_s8(y1->qs); + const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); + + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32( + ggml_vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l), + ggml_vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d)); + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32( + ggml_vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l), + ggml_vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d)); + } + + *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1; +#elif defined(__wasm_simd128__) + v128_t sumv = wasm_f32x4_splat(0.0f); + + float summs = 0.0f; + + uint32_t qh; + uint64_t tmp[4]; + + // TODO: check if unrolling this is better + for (int i = 0; i < nb; ++i) { + const block_q5_1 * restrict x0 = &x[i]; + const block_q8_1 * restrict y0 = &y[i]; + + summs += GGML_FP16_TO_FP32(x0->m) * GGML_FP16_TO_FP32(y0->s); + + const v128_t m4b = wasm_i8x16_splat(0x0F); + + // extract the 5th bit + memcpy(&qh, x0->qh, sizeof(qh)); + + tmp[0] = table_b2b_0[(qh >> 0) & 0xFF]; + tmp[1] = table_b2b_0[(qh >> 8) & 0xFF]; + tmp[2] = table_b2b_0[(qh >> 16) & 0xFF]; + tmp[3] = table_b2b_0[(qh >> 24) ]; + + const v128_t qhl = wasm_v128_load(tmp + 0); + const v128_t qhh = wasm_v128_load(tmp + 2); + + const v128_t v0 = wasm_v128_load(x0->qs); + + // 4-bit -> 8-bit + const v128_t v0l = wasm_v128_and (v0, m4b); + const v128_t v0h = wasm_u8x16_shr(v0, 4); + + // add high bit + const v128_t v0lf = wasm_v128_or(v0l, qhl); + const v128_t v0hf = wasm_v128_or(v0h, qhh); + + // load y + const v128_t v1l = wasm_v128_load(y0->qs); + const v128_t v1h = wasm_v128_load(y0->qs + 16); + + // int8x16 -> int16x8 + const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf); + const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf); + const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf); + const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf); + + const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l); + const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l); + const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h); + const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h); + + // dot product + sumv = wasm_f32x4_add(sumv, + wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add( + wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll), + wasm_i32x4_dot_i16x8(v0lfh, v1lh)), + wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl), + wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), + wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d)))); + } + + *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) + + wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs; +#elif defined(__AVX2__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + + float summs = 0.0f; + + // Main loop + for (int i = 0; i < nb; i++) { + const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)); + + summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s); + + __m256i qx = bytes_from_nibbles_32(x[i].qs); + __m256i bxhi = bytes_from_bits_32(x[i].qh); + bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10)); + qx = _mm256_or_si256(qx, bxhi); + + const __m256 dy = _mm256_set1_ps(GGML_FP16_TO_FP32(y[i].d)); + const __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs); + + const __m256 q = mul_sum_us8_pairs_float(qx, qy); + + acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc); + } + + *s = hsum_float_8(acc) + summs; +#elif defined(__AVX__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + __m128i mask = _mm_set1_epi8(0x10); + + float summs = 0.0f; + + // Main loop + for (int i = 0; i < nb; i++) { + const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)); + + summs += GGML_FP16_TO_FP32(x[i].m) * GGML_FP16_TO_FP32(y[i].s); + + __m256i bx_0 = bytes_from_nibbles_32(x[i].qs); + const __m256i bxhi = bytes_from_bits_32(x[i].qh); + __m128i bxhil = _mm256_castsi256_si128(bxhi); + __m128i bxhih = _mm256_extractf128_si256(bxhi, 1); + bxhil = _mm_and_si128(bxhil, mask); + bxhih = _mm_and_si128(bxhih, mask); + __m128i bxl = _mm256_castsi256_si128(bx_0); + __m128i bxh = _mm256_extractf128_si256(bx_0, 1); + bxl = _mm_or_si128(bxl, bxhil); + bxh = _mm_or_si128(bxh, bxhih); + bx_0 = MM256_SET_M128I(bxh, bxl); + + const __m256 dy = _mm256_set1_ps(GGML_FP16_TO_FP32(y[i].d)); + const __m256i by_0 = _mm256_loadu_si256((const __m256i *)y[i].qs); + + const __m256 q = mul_sum_us8_pairs_float(bx_0, by_0); + + acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc); + } + + *s = hsum_float_8(acc) + summs; +#elif defined(__riscv_v_intrinsic) + float sumf = 0.0; + + uint32_t qh; + + size_t vl = __riscv_vsetvl_e8m1(qk/2); + + // temporary registers for shift operations + vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl); + vuint32m2_t vt_2 = __riscv_vadd_vx_u32m2(vt_1, 12, vl); + + for (int i = 0; i < nb; i++) { + memcpy(&qh, x[i].qh, sizeof(uint32_t)); + + // load qh + vuint32m2_t vqh = __riscv_vmv_v_x_u32m2(qh, vl); + + // ((qh >> (j + 0)) << 4) & 0x10; + vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(vqh, vt_1, vl); + vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl); + vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(xhl_0, 0x10, vl); + + // ((qh >> (j + 12)) ) & 0x10; + vuint32m2_t xhr_1 = __riscv_vsrl_vv_u32m2(vqh, vt_2, vl); + vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(xhr_1, 0x10, vl); + + // narrowing + vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xha_0, vl); + vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl); + + vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xha_1, vl); + vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl); + + // load + vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl); + + vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl); + vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl); + + vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl); + vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl); + + vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl); + vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl); + + vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a); + vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l); + + vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl); + vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl); + + vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl); + + vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl); + vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl); + + int sumi = __riscv_vmv_x_s_i32m1_i32(vs2); + + sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d))*sumi + GGML_FP16_TO_FP32(x[i].m)*GGML_FP16_TO_FP32(y[i].s); + } + + *s = sumf; +#else + // scalar + float sumf = 0.0; + + for (int i = 0; i < nb; i++) { + uint32_t qh; + memcpy(&qh, x[i].qh, sizeof(qh)); + + int sumi = 0; + + for (int j = 0; j < qk/2; ++j) { + const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10; + const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10; + + const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0; + const int32_t x1 = (x[i].qs[j] >> 4) | xh_1; + + sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]); + } + + sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d))*sumi + GGML_FP16_TO_FP32(x[i].m)*GGML_FP16_TO_FP32(y[i].s); + } + + *s = sumf; +#endif +} + +void ggml_vec_dot_q8_0_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + const int qk = QK8_0; + const int nb = n / qk; + + assert(n % qk == 0); +#if defined(__ARM_FEATURE_MATMUL_INT8) + assert((nrc == 2) || (nrc == 1)); +#else + assert(nrc == 1); +#endif + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + const block_q8_0 * restrict x = vx; + const block_q8_0 * restrict y = vy; + +#if defined(__ARM_FEATURE_MATMUL_INT8) + if (nrc == 2) { + const block_q8_0 * restrict vx0 = vx; + const block_q8_0 * restrict vx1 = vx + bx; + const block_q8_0 * restrict vy0 = vy; + const block_q8_0 * restrict vy1 = vy + by; + + float32x4_t sumv0 = vdupq_n_f32(0.0f); + + for (int i = 0; i < nb; i++) { + const block_q8_0 * restrict b_x0 = &vx0[i]; + const block_q8_0 * restrict b_y0 = &vy0[i]; + + const block_q8_0 * restrict b_x1 = &vx1[i]; + const block_q8_0 * restrict b_y1 = &vy1[i]; + + const int8x16_t x0_l = vld1q_s8(b_x0->qs); + const int8x16_t x0_h = vld1q_s8(b_x0->qs + 16); + const int8x16_t x1_l = vld1q_s8(b_x1->qs); + const int8x16_t x1_h = vld1q_s8(b_x1->qs + 16); + + // load y + const int8x16_t y0_l = vld1q_s8(b_y0->qs); + const int8x16_t y0_h = vld1q_s8(b_y0->qs + 16); + const int8x16_t y1_l = vld1q_s8(b_y1->qs); + const int8x16_t y1_h = vld1q_s8(b_y1->qs + 16); + + float32x4_t scale = {GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y0->d), + GGML_FP16_TO_FP32(b_x0->d)*GGML_FP16_TO_FP32(b_y1->d), + GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y0->d), + GGML_FP16_TO_FP32(b_x1->d)*GGML_FP16_TO_FP32(b_y1->d)}; + + int8x16_t l0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l))); + int8x16_t l1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_l), vreinterpretq_s64_s8(x1_l))); + + int8x16_t l2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h))); + int8x16_t l3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(x0_h), vreinterpretq_s64_s8(x1_h))); + + int8x16_t r0 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l))); + int8x16_t r1 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_l), vreinterpretq_s64_s8(y1_l))); + + int8x16_t r2 = vreinterpretq_s8_s64(vzip1q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h))); + int8x16_t r3 = vreinterpretq_s8_s64(vzip2q_s64(vreinterpretq_s64_s8(y0_h), vreinterpretq_s64_s8(y1_h))); + + sumv0 = vmlaq_f32(sumv0,(vcvtq_f32_s32(vmmlaq_s32((vmmlaq_s32((vmmlaq_s32((vmmlaq_s32(vdupq_n_s32(0), l0, r0)), + l1, r1)), l2, r2)), l3, r3))), scale); + } + float32x4_t sumv1 = vextq_f32(sumv0, sumv0, 2); + float32x4_t sumv2 = vzip1q_f32(sumv0, sumv1); + + vst1_f32(s, vget_low_f32(sumv2)); + vst1_f32(s + bs, vget_high_f32(sumv2)); + return; + } +#endif +#if defined(__ARM_NEON) + float32x4_t sumv0 = vdupq_n_f32(0.0f); + float32x4_t sumv1 = vdupq_n_f32(0.0f); + + assert(nb % 2 == 0); // TODO: handle odd nb + + for (int i = 0; i < nb; i += 2) { + const block_q8_0 * restrict x0 = &x[i + 0]; + const block_q8_0 * restrict x1 = &x[i + 1]; + const block_q8_0 * restrict y0 = &y[i + 0]; + const block_q8_0 * restrict y1 = &y[i + 1]; + + const int8x16_t x0_0 = vld1q_s8(x0->qs); + const int8x16_t x0_1 = vld1q_s8(x0->qs + 16); + const int8x16_t x1_0 = vld1q_s8(x1->qs); + const int8x16_t x1_1 = vld1q_s8(x1->qs + 16); + + // load y + const int8x16_t y0_0 = vld1q_s8(y0->qs); + const int8x16_t y0_1 = vld1q_s8(y0->qs + 16); + const int8x16_t y1_0 = vld1q_s8(y1->qs); + const int8x16_t y1_1 = vld1q_s8(y1->qs + 16); + + sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32( + ggml_vdotq_s32(vdupq_n_s32(0), x0_0, y0_0), + ggml_vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d)); + + sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32( + ggml_vdotq_s32(vdupq_n_s32(0), x1_0, y1_0), + ggml_vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d)); + } + + *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1); +#elif defined(__AVX2__) || defined(__AVX__) + // Initialize accumulator with zeros + __m256 acc = _mm256_setzero_ps(); + + // Main loop + for (int i = 0; i < nb; ++i) { + // Compute combined scale for the block + const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d)); + __m256i qx = _mm256_loadu_si256((const __m256i *)x[i].qs); + __m256i qy = _mm256_loadu_si256((const __m256i *)y[i].qs); + + const __m256 q = mul_sum_i8_pairs_float(qx, qy); + + // Multiply q with scale and accumulate +#if defined(__AVX2__) + acc = _mm256_fmadd_ps( d, q, acc ); +#else + acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc ); +#endif + } + + *s = hsum_float_8(acc); +#elif defined(__riscv_v_intrinsic) + float sumf = 0.0; + size_t vl = __riscv_vsetvl_e8m1(qk); + + for (int i = 0; i < nb; i++) { + // load elements + vint8m1_t bx_0 = __riscv_vle8_v_i8m1(x[i].qs, vl); + vint8m1_t by_0 = __riscv_vle8_v_i8m1(y[i].qs, vl); + + vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx_0, by_0, vl); + + vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl); + vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl); + + int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum); + + sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)); + } + + *s = sumf; +#else + // scalar + float sumf = 0.0; + + for (int i = 0; i < nb; i++) { + int sumi = 0; + + for (int j = 0; j < qk; j++) { + sumi += x[i].qs[j]*y[i].qs[j]; + } + + sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)); + } + + *s = sumf; +#endif +} + +#if QK_K == 256 +void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + const block_q2_K * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + +#ifdef __ARM_NEON + const uint8x16_t m3 = vdupq_n_u8(0x3); + const uint8x16_t m4 = vdupq_n_u8(0xF); + + const int32x4_t vzero = vdupq_n_s32(0); + + ggml_int8x16x2_t q2bytes; + uint8_t aux[16]; + + float sum = 0; + + for (int i = 0; i < nb; ++i) { + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); + + const uint8_t * restrict q2 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + const uint8_t * restrict sc = x[i].scales; + + const uint8x16_t mins_and_scales = vld1q_u8(sc); + const uint8x16_t scales = vandq_u8(mins_and_scales, m4); + vst1q_u8(aux, scales); + + const uint8x16_t mins = vshrq_n_u8(mins_and_scales, 4); + const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums); + const ggml_int16x8x2_t mins16 = {{vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(mins))), vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(mins)))}}; + const int32x4_t s0 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[0]), vget_low_s16 (q8sums.val[0])), + vmull_s16(vget_high_s16(mins16.val[0]), vget_high_s16(q8sums.val[0]))); + const int32x4_t s1 = vaddq_s32(vmull_s16(vget_low_s16 (mins16.val[1]), vget_low_s16 (q8sums.val[1])), + vmull_s16(vget_high_s16(mins16.val[1]), vget_high_s16(q8sums.val[1]))); + sum += dmin * vaddvq_s32(vaddq_s32(s0, s1)); + + int isum = 0; + int is = 0; + +// We use this macro instead of a function call because for some reason +// the code runs 2-3% slower, even if the function is declared inline +#define MULTIPLY_ACCUM_WITH_SCALE(index)\ + isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\ + isum += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)]; + +#define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\ + q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\ + q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[0], (shift)), m3));\ + q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\ + MULTIPLY_ACCUM_WITH_SCALE((index)); + + for (int j = 0; j < QK_K/128; ++j) { + const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32; + + ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32; + q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3)); + q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3)); + + MULTIPLY_ACCUM_WITH_SCALE(0); + + SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2); + SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4); + SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6); + + is += 8; + } + + sum += d * isum; + } + + *s = sum; + +#elif defined __AVX2__ + + const __m256i m3 = _mm256_set1_epi8(3); + const __m128i m4 = _mm_set1_epi8(0xF); + + __m256 acc = _mm256_setzero_ps(); + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); + + const uint8_t * restrict q2 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales); + const __m128i scales8 = _mm_and_si128(mins_and_scales, m4); + const __m128i mins8 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4); + const __m256i mins = _mm256_cvtepi8_epi16(mins8); + const __m256i prod = _mm256_madd_epi16(mins, _mm256_loadu_si256((const __m256i*)y[i].bsums)); + + acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(prod), acc); + + const __m256i all_scales = _mm256_cvtepi8_epi16(scales8); + const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0); + const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1); + const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)}; + + __m256i sumi = _mm256_setzero_si256(); + + for (int j = 0; j < QK_K/128; ++j) { + + const __m256i q2bits = _mm256_loadu_si256((const __m256i*)q2); q2 += 32; + + const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + + const __m256i q2_0 = _mm256_and_si256(q2bits, m3); + const __m256i q2_1 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 2), m3); + const __m256i q2_2 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 4), m3); + const __m256i q2_3 = _mm256_and_si256(_mm256_srli_epi16(q2bits, 6), m3); + + __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0); + __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1); + __m256i p2 = _mm256_maddubs_epi16(q2_2, q8_2); + __m256i p3 = _mm256_maddubs_epi16(q2_3, q8_3); + + p0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(0)), p0); + p1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(1)), p1); + p2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(2)), p2); + p3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(3)), p3); + + p0 = _mm256_add_epi32(p0, p1); + p2 = _mm256_add_epi32(p2, p3); + + sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p0, p2)); + } + + acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc); + + } + + *s = hsum_float_8(acc); + +#elif defined __AVX__ + + const __m128i m3 = _mm_set1_epi8(0x3); + const __m128i m4 = _mm_set1_epi8(0xF); + const __m128i m2 = _mm_set1_epi8(0x2); + + __m256 acc = _mm256_setzero_ps(); + + for (int i = 0; i < nb; ++i) { + + const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); + + const uint8_t * restrict q2 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + // load mins and scales from block_q2_K.scales[QK_K/16] + const __m128i mins_and_scales = _mm_loadu_si128((const __m128i*)x[i].scales); + const __m128i scales16 = _mm_and_si128(mins_and_scales, m4); + const __m128i mins16 = _mm_and_si128(_mm_srli_epi16(mins_and_scales, 4), m4); + const __m128i mins_0 = _mm_cvtepi8_epi16(mins16); + const __m128i mins_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(mins16, mins16)); + + // summs = y[i].bsums * (x[i].scales >> 4) in 16bits*8*2 to 32bits*4*2 + const __m128i summs_0 = _mm_madd_epi16(mins_0, _mm_loadu_si128((const __m128i*)&y[i].bsums[0])); + const __m128i summs_1 = _mm_madd_epi16(mins_1, _mm_loadu_si128((const __m128i*)&y[i].bsums[8])); + + // sumf += -dmin * summs in 32bits*8 + acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dmin), _mm256_cvtepi32_ps(MM256_SET_M128I(summs_1, summs_0))), acc); + + const __m128i scales_0 = _mm_cvtepi8_epi16(scales16); + const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales16, scales16)); + const __m128i scales[2] = { scales_0, scales_1 }; + + __m128i sumi_0 = _mm_setzero_si128(); + __m128i sumi_1 = _mm_setzero_si128(); + + for (int j = 0; j < QK_K/128; ++j) { + + // load Q8 quants int8*16*8 from block_q8_K.qs[QK_K] + const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + + // load 2bits*16*8 from block_q2_K.qs[QK_K/4] + __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16; + const __m128i q2_0 = _mm_and_si128(q2bits, m3); + const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3); + const __m128i q2_4 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3); + const __m128i q2_6 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3); + q2bits = _mm_loadu_si128((const __m128i*)q2); q2 += 16; + const __m128i q2_1 = _mm_and_si128(q2bits, m3); + const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3); + const __m128i q2_5 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3); + const __m128i q2_7 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3); + + // isuml = q8[l] * ((q2[l] >> shift) & 3) in 8bits*16*8 to 16bits*8*8 + __m128i p0 = _mm_maddubs_epi16(q2_0, q8_0); + __m128i p1 = _mm_maddubs_epi16(q2_1, q8_1); + __m128i p2 = _mm_maddubs_epi16(q2_2, q8_2); + __m128i p3 = _mm_maddubs_epi16(q2_3, q8_3); + __m128i p4 = _mm_maddubs_epi16(q2_4, q8_4); + __m128i p5 = _mm_maddubs_epi16(q2_5, q8_5); + __m128i p6 = _mm_maddubs_epi16(q2_6, q8_6); + __m128i p7 = _mm_maddubs_epi16(q2_7, q8_7); + + // isum += (x[i].scales[is++] & 0xF) * isuml in 16bits*8*8 to 32bits*4*8 + __m128i shuffle = _mm_set1_epi16(0x0100); + p0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p0); + shuffle = _mm_add_epi16(shuffle, m2); + p1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p1); + shuffle = _mm_add_epi16(shuffle, m2); + p2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p2); + shuffle = _mm_add_epi16(shuffle, m2); + p3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p3); + shuffle = _mm_add_epi16(shuffle, m2); + p4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p4); + shuffle = _mm_add_epi16(shuffle, m2); + p5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p5); + shuffle = _mm_add_epi16(shuffle, m2); + p6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p6); + shuffle = _mm_add_epi16(shuffle, m2); + p7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p7); + + p0 = _mm_add_epi32(p0, p1); + p2 = _mm_add_epi32(p2, p3); + p4 = _mm_add_epi32(p4, p5); + p6 = _mm_add_epi32(p6, p7); + + // isum in 32bits*4*2 + sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p0, p2)); + sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p4, p6)); + } + + // sumf += dall * isum - dmin * summs in 32bits + __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0); + acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&dall), _mm256_cvtepi32_ps(sumi)), acc); + } + + *s = hsum_float_8(acc); + +#elif defined __riscv_v_intrinsic + + float sumf = 0; + uint8_t temp_01[32] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; + + for (int i = 0; i < nb; ++i) { + + const uint8_t * q2 = x[i].qs; + const int8_t * q8 = y[i].qs; + const uint8_t * sc = x[i].scales; + + const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); + + size_t vl = 16; + + vuint8m1_t scales = __riscv_vle8_v_u8m1(sc, vl); + vuint8m1_t aux = __riscv_vand_vx_u8m1(scales, 0x0F, vl); + + vint16m1_t q8sums = __riscv_vle16_v_i16m1(y[i].bsums, vl); + + vuint8mf2_t scales_2 = __riscv_vle8_v_u8mf2(sc, vl); + vuint8mf2_t mins8 = __riscv_vsrl_vx_u8mf2(scales_2, 0x4, vl); + vint16m1_t mins = __riscv_vreinterpret_v_u16m1_i16m1(__riscv_vzext_vf2_u16m1(mins8, vl)); + vint32m2_t prod = __riscv_vwmul_vv_i32m2(q8sums, mins, vl); + vint32m1_t vsums = __riscv_vredsum_vs_i32m2_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl); + + sumf += dmin * __riscv_vmv_x_s_i32m1_i32(vsums); + + vl = 32; + + vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1); + vuint8m1_t v_b = __riscv_vle8_v_u8m1(temp_01, vl); + + uint8_t is=0; + int isum=0; + + for (int j = 0; j < QK_K/128; ++j) { + // load Q2 + vuint8m1_t q2_x = __riscv_vle8_v_u8m1(q2, vl); + + vuint8m1_t q2_0 = __riscv_vand_vx_u8m1(q2_x, 0x03, vl); + vuint8m1_t q2_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x2, vl), 0x03 , vl); + vuint8m1_t q2_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x4, vl), 0x03 , vl); + vuint8m1_t q2_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q2_x, 0x6, vl), 0x03 , vl); + + // duplicate scale elements for product + vuint8m1_t sc0 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 0+is, vl), vl); + vuint8m1_t sc1 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 2+is, vl), vl); + vuint8m1_t sc2 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 4+is, vl), vl); + vuint8m1_t sc3 = __riscv_vrgather_vv_u8m1(aux, __riscv_vadd_vx_u8m1(v_b, 6+is, vl), vl); + + vint16m2_t p0 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_0, sc0, vl)); + vint16m2_t p1 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_1, sc1, vl)); + vint16m2_t p2 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_2, sc2, vl)); + vint16m2_t p3 = __riscv_vreinterpret_v_u16m2_i16m2(__riscv_vwmulu_vv_u16m2(q2_3, sc3, vl)); + + // load Q8 + vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl); + vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl); + vint8m1_t q8_2 = __riscv_vle8_v_i8m1(q8+64, vl); + vint8m1_t q8_3 = __riscv_vle8_v_i8m1(q8+96, vl); + + vint32m4_t s0 = __riscv_vwmul_vv_i32m4(p0, __riscv_vwcvt_x_x_v_i16m2(q8_0, vl), vl); + vint32m4_t s1 = __riscv_vwmul_vv_i32m4(p1, __riscv_vwcvt_x_x_v_i16m2(q8_1, vl), vl); + vint32m4_t s2 = __riscv_vwmul_vv_i32m4(p2, __riscv_vwcvt_x_x_v_i16m2(q8_2, vl), vl); + vint32m4_t s3 = __riscv_vwmul_vv_i32m4(p3, __riscv_vwcvt_x_x_v_i16m2(q8_3, vl), vl); + + vint32m1_t isum0 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s0, s1, vl), vzero, vl); + vint32m1_t isum1 = __riscv_vredsum_vs_i32m4_i32m1(__riscv_vadd_vv_i32m4(s2, s3, vl), isum0, vl); + + isum += __riscv_vmv_x_s_i32m1_i32(isum1); + + q2+=32; q8+=128; is=8; + + } + + sumf += dall * isum; + + } + + *s = sumf; + +#else + + float sumf = 0; + + for (int i = 0; i < nb; ++i) { + + const uint8_t * q2 = x[i].qs; + const int8_t * q8 = y[i].qs; + const uint8_t * sc = x[i].scales; + + int summs = 0; + for (int j = 0; j < 16; ++j) { + summs += y[i].bsums[j] * (sc[j] >> 4); + } + + const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin); + + int isum = 0; + int is = 0; + int d; + for (int k = 0; k < QK_K/128; ++k) { + int shift = 0; + for (int j = 0; j < 4; ++j) { + d = sc[is++] & 0xF; + int isuml = 0; + for (int l = 0; l < 16; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3); + isum += d * isuml; + d = sc[is++] & 0xF; + isuml = 0; + for (int l = 16; l < 32; ++l) isuml += q8[l] * ((q2[l] >> shift) & 3); + isum += d * isuml; + shift += 2; + q8 += 32; + } + q2 += 32; + } + sumf += dall * isum - dmin * summs; + } + *s = sumf; +#endif +} + +#else + +void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + const block_q2_K * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + +#ifdef __ARM_NEON + const uint8x16_t m3 = vdupq_n_u8(0x3); + + const int32x4_t vzero = vdupq_n_s32(0); + + ggml_int8x16x4_t q2bytes; + + uint32_t aux32[2]; + const uint8_t * scales = (const uint8_t *)aux32; + + float sum = 0; + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); + + const uint8_t * restrict q2 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + const uint32_t * restrict sc = (const uint32_t *)x[i].scales; + + aux32[0] = sc[0] & 0x0f0f0f0f; + aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f; + + sum += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]); + + int isum1 = 0, isum2 = 0; + + const uint8x16_t q2bits = vld1q_u8(q2); + + const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); + + q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits, m3)); + q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 2), m3)); + q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3)); + q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3)); + + isum1 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0]; + isum2 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1]; + isum1 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2]; + isum2 += vaddvq_s32(ggml_vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3]; + + sum += d * (isum1 + isum2); + } + + *s = sum; + +#elif defined __AVX2__ + + const __m256i m3 = _mm256_set1_epi8(3); + + __m256 acc = _mm256_setzero_ps(); + + uint32_t ud, um; + const uint8_t * restrict db = (const uint8_t *)&ud; + const uint8_t * restrict mb = (const uint8_t *)&um; + + float summs = 0; + + // TODO: optimize this + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); + + const uint8_t * restrict q2 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + const uint32_t * restrict sc = (const uint32_t *)x[i].scales; + ud = (sc[0] >> 0) & 0x0f0f0f0f; + um = (sc[0] >> 4) & 0x0f0f0f0f; + + int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3]; + summs += dmin * smin; + + const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); + const __m256i q2_0 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 2), q2bits), m3); + const __m256i q2_1 = _mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q2bits, 6), _mm_srli_epi16(q2bits, 4)), m3); + + const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); + const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); + + const __m256i p0 = _mm256_maddubs_epi16(q2_0, q8_0); + const __m256i p1 = _mm256_maddubs_epi16(q2_1, q8_1); + + const __m256i p_0 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 0)); + const __m256i p_1 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p0, 1)); + const __m256i p_2 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 0)); + const __m256i p_3 = _mm256_cvtepi16_epi32(_mm256_extracti128_si256(p1, 1)); + + acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0), acc); + acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1), acc); + acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2), acc); + acc = _mm256_fmadd_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3), acc); + } + + *s = hsum_float_8(acc) + summs; + +#elif defined __AVX__ + + const __m128i m3 = _mm_set1_epi8(3); + + __m256 acc = _mm256_setzero_ps(); + + uint32_t ud, um; + const uint8_t * restrict db = (const uint8_t *)&ud; + const uint8_t * restrict mb = (const uint8_t *)&um; + + float summs = 0; + + // TODO: optimize this + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); + + const uint8_t * restrict q2 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + const uint32_t * restrict sc = (const uint32_t *)x[i].scales; + ud = (sc[0] >> 0) & 0x0f0f0f0f; + um = (sc[0] >> 4) & 0x0f0f0f0f; + + int32_t smin = mb[0] * y[i].bsums[0] + mb[1] * y[i].bsums[1] + mb[2] * y[i].bsums[2] + mb[3] * y[i].bsums[3]; + summs += dmin * smin; + + const __m128i q2bits = _mm_loadu_si128((const __m128i*)q2); + const __m128i q2_0 = _mm_and_si128(q2bits, m3); + const __m128i q2_1 = _mm_and_si128(_mm_srli_epi16(q2bits, 2), m3); + const __m128i q2_2 = _mm_and_si128(_mm_srli_epi16(q2bits, 4), m3); + const __m128i q2_3 = _mm_and_si128(_mm_srli_epi16(q2bits, 6), m3); + + const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); + const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); + + const __m128i p0 = _mm_maddubs_epi16(q2_0, _mm256_extractf128_si256(q8_0, 0)); + const __m128i p1 = _mm_maddubs_epi16(q2_1, _mm256_extractf128_si256(q8_0, 1)); + const __m128i p2 = _mm_maddubs_epi16(q2_2, _mm256_extractf128_si256(q8_1, 0)); + const __m128i p3 = _mm_maddubs_epi16(q2_3, _mm256_extractf128_si256(q8_1, 1)); + + const __m256i p_0 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p0, p0)), _mm_cvtepi16_epi32(p0)); + const __m256i p_1 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p1, p1)), _mm_cvtepi16_epi32(p1)); + const __m256i p_2 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p2, p2)), _mm_cvtepi16_epi32(p2)); + const __m256i p_3 = MM256_SET_M128I(_mm_cvtepi16_epi32(_mm_unpackhi_epi64(p3, p3)), _mm_cvtepi16_epi32(p3)); + + acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[0]), _mm256_cvtepi32_ps(p_0)), acc); + acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[1]), _mm256_cvtepi32_ps(p_1)), acc); + acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[2]), _mm256_cvtepi32_ps(p_2)), acc); + acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d * db[3]), _mm256_cvtepi32_ps(p_3)), acc); + } + + *s = hsum_float_8(acc) + summs; + +#elif defined __riscv_v_intrinsic + + uint32_t aux32[2]; + const uint8_t * scales = (const uint8_t *)aux32; + + float sumf = 0; + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); + + const uint8_t * restrict q2 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + const uint32_t * restrict sc = (const uint32_t *)x[i].scales; + + aux32[0] = sc[0] & 0x0f0f0f0f; + aux32[1] = (sc[0] >> 4) & 0x0f0f0f0f; + + sumf += dmin * (scales[4] * y[i].bsums[0] + scales[5] * y[i].bsums[1] + scales[6] * y[i].bsums[2] + scales[7] * y[i].bsums[3]); + + int isum1 = 0; + int isum2 = 0; + + size_t vl = 16; + + vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1); + + // load Q2 + vuint8mf2_t q2_x = __riscv_vle8_v_u8mf2(q2, vl); + + vint8mf2_t q2_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q2_x, 0x03, vl)); + vint8mf2_t q2_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x2, vl), 0x03 , vl)); + vint8mf2_t q2_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x4, vl), 0x03 , vl)); + vint8mf2_t q2_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q2_x, 0x6, vl), 0x03 , vl)); + + // load Q8, and take product with Q2 + vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q2_0, __riscv_vle8_v_i8mf2(q8, vl), vl); + vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q2_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl); + vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q2_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl); + vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q2_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl); + + vint16m1_t vs_0 = __riscv_vredsum_vs_i16m1_i16m1(p0, vzero, vl); + vint16m1_t vs_1 = __riscv_vredsum_vs_i16m1_i16m1(p1, vzero, vl); + vint16m1_t vs_2 = __riscv_vredsum_vs_i16m1_i16m1(p2, vzero, vl); + vint16m1_t vs_3 = __riscv_vredsum_vs_i16m1_i16m1(p3, vzero, vl); + + isum1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[0]; + isum2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[1]; + isum1 += __riscv_vmv_x_s_i16m1_i16(vs_2) * scales[2]; + isum2 += __riscv_vmv_x_s_i16m1_i16(vs_3) * scales[3]; + + sumf += d * (isum1 + isum2); + + } + + *s = sumf; + +#else + + float sumf = 0; + + int isum[QK_K/16]; + + for (int i = 0; i < nb; ++i) { + + const uint8_t * q2 = x[i].qs; + const int8_t * q8 = y[i].qs; + const uint8_t * sc = x[i].scales; + + int summs = 0; + for (int j = 0; j < QK_K/16; ++j) { + summs += y[i].bsums[j] * (sc[j] >> 4); + } + + const float dall = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin); + + memset(isum, 0, (QK_K/16)*sizeof(int)); + for (int l = 0; l < 16; ++l) { + isum[0] += q8[l+ 0] * ((q2[l] >> 0) & 3); + isum[1] += q8[l+16] * ((q2[l] >> 2) & 3); + isum[2] += q8[l+32] * ((q2[l] >> 4) & 3); + isum[3] += q8[l+48] * ((q2[l] >> 6) & 3); + } + for (int l = 0; l < QK_K/16; ++l) { + isum[l] *= (sc[l] & 0xF); + } + sumf += dall * (isum[0] + isum[1] + isum[2] + isum[3]) - dmin * summs; + } + *s = sumf; +#endif +} +#endif + +#if QK_K == 256 +void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + assert(n % QK_K == 0); + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + const uint32_t kmask1 = 0x03030303; + const uint32_t kmask2 = 0x0f0f0f0f; + + const block_q3_K * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + +#ifdef __ARM_NEON + + uint32_t aux[3]; + uint32_t utmp[4]; + + const uint8x16_t m3b = vdupq_n_u8(0x3); + const int32x4_t vzero = vdupq_n_s32(0); + + const uint8x16_t m0 = vdupq_n_u8(1); + const uint8x16_t m1 = vshlq_n_u8(m0, 1); + const uint8x16_t m2 = vshlq_n_u8(m0, 2); + const uint8x16_t m3 = vshlq_n_u8(m0, 3); + const int8_t m32 = 32; + + ggml_int8x16x4_t q3bytes; + + float sum = 0; + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + + const uint8_t * restrict q3 = x[i].qs; + const uint8_t * restrict qh = x[i].hmask; + const int8_t * restrict q8 = y[i].qs; + + ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); + + ggml_uint8x16x4_t q3h; + + int32_t isum = 0; + + // Set up scales + memcpy(aux, x[i].scales, 12); + utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4); + utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4); + utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4); + utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4); + + int8_t * scale = (int8_t *)utmp; + for (int j = 0; j < 16; ++j) scale[j] -= m32; + + for (int j = 0; j < QK_K/128; ++j) { + + const ggml_uint8x16x2_t q3bits = ggml_vld1q_u8_x2(q3); q3 += 32; + const ggml_int8x16x4_t q8bytes_1 = ggml_vld1q_s8_x4(q8); q8 += 64; + const ggml_int8x16x4_t q8bytes_2 = ggml_vld1q_s8_x4(q8); q8 += 64; + + q3h.val[0] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[0]), 2); + q3h.val[1] = vshlq_n_u8(vbicq_u8(m0, qhbits.val[1]), 2); + q3h.val[2] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[0]), 1); + q3h.val[3] = vshlq_n_u8(vbicq_u8(m1, qhbits.val[1]), 1); + + q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[0], m3b)), vreinterpretq_s8_u8(q3h.val[0])); + q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q3bits.val[1], m3b)), vreinterpretq_s8_u8(q3h.val[1])); + q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2])); + q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3])); + + isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0]; + isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1]; + isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2]; + isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3]; + + scale += 4; + + q3h.val[0] = vbicq_u8(m2, qhbits.val[0]); + q3h.val[1] = vbicq_u8(m2, qhbits.val[1]); + q3h.val[2] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[0]), 1); + q3h.val[3] = vshrq_n_u8(vbicq_u8(m3, qhbits.val[1]), 1); + + q3bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 4), m3b)), vreinterpretq_s8_u8(q3h.val[0])); + q3bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 4), m3b)), vreinterpretq_s8_u8(q3h.val[1])); + q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2])); + q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3])); + + isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0]; + isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1]; + isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2]; + isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3]; + + scale += 4; + + if (j == 0) { + qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 4); + qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 4); + } + + } + sum += d * isum; + + } + + *s = sum; + +#elif defined __AVX2__ + + const __m256i m3 = _mm256_set1_epi8(3); + const __m256i mone = _mm256_set1_epi8(1); + const __m128i m32 = _mm_set1_epi8(32); + + __m256 acc = _mm256_setzero_ps(); + + uint32_t aux[3]; + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + + const uint8_t * restrict q3 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + // Set up scales + memcpy(aux, x[i].scales, 12); + __m128i scales128 = _mm_set_epi32( + ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4), + ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4), + (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4), + (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4)); + scales128 = _mm_sub_epi8(scales128, m32); + const __m256i all_scales = _mm256_cvtepi8_epi16(scales128); + const __m128i l_scales = _mm256_extracti128_si256(all_scales, 0); + const __m128i h_scales = _mm256_extracti128_si256(all_scales, 1); + const __m256i scales[2] = {MM256_SET_M128I(l_scales, l_scales), MM256_SET_M128I(h_scales, h_scales)}; + + // high bit + const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].hmask); + + // integer accumulator + __m256i sumi = _mm256_setzero_si256(); + + int bit = 0; + int is = 0; + + for (int j = 0; j < QK_K/128; ++j) { + // load low 2 bits + const __m256i q3bits = _mm256_loadu_si256((const __m256i*)q3); q3 += 32; + + // prepare low and high bits + const __m256i q3l_0 = _mm256_and_si256(q3bits, m3); + const __m256i q3h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2); + ++bit; + + const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 2), m3); + const __m256i q3h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2); + ++bit; + + const __m256i q3l_2 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 4), m3); + const __m256i q3h_2 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2); + ++bit; + + const __m256i q3l_3 = _mm256_and_si256(_mm256_srli_epi16(q3bits, 6), m3); + const __m256i q3h_3 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_andnot_si256(hbits, _mm256_slli_epi16(mone, bit)), bit), 2); + ++bit; + + // load Q8 quants + const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + + // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16, + // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set, + // and 2 if the high bit was set) + __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0); + __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1); + __m256i q8s_2 = _mm256_maddubs_epi16(q3h_2, q8_2); + __m256i q8s_3 = _mm256_maddubs_epi16(q3h_3, q8_3); + + __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0); + __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1); + __m256i p16_2 = _mm256_maddubs_epi16(q3l_2, q8_2); + __m256i p16_3 = _mm256_maddubs_epi16(q3l_3, q8_3); + + p16_0 = _mm256_sub_epi16(p16_0, q8s_0); + p16_1 = _mm256_sub_epi16(p16_1, q8s_1); + p16_2 = _mm256_sub_epi16(p16_2, q8s_2); + p16_3 = _mm256_sub_epi16(p16_3, q8s_3); + + // multiply with scales + p16_0 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 0)), p16_0); + p16_1 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 1)), p16_1); + p16_2 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 2)), p16_2); + p16_3 = _mm256_madd_epi16(_mm256_shuffle_epi8(scales[j], get_scale_shuffle_q3k(is + 3)), p16_3); + + // accumulate + p16_0 = _mm256_add_epi32(p16_0, p16_1); + p16_2 = _mm256_add_epi32(p16_2, p16_3); + sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_2)); + + } + + // multiply with block scale and accumulate + acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc); + + } + + *s = hsum_float_8(acc); + +#elif defined __AVX__ + + const __m128i m3 = _mm_set1_epi8(3); + const __m128i mone = _mm_set1_epi8(1); + const __m128i m32 = _mm_set1_epi8(32); + const __m128i m2 = _mm_set1_epi8(2); + + __m256 acc = _mm256_setzero_ps(); + + const uint32_t *aux; + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + + const uint8_t * restrict q3 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + // Set up scales + aux = (const uint32_t *)x[i].scales; + __m128i scales128 = _mm_set_epi32( + ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4), + ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4), + (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4), + (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4)); + scales128 = _mm_sub_epi8(scales128, m32); + const __m128i scales_0 = _mm_cvtepi8_epi16(scales128); + const __m128i scales_1 = _mm_cvtepi8_epi16(_mm_unpackhi_epi64(scales128, scales128)); + const __m128i scales[2] = { scales_0, scales_1 }; + + // high bit *128*2 from block_q3_K.hmask[QK_K/8] + const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].hmask[0]); + const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].hmask[16]); + + // integer accumulator + __m128i sumi_0 = _mm_setzero_si128(); + __m128i sumi_1 = _mm_setzero_si128(); + + for (int j = 0; j < QK_K/128; ++j) { + // load low 2 bits *64*2 from block_q3_K.qs[QK_K/4] + const __m128i q3bits_0 = _mm_loadu_si128((const __m128i*)q3); q3 += 16; + const __m128i q3bits_1 = _mm_loadu_si128((const __m128i*)q3); q3 += 16; + + // prepare low and high bits + const int bit = j << 2; + + const __m128i q3l_0 = _mm_and_si128(q3bits_0, m3); + const __m128i q3l_1 = _mm_and_si128(q3bits_1, m3); + const __m128i q3h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit)), bit), 2); + const __m128i q3h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit)), bit), 2); + + const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 2), m3); + const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 2), m3); + const __m128i q3h_2 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+1)), bit+1), 2); + const __m128i q3h_3 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+1)), bit+1), 2); + + const __m128i q3l_4 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 4), m3); + const __m128i q3l_5 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 4), m3); + const __m128i q3h_4 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+2)), bit+2), 2); + const __m128i q3h_5 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+2)), bit+2), 2); + + const __m128i q3l_6 = _mm_and_si128(_mm_srli_epi16(q3bits_0, 6), m3); + const __m128i q3l_7 = _mm_and_si128(_mm_srli_epi16(q3bits_1, 6), m3); + const __m128i q3h_6 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_0, _mm_slli_epi16(mone, bit+3)), bit+3), 2); + const __m128i q3h_7 = _mm_slli_epi16(_mm_srli_epi16(_mm_andnot_si128(hbits_1, _mm_slli_epi16(mone, bit+3)), bit+3), 2); + + // load Q8 quants from block_q8_K.qs[QK_K] + const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + + // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16, + // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set, + // and 2 if the high bit was set) + __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, q8_0); + __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, q8_1); + __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, q8_2); + __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, q8_3); + __m128i q8s_4 = _mm_maddubs_epi16(q3h_4, q8_4); + __m128i q8s_5 = _mm_maddubs_epi16(q3h_5, q8_5); + __m128i q8s_6 = _mm_maddubs_epi16(q3h_6, q8_6); + __m128i q8s_7 = _mm_maddubs_epi16(q3h_7, q8_7); + + __m128i p16_0 = _mm_maddubs_epi16(q3l_0, q8_0); + __m128i p16_1 = _mm_maddubs_epi16(q3l_1, q8_1); + __m128i p16_2 = _mm_maddubs_epi16(q3l_2, q8_2); + __m128i p16_3 = _mm_maddubs_epi16(q3l_3, q8_3); + __m128i p16_4 = _mm_maddubs_epi16(q3l_4, q8_4); + __m128i p16_5 = _mm_maddubs_epi16(q3l_5, q8_5); + __m128i p16_6 = _mm_maddubs_epi16(q3l_6, q8_6); + __m128i p16_7 = _mm_maddubs_epi16(q3l_7, q8_7); + + p16_0 = _mm_sub_epi16(p16_0, q8s_0); + p16_1 = _mm_sub_epi16(p16_1, q8s_1); + p16_2 = _mm_sub_epi16(p16_2, q8s_2); + p16_3 = _mm_sub_epi16(p16_3, q8s_3); + p16_4 = _mm_sub_epi16(p16_4, q8s_4); + p16_5 = _mm_sub_epi16(p16_5, q8s_5); + p16_6 = _mm_sub_epi16(p16_6, q8s_6); + p16_7 = _mm_sub_epi16(p16_7, q8s_7); + + // multiply with scales + __m128i shuffle = _mm_set1_epi16(0x0100); + p16_0 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_0); + shuffle = _mm_add_epi16(shuffle, m2); + p16_1 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_1); + shuffle = _mm_add_epi16(shuffle, m2); + p16_2 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_2); + shuffle = _mm_add_epi16(shuffle, m2); + p16_3 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_3); + shuffle = _mm_add_epi16(shuffle, m2); + p16_4 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_4); + shuffle = _mm_add_epi16(shuffle, m2); + p16_5 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_5); + shuffle = _mm_add_epi16(shuffle, m2); + p16_6 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_6); + shuffle = _mm_add_epi16(shuffle, m2); + p16_7 = _mm_madd_epi16(_mm_shuffle_epi8(scales[j], shuffle), p16_7); + + // accumulate + p16_0 = _mm_add_epi32(p16_0, p16_1); + p16_2 = _mm_add_epi32(p16_2, p16_3); + p16_4 = _mm_add_epi32(p16_4, p16_5); + p16_6 = _mm_add_epi32(p16_6, p16_7); + sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2)); + sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_4, p16_6)); + + } + + // multiply with block scale and accumulate + __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0); + acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc); + + } + + *s = hsum_float_8(acc); + +#elif defined __riscv_v_intrinsic + + uint32_t aux[3]; + uint32_t utmp[4]; + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + + const uint8_t * restrict q3 = x[i].qs; + const uint8_t * restrict qh = x[i].hmask; + const int8_t * restrict q8 = y[i].qs; + + memcpy(aux, x[i].scales, 12); + utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4); + utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4); + utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4); + utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4); + + int8_t * scale = (int8_t *)utmp; + for (int j = 0; j < 16; ++j) scale[j] -= 32; + + + size_t vl = 32; + uint8_t m = 1; + + vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1); + vuint8m1_t vqh = __riscv_vle8_v_u8m1(qh, vl); + + int sum_t = 0; + + for (int j = 0; j < QK_K; j += 128) { + + vl = 32; + + // load Q3 + vuint8m1_t q3_x = __riscv_vle8_v_u8m1(q3, vl); + + vint8m1_t q3_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q3_x, 0x03, vl)); + vint8m1_t q3_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x2, vl), 0x03 , vl)); + vint8m1_t q3_2 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x4, vl), 0x03 , vl)); + vint8m1_t q3_3 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(q3_x, 0x6, vl), 0x03 , vl)); + + // compute mask for subtraction + vuint8m1_t qh_m0 = __riscv_vand_vx_u8m1(vqh, m, vl); + vbool8_t vmask_0 = __riscv_vmseq_vx_u8m1_b8(qh_m0, 0, vl); + vint8m1_t q3_m0 = __riscv_vsub_vx_i8m1_m(vmask_0, q3_0, 0x4, vl); + m <<= 1; + + vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl); + vbool8_t vmask_1 = __riscv_vmseq_vx_u8m1_b8(qh_m1, 0, vl); + vint8m1_t q3_m1 = __riscv_vsub_vx_i8m1_m(vmask_1, q3_1, 0x4, vl); + m <<= 1; + + vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl); + vbool8_t vmask_2 = __riscv_vmseq_vx_u8m1_b8(qh_m2, 0, vl); + vint8m1_t q3_m2 = __riscv_vsub_vx_i8m1_m(vmask_2, q3_2, 0x4, vl); + m <<= 1; + + vuint8m1_t qh_m3 = __riscv_vand_vx_u8m1(vqh, m, vl); + vbool8_t vmask_3 = __riscv_vmseq_vx_u8m1_b8(qh_m3, 0, vl); + vint8m1_t q3_m3 = __riscv_vsub_vx_i8m1_m(vmask_3, q3_3, 0x4, vl); + m <<= 1; + + // load Q8 and take product with Q3 + vint16m2_t a0 = __riscv_vwmul_vv_i16m2(q3_m0, __riscv_vle8_v_i8m1(q8, vl), vl); + vint16m2_t a1 = __riscv_vwmul_vv_i16m2(q3_m1, __riscv_vle8_v_i8m1(q8+32, vl), vl); + vint16m2_t a2 = __riscv_vwmul_vv_i16m2(q3_m2, __riscv_vle8_v_i8m1(q8+64, vl), vl); + vint16m2_t a3 = __riscv_vwmul_vv_i16m2(q3_m3, __riscv_vle8_v_i8m1(q8+96, vl), vl); + + vl = 16; + + // retrieve lane to multiply with scale + vint32m2_t aux0_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 0), (scale[0]), vl); + vint32m2_t aux0_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a0, 1), (scale[1]), vl); + vint32m2_t aux1_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 0), (scale[2]), vl); + vint32m2_t aux1_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a1, 1), (scale[3]), vl); + vint32m2_t aux2_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 0), (scale[4]), vl); + vint32m2_t aux2_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a2, 1), (scale[5]), vl); + vint32m2_t aux3_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 0), (scale[6]), vl); + vint32m2_t aux3_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(a3, 1), (scale[7]), vl); + + vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux0_0, aux0_1, vl), vzero, vl); + vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux1_0, aux1_1, vl), isum0, vl); + vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux2_0, aux2_1, vl), isum1, vl); + vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(aux3_0, aux3_1, vl), isum2, vl); + + sum_t += __riscv_vmv_x_s_i32m1_i32(isum3); + + q3 += 32; q8 += 128; scale += 8; + + } + + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + + sumf += d*sum_t; + + } + + *s = sumf; + +#else + // scalar version + // This function is written like this so the compiler can manage to vectorize most of it + // Using -Ofast, GCC and clang manage to produce code that is within a factor of 2 or so from the + // manually vectorized version above. Every other version I tried would run at least 4 times slower. + // The ideal situation would be if we could just write the code once, and the compiler would + // automatically produce the best possible set of machine instructions, instead of us having to manually + // write vectorized versions for AVX, ARM_NEON, etc. + + int8_t aux8[QK_K]; + int16_t aux16[8]; + float sums [8]; + int32_t aux32[8]; + memset(sums, 0, 8*sizeof(float)); + + uint32_t auxs[4]; + const int8_t * scales = (const int8_t*)auxs; + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + const uint8_t * restrict q3 = x[i].qs; + const uint8_t * restrict hm = x[i].hmask; + const int8_t * restrict q8 = y[i].qs; + memset(aux32, 0, 8*sizeof(int32_t)); + int8_t * restrict a = aux8; + uint8_t m = 1; + for (int j = 0; j < QK_K; j += 128) { + for (int l = 0; l < 32; ++l) a[l] = q3[l] & 3; + for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4); + a += 32; m <<= 1; + for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 2) & 3; + for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4); + a += 32; m <<= 1; + for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 4) & 3; + for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4); + a += 32; m <<= 1; + for (int l = 0; l < 32; ++l) a[l] = (q3[l] >> 6) & 3; + for (int l = 0; l < 32; ++l) a[l] -= (hm[l] & m ? 0 : 4); + a += 32; m <<= 1; + q3 += 32; + } + a = aux8; + + memcpy(auxs, x[i].scales, 12); + uint32_t tmp = auxs[2]; + auxs[2] = ((auxs[0] >> 4) & kmask2) | (((tmp >> 4) & kmask1) << 4); + auxs[3] = ((auxs[1] >> 4) & kmask2) | (((tmp >> 6) & kmask1) << 4); + auxs[0] = (auxs[0] & kmask2) | (((tmp >> 0) & kmask1) << 4); + auxs[1] = (auxs[1] & kmask2) | (((tmp >> 2) & kmask1) << 4); + for (int j = 0; j < QK_K/16; ++j) { + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l]; + q8 += 8; a += 8; + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += (scales[j] - 32) * aux16[l]; + q8 += 8; a += 8; + } + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l]; + } + for (int l = 0; l < 8; ++l) sumf += sums[l]; + *s = sumf; + +#endif + +} + +#else + +void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + assert(n % QK_K == 0); + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + const block_q3_K * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + +#ifdef __ARM_NEON + const int32x4_t vzero = vdupq_n_s32(0); + + const uint8x16_t m3b = vdupq_n_u8(0x3); + const uint8x16_t mh = vdupq_n_u8(4); + + ggml_int8x16x4_t q3bytes; + + uint16_t aux16[2]; + int8_t * scales = (int8_t *)aux16; + + float sum = 0; + + for (int i = 0; i < nb; ++i) { + + ggml_uint8x16x4_t q3h; + + const uint8x8_t hbits = vld1_u8(x[i].hmask); + const uint8x16_t q3bits = vld1q_u8(x[i].qs); + const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(y[i].qs); + + const uint16_t a = *(const uint16_t *)x[i].scales; + aux16[0] = a & 0x0f0f; + aux16[1] = (a >> 4) & 0x0f0f; + + for (int j = 0; j < 4; ++j) scales[j] -= 8; + + int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]); + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + + const uint8x16_t htmp = vcombine_u8(hbits, vshr_n_u8(hbits, 1)); + q3h.val[0] = vandq_u8(mh, vshlq_n_u8(htmp, 2)); + q3h.val[1] = vandq_u8(mh, htmp); + q3h.val[2] = vandq_u8(mh, vshrq_n_u8(htmp, 2)); + q3h.val[3] = vandq_u8(mh, vshrq_n_u8(htmp, 4)); + + q3bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q3bits, m3b), q3h.val[0])); + q3bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 2), m3b), q3h.val[1])); + q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2])); + q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6), q3h.val[3])); + + isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0]; + isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2]; + isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1]; + isum += vaddvq_s32(ggml_vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3]; + + sum += d * isum; + + } + + *s = sum; + +#elif defined __AVX2__ + + const __m256i m3 = _mm256_set1_epi8(3); + const __m256i m1 = _mm256_set1_epi8(1); + + __m256 acc = _mm256_setzero_ps(); + + uint64_t aux64; + + uint16_t aux16[2]; + const int8_t * aux8 = (const int8_t *)aux16; + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + + const uint8_t * restrict q3 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + const uint16_t a = *(const uint16_t *)x[i].scales; + aux16[0] = a & 0x0f0f; + aux16[1] = (a >> 4) & 0x0f0f; + + const __m256i scale_0 = MM256_SET_M128I(_mm_set1_epi16(aux8[2] - 8), _mm_set1_epi16(aux8[0] - 8)); + const __m256i scale_1 = MM256_SET_M128I(_mm_set1_epi16(aux8[3] - 8), _mm_set1_epi16(aux8[1] - 8)); + + memcpy(&aux64, x[i].hmask, 8); + + const __m128i haux = _mm_set_epi64x(aux64 >> 1, aux64 >> 0); + __m256i q3h_0 = MM256_SET_M128I(_mm_srli_epi16(haux, 2), haux); + __m256i q3h_1 = _mm256_srli_epi16(q3h_0, 4); + q3h_0 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_0, m1), 2); + q3h_1 = _mm256_slli_epi16(_mm256_andnot_si256(q3h_1, m1), 2); + + // load low 2 bits + const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3); + + // prepare low and high bits + const __m256i q3aux = MM256_SET_M128I(_mm_srli_epi16(q3bits, 2), q3bits); + const __m256i q3l_0 = _mm256_and_si256(q3aux, m3); + const __m256i q3l_1 = _mm256_and_si256(_mm256_srli_epi16(q3aux, 4), m3); + + // load Q8 quants + const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); + const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); + + // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm256_maddubs_epi16, + // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set, + // and 2 if the high bit was set) + const __m256i q8s_0 = _mm256_maddubs_epi16(q3h_0, q8_0); + const __m256i q8s_1 = _mm256_maddubs_epi16(q3h_1, q8_1); + + __m256i p16_0 = _mm256_maddubs_epi16(q3l_0, q8_0); + __m256i p16_1 = _mm256_maddubs_epi16(q3l_1, q8_1); + + p16_0 = _mm256_sub_epi16(p16_0, q8s_0); + p16_1 = _mm256_sub_epi16(p16_1, q8s_1); + + // multiply with scales + p16_0 = _mm256_madd_epi16(scale_0, p16_0); + p16_1 = _mm256_madd_epi16(scale_1, p16_1); + + p16_0 = _mm256_add_epi32(p16_0, p16_1); + + // multiply with block scale and accumulate + acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16_0), acc); + + } + + *s = hsum_float_8(acc); + +#elif defined __AVX__ + + const __m128i m3 = _mm_set1_epi8(3); + const __m128i m1 = _mm_set1_epi8(1); + + __m256 acc = _mm256_setzero_ps(); + + uint64_t aux64; + + uint16_t aux16[2]; + const int8_t * aux8 = (const int8_t *)aux16; + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + + const uint8_t * restrict q3 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + const uint16_t a = *(const uint16_t *)x[i].scales; + aux16[0] = a & 0x0f0f; + aux16[1] = (a >> 4) & 0x0f0f; + + const __m128i scale_0 = _mm_set1_epi16(aux8[0] - 8); + const __m128i scale_1 = _mm_set1_epi16(aux8[2] - 8); + const __m128i scale_2 = _mm_set1_epi16(aux8[1] - 8); + const __m128i scale_3 = _mm_set1_epi16(aux8[3] - 8); + + memcpy(&aux64, x[i].hmask, 8); + + __m128i q3h_0 = _mm_set_epi64x(aux64 >> 1, aux64 >> 0); + __m128i q3h_1 = _mm_srli_epi16(q3h_0, 2); + __m128i q3h_2 = _mm_srli_epi16(q3h_0, 4); + __m128i q3h_3 = _mm_srli_epi16(q3h_0, 6); + q3h_0 = _mm_slli_epi16(_mm_andnot_si128(q3h_0, m1), 2); + q3h_1 = _mm_slli_epi16(_mm_andnot_si128(q3h_1, m1), 2); + q3h_2 = _mm_slli_epi16(_mm_andnot_si128(q3h_2, m1), 2); + q3h_3 = _mm_slli_epi16(_mm_andnot_si128(q3h_3, m1), 2); + + // load low 2 bits + const __m128i q3bits = _mm_loadu_si128((const __m128i*)q3); + + // prepare low and high bits + const __m128i q3l_0 = _mm_and_si128(q3bits, m3); + const __m128i q3l_1 = _mm_and_si128(_mm_srli_epi16(q3bits, 2), m3); + const __m128i q3l_2 = _mm_and_si128(_mm_srli_epi16(q3bits, 4), m3); + const __m128i q3l_3 = _mm_and_si128(_mm_srli_epi16(q3bits, 6), m3); + + // load Q8 quants + const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); + const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); + + // Dot product: we multiply the 2 low bits and 1 high bit part separately, so we can use _mm_maddubs_epi16, + // and then subtract. The high bit part has the 2 already subtracted (and so, it is zero if the high bit was not set, + // and 2 if the high bit was set) + const __m128i q8s_0 = _mm_maddubs_epi16(q3h_0, _mm256_extractf128_si256(q8_0, 0)); + const __m128i q8s_1 = _mm_maddubs_epi16(q3h_1, _mm256_extractf128_si256(q8_0, 1)); + const __m128i q8s_2 = _mm_maddubs_epi16(q3h_2, _mm256_extractf128_si256(q8_1, 0)); + const __m128i q8s_3 = _mm_maddubs_epi16(q3h_3, _mm256_extractf128_si256(q8_1, 1)); + + __m128i p16_0 = _mm_maddubs_epi16(q3l_0, _mm256_extractf128_si256(q8_0, 0)); + __m128i p16_1 = _mm_maddubs_epi16(q3l_1, _mm256_extractf128_si256(q8_0, 1)); + __m128i p16_2 = _mm_maddubs_epi16(q3l_2, _mm256_extractf128_si256(q8_1, 0)); + __m128i p16_3 = _mm_maddubs_epi16(q3l_3, _mm256_extractf128_si256(q8_1, 1)); + + p16_0 = _mm_sub_epi16(p16_0, q8s_0); + p16_1 = _mm_sub_epi16(p16_1, q8s_1); + p16_2 = _mm_sub_epi16(p16_2, q8s_2); + p16_3 = _mm_sub_epi16(p16_3, q8s_3); + + // multiply with scales + p16_0 = _mm_madd_epi16(scale_0, p16_0); + p16_1 = _mm_madd_epi16(scale_1, p16_1); + p16_2 = _mm_madd_epi16(scale_2, p16_2); + p16_3 = _mm_madd_epi16(scale_3, p16_3); + + p16_0 = _mm_add_epi32(p16_0, p16_2); + p16_1 = _mm_add_epi32(p16_1, p16_3); + __m256i p16 = MM256_SET_M128I(p16_1, p16_0); + + // multiply with block scale and accumulate + acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(p16)), acc); + + } + + *s = hsum_float_8(acc); + +#elif defined __riscv_v_intrinsic + + uint16_t aux16[2]; + int8_t * scales = (int8_t *)aux16; + + float sumf = 0; + + for (int i = 0; i < nb; ++i) { + + const uint8_t * restrict q3 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + const uint16_t a = *(const uint16_t *)x[i].scales; + aux16[0] = a & 0x0f0f; + aux16[1] = (a >> 4) & 0x0f0f; + + for (int j = 0; j < 4; ++j) scales[j] -= 8; + + int32_t isum = -4*(scales[0] * y[i].bsums[0] + scales[2] * y[i].bsums[1] + scales[1] * y[i].bsums[2] + scales[3] * y[i].bsums[3]); + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + + vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1); + + // load qh + vuint8mf4_t qh_x1 = __riscv_vle8_v_u8mf4(x[i].hmask, 8); + vuint8mf2_t qh_x2 = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8)); + + size_t vl = 16; + + // extend and combine both qh_x1 and qh_x2 + vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl); + + vuint8mf2_t qh_0 = __riscv_vand_vx_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl); + vuint8mf2_t qh_1 = __riscv_vand_vx_u8mf2(qh_x, 0x4, vl); + vuint8mf2_t qh_2 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl), 0x4, vl); + vuint8mf2_t qh_3 = __riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), 0x4, vl); + + // load Q3 + vuint8mf2_t q3_x = __riscv_vle8_v_u8mf2(q3, vl); + + vuint8mf2_t q3h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q3_x, 0x3, vl), qh_0, vl); + vuint8mf2_t q3h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 2, vl), 0x3, vl), qh_1, vl); + vuint8mf2_t q3h_2 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 4, vl), 0x3, vl), qh_2, vl); + vuint8mf2_t q3h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q3_x, 0x6, vl), qh_3, vl); + + vint8mf2_t q3_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_0); + vint8mf2_t q3_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_1); + vint8mf2_t q3_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_2); + vint8mf2_t q3_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(q3h_3); + + // load Q8 and take product with Q3 + vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q3_0, __riscv_vle8_v_i8mf2(q8, vl), vl); + vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q3_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl); + vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q3_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl); + vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q3_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl); + + vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl); + vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl); + vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl); + vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl); + + isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scales[0]; + isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scales[2]; + isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scales[1]; + isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scales[3]; + + sumf += d * isum; + + } + + *s = sumf; + +#else + + int8_t aux8[QK_K]; + int16_t aux16[8]; + float sums [8]; + int32_t aux32[8]; + int32_t scales[4]; + memset(sums, 0, 8*sizeof(float)); + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + const uint8_t * restrict q3 = x[i].qs; + const uint8_t * restrict hm = x[i].hmask; + const int8_t * restrict q8 = y[i].qs; + int8_t * restrict a = aux8; + for (int l = 0; l < 8; ++l) { + a[l+ 0] = (int8_t)((q3[l+0] >> 0) & 3) - (hm[l] & 0x01 ? 0 : 4); + a[l+ 8] = (int8_t)((q3[l+8] >> 0) & 3) - (hm[l] & 0x02 ? 0 : 4); + a[l+16] = (int8_t)((q3[l+0] >> 2) & 3) - (hm[l] & 0x04 ? 0 : 4); + a[l+24] = (int8_t)((q3[l+8] >> 2) & 3) - (hm[l] & 0x08 ? 0 : 4); + a[l+32] = (int8_t)((q3[l+0] >> 4) & 3) - (hm[l] & 0x10 ? 0 : 4); + a[l+40] = (int8_t)((q3[l+8] >> 4) & 3) - (hm[l] & 0x20 ? 0 : 4); + a[l+48] = (int8_t)((q3[l+0] >> 6) & 3) - (hm[l] & 0x40 ? 0 : 4); + a[l+56] = (int8_t)((q3[l+8] >> 6) & 3) - (hm[l] & 0x80 ? 0 : 4); + } + + scales[0] = (x[i].scales[0] & 0xF) - 8; + scales[1] = (x[i].scales[0] >> 4) - 8; + scales[2] = (x[i].scales[1] & 0xF) - 8; + scales[3] = (x[i].scales[1] >> 4) - 8; + + memset(aux32, 0, 8*sizeof(int32_t)); + for (int j = 0; j < QK_K/16; ++j) { + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + q8 += 8; a += 8; + for (int l = 0; l < 8; ++l) aux16[l] += q8[l] * a[l]; + q8 += 8; a += 8; + for (int l = 0; l < 8; ++l) aux32[l] += scales[j] * aux16[l]; + } + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l]; + } + for (int l = 0; l < 8; ++l) sumf += sums[l]; + *s = sumf; + +#endif + +} +#endif + +#if QK_K == 256 +void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + assert(n % QK_K == 0); + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + const block_q4_K * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + + static const uint32_t kmask1 = 0x3f3f3f3f; + static const uint32_t kmask2 = 0x0f0f0f0f; + static const uint32_t kmask3 = 0x03030303; + + uint32_t utmp[4]; + +#ifdef __ARM_NEON + const uint8x16_t m4b = vdupq_n_u8(0xf); + const int32x4_t mzero = vdupq_n_s32(0); + + ggml_int8x16x2_t q4bytes; + ggml_int8x16x2_t q8bytes; + + float sumf = 0; + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin); + + const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8)); + + memcpy(utmp, x[i].scales, 12); + + uint32x2_t mins8 = { 0 }; + mins8 = vset_lane_u32(utmp[1] & kmask1, mins8, 0); + mins8 = vset_lane_u32(((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4), mins8, 1); + + utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); + utmp[0] &= kmask1; + + const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(vreinterpret_u8_u32(mins8))); + const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)), + vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins))); + sumf -= dmin * vaddvq_s32(prod); + + const uint8_t * scales = (const uint8_t *)utmp; + + const uint8_t * restrict q4 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + int32_t sumi1 = 0; + int32_t sumi2 = 0; + + for (int j = 0; j < QK_K/64; ++j) { + const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32; + + q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32; + q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b)); + q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b)); + + const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]); + sumi1 += vaddvq_s32(p1) * scales[2*j+0]; + + q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32; + q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4)); + q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4)); + + const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]); + + sumi2 += vaddvq_s32(p2) * scales[2*j+1]; + } + + sumf += d * (sumi1 + sumi2); + + } + + *s = sumf; + +#elif defined __AVX2__ + + const __m256i m4 = _mm256_set1_epi8(0xF); + + __m256 acc = _mm256_setzero_ps(); + __m128 acc_m = _mm_setzero_ps(); + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); + + memcpy(utmp, x[i].scales, 12); + utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); + const uint32_t uaux = utmp[1] & kmask1; + utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); + utmp[2] = uaux; + utmp[0] &= kmask1; + + const uint8_t * restrict q4 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0])); + + const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums); + const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1)); + const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s); + acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m); + + const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0); + const __m256i scales = MM256_SET_M128I(sc128, sc128); + + __m256i sumi = _mm256_setzero_si256(); + + for (int j = 0; j < QK_K/64; ++j) { + + const __m256i scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0)); + const __m256i scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1)); + + const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); q4 += 32; + const __m256i q4l = _mm256_and_si256(q4bits, m4); + const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4); + + const __m256i q8l = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + __m256i p16l = _mm256_maddubs_epi16(q4l, q8l); + p16l = _mm256_madd_epi16(scale_l, p16l); + + const __m256i q8h = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + __m256i p16h = _mm256_maddubs_epi16(q4h, q8h); + p16h = _mm256_madd_epi16(scale_h, p16h); + const __m256i sumj = _mm256_add_epi32(p16l, p16h); + + sumi = _mm256_add_epi32(sumi, sumj); + } + + __m256 vd = _mm256_set1_ps(d); + acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc); + + } + + acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m)); + acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m)); + + *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m); + +#elif defined __AVX__ + + const __m128i m4 = _mm_set1_epi8(0xF); + const __m128i m2 = _mm_set1_epi8(0x2); + + __m256 acc = _mm256_setzero_ps(); + __m128 acc_m = _mm_setzero_ps(); + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); + + const uint8_t * restrict q4 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + memcpy(utmp, x[i].scales, 12); + utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); + const uint32_t uaux = utmp[1] & kmask1; + utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); + utmp[2] = uaux; + utmp[0] &= kmask1; + + const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]); + const __m128i scales = _mm_cvtepu8_epi16(utmps); + const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps)); + + const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]); + const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]); + const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1); + const __m128i prod = _mm_madd_epi16(mins, q8s); + acc_m = _mm_add_ps(_mm_mul_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod)), acc_m); + + __m128i sumi_0 = _mm_setzero_si128(); + __m128i sumi_1 = _mm_setzero_si128(); + + __m128i shuffle = _mm_set1_epi16(0x0100); + for (int j = 0; j < QK_K/64; ++j) { + + const __m128i scale_l = _mm_shuffle_epi8(scales, shuffle); + shuffle = _mm_add_epi16(shuffle, m2); + const __m128i scale_h = _mm_shuffle_epi8(scales, shuffle); + shuffle = _mm_add_epi16(shuffle, m2); + + __m128i q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16; + const __m128i q4l_0 = _mm_and_si128(q4bits, m4); + const __m128i q4h_0 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4); + q4bits = _mm_loadu_si128((const __m128i*)q4); q4 += 16; + const __m128i q4l_1 = _mm_and_si128(q4bits, m4); + const __m128i q4h_1 = _mm_and_si128(_mm_srli_epi16(q4bits, 4), m4); + + const __m128i q8l_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + __m128i p16l = _mm_maddubs_epi16(q4l_0, q8l_0); + p16l = _mm_madd_epi16(scale_l, p16l); + sumi_0 = _mm_add_epi32(sumi_0, p16l); + const __m128i q8l_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + p16l = _mm_maddubs_epi16(q4l_1, q8l_1); + p16l = _mm_madd_epi16(scale_l, p16l); + sumi_1 = _mm_add_epi32(sumi_1, p16l); + + const __m128i q8h_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + __m128i p16h = _mm_maddubs_epi16(q4h_0, q8h_0); + p16h = _mm_madd_epi16(scale_h, p16h); + sumi_0 = _mm_add_epi32(sumi_0, p16h); + const __m128i q8h_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + p16h = _mm_maddubs_epi16(q4h_1, q8h_1); + p16h = _mm_madd_epi16(scale_h, p16h); + sumi_1 = _mm_add_epi32(sumi_1, p16h); + + } + + __m256 vd = _mm256_set1_ps(d); + __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0); + acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc); + + } + + acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m)); + acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m)); + + *s = hsum_float_8(acc) + _mm_cvtss_f32(acc_m); + +#elif defined __riscv_v_intrinsic + + const uint8_t * scales = (const uint8_t*)&utmp[0]; + const uint8_t * mins = (const uint8_t*)&utmp[2]; + + float sumf = 0; + + for (int i = 0; i < nb; ++i) { + + size_t vl = 8; + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin); + + vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl); + vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl); + vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl); + + memcpy(utmp, x[i].scales, 12); + utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); + const uint32_t uaux = utmp[1] & kmask1; + utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); + utmp[2] = uaux; + utmp[0] &= kmask1; + + vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl); + vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl)); + vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl); + + vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl); + sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi); + + const uint8_t * restrict q4 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + vl = 32; + + int32_t sum_1 = 0; + int32_t sum_2 = 0; + + vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1); + + for (int j = 0; j < QK_K/64; ++j) { + // load Q4 + vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl); + + // load Q8 and multiply it with lower Q4 nibble + vint8m1_t q8_0 = __riscv_vle8_v_i8m1(q8, vl); + vint8m1_t q4_0 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl)); + vint16m2_t qv_0 = __riscv_vwmul_vv_i16m2(q4_0, q8_0, vl); + vint16m1_t vs_0 = __riscv_vredsum_vs_i16m2_i16m1(qv_0, vzero, vl); + + sum_1 += __riscv_vmv_x_s_i16m1_i16(vs_0) * scales[2*j+0]; + + // load Q8 and multiply it with upper Q4 nibble + vint8m1_t q8_1 = __riscv_vle8_v_i8m1(q8+32, vl); + vint8m1_t q4_1 = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl)); + vint16m2_t qv_1 = __riscv_vwmul_vv_i16m2(q4_1, q8_1, vl); + vint16m1_t vs_1 = __riscv_vredsum_vs_i16m2_i16m1(qv_1, vzero, vl); + + sum_2 += __riscv_vmv_x_s_i16m1_i16(vs_1) * scales[2*j+1]; + + q4 += 32; q8 += 64; + + } + + sumf += d*(sum_1 + sum_2); + + } + + *s = sumf; + +#else + + + const uint8_t * scales = (const uint8_t*)&utmp[0]; + const uint8_t * mins = (const uint8_t*)&utmp[2]; + + int8_t aux8[QK_K]; + int16_t aux16[8]; + float sums [8]; + int32_t aux32[8]; + memset(sums, 0, 8*sizeof(float)); + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + const uint8_t * restrict q4 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + memset(aux32, 0, 8*sizeof(int32_t)); + int8_t * restrict a = aux8; + for (int j = 0; j < QK_K/64; ++j) { + for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF); + a += 32; + for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4); + a += 32; q4 += 32; + } + memcpy(utmp, x[i].scales, 12); + utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); + const uint32_t uaux = utmp[1] & kmask1; + utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); + utmp[2] = uaux; + utmp[0] &= kmask1; + + int sumi = 0; + for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2]; + a = aux8; + int is = 0; + for (int j = 0; j < QK_K/32; ++j) { + int32_t scale = scales[is++]; + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; + q8 += 8; a += 8; + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; + q8 += 8; a += 8; + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; + q8 += 8; a += 8; + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; + q8 += 8; a += 8; + } + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l]; + const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d; + sumf -= dmin * sumi; + } + for (int l = 0; l < 8; ++l) sumf += sums[l]; + *s = sumf; +#endif +} +#else +void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + assert(n % QK_K == 0); + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + const block_q4_K * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + +#ifdef __ARM_NEON + const uint8x16_t m4b = vdupq_n_u8(0xf); + + const int32x4_t mzero = vdupq_n_s32(0); + + float sumf = 0; + + ggml_int8x16x2_t q4bytes; + ggml_int8x16x4_t q8bytes; + + float sum_mins = 0.f; + + uint16_t aux16[2]; + const uint8_t * restrict scales = (const uint8_t *)aux16; + + for (int i = 0; i < nb; ++i) { + + const uint8_t * restrict q4 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + const uint16_t * restrict a = (const uint16_t *)x[i].scales; + aux16[0] = a[0] & 0x0f0f; + aux16[1] = (a[0] >> 4) & 0x0f0f; + + const int32_t summi = scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3]); + sum_mins += y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * summi; + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]); + + const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); + + q8bytes = ggml_vld1q_s8_x4(q8); + q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b)); + q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b)); + + const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]); + const int32_t sumi1 = vaddvq_s32(p1) * scales[0]; + + q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4)); + q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4)); + + const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]); + const int32_t sumi2 = vaddvq_s32(p2) * scales[1]; + + sumf += d * (sumi1 + sumi2); + } + + *s = sumf - sum_mins; + +#elif defined __AVX2__ + + const __m256i m4 = _mm256_set1_epi8(0xF); + + __m256 acc = _mm256_setzero_ps(); + + float summs = 0; + + uint16_t aux16[2]; + const uint8_t * scales = (const uint8_t *)aux16; + + for (int i = 0; i < nb; ++i) { + + const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d; + const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d; + const __m256 vd = _mm256_set1_ps(d); + + const uint16_t * a = (const uint16_t *)x[i].scales; + aux16[0] = a[0] & 0x0f0f; + aux16[1] = (a[0] >> 4) & 0x0f0f; + + summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3])); + + const uint8_t * restrict q4 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); + const __m256i q4l = _mm256_and_si256(q4bits, m4); + const __m256i q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4); + + const __m256i q8l = _mm256_loadu_si256((const __m256i*)(q8+ 0)); + const __m256i q8h = _mm256_loadu_si256((const __m256i*)(q8+32)); + + const __m256i p16l = _mm256_maddubs_epi16(q4l, q8l); + const __m256i p16h = _mm256_maddubs_epi16(q4h, q8h); + + const __m256i p32l = _mm256_madd_epi16(_mm256_set1_epi16(scales[0]), p16l); + acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32l), acc); + + const __m256i p32h = _mm256_madd_epi16(_mm256_set1_epi16(scales[1]), p16h); + acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(p32h), acc); + + } + + *s = hsum_float_8(acc) - summs; + +#elif defined __AVX__ + + const __m128i m4 = _mm_set1_epi8(0xF); + + __m256 acc = _mm256_setzero_ps(); + + float summs = 0; + + uint16_t aux16[2]; + const uint8_t * scales = (const uint8_t *)aux16; + + for (int i = 0; i < nb; ++i) { + + const float d = GGML_FP16_TO_FP32(x[i].d[0]) * y[i].d; + const float m = GGML_FP16_TO_FP32(x[i].d[1]) * y[i].d; + const __m256 vd = _mm256_set1_ps(d); + + const uint16_t * a = (const uint16_t *)x[i].scales; + aux16[0] = a[0] & 0x0f0f; + aux16[1] = (a[0] >> 4) & 0x0f0f; + + summs += m * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3])); + + const uint8_t * restrict q4 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + const __m256i q4bits = _mm256_loadu_si256((const __m256i*)q4); + const __m128i q4bits_0 = _mm256_extractf128_si256(q4bits, 0); + const __m128i q4bits_1 = _mm256_extractf128_si256(q4bits, 1); + const __m128i q4_0 = _mm_and_si128(q4bits_0, m4); + const __m128i q4_1 = _mm_and_si128(q4bits_1, m4); + const __m128i q4_2 = _mm_and_si128(_mm_srli_epi16(q4bits_0, 4), m4); + const __m128i q4_3 = _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4); + + const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); + const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); + + const __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0)); + const __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1)); + const __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0)); + const __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1)); + + const __m128i p32_0 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_0); + const __m128i p32_1 = _mm_madd_epi16(_mm_set1_epi16(scales[0]), p16_1); + acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_1, p32_0))), acc); + + const __m128i p32_2 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_2); + const __m128i p32_3 = _mm_madd_epi16(_mm_set1_epi16(scales[1]), p16_3); + acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(MM256_SET_M128I(p32_3, p32_2))), acc); + + } + + *s = hsum_float_8(acc) - summs; + +#elif defined __riscv_v_intrinsic + + uint16_t s16[2]; + const uint8_t * restrict scales = (const uint8_t *)s16; + + float sumf = 0; + + for (int i = 0; i < nb; ++i) { + + const uint8_t * restrict q4 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + const uint16_t * restrict b = (const uint16_t *)x[i].scales; + s16[0] = b[0] & 0x0f0f; + s16[1] = (b[0] >> 4) & 0x0f0f; + + sumf -= y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3])); + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]); + + size_t vl = 32; + + vint16m1_t vzero = __riscv_vmv_v_x_i16m1(0, 1); + + // load Q4 + vuint8m1_t q4_x = __riscv_vle8_v_u8m1(q4, vl); + + // load Q8 and multiply it with lower Q4 nibble + vint8m1_t q4_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q4_x, 0x0F, vl)); + vint16m2_t va_0 = __riscv_vwmul_vv_i16m2(q4_a, __riscv_vle8_v_i8m1(q8, vl), vl); + vint16m1_t aux1 = __riscv_vredsum_vs_i16m2_i16m1(va_0, vzero, vl); + + sumf += d*scales[0]*__riscv_vmv_x_s_i16m1_i16(aux1); + + // load Q8 and multiply it with upper Q4 nibble + vint8m1_t q4_s = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q4_x, 0x04, vl)); + vint16m2_t va_1 = __riscv_vwmul_vv_i16m2(q4_s, __riscv_vle8_v_i8m1(q8+32, vl), vl); + vint16m1_t aux2 = __riscv_vredsum_vs_i16m2_i16m1(va_1, vzero, vl); + + sumf += d*scales[1]*__riscv_vmv_x_s_i16m1_i16(aux2); + + } + + *s = sumf; + +#else + + uint8_t aux8[QK_K]; + int16_t aux16[16]; + float sums [8]; + memset(sums, 0, 8*sizeof(float)); + + uint16_t s16[2]; + const uint8_t * restrict scales = (const uint8_t *)s16; + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + const uint8_t * restrict q4 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + uint8_t * restrict a = aux8; + for (int l = 0; l < 32; ++l) a[l+ 0] = q4[l] & 0xF; + for (int l = 0; l < 32; ++l) a[l+32] = q4[l] >> 4; + + const uint16_t * restrict b = (const uint16_t *)x[i].scales; + s16[0] = b[0] & 0x0f0f; + s16[1] = (b[0] >> 4) & 0x0f0f; + + sumf -= y[i].d * GGML_FP16_TO_FP32(x[i].d[1]) * (scales[2] * (y[i].bsums[0] + y[i].bsums[1]) + scales[3] * (y[i].bsums[2] + y[i].bsums[3])); + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d[0]); + + for (int j = 0; j < QK_K/32; ++j) { + for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l]; + q8 += 16; a += 16; + for (int l = 0; l < 16; ++l) aux16[l] += q8[l] * a[l]; + q8 += 16; a += 16; + const float dl = d * scales[j]; + for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[l+8]); + } + } + for (int l = 0; l < 8; ++l) sumf += sums[l]; + *s = sumf; +#endif +} +#endif + +#if QK_K == 256 +void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + assert(n % QK_K == 0); + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + const block_q5_K * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + + static const uint32_t kmask1 = 0x3f3f3f3f; + static const uint32_t kmask2 = 0x0f0f0f0f; + static const uint32_t kmask3 = 0x03030303; + + uint32_t utmp[4]; + +#ifdef __ARM_NEON + const uint8x16_t m4b = vdupq_n_u8(0xf); + const uint8x16_t mone = vdupq_n_u8(1); + const uint8x16_t mtwo = vdupq_n_u8(2); + const int32x4_t mzero = vdupq_n_s32(0); + + ggml_int8x16x4_t q5bytes; + + float sumf = 0; + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const float dmin = y[i].d * GGML_FP16_TO_FP32(x[i].dmin); + + const int16x8_t q8sums = vpaddq_s16(vld1q_s16(y[i].bsums), vld1q_s16(y[i].bsums + 8)); + + memcpy(utmp, x[i].scales, 12); + utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); + const uint32_t uaux = utmp[1] & kmask1; + utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); + utmp[2] = uaux; + utmp[0] &= kmask1; + + const uint8x8_t mins8 = vld1_u8((const uint8_t*)utmp + 8); + const int16x8_t mins = vreinterpretq_s16_u16(vmovl_u8(mins8)); + const int32x4_t prod = vaddq_s32(vmull_s16(vget_low_s16 (q8sums), vget_low_s16 (mins)), + vmull_s16(vget_high_s16(q8sums), vget_high_s16(mins))); + int32_t sumi_mins = vaddvq_s32(prod); + + const uint8_t * scales = (const uint8_t *)utmp; + + const uint8_t * restrict q5 = x[i].qs; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + + ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); + + ggml_uint8x16x4_t q5h; + + int32_t sumi = 0; + + for (int j = 0; j < QK_K/64; ++j) { + + const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); q5 += 32; + const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64; + + q5h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4); + q5h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4); + q5h.val[2] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[0]), 3); + q5h.val[3] = vshlq_n_u8(vandq_u8(mtwo, qhbits.val[1]), 3); + qhbits.val[0] = vshrq_n_u8(qhbits.val[0], 2); + qhbits.val[1] = vshrq_n_u8(qhbits.val[1], 2); + + q5bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[0], m4b), q5h.val[0])); + q5bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q5bits.val[1], m4b), q5h.val[1])); + q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2])); + q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3])); + + sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++; + sumi += vaddvq_s32(ggml_vdotq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++; + } + + sumf += d * sumi - dmin * sumi_mins; + } + + *s = sumf; + +#elif defined __AVX2__ + + const __m256i m4 = _mm256_set1_epi8(0xF); + const __m128i mzero = _mm_setzero_si128(); + const __m256i mone = _mm256_set1_epi8(1); + + __m256 acc = _mm256_setzero_ps(); + + float summs = 0.f; + + for (int i = 0; i < nb; ++i) { + + const uint8_t * restrict q5 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + +#if QK_K == 256 + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); + + memcpy(utmp, x[i].scales, 12); + utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); + const uint32_t uaux = utmp[1] & kmask1; + utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); + utmp[2] = uaux; + utmp[0] &= kmask1; +#else + // TODO + const float d = 0, dmin = 0; +#endif + + const __m256i mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0])); + + const __m256i q8sums = _mm256_loadu_si256((const __m256i*)y[i].bsums); + const __m128i q8s = _mm_hadd_epi16(_mm256_extracti128_si256(q8sums, 0), _mm256_extracti128_si256(q8sums, 1)); + const __m128i prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s); + const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero); + summs += dmin * _mm_extract_epi32(hsum, 0); + + const __m128i sc128 = _mm256_extracti128_si256(mins_and_scales, 0); + const __m256i scales = MM256_SET_M128I(sc128, sc128); + + const __m256i hbits = _mm256_loadu_si256((const __m256i*)x[i].qh); + __m256i hmask = mone; + + __m256i sumi = _mm256_setzero_si256(); + + int bit = 0; + + for (int j = 0; j < QK_K/64; ++j) { + + const __m256i scale_0 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+0)); + const __m256i scale_1 = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2*j+1)); + + const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); q5 += 32; + + const __m256i q5l_0 = _mm256_and_si256(q5bits, m4); + const __m256i q5h_0 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4); + const __m256i q5_0 = _mm256_add_epi8(q5l_0, q5h_0); + hmask = _mm256_slli_epi16(hmask, 1); + + const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4); + const __m256i q5h_1 = _mm256_slli_epi16(_mm256_srli_epi16(_mm256_and_si256(hbits, hmask), bit++), 4); + const __m256i q5_1 = _mm256_add_epi8(q5l_1, q5h_1); + hmask = _mm256_slli_epi16(hmask, 1); + + const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + + __m256i p16_0 = _mm256_maddubs_epi16(q5_0, q8_0); + __m256i p16_1 = _mm256_maddubs_epi16(q5_1, q8_1); + + p16_0 = _mm256_madd_epi16(scale_0, p16_0); + p16_1 = _mm256_madd_epi16(scale_1, p16_1); + + sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1)); + + } + + __m256 vd = _mm256_set1_ps(d); + acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc); + + } + + *s = hsum_float_8(acc) + summs; + +#elif defined __AVX__ + + const __m128i m4 = _mm_set1_epi8(0xF); + const __m128i mzero = _mm_setzero_si128(); + const __m128i mone = _mm_set1_epi8(1); + const __m128i m2 = _mm_set1_epi8(2); + + __m256 acc = _mm256_setzero_ps(); + + float summs = 0.f; + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); + + const uint8_t * restrict q5 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + memcpy(utmp, x[i].scales, 12); + utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); + const uint32_t uaux = utmp[1] & kmask1; + utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); + utmp[2] = uaux; + utmp[0] &= kmask1; + + const __m128i utmps = _mm_set_epi32(utmp[3], utmp[2], utmp[1], utmp[0]); + const __m128i scales = _mm_cvtepu8_epi16(utmps); + const __m128i mins = _mm_cvtepu8_epi16(_mm_unpackhi_epi64(utmps, utmps)); + + const __m128i q8sums_0 = _mm_loadu_si128((const __m128i*)&y[i].bsums[0]); + const __m128i q8sums_1 = _mm_loadu_si128((const __m128i*)&y[i].bsums[8]); + const __m128i q8s = _mm_hadd_epi16(q8sums_0, q8sums_1); + const __m128i prod = _mm_madd_epi16(mins, q8s); + const __m128i hsum = _mm_hadd_epi32(_mm_hadd_epi32(prod, mzero), mzero); + summs += dmin * _mm_extract_epi32(hsum, 0); + + const __m128i hbits_0 = _mm_loadu_si128((const __m128i*)&x[i].qh[0]); + const __m128i hbits_1 = _mm_loadu_si128((const __m128i*)&x[i].qh[16]); + __m128i hmask = mone; + + __m128i sumi_0 = _mm_setzero_si128(); + __m128i sumi_1 = _mm_setzero_si128(); + + int bit = 0; + + __m128i shuffle = _mm_set1_epi16(0x0100); + for (int j = 0; j < QK_K/64; ++j) { + + const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle); + shuffle = _mm_add_epi16(shuffle, m2); + const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle); + shuffle = _mm_add_epi16(shuffle, m2); + + const __m128i q5bits_0 = _mm_loadu_si128((const __m128i*)q5); q5 += 16; + const __m128i q5bits_1 = _mm_loadu_si128((const __m128i*)q5); q5 += 16; + + __m128i q5l_0 = _mm_and_si128(q5bits_0, m4); + __m128i q5l_1 = _mm_and_si128(q5bits_1, m4); + __m128i q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4); + __m128i q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4); + __m128i q5_0 = _mm_add_epi8(q5l_0, q5h_0); + __m128i q5_1 = _mm_add_epi8(q5l_1, q5h_1); + hmask = _mm_slli_epi16(hmask, 1); + + __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + __m128i p16_0 = _mm_maddubs_epi16(q5_0, q8_0); + __m128i p16_1 = _mm_maddubs_epi16(q5_1, q8_1); + p16_0 = _mm_madd_epi16(scale_0, p16_0); + p16_1 = _mm_madd_epi16(scale_0, p16_1); + + q5l_0 = _mm_and_si128(_mm_srli_epi16(q5bits_0, 4), m4); + q5l_1 = _mm_and_si128(_mm_srli_epi16(q5bits_1, 4), m4); + q5h_0 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_0, hmask), bit), 4); + q5h_1 = _mm_slli_epi16(_mm_srli_epi16(_mm_and_si128(hbits_1, hmask), bit++), 4); + q5_0 = _mm_add_epi8(q5l_0, q5h_0); + q5_1 = _mm_add_epi8(q5l_1, q5h_1); + hmask = _mm_slli_epi16(hmask, 1); + + q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + __m128i p16_2 = _mm_maddubs_epi16(q5_0, q8_0); + __m128i p16_3 = _mm_maddubs_epi16(q5_1, q8_1); + p16_2 = _mm_madd_epi16(scale_1, p16_2); + p16_3 = _mm_madd_epi16(scale_1, p16_3); + + sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2)); + sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3)); + + } + + __m256 vd = _mm256_set1_ps(d); + __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0); + acc = _mm256_add_ps(_mm256_mul_ps(vd, _mm256_cvtepi32_ps(sumi)), acc); + + } + + *s = hsum_float_8(acc) + summs; + +#elif defined __riscv_v_intrinsic + + const uint8_t * scales = (const uint8_t*)&utmp[0]; + const uint8_t * mins = (const uint8_t*)&utmp[2]; + + float sumf = 0; + float sums = 0.0; + + size_t vl; + + for (int i = 0; i < nb; ++i) { + + vl = 8; + + const uint8_t * restrict q5 = x[i].qs; + const uint8_t * restrict hm = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d; + + vint16mf2_t q8sums_0 = __riscv_vlse16_v_i16mf2(y[i].bsums, 4, vl); + vint16mf2_t q8sums_1 = __riscv_vlse16_v_i16mf2(y[i].bsums+1, 4, vl); + vint16mf2_t q8sums = __riscv_vadd_vv_i16mf2(q8sums_0, q8sums_1, vl); + + memcpy(utmp, x[i].scales, 12); + utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); + const uint32_t uaux = utmp[1] & kmask1; + utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); + utmp[2] = uaux; + utmp[0] &= kmask1; + + vuint8mf4_t mins8 = __riscv_vle8_v_u8mf4(mins, vl); + vint16mf2_t v_mins = __riscv_vreinterpret_v_u16mf2_i16mf2(__riscv_vzext_vf2_u16mf2(mins8, vl)); + vint32m1_t prod = __riscv_vwmul_vv_i32m1(q8sums, v_mins, vl); + + vint32m1_t sumi = __riscv_vredsum_vs_i32m1_i32m1(prod, __riscv_vmv_v_x_i32m1(0, 1), vl); + sumf -= dmin * __riscv_vmv_x_s_i32m1_i32(sumi); + + vl = 32; + int32_t aux32 = 0; + int is = 0; + + uint8_t m = 1; + vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1); + vuint8m1_t vqh = __riscv_vle8_v_u8m1(hm, vl); + + for (int j = 0; j < QK_K/64; ++j) { + // load Q5 and Q8 + vuint8m1_t q5_x = __riscv_vle8_v_u8m1(q5, vl); + vint8m1_t q8_y1 = __riscv_vle8_v_i8m1(q8, vl); + vint8m1_t q8_y2 = __riscv_vle8_v_i8m1(q8+32, vl); + + // compute mask for addition + vint8m1_t q5_a = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vand_vx_u8m1(q5_x, 0x0F, vl)); + vuint8m1_t qh_m1 = __riscv_vand_vx_u8m1(vqh, m, vl); + vbool8_t vmask_1 = __riscv_vmsne_vx_u8m1_b8(qh_m1, 0, vl); + vint8m1_t q5_m1 = __riscv_vadd_vx_i8m1_m(vmask_1, q5_a, 16, vl); + m <<= 1; + + vint8m1_t q5_l = __riscv_vreinterpret_v_u8m1_i8m1(__riscv_vsrl_vx_u8m1(q5_x, 0x04, vl)); + vuint8m1_t qh_m2 = __riscv_vand_vx_u8m1(vqh, m, vl); + vbool8_t vmask_2 = __riscv_vmsne_vx_u8m1_b8(qh_m2, 0, vl); + vint8m1_t q5_m2 = __riscv_vadd_vx_i8m1_m(vmask_2, q5_l, 16, vl); + m <<= 1; + + vint16m2_t v0 = __riscv_vwmul_vv_i16m2(q5_m1, q8_y1, vl); + vint16m2_t v1 = __riscv_vwmul_vv_i16m2(q5_m2, q8_y2, vl); + + vint32m4_t vs1 = __riscv_vwmul_vx_i32m4(v0, scales[is++], vl); + vint32m4_t vs2 = __riscv_vwmul_vx_i32m4(v1, scales[is++], vl); + + vint32m1_t vacc1 = __riscv_vredsum_vs_i32m4_i32m1(vs1, vzero, vl); + vint32m1_t vacc2 = __riscv_vredsum_vs_i32m4_i32m1(vs2, vzero, vl); + + aux32 += __riscv_vmv_x_s_i32m1_i32(vacc1) + __riscv_vmv_x_s_i32m1_i32(vacc2); + q5 += 32; q8 += 64; + + } + + vfloat32m1_t vaux = __riscv_vfmul_vf_f32m1(__riscv_vfmv_v_f_f32m1(aux32, 1), d, 1); + sums += __riscv_vfmv_f_s_f32m1_f32(vaux); + + } + + *s = sumf+sums; + +#else + + const uint8_t * scales = (const uint8_t*)&utmp[0]; + const uint8_t * mins = (const uint8_t*)&utmp[2]; + + int8_t aux8[QK_K]; + int16_t aux16[8]; + float sums [8]; + int32_t aux32[8]; + memset(sums, 0, 8*sizeof(float)); + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + const uint8_t * restrict q4 = x[i].qs; + const uint8_t * restrict hm = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + memset(aux32, 0, 8*sizeof(int32_t)); + int8_t * restrict a = aux8; + uint8_t m = 1; + for (int j = 0; j < QK_K/64; ++j) { + for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] & 0xF); + for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0); + a += 32; m <<= 1; + for (int l = 0; l < 32; ++l) a[l] = (int8_t)(q4[l] >> 4); + for (int l = 0; l < 32; ++l) a[l] += (hm[l] & m ? 16 : 0); + a += 32; m <<= 1; + q4 += 32; + } + memcpy(utmp, x[i].scales, 12); + utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); + const uint32_t uaux = utmp[1] & kmask1; + utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); + utmp[2] = uaux; + utmp[0] &= kmask1; + + int sumi = 0; + for (int j = 0; j < QK_K/16; ++j) sumi += y[i].bsums[j] * mins[j/2]; + a = aux8; + int is = 0; + for (int j = 0; j < QK_K/32; ++j) { + int32_t scale = scales[is++]; + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; + q8 += 8; a += 8; + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; + q8 += 8; a += 8; + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; + q8 += 8; a += 8; + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; + q8 += 8; a += 8; + } + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l]; + const float dmin = GGML_FP16_TO_FP32(x[i].dmin) * y[i].d; + sumf -= dmin * sumi; + } + for (int l = 0; l < 8; ++l) sumf += sums[l]; + *s = sumf; +#endif +} + +#else + +void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + assert(n % QK_K == 0); + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + const block_q5_K * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + +#ifdef __ARM_NEON + const uint8x16_t m4b = vdupq_n_u8(0xf); + const uint8x16_t mh = vdupq_n_u8(16); + const int32x4_t mzero = vdupq_n_s32(0); + + ggml_int8x16x4_t q5bytes; + ggml_uint8x16x4_t q5h; + + float sumf = 0; + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const int8_t * sc = x[i].scales; + + const uint8_t * restrict q5 = x[i].qs; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + + const uint8x8_t qhbits = vld1_u8(qh); + + const ggml_uint8x16x2_t q5bits = ggml_vld1q_u8_x2(q5); + const ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); + + const uint8x16_t htmp = vcombine_u8(qhbits, vshr_n_u8(qhbits, 1)); + q5h.val[0] = vbicq_u8(mh, vshlq_n_u8(htmp, 4)); + q5h.val[1] = vbicq_u8(mh, vshlq_n_u8(htmp, 2)); + q5h.val[2] = vbicq_u8(mh, htmp); + q5h.val[3] = vbicq_u8(mh, vshrq_n_u8(htmp, 2)); + + q5bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[0], m4b)), vreinterpretq_s8_u8(q5h.val[0])); + q5bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(q5bits.val[1], m4b)), vreinterpretq_s8_u8(q5h.val[1])); + q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2])); + q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3])); + + int32_t sumi1 = sc[0] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0])); + int32_t sumi2 = sc[1] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1])); + int32_t sumi3 = sc[2] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2])); + int32_t sumi4 = sc[3] * vaddvq_s32(ggml_vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3])); + + sumf += d * (sumi1 + sumi2 + sumi3 + sumi4); + } + + *s = sumf; + +#elif defined __AVX2__ + + const __m256i m4 = _mm256_set1_epi8(0xF); + const __m256i mone = _mm256_set1_epi8(1); + + __m256 acc = _mm256_setzero_ps(); + + for (int i = 0; i < nb; ++i) { + + const uint8_t * restrict q5 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + + const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); + + const __m256i scale_l = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[1]), _mm_set1_epi16(x[i].scales[0])); + const __m256i scale_h = MM256_SET_M128I(_mm_set1_epi16(x[i].scales[3]), _mm_set1_epi16(x[i].scales[2])); + + int64_t aux64; + memcpy(&aux64, x[i].qh, 8); + const __m128i haux128 = _mm_set_epi64x(aux64 >> 1, aux64); + const __m256i haux256 = MM256_SET_M128I(_mm_srli_epi16(haux128, 2), haux128); + + const __m256i q5h_0 = _mm256_slli_epi16(_mm256_andnot_si256(haux256, mone), 4); + const __m256i q5h_1 = _mm256_slli_epi16(_mm256_andnot_si256(_mm256_srli_epi16(haux256, 4), mone), 4); + + const __m256i q5l_0 = _mm256_and_si256(q5bits, m4); + const __m256i q5l_1 = _mm256_and_si256(_mm256_srli_epi16(q5bits, 4), m4); + + const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); + const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); + + const __m256i p16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5l_0, q8_0)); + const __m256i p16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5l_1, q8_1)); + const __m256i s16_0 = _mm256_madd_epi16(scale_l, _mm256_maddubs_epi16(q5h_0, q8_0)); + const __m256i s16_1 = _mm256_madd_epi16(scale_h, _mm256_maddubs_epi16(q5h_1, q8_1)); + + const __m256i dot = _mm256_sub_epi32(_mm256_add_epi32(p16_0, p16_1), _mm256_add_epi32(s16_0, s16_1)); + + acc = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(dot), acc); + + } + + *s = hsum_float_8(acc); + +#elif defined __AVX__ + + const __m128i m4 = _mm_set1_epi8(0xF); + const __m128i mone = _mm_set1_epi8(1); + + __m256 acc = _mm256_setzero_ps(); + + for (int i = 0; i < nb; ++i) { + + const uint8_t * restrict q5 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + + const __m256i q5bits = _mm256_loadu_si256((const __m256i*)q5); + + const __m128i scale_0 = _mm_set1_epi16(x[i].scales[0]); + const __m128i scale_1 = _mm_set1_epi16(x[i].scales[1]); + const __m128i scale_2 = _mm_set1_epi16(x[i].scales[2]); + const __m128i scale_3 = _mm_set1_epi16(x[i].scales[3]); + + int64_t aux64; + memcpy(&aux64, x[i].qh, 8); + const __m128i haux128_0 = _mm_set_epi64x(aux64 >> 1, aux64); + const __m128i haux128_1 = _mm_srli_epi16(haux128_0, 2); + + const __m128i q5h_0 = _mm_slli_epi16(_mm_andnot_si128(haux128_0, mone), 4); + const __m128i q5h_1 = _mm_slli_epi16(_mm_andnot_si128(haux128_1, mone), 4); + const __m128i q5h_2 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_0, 4), mone), 4); + const __m128i q5h_3 = _mm_slli_epi16(_mm_andnot_si128(_mm_srli_epi16(haux128_1, 4), mone), 4); + + const __m128i q5l_0 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 0), m4); + const __m128i q5l_1 = _mm_and_si128(_mm256_extractf128_si256(q5bits, 1), m4); + const __m128i q5l_2 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 0), 4), m4); + const __m128i q5l_3 = _mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q5bits, 1), 4), m4); + + const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); + const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); + + const __m128i p16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5l_0, _mm256_extractf128_si256(q8_0, 0))); + const __m128i p16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5l_1, _mm256_extractf128_si256(q8_0, 1))); + const __m128i p16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5l_2, _mm256_extractf128_si256(q8_1, 0))); + const __m128i p16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5l_3, _mm256_extractf128_si256(q8_1, 1))); + const __m128i s16_0 = _mm_madd_epi16(scale_0, _mm_maddubs_epi16(q5h_0, _mm256_extractf128_si256(q8_0, 0))); + const __m128i s16_1 = _mm_madd_epi16(scale_1, _mm_maddubs_epi16(q5h_1, _mm256_extractf128_si256(q8_0, 1))); + const __m128i s16_2 = _mm_madd_epi16(scale_2, _mm_maddubs_epi16(q5h_2, _mm256_extractf128_si256(q8_1, 0))); + const __m128i s16_3 = _mm_madd_epi16(scale_3, _mm_maddubs_epi16(q5h_3, _mm256_extractf128_si256(q8_1, 1))); + + const __m128i dot_0 = _mm_sub_epi32(_mm_add_epi32(p16_0, p16_2), _mm_add_epi32(s16_0, s16_2)); + const __m128i dot_1 = _mm_sub_epi32(_mm_add_epi32(p16_1, p16_3), _mm_add_epi32(s16_1, s16_3)); + + acc = _mm256_add_ps(_mm256_mul_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(MM256_SET_M128I(dot_1, dot_0))), acc); + + } + + *s = hsum_float_8(acc); + +#elif defined __riscv_v_intrinsic + + float sumf = 0; + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const int8_t * sc = x[i].scales; + + const uint8_t * restrict q5 = x[i].qs; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + + vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1); + + // load qh + vuint8mf4_t qh_x1 = __riscv_vle8_v_u8mf4(qh, 8); + vuint8mf2_t qh_x2 = __riscv_vlmul_ext_v_u8mf4_u8mf2(__riscv_vsrl_vx_u8mf4(qh_x1, 1, 8)); + + size_t vl = 16; + + // combine both qh_1 and qh_2 + vuint8mf2_t qh_x = __riscv_vslideup_vx_u8mf2(__riscv_vlmul_ext_v_u8mf4_u8mf2(qh_x1), qh_x2, vl/2, vl); + + vuint8mf2_t qh_h0 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl); + vuint8mf2_t qh_h1 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsll_vx_u8mf2(qh_x, 0x2, vl), vl), 16, vl); + vuint8mf2_t qh_h2 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(qh_x, vl), 16, vl); + vuint8mf2_t qh_h3 = __riscv_vand_vx_u8mf2(__riscv_vnot_v_u8mf2(__riscv_vsrl_vx_u8mf2(qh_x, 0x4, vl), vl), 16, vl); + + vint8mf2_t qh_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h0); + vint8mf2_t qh_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h1); + vint8mf2_t qh_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h2); + vint8mf2_t qh_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(qh_h3); + + // load q5 + vuint8mf2_t q5_x1 = __riscv_vle8_v_u8mf2(q5, vl); + vuint8mf2_t q5_x2 = __riscv_vle8_v_u8mf2(q5+16, vl); + + vint8mf2_t q5s_0 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x1, 0xF, vl)); + vint8mf2_t q5s_1 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vand_vx_u8mf2(q5_x2, 0xF, vl)); + vint8mf2_t q5s_2 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x1, 0x4, vl)); + vint8mf2_t q5s_3 = __riscv_vreinterpret_v_u8mf2_i8mf2(__riscv_vsrl_vx_u8mf2(q5_x2, 0x4, vl)); + + vint8mf2_t q5_0 = __riscv_vsub_vv_i8mf2(q5s_0, qh_0, vl); + vint8mf2_t q5_1 = __riscv_vsub_vv_i8mf2(q5s_1, qh_1, vl); + vint8mf2_t q5_2 = __riscv_vsub_vv_i8mf2(q5s_2, qh_2, vl); + vint8mf2_t q5_3 = __riscv_vsub_vv_i8mf2(q5s_3, qh_3, vl); + + // load Q8 and multiply it with Q5 + vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q5_0, __riscv_vle8_v_i8mf2(q8, vl), vl); + vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q5_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl); + vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q5_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl); + vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q5_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl); + + vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl); + vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl); + vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl); + vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl); + + int32_t sumi1 = sc[0] * __riscv_vmv_x_s_i32m1_i32(vs_0); + int32_t sumi2 = sc[1] * __riscv_vmv_x_s_i32m1_i32(vs_1); + int32_t sumi3 = sc[2] * __riscv_vmv_x_s_i32m1_i32(vs_2); + int32_t sumi4 = sc[3] * __riscv_vmv_x_s_i32m1_i32(vs_3); + + sumf += d * (sumi1 + sumi2 + sumi3 + sumi4); + + } + + *s = sumf; + +#else + + int8_t aux8[QK_K]; + int16_t aux16[16]; + float sums [8]; + memset(sums, 0, 8*sizeof(float)); + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + const uint8_t * restrict q4 = x[i].qs; + const uint8_t * restrict hm = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + int8_t * restrict a = aux8; + for (int l = 0; l < 32; ++l) { + a[l+ 0] = q4[l] & 0xF; + a[l+32] = q4[l] >> 4; + } + for (int is = 0; is < 8; ++is) { + uint8_t m = 1 << is; + for (int l = 0; l < 8; ++l) a[8*is + l] -= (hm[l] & m ? 0 : 16); + } + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + const int8_t * restrict sc = x[i].scales; + + for (int j = 0; j < QK_K/16; ++j) { + const float dl = d * sc[j]; + for (int l = 0; l < 16; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) sums[l] += dl * (aux16[l] + aux16[8+l]); + q8 += 16; a += 16; + } + } + for (int l = 0; l < 8; ++l) sumf += sums[l]; + *s = sumf; +#endif +} +#endif + + +#if QK_K == 256 +void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + assert(n % QK_K == 0); + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + const block_q6_K * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + +#ifdef __ARM_NEON + float sum = 0; + + const uint8x16_t m4b = vdupq_n_u8(0xF); + const int32x4_t vzero = vdupq_n_s32(0); + //const int8x16_t m32s = vdupq_n_s8(32); + + const uint8x16_t mone = vdupq_n_u8(3); + + ggml_int8x16x4_t q6bytes; + ggml_uint8x16x4_t q6h; + + for (int i = 0; i < nb; ++i) { + + const float d_all = GGML_FP16_TO_FP32(x[i].d); + + const uint8_t * restrict q6 = x[i].ql; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + + const int8_t * restrict scale = x[i].scales; + + const ggml_int16x8x2_t q8sums = ggml_vld1q_s16_x2(y[i].bsums); + const int8x16_t scales = vld1q_s8(scale); + const ggml_int16x8x2_t q6scales = {{vmovl_s8(vget_low_s8(scales)), vmovl_s8(vget_high_s8(scales))}}; + + const int32x4_t prod = vaddq_s32(vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[0]), vget_low_s16 (q6scales.val[0])), + vmull_s16(vget_high_s16(q8sums.val[0]), vget_high_s16(q6scales.val[0]))), + vaddq_s32(vmull_s16(vget_low_s16 (q8sums.val[1]), vget_low_s16 (q6scales.val[1])), + vmull_s16(vget_high_s16(q8sums.val[1]), vget_high_s16(q6scales.val[1])))); + int32_t isum_mins = vaddvq_s32(prod); + + int32_t isum = 0; + + for (int j = 0; j < QK_K/128; ++j) { + + ggml_uint8x16x2_t qhbits = ggml_vld1q_u8_x2(qh); qh += 32; + ggml_uint8x16x4_t q6bits = ggml_vld1q_u8_x4(q6); q6 += 64; + ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64; + + q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits.val[0]), 4); + q6h.val[1] = vshlq_n_u8(vandq_u8(mone, qhbits.val[1]), 4); + uint8x16_t shifted = vshrq_n_u8(qhbits.val[0], 2); + q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4); + shifted = vshrq_n_u8(qhbits.val[1], 2); + q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4); + + //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s); + //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s); + //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])), m32s); + //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])), m32s); + q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])); + q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])); + q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])); + q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])); + + isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] + + vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] + + vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] + + vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3]; + + scale += 4; + + q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64; + + shifted = vshrq_n_u8(qhbits.val[0], 4); + q6h.val[0] = vshlq_n_u8(vandq_u8(mone, shifted), 4); + shifted = vshrq_n_u8(qhbits.val[1], 4); + q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4); + shifted = vshrq_n_u8(qhbits.val[0], 6); + q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4); + shifted = vshrq_n_u8(qhbits.val[1], 6); + q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4); + + //q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])), m32s); + //q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])), m32s); + //q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])), m32s); + //q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])), m32s); + q6bytes.val[0] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[0])); + q6bytes.val[1] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[1])); + q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])); + q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])); + + isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] + + vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] + + vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] + + vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3]; + scale += 4; + } + //sum += isum * d_all * y[i].d; + sum += d_all * y[i].d * (isum - 32 * isum_mins); + + } + *s = sum; + +#elif defined __AVX2__ + + const __m256i m4 = _mm256_set1_epi8(0xF); + const __m256i m2 = _mm256_set1_epi8(3); + const __m256i m32s = _mm256_set1_epi8(32); + + __m256 acc = _mm256_setzero_ps(); + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + + const uint8_t * restrict q4 = x[i].ql; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + + const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales); + + __m256i sumi = _mm256_setzero_si256(); + + int is = 0; + + for (int j = 0; j < QK_K/128; ++j) { + + const __m128i scale_0 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 0)); + const __m128i scale_1 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 1)); + const __m128i scale_2 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 2)); + const __m128i scale_3 = _mm_shuffle_epi8(scales, get_scale_shuffle(is + 3)); + is += 4; + + const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32; + const __m256i q4bits2 = _mm256_loadu_si256((const __m256i*)q4); q4 += 32; + const __m256i q4bitsH = _mm256_loadu_si256((const __m256i*)qh); qh += 32; + + const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(q4bitsH, m2), 4); + const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 2), m2), 4); + const __m256i q4h_2 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 4), m2), 4); + const __m256i q4h_3 = _mm256_slli_epi16(_mm256_and_si256(_mm256_srli_epi16(q4bitsH, 6), m2), 4); + + const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0); + const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(q4bits2, m4), q4h_1); + const __m256i q4_2 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_2); + const __m256i q4_3 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits2, 4), m4), q4h_3); + + const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + const __m256i q8_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + const __m256i q8_3 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + + __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0); + __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1); + __m256i q8s_2 = _mm256_maddubs_epi16(m32s, q8_2); + __m256i q8s_3 = _mm256_maddubs_epi16(m32s, q8_3); + + __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0); + __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1); + __m256i p16_2 = _mm256_maddubs_epi16(q4_2, q8_2); + __m256i p16_3 = _mm256_maddubs_epi16(q4_3, q8_3); + + p16_0 = _mm256_sub_epi16(p16_0, q8s_0); + p16_1 = _mm256_sub_epi16(p16_1, q8s_1); + p16_2 = _mm256_sub_epi16(p16_2, q8s_2); + p16_3 = _mm256_sub_epi16(p16_3, q8s_3); + + p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0); + p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1); + p16_2 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_2), p16_2); + p16_3 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_3), p16_3); + + sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1)); + sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_2, p16_3)); + + } + + acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc); + } + + *s = hsum_float_8(acc); + +#elif defined __AVX__ + + const __m128i m4 = _mm_set1_epi8(0xF); + const __m128i m3 = _mm_set1_epi8(3); + const __m128i m32s = _mm_set1_epi8(32); + const __m128i m2 = _mm_set1_epi8(2); + + __m256 acc = _mm256_setzero_ps(); + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + + const uint8_t * restrict q4 = x[i].ql; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + + const __m128i scales = _mm_loadu_si128((const __m128i*)x[i].scales); + + __m128i sumi_0 = _mm_setzero_si128(); + __m128i sumi_1 = _mm_setzero_si128(); + + __m128i shuffle = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000); + for (int j = 0; j < QK_K/128; ++j) { + + const __m128i q4bitsH_0 = _mm_loadu_si128((const __m128i*)qh); qh += 16; + const __m128i q4bitsH_1 = _mm_loadu_si128((const __m128i*)qh); qh += 16; + + const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH_0, m3), 4); + const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(q4bitsH_1, m3), 4); + const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 2), m3), 4); + const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 2), m3), 4); + const __m128i q4h_4 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 4), m3), 4); + const __m128i q4h_5 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 4), m3), 4); + const __m128i q4h_6 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_0, 6), m3), 4); + const __m128i q4h_7 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH_1, 6), m3), 4); + + const __m128i q4bits1_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16; + const __m128i q4bits1_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16; + const __m128i q4bits2_0 = _mm_loadu_si128((const __m128i*)q4); q4 += 16; + const __m128i q4bits2_1 = _mm_loadu_si128((const __m128i*)q4); q4 += 16; + + const __m128i q4_0 = _mm_or_si128(_mm_and_si128(q4bits1_0, m4), q4h_0); + const __m128i q4_1 = _mm_or_si128(_mm_and_si128(q4bits1_1, m4), q4h_1); + const __m128i q4_2 = _mm_or_si128(_mm_and_si128(q4bits2_0, m4), q4h_2); + const __m128i q4_3 = _mm_or_si128(_mm_and_si128(q4bits2_1, m4), q4h_3); + const __m128i q4_4 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_0, 4), m4), q4h_4); + const __m128i q4_5 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits1_1, 4), m4), q4h_5); + const __m128i q4_6 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_0, 4), m4), q4h_6); + const __m128i q4_7 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(q4bits2_1, 4), m4), q4h_7); + + const __m128i q8_0 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_1 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_2 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_3 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_4 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_5 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_6 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + const __m128i q8_7 = _mm_loadu_si128((const __m128i*)q8); q8 += 16; + + __m128i q8s_0 = _mm_maddubs_epi16(m32s, q8_0); + __m128i q8s_1 = _mm_maddubs_epi16(m32s, q8_1); + __m128i q8s_2 = _mm_maddubs_epi16(m32s, q8_2); + __m128i q8s_3 = _mm_maddubs_epi16(m32s, q8_3); + __m128i q8s_4 = _mm_maddubs_epi16(m32s, q8_4); + __m128i q8s_5 = _mm_maddubs_epi16(m32s, q8_5); + __m128i q8s_6 = _mm_maddubs_epi16(m32s, q8_6); + __m128i q8s_7 = _mm_maddubs_epi16(m32s, q8_7); + + __m128i p16_0 = _mm_maddubs_epi16(q4_0, q8_0); + __m128i p16_1 = _mm_maddubs_epi16(q4_1, q8_1); + __m128i p16_2 = _mm_maddubs_epi16(q4_2, q8_2); + __m128i p16_3 = _mm_maddubs_epi16(q4_3, q8_3); + __m128i p16_4 = _mm_maddubs_epi16(q4_4, q8_4); + __m128i p16_5 = _mm_maddubs_epi16(q4_5, q8_5); + __m128i p16_6 = _mm_maddubs_epi16(q4_6, q8_6); + __m128i p16_7 = _mm_maddubs_epi16(q4_7, q8_7); + + p16_0 = _mm_sub_epi16(p16_0, q8s_0); + p16_1 = _mm_sub_epi16(p16_1, q8s_1); + p16_2 = _mm_sub_epi16(p16_2, q8s_2); + p16_3 = _mm_sub_epi16(p16_3, q8s_3); + p16_4 = _mm_sub_epi16(p16_4, q8s_4); + p16_5 = _mm_sub_epi16(p16_5, q8s_5); + p16_6 = _mm_sub_epi16(p16_6, q8s_6); + p16_7 = _mm_sub_epi16(p16_7, q8s_7); + + const __m128i scale_0 = _mm_shuffle_epi8(scales, shuffle); + shuffle = _mm_add_epi8(shuffle, m2); + const __m128i scale_1 = _mm_shuffle_epi8(scales, shuffle); + shuffle = _mm_add_epi8(shuffle, m2); + const __m128i scale_2 = _mm_shuffle_epi8(scales, shuffle); + shuffle = _mm_add_epi8(shuffle, m2); + const __m128i scale_3 = _mm_shuffle_epi8(scales, shuffle); + shuffle = _mm_add_epi8(shuffle, m2); + + p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0); + p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1); + p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2); + p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3); + p16_4 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_2), p16_4); + p16_5 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_2, scale_2)), p16_5); + p16_6 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_3), p16_6); + p16_7 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_3, scale_3)), p16_7); + + sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2)); + sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3)); + sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_4, p16_6)); + sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_5, p16_7)); + + } + + __m256i sumi = MM256_SET_M128I(sumi_1, sumi_0); + acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi)), acc); + } + + *s = hsum_float_8(acc); + +#elif defined __riscv_v_intrinsic + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + + const uint8_t * restrict q6 = x[i].ql; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + + const int8_t * restrict scale = x[i].scales; + + size_t vl; + + vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1); + + int sum_t = 0; + int is = 0; + + for (int j = 0; j < QK_K/128; ++j) { + + vl = 32; + + // load qh + vuint8m1_t qh_x = __riscv_vle8_v_u8m1(qh, vl); + + // load Q6 + vuint8m1_t q6_0 = __riscv_vle8_v_u8m1(q6, vl); + vuint8m1_t q6_1 = __riscv_vle8_v_u8m1(q6+32, vl); + + vuint8m1_t q6a_0 = __riscv_vand_vx_u8m1(q6_0, 0x0F, vl); + vuint8m1_t q6a_1 = __riscv_vand_vx_u8m1(q6_1, 0x0F, vl); + vuint8m1_t q6s_0 = __riscv_vsrl_vx_u8m1(q6_0, 0x04, vl); + vuint8m1_t q6s_1 = __riscv_vsrl_vx_u8m1(q6_1, 0x04, vl); + + vuint8m1_t qh_0 = __riscv_vand_vx_u8m1(qh_x, 0x03, vl); + vuint8m1_t qh_1 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x2, vl), 0x03 , vl); + vuint8m1_t qh_2 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x4, vl), 0x03 , vl); + vuint8m1_t qh_3 = __riscv_vand_vx_u8m1(__riscv_vsrl_vx_u8m1(qh_x, 0x6, vl), 0x03 , vl); + + vuint8m1_t qhi_0 = __riscv_vor_vv_u8m1(q6a_0, __riscv_vsll_vx_u8m1(qh_0, 0x04, vl), vl); + vuint8m1_t qhi_1 = __riscv_vor_vv_u8m1(q6a_1, __riscv_vsll_vx_u8m1(qh_1, 0x04, vl), vl); + vuint8m1_t qhi_2 = __riscv_vor_vv_u8m1(q6s_0, __riscv_vsll_vx_u8m1(qh_2, 0x04, vl), vl); + vuint8m1_t qhi_3 = __riscv_vor_vv_u8m1(q6s_1, __riscv_vsll_vx_u8m1(qh_3, 0x04, vl), vl); + + vint8m1_t a_0 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_0), 32, vl); + vint8m1_t a_1 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_1), 32, vl); + vint8m1_t a_2 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_2), 32, vl); + vint8m1_t a_3 = __riscv_vsub_vx_i8m1(__riscv_vreinterpret_v_u8m1_i8m1(qhi_3), 32, vl); + + // load Q8 and take product + vint16m2_t va_q_0 = __riscv_vwmul_vv_i16m2(a_0, __riscv_vle8_v_i8m1(q8, vl), vl); + vint16m2_t va_q_1 = __riscv_vwmul_vv_i16m2(a_1, __riscv_vle8_v_i8m1(q8+32, vl), vl); + vint16m2_t va_q_2 = __riscv_vwmul_vv_i16m2(a_2, __riscv_vle8_v_i8m1(q8+64, vl), vl); + vint16m2_t va_q_3 = __riscv_vwmul_vv_i16m2(a_3, __riscv_vle8_v_i8m1(q8+96, vl), vl); + + vl = 16; + + vint32m2_t vaux_0 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 0), scale[is+0], vl); + vint32m2_t vaux_1 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_0, 1), scale[is+1], vl); + vint32m2_t vaux_2 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 0), scale[is+2], vl); + vint32m2_t vaux_3 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_1, 1), scale[is+3], vl); + vint32m2_t vaux_4 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 0), scale[is+4], vl); + vint32m2_t vaux_5 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_2, 1), scale[is+5], vl); + vint32m2_t vaux_6 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 0), scale[is+6], vl); + vint32m2_t vaux_7 = __riscv_vwmul_vx_i32m2(__riscv_vget_v_i16m2_i16m1(va_q_3, 1), scale[is+7], vl); + + vint32m1_t isum0 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_0, vaux_1, vl), vzero, vl); + vint32m1_t isum1 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_2, vaux_3, vl), isum0, vl); + vint32m1_t isum2 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_4, vaux_5, vl), isum1, vl); + vint32m1_t isum3 = __riscv_vredsum_vs_i32m2_i32m1(__riscv_vadd_vv_i32m2(vaux_6, vaux_7, vl), isum2, vl); + + sum_t += __riscv_vmv_x_s_i32m1_i32(isum3); + + q6 += 64; qh += 32; q8 += 128; is=8; + + } + + sumf += d * sum_t; + + } + + *s = sumf; + +#else + + int8_t aux8[QK_K]; + int16_t aux16[8]; + float sums [8]; + int32_t aux32[8]; + memset(sums, 0, 8*sizeof(float)); + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + const uint8_t * restrict q4 = x[i].ql; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + memset(aux32, 0, 8*sizeof(int32_t)); + int8_t * restrict a = aux8; + for (int j = 0; j < QK_K; j += 128) { + for (int l = 0; l < 32; ++l) { + a[l + 0] = (int8_t)((q4[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32; + a[l + 32] = (int8_t)((q4[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32; + a[l + 64] = (int8_t)((q4[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32; + a[l + 96] = (int8_t)((q4[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32; + } + a += 128; + q4 += 64; + qh += 32; + } + a = aux8; + int is = 0; + for (int j = 0; j < QK_K/16; ++j) { + int scale = x[i].scales[is++]; + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; + q8 += 8; a += 8; + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; + q8 += 8; a += 8; + } + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l]; + } + for (int l = 0; l < 8; ++l) sumf += sums[l]; + *s = sumf; +#endif +} + +#else + +void ggml_vec_dot_q6_K_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + assert(n % QK_K == 0); + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + const block_q6_K * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + +#ifdef __ARM_NEON + float sum = 0; + + const uint8x16_t m4b = vdupq_n_u8(0xF); + const int8x16_t m32s = vdupq_n_s8(32); + const int32x4_t vzero = vdupq_n_s32(0); + + const uint8x16_t mone = vdupq_n_u8(3); + + ggml_int8x16x4_t q6bytes; + ggml_uint8x16x4_t q6h; + + for (int i = 0; i < nb; ++i) { + + const float d_all = GGML_FP16_TO_FP32(x[i].d); + + const uint8_t * restrict q6 = x[i].ql; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + + const int8_t * restrict scale = x[i].scales; + + int32_t isum = 0; + + uint8x16_t qhbits = vld1q_u8(qh); + ggml_uint8x16x2_t q6bits = ggml_vld1q_u8_x2(q6); + ggml_int8x16x4_t q8bytes = ggml_vld1q_s8_x4(q8); + + q6h.val[0] = vshlq_n_u8(vandq_u8(mone, qhbits), 4); + uint8x16_t shifted = vshrq_n_u8(qhbits, 2); + q6h.val[1] = vshlq_n_u8(vandq_u8(mone, shifted), 4); + shifted = vshrq_n_u8(qhbits, 4); + q6h.val[2] = vshlq_n_u8(vandq_u8(mone, shifted), 4); + shifted = vshrq_n_u8(qhbits, 6); + q6h.val[3] = vshlq_n_u8(vandq_u8(mone, shifted), 4); + + q6bytes.val[0] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[0], m4b), q6h.val[0])), m32s); + q6bytes.val[1] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[1], m4b), q6h.val[1])), m32s); + q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s); + q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s); + + isum += vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] + + vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] + + vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] + + vaddvq_s32(ggml_vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3]; + + sum += isum * d_all * y[i].d; + + } + *s = sum; + +#elif defined __AVX2__ + + const __m256i m4 = _mm256_set1_epi8(0xF); + const __m256i m2 = _mm256_set1_epi8(3); + const __m256i m32s = _mm256_set1_epi8(32); + + __m256 acc = _mm256_setzero_ps(); + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + + const uint8_t * restrict q4 = x[i].ql; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + + const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]); + const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]); + const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]); + const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]); + + __m256i sumi = _mm256_setzero_si256(); + + const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1); + const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3); + + const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); + const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh); + + const __m256i q4h_0 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 2), q4bitsH), m2), 4); + const __m256i q4h_1 = _mm256_slli_epi16(_mm256_and_si256(MM256_SET_M128I(_mm_srli_epi16(q4bitsH, 6), _mm_srli_epi16(q4bitsH, 4)), m2), 4); + + const __m256i q4_0 = _mm256_or_si256(_mm256_and_si256(q4bits1, m4), q4h_0); + const __m256i q4_1 = _mm256_or_si256(_mm256_and_si256(_mm256_srli_epi16(q4bits1, 4), m4), q4h_1); + + const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); + const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); + + __m256i q8s_0 = _mm256_maddubs_epi16(m32s, q8_0); + __m256i q8s_1 = _mm256_maddubs_epi16(m32s, q8_1); + + __m256i p16_0 = _mm256_maddubs_epi16(q4_0, q8_0); + __m256i p16_1 = _mm256_maddubs_epi16(q4_1, q8_1); + + p16_0 = _mm256_sub_epi16(p16_0, q8s_0); + p16_1 = _mm256_sub_epi16(p16_1, q8s_1); + + p16_0 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_0), p16_0); + p16_1 = _mm256_madd_epi16(_mm256_cvtepi8_epi16(scale_1), p16_1); + + sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p16_0, p16_1)); + + acc = _mm256_fmadd_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(sumi), acc); + } + + *s = hsum_float_8(acc); + +#elif defined __AVX__ + + const __m128i m4 = _mm_set1_epi8(0xF); + const __m128i m2 = _mm_set1_epi8(3); + const __m128i m32s = _mm_set1_epi8(32); + + __m256 acc = _mm256_setzero_ps(); + + for (int i = 0; i < nb; ++i) { + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + + const uint8_t * restrict q4 = x[i].ql; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + + const __m64 scales_1 = _mm_set1_pi8(x[i].scales[0]); + const __m64 scales_2 = _mm_set1_pi8(x[i].scales[1]); + const __m64 scales_3 = _mm_set1_pi8(x[i].scales[2]); + const __m64 scales_4 = _mm_set1_pi8(x[i].scales[3]); + + __m128i sumi_0 = _mm_setzero_si128(); + __m128i sumi_1 = _mm_setzero_si128(); + + const __m128i scale_0 = _mm_set_epi64(scales_2, scales_1); + const __m128i scale_1 = _mm_set_epi64(scales_4, scales_3); + + const __m256i q4bits1 = _mm256_loadu_si256((const __m256i*)q4); + const __m128i q4bitsH = _mm_loadu_si128((const __m128i*)qh); + + const __m128i q4h_0 = _mm_slli_epi16(_mm_and_si128(q4bitsH, m2), 4); + const __m128i q4h_1 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 2), m2), 4); + const __m128i q4h_2 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 4), m2), 4); + const __m128i q4h_3 = _mm_slli_epi16(_mm_and_si128(_mm_srli_epi16(q4bitsH, 6), m2), 4); + + const __m128i q4_0 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 0), m4), q4h_0); + const __m128i q4_1 = _mm_or_si128(_mm_and_si128(_mm256_extractf128_si256(q4bits1, 1), m4), q4h_1); + const __m128i q4_2 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 0), 4), m4), q4h_2); + const __m128i q4_3 = _mm_or_si128(_mm_and_si128(_mm_srli_epi16(_mm256_extractf128_si256(q4bits1, 1), 4), m4), q4h_3); + + const __m256i q8_0 = _mm256_loadu_si256((const __m256i*)(q8+ 0)); + const __m256i q8_1 = _mm256_loadu_si256((const __m256i*)(q8+32)); + + __m128i q8s_0 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 0)); + __m128i q8s_1 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_0, 1)); + __m128i q8s_2 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 0)); + __m128i q8s_3 = _mm_maddubs_epi16(m32s, _mm256_extractf128_si256(q8_1, 1)); + + __m128i p16_0 = _mm_maddubs_epi16(q4_0, _mm256_extractf128_si256(q8_0, 0)); + __m128i p16_1 = _mm_maddubs_epi16(q4_1, _mm256_extractf128_si256(q8_0, 1)); + __m128i p16_2 = _mm_maddubs_epi16(q4_2, _mm256_extractf128_si256(q8_1, 0)); + __m128i p16_3 = _mm_maddubs_epi16(q4_3, _mm256_extractf128_si256(q8_1, 1)); + + p16_0 = _mm_sub_epi16(p16_0, q8s_0); + p16_1 = _mm_sub_epi16(p16_1, q8s_1); + p16_2 = _mm_sub_epi16(p16_2, q8s_2); + p16_3 = _mm_sub_epi16(p16_3, q8s_3); + + p16_0 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_0), p16_0); + p16_1 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_0, scale_0)), p16_1); + p16_2 = _mm_madd_epi16(_mm_cvtepi8_epi16(scale_1), p16_2); + p16_3 = _mm_madd_epi16(_mm_cvtepi8_epi16(_mm_unpackhi_epi64(scale_1, scale_1)), p16_3); + + sumi_0 = _mm_add_epi32(sumi_0, _mm_add_epi32(p16_0, p16_2)); + sumi_1 = _mm_add_epi32(sumi_1, _mm_add_epi32(p16_1, p16_3)); + + acc = _mm256_add_ps(_mm256_mul_ps(_mm256_broadcast_ss(&d), _mm256_cvtepi32_ps(MM256_SET_M128I(sumi_1, sumi_0))), acc); + } + + *s = hsum_float_8(acc); + +#elif defined __riscv_v_intrinsic + + float sumf = 0; + + for (int i = 0; i < nb; ++i) { + + const float d_all = GGML_FP16_TO_FP32(x[i].d); + + const uint8_t * restrict q6 = x[i].ql; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + + const int8_t * restrict scale = x[i].scales; + + int32_t isum = 0; + + size_t vl = 16; + + vint32m1_t vzero = __riscv_vmv_v_x_i32m1(0, 1); + + // load Q6 + vuint8mf2_t q6_0 = __riscv_vle8_v_u8mf2(q6, vl); + vuint8mf2_t q6_1 = __riscv_vle8_v_u8mf2(q6+16, vl); + + // load qh + vuint8mf2_t qh_x = __riscv_vle8_v_u8mf2(qh, vl); + + vuint8mf2_t qh0 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl); + qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl); + vuint8mf2_t qh1 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl); + qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl); + vuint8mf2_t qh2 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl); + qh_x = __riscv_vsrl_vx_u8mf2(qh_x, 0x2, vl); + vuint8mf2_t qh3 = __riscv_vsll_vx_u8mf2(__riscv_vand_vx_u8mf2(qh_x, 0x3, vl), 0x4, vl); + + vuint8mf2_t q6h_0 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_0, 0xF, vl), qh0, vl); + vuint8mf2_t q6h_1 = __riscv_vor_vv_u8mf2(__riscv_vand_vx_u8mf2(q6_1, 0xF, vl), qh1, vl); + vuint8mf2_t q6h_2 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_0, 0x4, vl), qh2, vl); + vuint8mf2_t q6h_3 = __riscv_vor_vv_u8mf2(__riscv_vsrl_vx_u8mf2(q6_1, 0x4, vl), qh3, vl); + + vint8mf2_t q6v_0 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_0), 32, vl); + vint8mf2_t q6v_1 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_1), 32, vl); + vint8mf2_t q6v_2 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_2), 32, vl); + vint8mf2_t q6v_3 = __riscv_vsub_vx_i8mf2(__riscv_vreinterpret_v_u8mf2_i8mf2(q6h_3), 32, vl); + + // load Q8 and take product + vint16m1_t p0 = __riscv_vwmul_vv_i16m1(q6v_0, __riscv_vle8_v_i8mf2(q8, vl), vl); + vint16m1_t p1 = __riscv_vwmul_vv_i16m1(q6v_1, __riscv_vle8_v_i8mf2(q8+16, vl), vl); + vint16m1_t p2 = __riscv_vwmul_vv_i16m1(q6v_2, __riscv_vle8_v_i8mf2(q8+32, vl), vl); + vint16m1_t p3 = __riscv_vwmul_vv_i16m1(q6v_3, __riscv_vle8_v_i8mf2(q8+48, vl), vl); + + vint32m1_t vs_0 = __riscv_vwredsum_vs_i16m1_i32m1(p0, vzero, vl); + vint32m1_t vs_1 = __riscv_vwredsum_vs_i16m1_i32m1(p1, vzero, vl); + vint32m1_t vs_2 = __riscv_vwredsum_vs_i16m1_i32m1(p2, vzero, vl); + vint32m1_t vs_3 = __riscv_vwredsum_vs_i16m1_i32m1(p3, vzero, vl); + + isum += __riscv_vmv_x_s_i32m1_i32(vs_0) * scale[0]; + isum += __riscv_vmv_x_s_i32m1_i32(vs_1) * scale[1]; + isum += __riscv_vmv_x_s_i32m1_i32(vs_2) * scale[2]; + isum += __riscv_vmv_x_s_i32m1_i32(vs_3) * scale[3]; + + sumf += isum * d_all * y[i].d; + + } + + *s = sumf; + +#else + + int8_t aux8[QK_K]; + int16_t aux16[8]; + float sums [8]; + int32_t aux32[8]; + memset(sums, 0, 8*sizeof(float)); + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + const uint8_t * restrict q4 = x[i].ql; + const uint8_t * restrict qh = x[i].qh; + const int8_t * restrict q8 = y[i].qs; + memset(aux32, 0, 8*sizeof(int32_t)); + int8_t * restrict a = aux8; + for (int l = 0; l < 16; ++l) { + a[l+ 0] = (int8_t)((q4[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32; + a[l+16] = (int8_t)((q4[l+16] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32; + a[l+32] = (int8_t)((q4[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32; + a[l+48] = (int8_t)((q4[l+16] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32; + } + int is = 0; + for (int j = 0; j < QK_K/16; ++j) { + int scale = x[i].scales[is++]; + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; + q8 += 8; a += 8; + for (int l = 0; l < 8; ++l) aux16[l] = q8[l] * a[l]; + for (int l = 0; l < 8; ++l) aux32[l] += scale * aux16[l]; + q8 += 8; a += 8; + } + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + for (int l = 0; l < 8; ++l) sums[l] += d * aux32[l]; + } + for (int l = 0; l < 8; ++l) sumf += sums[l]; + *s = sumf; +#endif +} + +#endif + +#if defined (__AVX2__) || defined (__ARM_NEON) +static const int8_t keven_signs_q2xs[1024] = { + 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, 1, + 1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, 1, 1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, -1, + 1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, -1, + 1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, 1, + 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, -1, + 1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, 1, + 1, 1, 1, -1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, 1, + 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, -1, + 1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, + 1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, 1, + 1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, + 1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, -1, + 1, 1, 1, 1, -1, -1, 1, 1, -1, 1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, + 1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, -1, + 1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, + 1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, + 1, 1, 1, 1, 1, 1, -1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, -1, + 1, 1, -1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, 1, + 1, 1, 1, -1, 1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, 1, + 1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, -1, + 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, 1, + 1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1, + 1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, -1, + 1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, + 1, 1, 1, 1, 1, -1, -1, 1, -1, 1, 1, 1, 1, -1, -1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, 1, + 1, 1, -1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, 1, -1, -1, -1, + 1, 1, 1, -1, 1, -1, -1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, -1, + 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, + 1, 1, 1, 1, -1, -1, -1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, -1, + 1, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, + 1, 1, 1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, 1, + 1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, 1, 1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, +}; +#endif + +void ggml_vec_dot_iq2_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + assert(n % QK_K == 0); + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + const block_iq2_xxs * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + +#if defined(__ARM_NEON) + + const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs; + + uint32_t aux32[4]; + const uint8_t * aux8 = (const uint8_t *)aux32; + + ggml_int8x16x4_t q2u; + ggml_int8x16x4_t q2s; + ggml_int8x16x4_t q8b; + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const uint16_t * restrict q2 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + float sumf1 = 0, sumf2 = 0; + for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { + q8b = ggml_vld1q_s8_x4(q8); q8 += 64; + memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8; + q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 0])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 1]))); + q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 2])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 3]))); + q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[ 8])), vld1_s8((const void *)(iq2xxs_grid + aux8[ 9]))); + q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xxs_grid + aux8[10])), vld1_s8((const void *)(iq2xxs_grid + aux8[11]))); + q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127)))); + q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127)))); + q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 7) & 127)))); + q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[3] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[3] >> 21) & 127)))); + q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]); + q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]); + q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]); + q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]); + const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]), q2u.val[1], q8b.val[1]); + const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]), q2u.val[3], q8b.val[3]); + sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[1] >> 28)); + sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[3] >> 28)); + } + sumf += d*(sumf1 + sumf2); + } + *s = 0.25f * sumf; + +#elif defined(__AVX2__) + + const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs; + + uint32_t aux32[4]; + const uint8_t * aux8 = (const uint8_t *)aux32; + + __m256 accumf = _mm256_setzero_ps(); + for (int i = 0; i < nb; ++i) { + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const uint16_t * restrict q2 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + __m256i sumi1 = _mm256_setzero_si256(); + __m256i sumi2 = _mm256_setzero_si256(); + for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { + const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; + const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; + memcpy(aux32, q2, 4*sizeof(uint32_t)); q2 += 8; + const __m256i q2_1 = _mm256_set_epi64x(iq2xxs_grid[aux8[ 3]], iq2xxs_grid[aux8[ 2]], iq2xxs_grid[aux8[1]], iq2xxs_grid[aux8[0]]); + const __m256i q2_2 = _mm256_set_epi64x(iq2xxs_grid[aux8[11]], iq2xxs_grid[aux8[10]], iq2xxs_grid[aux8[9]], iq2xxs_grid[aux8[8]]); + const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127], + signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]); + const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[3] >> 21) & 127], signs64[(aux32[3] >> 14) & 127], + signs64[(aux32[3] >> 7) & 127], signs64[(aux32[3] >> 0) & 127]); + const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1); + const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2); + const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1); + const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2); + const uint16_t ls1 = aux32[1] >> 28; + const uint16_t ls2 = aux32[3] >> 28; + const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1)); + const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1)); + sumi1 = _mm256_add_epi32(sumi1, p1); + sumi2 = _mm256_add_epi32(sumi2, p2); + } + + accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf); + + } + + *s = 0.125f * hsum_float_8(accumf); + +#else + + uint32_t aux32[2]; + const uint8_t * aux8 = (const uint8_t *)aux32; + + float sumf = 0.f; + for (int i = 0; i < nb; ++i) { + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const uint16_t * restrict q2 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + int32_t bsum = 0; + for (int ib32 = 0; ib32 < QK_K/32; ++ib32) { + memcpy(aux32, q2, 2*sizeof(uint32_t)); + q2 += 4; + const uint32_t ls = 2*(aux32[1] >> 28) + 1; + int32_t sumi = 0; + for (int l = 0; l < 4; ++l) { + const uint8_t * grid = (const uint8_t *)(iq2xxs_grid + aux8[l]); + const uint8_t signs = ksigns_iq2xs[(aux32[1] >> 7*l) & 127]; + for (int j = 0; j < 8; ++j) { + sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1); + } + q8 += 8; + } + bsum += sumi * ls; + } + sumf += d * bsum; + } + *s = 0.125f * sumf; +#endif +} + +void ggml_vec_dot_iq2_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + assert(n % QK_K == 0); + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + const block_iq2_xs * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + +#if defined(__ARM_NEON) + + const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs; + + ggml_int8x16x4_t q2u; + ggml_int8x16x4_t q2s; + ggml_int8x16x4_t q8b; + + int32x4x4_t scales32; + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const uint16_t * restrict q2 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + const uint8x8_t scales8 = vld1_u8(x[i].scales); + const uint8x8_t scales_l = vand_u8(scales8, vdup_n_u8(0xf)); + const uint8x8_t scales_h = vshr_n_u8(scales8, 4); + uint8x16_t scales = vcombine_u8(vzip1_u8(scales_l, scales_h), vzip2_u8(scales_l, scales_h)); + scales = vaddq_u8(vshlq_n_u8(scales, 1), vdupq_n_u8(1)); + const uint16x8_t scales1 = vmovl_u8(vget_low_u8(scales)); + const uint16x8_t scales2 = vmovl_u8(vget_high_u8(scales)); + scales32.val[0] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales1))); + scales32.val[1] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales1))); + scales32.val[2] = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(scales2))); + scales32.val[3] = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(scales2))); + int32x4_t sumi = vdupq_n_s32(0); + for (int ib64 = 0; ib64 < QK_K/64; ++ib64) { + q8b = ggml_vld1q_s8_x4(q8); q8 += 64; + q2u.val[0] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[0] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[1] & 511)))); + q2u.val[1] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[2] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[3] & 511)))); + q2u.val[2] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[4] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[5] & 511)))); + q2u.val[3] = vcombine_s8(vld1_s8((const void *)(iq2xs_grid + (q2[6] & 511))), vld1_s8((const void *)(iq2xs_grid + (q2[7] & 511)))); + q2s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[0] >> 9))), vld1_s8((const void *)(signs64 + (q2[1] >> 9)))); + q2s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[2] >> 9))), vld1_s8((const void *)(signs64 + (q2[3] >> 9)))); + q2s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[4] >> 9))), vld1_s8((const void *)(signs64 + (q2[5] >> 9)))); + q2s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + (q2[6] >> 9))), vld1_s8((const void *)(signs64 + (q2[7] >> 9)))); + q2u.val[0] = vmulq_s8(q2u.val[0], q2s.val[0]); + q2u.val[1] = vmulq_s8(q2u.val[1], q2s.val[1]); + q2u.val[2] = vmulq_s8(q2u.val[2], q2s.val[2]); + q2u.val[3] = vmulq_s8(q2u.val[3], q2s.val[3]); + const int32x4_t p1 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[0], q8b.val[0]); + const int32x4_t p2 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[1], q8b.val[1]); + const int32x4_t p3 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[2], q8b.val[2]); + const int32x4_t p4 = ggml_vdotq_s32(vdupq_n_s32(0), q2u.val[3], q8b.val[3]); + const int32x4_t p = vpaddq_s32(vpaddq_s32(p1, p2), vpaddq_s32(p3, p4)); + sumi = vmlaq_s32(sumi, p, scales32.val[ib64]); + q2 += 8; + } + sumf += d*vaddvq_s32(sumi); + } + *s = 0.125f * sumf; + +#elif defined(__AVX2__) + + const __m256i mone = _mm256_set1_epi8(1); + static const char block_sign_shuffle_mask_1[32] = { + 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, + 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x04, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, 0x06, + }; + static const char block_sign_shuffle_mask_2[32] = { + 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x08, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, 0x0a, + 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0c, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, 0x0e, + }; + static const uint8_t bit_selector_mask_bytes[32] = { + 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, + 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, + }; + + const __m256i bit_selector_mask = _mm256_loadu_si256((const __m256i*)bit_selector_mask_bytes); + const __m256i block_sign_shuffle_1 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_1); + const __m256i block_sign_shuffle_2 = _mm256_loadu_si256((const __m256i*)block_sign_shuffle_mask_2); + +#if QK_K == 64 + static const uint8_t k_bit_helper[16] = { + 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, + }; + const __m128i bit_helper = _mm_loadu_si128((const __m128i*)k_bit_helper); + const __m128i m511 = _mm_set1_epi16(511); + typedef union { + __m128i vec_index; + uint16_t index[8]; + } index_t; + + index_t idx; + __m256 accumf = _mm256_setzero_ps(); + for (int i = 0; i < nb; ++i) { + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const __m128i q2_data = _mm_loadu_si128((const __m128i*)x[i].qs); + idx.vec_index = _mm_and_si128(q2_data, m511); + + const __m128i partial_sign_bits = _mm_srli_epi16(q2_data, 9); + const __m128i partial_sign_bits_upper = _mm_srli_epi16(q2_data, 13); + const __m128i partial_sign_bits_for_counting = _mm_xor_si128(partial_sign_bits, partial_sign_bits_upper); + + const __m128i odd_bits = _mm_shuffle_epi8(bit_helper, partial_sign_bits_for_counting); + const __m128i full_sign_bits = _mm_or_si128(partial_sign_bits, odd_bits); + const __m256i full_signs = MM256_SET_M128I(full_sign_bits, full_sign_bits); + + const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)y[i].qs); + const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)(y[i].qs+32)); + + const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[idx.index[3]], iq2xs_grid[idx.index[2]], + iq2xs_grid[idx.index[1]], iq2xs_grid[idx.index[0]]); + const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[idx.index[7]], iq2xs_grid[idx.index[6]], + iq2xs_grid[idx.index[5]], iq2xs_grid[idx.index[4]]); + + __m256i signs; + signs = _mm256_shuffle_epi8(full_signs, block_sign_shuffle_1); + signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask); + const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone)); + + signs = _mm256_shuffle_epi8(full_signs, block_sign_shuffle_2); + signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask); + const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone)); + + const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1); + const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2); + + const __m256i sc1 = MM256_SET_M128I(_mm_set1_epi16(2*(x[i].scales[0] >> 4)+1), _mm_set1_epi16(2*(x[i].scales[0] & 0xf)+1)); + const __m256i sc2 = MM256_SET_M128I(_mm_set1_epi16(2*(x[i].scales[1] >> 4)+1), _mm_set1_epi16(2*(x[i].scales[1] & 0xf)+1)); + + const __m256i sum = _mm256_add_epi32(_mm256_madd_epi16(sc1, dot1), _mm256_madd_epi16(sc2, dot2)); + + accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(sum), accumf); + + } + + *s = 0.125f * hsum_float_8(accumf); +#else + + static const uint8_t k_bit_helper[32] = { + 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, + 0x00, 0x80, 0x80, 0x00, 0x80, 0x00, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, + }; + const __m256i bit_helper = _mm256_loadu_si256((const __m256i*)k_bit_helper); + const __m256i m511 = _mm256_set1_epi16(511); + const __m128i m4 = _mm_set1_epi8(0xf); + const __m128i m1 = _mm_set1_epi8(1); + + uint64_t aux64; + + // somewhat hacky, but gives a significant boost in performance + __m256i aux_gindex; + const uint16_t * gindex = (const uint16_t *)&aux_gindex; + + __m256 accumf = _mm256_setzero_ps(); + for (int i = 0; i < nb; ++i) { + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const uint16_t * restrict q2 = x[i].qs; + const int8_t * restrict q8 = y[i].qs; + + memcpy(&aux64, x[i].scales, 8); + __m128i stmp = _mm_set1_epi64x(aux64); + stmp = _mm_unpacklo_epi8(_mm_and_si128(stmp, m4), _mm_and_si128(_mm_srli_epi16(stmp, 4), m4)); + const __m128i scales = _mm_add_epi8(_mm_slli_epi16(stmp, 1), m1); + + __m256i sumi1 = _mm256_setzero_si256(); + __m256i sumi2 = _mm256_setzero_si256(); + for (int ib32 = 0; ib32 < QK_K/32; ib32 += 4) { + + const __m256i q2_data = _mm256_loadu_si256((const __m256i*)q2); q2 += 16; + aux_gindex = _mm256_and_si256(q2_data, m511); + + const __m256i partial_sign_bits = _mm256_srli_epi16(q2_data, 9); + const __m256i partial_sign_bits_upper = _mm256_srli_epi16(q2_data, 13); + const __m256i partial_sign_bits_for_counting = _mm256_xor_si256(partial_sign_bits, partial_sign_bits_upper); + + const __m256i odd_bits = _mm256_shuffle_epi8(bit_helper, partial_sign_bits_for_counting); + const __m256i full_sign_bits = _mm256_or_si256(partial_sign_bits, odd_bits); + + const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; + const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; + const __m256i q8_3 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; + const __m256i q8_4 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; + + const __m256i q2_1 = _mm256_set_epi64x(iq2xs_grid[gindex[ 3]], iq2xs_grid[gindex[ 2]], + iq2xs_grid[gindex[ 1]], iq2xs_grid[gindex[ 0]]); + const __m256i q2_2 = _mm256_set_epi64x(iq2xs_grid[gindex[ 7]], iq2xs_grid[gindex[ 6]], + iq2xs_grid[gindex[ 5]], iq2xs_grid[gindex[ 4]]); + const __m256i q2_3 = _mm256_set_epi64x(iq2xs_grid[gindex[11]], iq2xs_grid[gindex[10]], + iq2xs_grid[gindex[ 9]], iq2xs_grid[gindex[ 8]]); + const __m256i q2_4 = _mm256_set_epi64x(iq2xs_grid[gindex[15]], iq2xs_grid[gindex[14]], + iq2xs_grid[gindex[13]], iq2xs_grid[gindex[12]]); + + const __m128i full_signs_l = _mm256_castsi256_si128(full_sign_bits); + const __m128i full_signs_h = _mm256_extractf128_si256(full_sign_bits, 1); + const __m256i full_signs_1 = MM256_SET_M128I(full_signs_l, full_signs_l); + const __m256i full_signs_2 = MM256_SET_M128I(full_signs_h, full_signs_h); + + __m256i signs; + signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_1); + signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask); + const __m256i q8s_1 = _mm256_sign_epi8(q8_1, _mm256_or_si256(signs, mone)); + + signs = _mm256_shuffle_epi8(full_signs_1, block_sign_shuffle_2); + signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask); + const __m256i q8s_2 = _mm256_sign_epi8(q8_2, _mm256_or_si256(signs, mone)); + + signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_1); + signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask); + const __m256i q8s_3 = _mm256_sign_epi8(q8_3, _mm256_or_si256(signs, mone)); + + signs = _mm256_shuffle_epi8(full_signs_2, block_sign_shuffle_2); + signs = _mm256_cmpeq_epi8(_mm256_and_si256(signs, bit_selector_mask), bit_selector_mask); + const __m256i q8s_4 = _mm256_sign_epi8(q8_4, _mm256_or_si256(signs, mone)); + + const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1); + const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2); + const __m256i dot3 = _mm256_maddubs_epi16(q2_3, q8s_3); + const __m256i dot4 = _mm256_maddubs_epi16(q2_4, q8s_4); + + const __m256i sc1 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+0))); + const __m256i sc2 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+1))); + const __m256i sc3 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+2))); + const __m256i sc4 = _mm256_cvtepi8_epi16(_mm_shuffle_epi8(scales, get_scale_shuffle(ib32+3))); + + sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot1, sc1)); + sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot2, sc2)); + sumi1 = _mm256_add_epi32(sumi1, _mm256_madd_epi16(dot3, sc3)); + sumi2 = _mm256_add_epi32(sumi2, _mm256_madd_epi16(dot4, sc4)); + } + + accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf); + + } + + *s = 0.125f * hsum_float_8(accumf); +#endif + +#else + + float sumf = 0.f; + for (int i = 0; i < nb; ++i) { + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const uint16_t * restrict q2 = x[i].qs; + const uint8_t * restrict sc = x[i].scales; + const int8_t * restrict q8 = y[i].qs; + int32_t bsum = 0; + for (int ib32 = 0; ib32 < QK_K/32; ++ib32) { + const uint16_t ls1 = 2*(sc[ib32] & 0xf) + 1; + const uint16_t ls2 = 2*(sc[ib32] >> 4) + 1; + int32_t sumi = 0; + for (int l = 0; l < 2; ++l) { + const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511)); + const uint8_t signs = ksigns_iq2xs[q2[l] >> 9]; + for (int j = 0; j < 8; ++j) { + sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1); + } + q8 += 8; + } + bsum += sumi * ls1; + sumi = 0; + for (int l = 2; l < 4; ++l) { + const uint8_t * grid = (const uint8_t *)(iq2xs_grid + (q2[l] & 511)); + const uint8_t signs = ksigns_iq2xs[q2[l] >> 9]; + for (int j = 0; j < 8; ++j) { + sumi += grid[j] * q8[j] * (signs & kmask_iq2xs[j] ? -1 : 1); + } + q8 += 8; + } + bsum += sumi * ls2; + q2 += 4; + } + sumf += d * bsum; + } + *s = 0.125f * sumf; +#endif +} + +void ggml_vec_dot_iq2_s_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + assert(n % QK_K == 0); + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + const block_iq2_s * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + +#if defined(__ARM_NEON) + + static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, + 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03 + }; + + static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,}; + + const ggml_uint8x16x2_t mask1 = ggml_vld1q_u8_x2(k_mask1); + const uint8x16_t mask2 = vld1q_u8(k_mask2); + const uint8x16_t m1 = vdupq_n_u8(1); + const int32x4_t vzero = vdupq_n_s32(0); + + uint8x16x2_t vs; + ggml_int8x16x4_t q2s; + ggml_int8x16x4_t q8b; + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + + const uint8_t * restrict qs = x[i].qs; + const uint8_t * restrict qh = x[i].qh; + const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8); + const int8_t * restrict q8 = y[i].qs; + + int sumi1 = 0, sumi2 = 0; + for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { + q8b = ggml_vld1q_s8_x4(q8); q8 += 64; + q2s.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[0] | ((qh[ib32+0] << 8) & 0x300)))), + vld1_s8((const int8_t *)(iq2s_grid + (qs[1] | ((qh[ib32+0] << 6) & 0x300))))); + q2s.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[2] | ((qh[ib32+0] << 4) & 0x300)))), + vld1_s8((const int8_t *)(iq2s_grid + (qs[3] | ((qh[ib32+0] << 2) & 0x300))))); + q2s.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[4] | ((qh[ib32+1] << 8) & 0x300)))), + vld1_s8((const int8_t *)(iq2s_grid + (qs[5] | ((qh[ib32+1] << 6) & 0x300))))); + q2s.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq2s_grid + (qs[6] | ((qh[ib32+1] << 4) & 0x300)))), + vld1_s8((const int8_t *)(iq2s_grid + (qs[7] | ((qh[ib32+1] << 2) & 0x300))))); + qs += 8; + + vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | ((uint32_t) signs[1] << 16))); + vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2); + vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2); + vs.val[0] = vceqq_u8(vs.val[0], mask2); + vs.val[1] = vceqq_u8(vs.val[1], mask2); + + q2s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[0]); + q2s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[1]); + + vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | ((uint32_t) signs[3] << 16))); + vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2); + vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2); + vs.val[0] = vceqq_u8(vs.val[0], mask2); + vs.val[1] = vceqq_u8(vs.val[1], mask2); + + signs += 4; + + q2s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[0], m1)), q2s.val[2]); + q2s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vorrq_u8(vs.val[1], m1)), q2s.val[3]); + + const int32x4_t p1 = ggml_vdotq_s32(vzero, q2s.val[0], q8b.val[0]); + const int32x4_t p2 = ggml_vdotq_s32(vzero, q2s.val[1], q8b.val[1]); + const int32x4_t p3 = ggml_vdotq_s32(vzero, q2s.val[2], q8b.val[2]); + const int32x4_t p4 = ggml_vdotq_s32(vzero, q2s.val[3], q8b.val[3]); + + sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32+0] & 0xf)); + sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32+0] >> 4)); + sumi1 += vaddvq_s32(p3) * (1 + 2*(x[i].scales[ib32+1] & 0xf)); + sumi2 += vaddvq_s32(p4) * (1 + 2*(x[i].scales[ib32+1] >> 4)); + } + sumf += d*(sumi1 + sumi2); + } + + *s = 0.125f * sumf; + +#elif defined(__AVX2__) + + static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, + 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03 + }; + + static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, + 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, + }; + + const __m128i m4 = _mm_set1_epi8(0xf); + const __m128i m1 = _mm_set1_epi8(1); + + const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1); + const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2); + + uint64_t aux64; + + __m256 accumf = _mm256_setzero_ps(); + for (int i = 0; i < nb; ++i) { + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const uint8_t * restrict qs = x[i].qs; + const uint8_t * restrict qh = x[i].qh; + const uint16_t * restrict signs = (const uint16_t *)(x[i].qs + QK_K/8); + const int8_t * restrict q8 = y[i].qs; + + memcpy(&aux64, x[i].scales, 8); + const __m128i scales8 = _mm_add_epi8(_mm_slli_epi16(_mm_and_si128(_mm_set_epi64x(aux64 >> 4, aux64), m4), 1), m1); + const __m256i scales16 = _mm256_cvtepi8_epi16(scales8); // 0 2 4 6 8 10 12 14 1 3 5 7 9 11 13 15 + + __m256i sumi1 = _mm256_setzero_si256(); + __m256i sumi2 = _mm256_setzero_si256(); + for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { + const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; + const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; + const __m256i q2_1 = _mm256_set_epi64x(iq2s_grid[qs[3] | ((qh[ib32+0] << 2) & 0x300)], + iq2s_grid[qs[2] | ((qh[ib32+0] << 4) & 0x300)], + iq2s_grid[qs[1] | ((qh[ib32+0] << 6) & 0x300)], + iq2s_grid[qs[0] | ((qh[ib32+0] << 8) & 0x300)]); + const __m256i q2_2 = _mm256_set_epi64x(iq2s_grid[qs[7] | ((qh[ib32+1] << 2) & 0x300)], + iq2s_grid[qs[6] | ((qh[ib32+1] << 4) & 0x300)], + iq2s_grid[qs[5] | ((qh[ib32+1] << 6) & 0x300)], + iq2s_grid[qs[4] | ((qh[ib32+1] << 8) & 0x300)]); + qs += 8; + + __m256i aux256 = _mm256_set1_epi32(signs[0] | ((uint32_t) signs[1] << 16)); + aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2); + const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2); + const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1); + + aux256 = _mm256_set1_epi32(signs[2] | ((uint32_t) signs[3] << 16)); + aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2); + const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2); + const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2); + + signs += 4; + + const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1); // blocks 2*ib32+0, 2*ib32+1 + const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2); // blocks 2*ib32+2, 2*ib32+3 + + const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+0))); + const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_shuffle_epi8(scales16, get_scale_shuffle_k4(ib32+1))); + sumi1 = _mm256_add_epi32(sumi1, p1); + sumi2 = _mm256_add_epi32(sumi2, p2); + } + + accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf); + + } + + *s = 0.125f * hsum_float_8(accumf); + +#else + + float sumf = 0; + for (int i = 0; i < nb; i++) { + + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const int8_t * q8 = y[i].qs; + const uint8_t * qs = x[i].qs; + const uint8_t * qh = x[i].qh; + const uint8_t * signs = qs + QK_K/8; + + int bsum = 0; + for (int ib32 = 0; ib32 < QK_K/32; ++ib32) { + int ls1 = 1 + 2*(x[i].scales[ib32] & 0xf); + int ls2 = 1 + 2*(x[i].scales[ib32] >> 4); + int sumi1 = 0, sumi2 = 0; + for (int l = 0; l < 2; ++l) { + const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300))); + for (int j = 0; j < 8; ++j) { + sumi1 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1); + } + q8 += 8; + } + for (int l = 2; l < 4; ++l) { + const uint8_t * grid = (const uint8_t *)(iq2s_grid + (qs[l] | (qh[ib32] << (8-2*l) & 0x300))); + for (int j = 0; j < 8; ++j) { + sumi2 += q8[j] * grid[j] * (signs[l] & kmask_iq2xs[j] ? -1 : 1); + } + q8 += 8; + } + bsum += ls1 * sumi1 + ls2 * sumi2; + qs += 4; + signs += 4; + } + + sumf += d * bsum; + } + + *s = 0.125f * sumf; + +#endif + +} + +void ggml_vec_dot_iq3_xxs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + assert(n % QK_K == 0); + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + const block_iq3_xxs * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + +#if defined(__ARM_NEON) + + const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs; + + uint32_t aux32[2]; + + ggml_int8x16x4_t q3s; + ggml_int8x16x4_t q8b; + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const uint8_t * restrict q3 = x[i].qs; + const uint8_t * restrict gas = x[i].qs + QK_K/4; + const int8_t * restrict q8 = y[i].qs; + float sumf1 = 0, sumf2 = 0; + for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { + q8b = ggml_vld1q_s8_x4(q8); q8 += 64; + memcpy(aux32, gas, 2*sizeof(uint32_t)); gas += 2*sizeof(uint32_t); + const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3xxs_grid[q3[ 0]], iq3xxs_grid[q3[ 1]], iq3xxs_grid[q3[ 2]], iq3xxs_grid[q3[ 3]]); + const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3xxs_grid[q3[ 4]], iq3xxs_grid[q3[ 5]], iq3xxs_grid[q3[ 6]], iq3xxs_grid[q3[ 7]]); + const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3xxs_grid[q3[ 8]], iq3xxs_grid[q3[ 9]], iq3xxs_grid[q3[10]], iq3xxs_grid[q3[11]]); + const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3xxs_grid[q3[12]], iq3xxs_grid[q3[13]], iq3xxs_grid[q3[14]], iq3xxs_grid[q3[15]]); + q3 += 16; + q3s.val[0] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 7) & 127)))); + q3s.val[1] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[0] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[0] >> 21) & 127)))); + q3s.val[2] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 0) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 7) & 127)))); + q3s.val[3] = vcombine_s8(vld1_s8((const void *)(signs64 + ((aux32[1] >> 14) & 127))), vld1_s8((const void *)(signs64 + ((aux32[1] >> 21) & 127)))); + q3s.val[0] = vmulq_s8(q3s.val[0], vreinterpretq_s8_u32(aux32x4_0)); + q3s.val[1] = vmulq_s8(q3s.val[1], vreinterpretq_s8_u32(aux32x4_1)); + q3s.val[2] = vmulq_s8(q3s.val[2], vreinterpretq_s8_u32(aux32x4_2)); + q3s.val[3] = vmulq_s8(q3s.val[3], vreinterpretq_s8_u32(aux32x4_3)); + const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]); + const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]); + sumf1 += vaddvq_s32(p1) * (0.5f + (aux32[0] >> 28)); + sumf2 += vaddvq_s32(p2) * (0.5f + (aux32[1] >> 28)); + } + sumf += d*(sumf1 + sumf2); + } + *s = 0.5f * sumf; + +#elif defined(__AVX2__) + + const uint64_t * signs64 = (const uint64_t *)keven_signs_q2xs; + + uint32_t aux32[2]; + + __m256 accumf = _mm256_setzero_ps(); + for (int i = 0; i < nb; ++i) { + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const uint8_t * restrict q3 = x[i].qs; + const uint8_t * restrict gas = x[i].qs + QK_K/4; + const int8_t * restrict q8 = y[i].qs; + __m256i sumi1 = _mm256_setzero_si256(); + __m256i sumi2 = _mm256_setzero_si256(); + for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { + const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; + const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; + const __m256i q2_1 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]], + iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]); + q3 += 8; + const __m256i q2_2 = _mm256_set_epi32(iq3xxs_grid[q3[7]], iq3xxs_grid[q3[6]], iq3xxs_grid[q3[5]], iq3xxs_grid[q3[4]], + iq3xxs_grid[q3[3]], iq3xxs_grid[q3[2]], iq3xxs_grid[q3[1]], iq3xxs_grid[q3[0]]); + q3 += 8; + memcpy(aux32, gas, 8); gas += 8; + const __m256i s2_1 = _mm256_set_epi64x(signs64[(aux32[0] >> 21) & 127], signs64[(aux32[0] >> 14) & 127], + signs64[(aux32[0] >> 7) & 127], signs64[(aux32[0] >> 0) & 127]); + const __m256i s2_2 = _mm256_set_epi64x(signs64[(aux32[1] >> 21) & 127], signs64[(aux32[1] >> 14) & 127], + signs64[(aux32[1] >> 7) & 127], signs64[(aux32[1] >> 0) & 127]); + const __m256i q8s_1 = _mm256_sign_epi8(q8_1, s2_1); + const __m256i q8s_2 = _mm256_sign_epi8(q8_2, s2_2); + const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1); + const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2); + const uint16_t ls1 = aux32[0] >> 28; + const uint16_t ls2 = aux32[1] >> 28; + const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1)); + const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1)); + sumi1 = _mm256_add_epi32(sumi1, p1); + sumi2 = _mm256_add_epi32(sumi2, p2); + } + + accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf); + + } + + *s = 0.25f * hsum_float_8(accumf); + +#else + + uint32_t aux32; + + float sumf = 0.f; + for (int i = 0; i < nb; ++i) { + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const uint8_t * restrict q3 = x[i].qs; + const uint8_t * restrict gas = x[i].qs + QK_K/4; + const int8_t * restrict q8 = y[i].qs; + int32_t bsum = 0; + for (int ib32 = 0; ib32 < QK_K/32; ++ib32) { + memcpy(&aux32, gas, sizeof(uint32_t)); gas += sizeof(uint32_t); + const uint32_t ls = 2*(aux32 >> 28) + 1; + int32_t sumi = 0; + for (int l = 0; l < 4; ++l) { + const uint8_t * grid1 = (const uint8_t *)(iq3xxs_grid + q3[2*l+0]); + const uint8_t * grid2 = (const uint8_t *)(iq3xxs_grid + q3[2*l+1]); + const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*l) & 127]; + for (int j = 0; j < 4; ++j) { + sumi += grid1[j] * q8[j+0] * (signs & kmask_iq2xs[j+0] ? -1 : 1); + sumi += grid2[j] * q8[j+4] * (signs & kmask_iq2xs[j+4] ? -1 : 1); + } + q8 += 8; + } + q3 += 8; + bsum += sumi * ls; + } + sumf += d * bsum; + } + *s = 0.25f * sumf; +#endif +} + +void ggml_vec_dot_iq3_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + assert(n % QK_K == 0); + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + const block_iq3_s * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + +#if defined(__ARM_NEON) + + typedef union { + uint16x8_t vec_index; + uint16_t index[8]; + } vec_index_t; + + static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, + 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03 + }; + + static const uint8_t k_mask2[16] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,}; + + static const int16_t k_shift[8] = {8, 7, 6, 5, 4, 3, 2, 1}; + + const ggml_uint8x16x2_t mask1 = ggml_vld1q_u8_x2(k_mask1); + const uint8x16_t mask2 = vld1q_u8(k_mask2); + + const int16x8_t hshift = vld1q_s16(k_shift); + const uint16x8_t m256 = vdupq_n_u16(256); + const uint8x16_t m1 = vdupq_n_u8(1); + + uint8x16x2_t vs; + ggml_int8x16x4_t q3s; + ggml_int8x16x4_t q8b; + vec_index_t idx; + +#if QK_K == 256 + uint32_t scales32[2]; + const uint8_t * scales8 = (const uint8_t *)scales32; +#endif + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const uint8_t * restrict qs = x[i].qs; + const uint8_t * restrict qh = x[i].qh; + const uint16_t * restrict signs = (const uint16_t *)x[i].signs; + const int8_t * restrict q8 = y[i].qs; + +#if QK_K == 256 + memcpy(scales32, x[i].scales, 4); + scales32[1] = (((scales32[0] >> 4) & 0x0f0f0f0f) << 1) | 0x01010101; + scales32[0] = ((scales32[0] & 0x0f0f0f0f) << 1) | 0x01010101; +#endif + + int sumi1 = 0, sumi2 = 0; + for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { + q8b = ggml_vld1q_s8_x4(q8); q8 += 64; + + const uint8x16_t idx_l = vld1q_u8(qs); qs += 16; + idx.vec_index = vorrq_u16(vmovl_u8(vget_low_u8 (idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+0]), hshift), m256)); + const uint32x4_t aux32x4_0 = ggml_vld1q_u32(iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]], + iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]); + const uint32x4_t aux32x4_1 = ggml_vld1q_u32(iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]], + iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]); + idx.vec_index = vorrq_u16(vmovl_u8(vget_high_u8(idx_l)), vandq_u16(vshlq_u16(vdupq_n_u16(qh[ib32+1]), hshift), m256)); + const uint32x4_t aux32x4_2 = ggml_vld1q_u32(iq3s_grid[idx.index[0]], iq3s_grid[idx.index[1]], + iq3s_grid[idx.index[2]], iq3s_grid[idx.index[3]]); + const uint32x4_t aux32x4_3 = ggml_vld1q_u32(iq3s_grid[idx.index[4]], iq3s_grid[idx.index[5]], + iq3s_grid[idx.index[6]], iq3s_grid[idx.index[7]]); + + + vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[0] | ((uint32_t) signs[1] << 16))); + vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2); + vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2); + vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1); + vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1); + + q3s.val[0] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_0)); + q3s.val[1] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_1)); + + vs.val[0] = vreinterpretq_u8_u32(vdupq_n_u32(signs[2] | ((uint32_t) signs[3] << 16))); + vs.val[1] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[1]), mask2); + vs.val[0] = vandq_u8(ggml_vqtbl1q_u8(vs.val[0], mask1.val[0]), mask2); + vs.val[0] = vorrq_u8(vceqq_u8(vs.val[0], mask2), m1); + vs.val[1] = vorrq_u8(vceqq_u8(vs.val[1], mask2), m1); + + signs += 4; + + q3s.val[2] = vmulq_s8(vreinterpretq_s8_u8(vs.val[0]), vreinterpretq_s8_u32(aux32x4_2)); + q3s.val[3] = vmulq_s8(vreinterpretq_s8_u8(vs.val[1]), vreinterpretq_s8_u32(aux32x4_3)); + + const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[0], q8b.val[0]), q3s.val[1], q8b.val[1]); + const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q3s.val[2], q8b.val[2]), q3s.val[3], q8b.val[3]); +#if QK_K == 256 + sumi1 += vaddvq_s32(p1) * scales8[ib32/2+0]; + sumi2 += vaddvq_s32(p2) * scales8[ib32/2+4]; +#else + sumi1 += vaddvq_s32(p1) * (1 + 2*(x[i].scales[ib32/2] & 0xf)); + sumi2 += vaddvq_s32(p2) * (1 + 2*(x[i].scales[ib32/2] >> 4)); +#endif + } + sumf += d*(sumi1 + sumi2); + } + *s = sumf; + +#elif defined(__AVX2__) + + static const uint8_t k_mask1[32] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, + 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03, 0x03 + }; + + static const uint8_t k_mask2[32] = {0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, + 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, + }; + + const __m256i mask1 = _mm256_loadu_si256((const __m256i*)k_mask1); + const __m256i mask2 = _mm256_loadu_si256((const __m256i*)k_mask2); + + const __m256i idx_shift = _mm256_set_epi32(1, 2, 3, 4, 5, 6, 7, 8); + const __m256i idx_mask = _mm256_set1_epi32(256); + + typedef union { + __m256i vec[2]; + uint32_t index[16]; + } index_t; + + index_t idx; + + __m256 accumf = _mm256_setzero_ps(); + for (int i = 0; i < nb; ++i) { + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const uint8_t * restrict qs = x[i].qs; + const uint8_t * restrict qh = x[i].qh; + const uint16_t * restrict signs = (const uint16_t *)x[i].signs; + const int8_t * restrict q8 = y[i].qs; + __m256i sumi1 = _mm256_setzero_si256(); + __m256i sumi2 = _mm256_setzero_si256(); + for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { + const __m256i q8_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; + const __m256i q8_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; + const __m256i idx_l = _mm256_cvtepu8_epi16(_mm_loadu_si128((const __m128i *)qs)); qs += 16; + idx.vec[0] = _mm256_set1_epi32(qh[ib32+0]); + idx.vec[1] = _mm256_set1_epi32(qh[ib32+1]); + idx.vec[0] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[0], idx_shift), idx_mask); + idx.vec[1] = _mm256_and_si256(_mm256_sllv_epi32(idx.vec[1], idx_shift), idx_mask); + idx.vec[0] = _mm256_or_si256(idx.vec[0], _mm256_cvtepi16_epi32(_mm256_castsi256_si128(idx_l))); + idx.vec[1] = _mm256_or_si256(idx.vec[1], _mm256_cvtepi16_epi32(_mm256_extractf128_si256(idx_l, 1))); + + // At leat on my CPU (Ryzen 7950X), using _mm256_i32gather_epi32 is slower than _mm256_set_epi32. Strange. + //const __m256i q2_1 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[0], 4); + //const __m256i q2_2 = _mm256_i32gather_epi32((const int *)iq3s_grid, idx.vec[1], 4); + const __m256i q2_1 = _mm256_set_epi32( + iq3s_grid[idx.index[7]], iq3s_grid[idx.index[6]], iq3s_grid[idx.index[5]], iq3s_grid[idx.index[4]], + iq3s_grid[idx.index[3]], iq3s_grid[idx.index[2]], iq3s_grid[idx.index[1]], iq3s_grid[idx.index[0]] + ); + const __m256i q2_2 = _mm256_set_epi32( + iq3s_grid[idx.index[15]], iq3s_grid[idx.index[14]], iq3s_grid[idx.index[13]], iq3s_grid[idx.index[12]], + iq3s_grid[idx.index[11]], iq3s_grid[idx.index[10]], iq3s_grid[idx.index[ 9]], iq3s_grid[idx.index[ 8]] + ); + + __m256i aux256 = _mm256_set1_epi32(signs[0] | (signs[1] << 16)); + aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2); + const __m256i s2_1 = _mm256_cmpeq_epi8(aux256, mask2); + const __m256i q8s_1 = _mm256_sub_epi8(_mm256_xor_si256(s2_1, q8_1), s2_1); + + aux256 = _mm256_set1_epi32(signs[2] | (signs[3] << 16)); + aux256 = _mm256_and_si256(_mm256_shuffle_epi8(aux256,mask1), mask2); + const __m256i s2_2 = _mm256_cmpeq_epi8(aux256, mask2); + const __m256i q8s_2 = _mm256_sub_epi8(_mm256_xor_si256(s2_2, q8_2), s2_2); + + signs += 4; + + const __m256i dot1 = _mm256_maddubs_epi16(q2_1, q8s_1); + const __m256i dot2 = _mm256_maddubs_epi16(q2_2, q8s_2); + const uint16_t ls1 = x[i].scales[ib32/2] & 0xf; + const uint16_t ls2 = x[i].scales[ib32/2] >> 4; + const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(2*ls1+1)); + const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(2*ls2+1)); + sumi1 = _mm256_add_epi32(sumi1, p1); + sumi2 = _mm256_add_epi32(sumi2, p2); + } + + accumf = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accumf); + + } + + *s = hsum_float_8(accumf); + +#else + + float sumf = 0.f; + for (int i = 0; i < nb; ++i) { + const float d = GGML_FP16_TO_FP32(x[i].d) * y[i].d; + const uint8_t * restrict qs = x[i].qs; + const uint8_t * restrict qh = x[i].qh; + const uint8_t * restrict signs = x[i].signs; + const int8_t * restrict q8 = y[i].qs; + int32_t bsum = 0; + for (int ib32 = 0; ib32 < QK_K/32; ib32 += 2) { + const uint32_t ls1 = 2*(x[i].scales[ib32/2] & 0xf) + 1; + const uint32_t ls2 = 2*(x[i].scales[ib32/2] >> 4) + 1; + int32_t sumi = 0; + for (int l = 0; l < 4; ++l) { + const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+0] << (8-2*l)) & 256))); + const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+0] << (7-2*l)) & 256))); + for (int j = 0; j < 4; ++j) { + sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1); + sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1); + } + q8 += 8; + } + qs += 8; + signs += 4; + bsum += sumi * ls1; + sumi = 0; + for (int l = 0; l < 4; ++l) { + const uint8_t * grid1 = (const uint8_t *)(iq3s_grid + (qs[2*l+0] | ((qh[ib32+1] << (8-2*l)) & 256))); + const uint8_t * grid2 = (const uint8_t *)(iq3s_grid + (qs[2*l+1] | ((qh[ib32+1] << (7-2*l)) & 256))); + for (int j = 0; j < 4; ++j) { + sumi += grid1[j] * q8[j+0] * (signs[l] & kmask_iq2xs[j+0] ? -1 : 1); + sumi += grid2[j] * q8[j+4] * (signs[l] & kmask_iq2xs[j+4] ? -1 : 1); + } + q8 += 8; + } + qs += 8; + signs += 4; + bsum += sumi * ls2; + } + sumf += d * bsum; + } + *s = sumf; +#endif +} + + +#ifdef __AVX2__ +static inline __m256i mul_add_epi8(const __m256i x, const __m256i y) { + const __m256i ax = _mm256_sign_epi8(x, x); + const __m256i sy = _mm256_sign_epi8(y, x); + return _mm256_maddubs_epi16(ax, sy); +} +#endif + +void ggml_vec_dot_iq1_s_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + assert(n % QK_K == 0); + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + const block_iq1_s * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + +#if defined __ARM_NEON + + ggml_int8x16x4_t q1b; + ggml_int8x16x4_t q8b; + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + + const int8_t * q8 = y[i].qs; + const uint8_t * qs = x[i].qs; + const uint16_t * qh = x[i].qh; + + int sumi1 = 0, sumi2 = 0, sumi3 = 0; + + for (int ib = 0; ib < QK_K/32; ib += 2) { + + q1b.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[0] | ((qh[ib+0] << 8) & 0x700)))), + vld1_s8((const int8_t *)(iq1s_grid + (qs[1] | ((qh[ib+0] << 5) & 0x700))))); + q1b.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[2] | ((qh[ib+0] << 2) & 0x700)))), + vld1_s8((const int8_t *)(iq1s_grid + (qs[3] | ((qh[ib+0] >> 1) & 0x700))))); + q1b.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[4] | ((qh[ib+1] << 8) & 0x700)))), + vld1_s8((const int8_t *)(iq1s_grid + (qs[5] | ((qh[ib+1] << 5) & 0x700))))); + q1b.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[6] | ((qh[ib+1] << 2) & 0x700)))), + vld1_s8((const int8_t *)(iq1s_grid + (qs[7] | ((qh[ib+1] >> 1) & 0x700))))); + qs += 8; + + q8b = ggml_vld1q_s8_x4(q8); q8 += 64; + + const int32x4_t p1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q1b.val[0], q8b.val[0]), q1b.val[1], q8b.val[1]); + const int32x4_t p2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q1b.val[2], q8b.val[2]), q1b.val[3], q8b.val[3]); + + const int ls1 = 2*((qh[ib+0] >> 12) & 7) + 1; + const int ls2 = 2*((qh[ib+1] >> 12) & 7) + 1; + sumi1 += vaddvq_s32(p1) * ls1; + sumi2 += vaddvq_s32(p2) * ls2; + sumi3 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * ls1 * (qh[ib+0] & 0x8000 ? -1 : 1) + + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * ls2 * (qh[ib+1] & 0x8000 ? -1 : 1); + + } + + sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * (sumi1 + sumi2 + IQ1S_DELTA * sumi3); + } + + *s = sumf; + +#elif defined __AVX2__ + + __m256 accum = _mm256_setzero_ps(); + float accum1 = 0; + for (int i = 0; i < nb; ++i) { + + const int8_t * q8 = y[i].qs; + const uint8_t * qs = x[i].qs; + const uint16_t * qh = x[i].qh; + + __m256i sumi = _mm256_setzero_si256(); + int sumi1 = 0; + for (int ib = 0; ib < QK_K/32; ib += 2) { + const __m256i q1b_1 = _mm256_set_epi64x(iq1s_grid[qs[3] | ((qh[ib+0] >> 1) & 0x700)], iq1s_grid[qs[2] | ((qh[ib+0] << 2) & 0x700)], + iq1s_grid[qs[1] | ((qh[ib+0] << 5) & 0x700)], iq1s_grid[qs[0] | ((qh[ib+0] << 8) & 0x700)]); + const __m256i q1b_2 = _mm256_set_epi64x(iq1s_grid[qs[7] | ((qh[ib+1] >> 1) & 0x700)], iq1s_grid[qs[6] | ((qh[ib+1] << 2) & 0x700)], + iq1s_grid[qs[5] | ((qh[ib+1] << 5) & 0x700)], iq1s_grid[qs[4] | ((qh[ib+1] << 8) & 0x700)]); + qs += 8; + const __m256i q8b_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + const __m256i q8b_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + + const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1); + const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2); + const int16_t ls1 = 2*((qh[ib+0] >> 12) & 7) + 1; + const int16_t ls2 = 2*((qh[ib+1] >> 12) & 7) + 1; + const __m256i p1 = _mm256_madd_epi16(dot1, _mm256_set1_epi16(ls1)); + const __m256i p2 = _mm256_madd_epi16(dot2, _mm256_set1_epi16(ls2)); + + sumi = _mm256_add_epi32(sumi, _mm256_add_epi32(p1, p2)); + sumi1 += (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]) * (qh[ib+0] & 0x8000 ? -1 : 1) * ls1 + + (y[i].bsums[2*ib+2] + y[i].bsums[2*ib+3]) * (qh[ib+1] & 0x8000 ? -1 : 1) * ls2; + } + + const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); + accum = _mm256_fmadd_ps(_mm256_set1_ps(d), _mm256_cvtepi32_ps(sumi), accum); + accum1 += d * sumi1; + + } + + *s = hsum_float_8(accum) + IQ1S_DELTA * accum1; + +#else + + float sumf = 0; + for (int i = 0; i < nb; i++) { + + const int8_t * q8 = y[i].qs; + const uint8_t * qs = x[i].qs; + const uint16_t * qh = x[i].qh; + + int sumi = 0, sumi1 = 0; + for (int ib = 0; ib < QK_K/32; ++ib) { + const int ls = 2*((qh[ib] >> 12) & 7) + 1; + const int delta = qh[ib] & 0x8000 ? -1 : 1; + int lsum = 0; + for (int l = 0; l < 4; ++l) { + const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((qh[ib] >> 3*l) & 7) << 8))); + for (int j = 0; j < 8; ++j) { + lsum += q8[j] * grid[j]; + } + q8 += 8; + } + sumi += ls * lsum; + sumi1 += ls * delta * (y[i].bsums[2*ib+0] + y[i].bsums[2*ib+1]); + qs += 4; + } + + sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * (sumi + IQ1S_DELTA * sumi1); + } + + *s = sumf; + +#endif +} + +void ggml_vec_dot_iq1_m_q8_K (int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + assert(n % QK_K == 0); + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + const block_iq1_m * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + +#if QK_K != 64 + iq1m_scale_t scale; +#endif + +#if defined __ARM_NEON + +#if QK_K == 64 + const int32x4_t mask = vdupq_n_s32(0xf); +#else + const int32x4_t mask = vdupq_n_s32(0x7); +#endif + const int32x4_t mone = vdupq_n_s32(1); + const int32x4_t mzero = vdupq_n_s32(0); + + ggml_int8x16x4_t deltas; + deltas.val[0] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(+1)); + deltas.val[1] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(+1)); + deltas.val[2] = vcombine_s8(vdup_n_s8(+1), vdup_n_s8(-1)); + deltas.val[3] = vcombine_s8(vdup_n_s8(-1), vdup_n_s8(-1)); + + ggml_int8x16x4_t q1b; + ggml_int8x16x4_t q8b; + + uint32_t aux32; + const uint8_t * aux8 = (const uint8_t *)&aux32; + + float sumf = 0; + for (int i = 0; i < nb; ++i) { + + const int8_t * q8 = y[i].qs; + const uint8_t * qs = x[i].qs; + const uint8_t * qh = x[i].qh; + const uint16_t * sc = (const uint16_t *)x[i].scales; + +#if QK_K != 64 + scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); +#endif + + int32x4_t sumi1 = mzero; + int32x4_t sumi2 = mzero; + + for (int ib = 0; ib < QK_K/32; ib += 2) { + + q1b.val[0] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[0] | ((qh[0] << 8) & 0x700)))), + vld1_s8((const int8_t *)(iq1s_grid + (qs[1] | ((qh[0] << 4) & 0x700))))); + q1b.val[1] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[2] | ((qh[1] << 8) & 0x700)))), + vld1_s8((const int8_t *)(iq1s_grid + (qs[3] | ((qh[1] << 4) & 0x700))))); + q1b.val[2] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[4] | ((qh[2] << 8) & 0x700)))), + vld1_s8((const int8_t *)(iq1s_grid + (qs[5] | ((qh[2] << 4) & 0x700))))); + q1b.val[3] = vcombine_s8(vld1_s8((const int8_t *)(iq1s_grid + (qs[6] | ((qh[3] << 8) & 0x700)))), + vld1_s8((const int8_t *)(iq1s_grid + (qs[7] | ((qh[3] << 4) & 0x700))))); + + q8b = ggml_vld1q_s8_x4(q8); q8 += 64; + + const int32x4_t p1 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[0], q8b.val[0]), ggml_vdotq_s32(mzero, q1b.val[1], q8b.val[1])); + const int32x4_t p2 = vpaddq_s32(ggml_vdotq_s32(mzero, q1b.val[2], q8b.val[2]), ggml_vdotq_s32(mzero, q1b.val[3], q8b.val[3])); + const int32x4_t p12 = vpaddq_s32(p1, p2); + + const uint32_t * qh32 = (const uint32_t *)qh; // we are 4-byte aligned, so we can do that + aux32 = ((qh32[0] >> 3) & 0x01010101) | ((qh32[0] >> 6) & 0x02020202); + + const int32x4_t p3 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[0]], q8b.val[0]), ggml_vdotq_s32(mzero, deltas.val[aux8[1]], q8b.val[1])); + const int32x4_t p4 = vpaddq_s32(ggml_vdotq_s32(mzero, deltas.val[aux8[2]], q8b.val[2]), ggml_vdotq_s32(mzero, deltas.val[aux8[3]], q8b.val[3])); + const int32x4_t p34 = vpaddq_s32(p3, p4); + +#if QK_K == 64 + int32x4_t scales_4 = ggml_vld1q_u32(sc[0] >> 0, sc[0] >> 4, sc[0] >> 8, sc[0] >> 12); +#else + int32x4_t scales_4 = ggml_vld1q_u32(sc[ib/2] >> 0, sc[ib/2] >> 3, sc[ib/2] >> 6, sc[ib/2] >> 9); +#endif + scales_4 = vaddq_s32(vshlq_n_s32(vandq_s32(scales_4, mask), 1), mone); + + sumi1 = vmlaq_s32(sumi1, scales_4, p12); + sumi2 = vmlaq_s32(sumi2, scales_4, p34); + + qs += 8; qh += 4; + + } + +#if QK_K == 64 + sumf += y[i].d * GGML_FP16_TO_FP32(x[i].d) * (vaddvq_s32(sumi1) + IQ1M_DELTA * vaddvq_s32(sumi2)); +#else + sumf += y[i].d * GGML_FP16_TO_FP32(scale.f16) * (vaddvq_s32(sumi1) + IQ1M_DELTA * vaddvq_s32(sumi2)); +#endif + } + + *s = sumf; + +#elif defined __AVX2__ + +#if QK_K == 64 + const __m256i mask = _mm256_set1_epi16(0xf); +#else + const __m256i mask = _mm256_set1_epi16(0x7); +#endif + const __m256i mone = _mm256_set1_epi16(1); + + __m256 accum1 = _mm256_setzero_ps(); + __m256 accum2 = _mm256_setzero_ps(); + for (int i = 0; i < nb; ++i) { + + const int8_t * q8 = y[i].qs; + const uint8_t * qs = x[i].qs; + const uint8_t * qh = x[i].qh; + const uint16_t * sc = (const uint16_t *)x[i].scales; + +#if QK_K != 64 + scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); +#endif + + __m256i sumi1 = _mm256_setzero_si256(); + __m256i sumi2 = _mm256_setzero_si256(); + for (int ib = 0; ib < QK_K/32; ib += 2) { + const __m256i q1b_1 = _mm256_set_epi64x( + iq1s_grid[qs[3] | (((uint16_t)qh[1] << 4) & 0x700)], iq1s_grid[qs[2] | (((uint16_t)qh[1] << 8) & 0x700)], + iq1s_grid[qs[1] | (((uint16_t)qh[0] << 4) & 0x700)], iq1s_grid[qs[0] | (((uint16_t)qh[0] << 8) & 0x700)] + ); + const __m256i q1b_2 = _mm256_set_epi64x( + iq1s_grid[qs[7] | (((uint16_t)qh[3] << 4) & 0x700)], iq1s_grid[qs[6] | (((uint16_t)qh[3] << 8) & 0x700)], + iq1s_grid[qs[5] | (((uint16_t)qh[2] << 4) & 0x700)], iq1s_grid[qs[4] | (((uint16_t)qh[2] << 8) & 0x700)] + ); + const __m256i q8b_1 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + const __m256i q8b_2 = _mm256_loadu_si256((const __m256i*)q8); q8 += 32; + + const __m256i dot1 = mul_add_epi8(q1b_1, q8b_1); + const __m256i dot2 = mul_add_epi8(q1b_2, q8b_2); + + const __m256i delta1 = _mm256_set_epi64x(qh[1] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101, + qh[1] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101, + qh[0] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101, + qh[0] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101); + const __m256i delta2 = _mm256_set_epi64x(qh[3] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101, + qh[3] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101, + qh[2] & 0x80 ? 0xffffffffffffffff : 0x0101010101010101, + qh[2] & 0x08 ? 0xffffffffffffffff : 0x0101010101010101); + + const __m256i dot3 = mul_add_epi8(delta1, q8b_1); + const __m256i dot4 = mul_add_epi8(delta2, q8b_2); +#if QK_K == 64 + __m256i scale1 = MM256_SET_M128I(_mm_set1_epi16(sc[0] >> 4), _mm_set1_epi16(sc[0] >> 0)); + __m256i scale2 = MM256_SET_M128I(_mm_set1_epi16(sc[0] >> 12), _mm_set1_epi16(sc[0] >> 8)); +#else + __m256i scale1 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 3), _mm_set1_epi16(sc[ib/2] >> 0)); + __m256i scale2 = MM256_SET_M128I(_mm_set1_epi16(sc[ib/2] >> 9), _mm_set1_epi16(sc[ib/2] >> 6)); +#endif + scale1 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale1, mask), 1), mone); + scale2 = _mm256_add_epi16(_mm256_slli_epi16(_mm256_and_si256(scale2, mask), 1), mone); + const __m256i p1 = _mm256_madd_epi16(dot1, scale1); + const __m256i p2 = _mm256_madd_epi16(dot2, scale2); + const __m256i p3 = _mm256_madd_epi16(dot3, scale1); + const __m256i p4 = _mm256_madd_epi16(dot4, scale2); + + sumi1 = _mm256_add_epi32(sumi1, _mm256_add_epi32(p1, p2)); + sumi2 = _mm256_add_epi32(sumi2, _mm256_add_epi32(p3, p4)); + + qs += 8; qh += 4; + } + +#if QK_K == 64 + const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(x[i].d)); +#else + const __m256 d = _mm256_set1_ps(y[i].d * GGML_FP16_TO_FP32(scale.f16)); +#endif + accum1 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi1), accum1); + accum2 = _mm256_fmadd_ps(d, _mm256_cvtepi32_ps(sumi2), accum2); + + } + + *s = hsum_float_8(accum1) + IQ1M_DELTA * hsum_float_8(accum2); + +#else + + int sum1[2], sum2[2], delta[4]; + + float sumf = 0; + for (int i = 0; i < nb; i++) { + + const int8_t * q8 = y[i].qs; + const uint8_t * qs = x[i].qs; + const uint8_t * qh = x[i].qh; + const uint16_t * sc = (const uint16_t *)x[i].scales; + +#if QK_K != 64 + scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000); +#endif + + int sumi1 = 0, sumi2 = 0; + for (int ib = 0; ib < QK_K/32; ++ib) { + delta[0] = qh[0] & 0x08 ? -1 : 1; + delta[1] = qh[0] & 0x80 ? -1 : 1; + delta[2] = qh[1] & 0x08 ? -1 : 1; + delta[3] = qh[1] & 0x80 ? -1 : 1; + sum1[0] = sum1[1] = sum2[0] = sum2[1] = 0; + for (int l = 0; l < 4; ++l) { + const int8_t * grid = (const int8_t *)(iq1s_grid + (qs[l] | (((uint16_t)qh[l/2] << (8 - 4*(l%2))) & 0x700))); + int lsum1 = 0, lsum2 = 0; + for (int j = 0; j < 8; ++j) { + lsum1 += q8[j] * grid[j]; + lsum2 += q8[j]; + } + q8 += 8; + sum1[l/2] += lsum1; + sum2[l/2] += lsum2*delta[l]; + } +#if QK_K == 64 + const int ls1 = 2*((sc[0] >> (8*(ib%2)+0)) & 0xf) + 1; + const int ls2 = 2*((sc[0] >> (8*(ib%2)+4)) & 0xf) + 1; +#else + const int ls1 = 2*((sc[ib/2] >> (6*(ib%2)+0)) & 0x7) + 1; + const int ls2 = 2*((sc[ib/2] >> (6*(ib%2)+3)) & 0x7) + 1; +#endif + sumi1 += sum1[0] * ls1 + sum1[1] * ls2; + sumi2 += sum2[0] * ls1 + sum2[1] * ls2; + qs += 4; + qh += 2; + } + +#if QK_K == 64 + sumf += GGML_FP16_TO_FP32(x[i].d) * y[i].d * (sumi1 + IQ1M_DELTA * sumi2); +#else + sumf += GGML_FP16_TO_FP32(scale.f16) * y[i].d * (sumi1 + IQ1M_DELTA * sumi2); +#endif + } + + *s = sumf; + +#endif +} + +void ggml_vec_dot_iq4_nl_q8_0(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + assert(n % QK4_NL == 0); + static_assert(QK4_NL == QK8_0, "QK4_NL and QK8_0 must be the same"); + + const block_iq4_nl * restrict x = vx; + const block_q8_0 * restrict y = vy; + + const int nb = n / QK4_NL; + +#if defined __ARM_NEON + const int8x16_t values = vld1q_s8(kvalues_iq4nl); + const uint8x16_t m4b = vdupq_n_u8(0x0f); + uint8x16x2_t q4bits; + int8x16x4_t q4b; + int8x16x4_t q8b; + int32x4_t prod_1, prod_2; + + float sumf = 0; + + for (int ib = 0; ib < nb; ib += 2) { + + q4bits.val[0] = vld1q_u8(x[ib+0].qs); + q4bits.val[1] = vld1q_u8(x[ib+1].qs); + q8b.val[0] = vld1q_s8(y[ib+0].qs); + q8b.val[1] = vld1q_s8(y[ib+0].qs + 16); + q8b.val[2] = vld1q_s8(y[ib+1].qs); + q8b.val[3] = vld1q_s8(y[ib+1].qs + 16); + + q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b)); + q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4)); + q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b)); + q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4)); + + prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]); + prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]); + + sumf += + GGML_FP16_TO_FP32(x[ib+0].d) * GGML_FP16_TO_FP32(y[ib+0].d) * vaddvq_s32(prod_1) + + GGML_FP16_TO_FP32(x[ib+1].d) * GGML_FP16_TO_FP32(y[ib+1].d) * vaddvq_s32(prod_2); + } + + *s = sumf; + +#elif defined __AVX2__ + + const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl); + const __m128i m4b = _mm_set1_epi8(0x0f); + const __m256i mone = _mm256_set1_epi16(1); + + __m256 accum1 = _mm256_setzero_ps(); + __m256 accum2 = _mm256_setzero_ps(); + for (int ib = 0; ib < nb; ib += 2) { + const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)x[0].qs); + const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)x[1].qs); + const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)y[0].qs); + const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)y[1].qs); + const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)), + _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b))); + const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)), + _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b))); + const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1); + const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2); + const __m256i p_1 = _mm256_madd_epi16(p16_1, mone); + const __m256i p_2 = _mm256_madd_epi16(p16_2, mone); + accum1 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[0].d)*GGML_FP16_TO_FP32(x[0].d)), + _mm256_cvtepi32_ps(p_1), accum1); + accum2 = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(y[1].d)*GGML_FP16_TO_FP32(x[1].d)), + _mm256_cvtepi32_ps(p_2), accum2); + + y += 2; + x += 2; + } + + *s = hsum_float_8(_mm256_add_ps(accum1, accum2)); + +#else + float sumf = 0; + for (int ib = 0; ib < nb; ++ib) { + const float d = GGML_FP16_TO_FP32(y[ib].d)*GGML_FP16_TO_FP32(x[ib].d); + int sumi1 = 0, sumi2 = 0; + for (int j = 0; j < QK4_NL/2; ++j) { + sumi1 += y[ib].qs[j+ 0] * kvalues_iq4nl[x[ib].qs[j] & 0xf]; + sumi2 += y[ib].qs[j+QK4_NL/2] * kvalues_iq4nl[x[ib].qs[j] >> 4]; + } + sumf += d * (sumi1 + sumi2); + } + *s = sumf; +#endif +} + +void ggml_vec_dot_iq4_xs_q8_K(int n, float * restrict s, size_t bs, const void * restrict vx, size_t bx, const void * restrict vy, size_t by, int nrc) { + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + assert(n % QK_K == 0); +#if QK_K == 64 + ggml_vec_dot_iq4_nl_q8_0(n, s, bs, vx, bx, vy, by, nrc); +#else + + const block_iq4_xs * restrict x = vx; + const block_q8_K * restrict y = vy; + + const int nb = n / QK_K; + +#if defined __ARM_NEON + const int8x16_t values = vld1q_s8(kvalues_iq4nl); + const uint8x16_t m4b = vdupq_n_u8(0x0f); + ggml_uint8x16x2_t q4bits; + ggml_int8x16x4_t q4b; + ggml_int8x16x4_t q8b; + int32x4_t prod_1, prod_2; + + float sumf = 0; + + for (int ibl = 0; ibl < nb; ++ibl) { + + const int8_t * q8 = y[ibl].qs; + const uint8_t * q4 = x[ibl].qs; + uint16_t h = x[ibl].scales_h; + + int sumi1 = 0, sumi2 = 0; + for (int ib = 0; ib < QK_K/64; ++ib) { + + q4bits = ggml_vld1q_u8_x2(q4); q4 += 32; + q8b = ggml_vld1q_s8_x4(q8); q8 += 64; + + q4b.val[0] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[0], m4b)); + q4b.val[1] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[0], 4)); + q4b.val[2] = ggml_vqtbl1q_s8(values, vandq_u8 (q4bits.val[1], m4b)); + q4b.val[3] = ggml_vqtbl1q_s8(values, vshrq_n_u8(q4bits.val[1], 4)); + + prod_1 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[0], q8b.val[0]), q4b.val[1], q8b.val[1]); + prod_2 = ggml_vdotq_s32(ggml_vdotq_s32(vdupq_n_s32(0), q4b.val[2], q8b.val[2]), q4b.val[3], q8b.val[3]); + + int ls1 = ((x[ibl].scales_l[ib] & 0xf) | ((h << 4) & 0x30)) - 32; + int ls2 = ((x[ibl].scales_l[ib] >> 4) | ((h << 2) & 0x30)) - 32; + h >>= 4; + sumi1 += vaddvq_s32(prod_1) * ls1; + sumi2 += vaddvq_s32(prod_2) * ls2; + + } + + sumf += GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d * (sumi1 + sumi2); + } + + *s = sumf; + +#elif defined __AVX2__ + + const __m128i values128 = _mm_loadu_si128((const __m128i*)kvalues_iq4nl); + const __m128i m4b = _mm_set1_epi8(0x0f); + + __m256 accum = _mm256_setzero_ps(); + for (int ibl = 0; ibl < nb; ++ibl) { + const uint8_t * qs = x[ibl].qs; + const int8_t * q8 = y[ibl].qs; + uint16_t sh = x[ibl].scales_h; + __m256i sumi1 = _mm256_setzero_si256(); + __m256i sumi2 = _mm256_setzero_si256(); + for (int ib = 0; ib < QK_K/32; ib += 2) { + const __m128i q4bits_1 = _mm_loadu_si128((const __m128i*)qs); qs += 16; + const __m128i q4bits_2 = _mm_loadu_si128((const __m128i*)qs); qs += 16; + const __m256i q8b_1 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; + const __m256i q8b_2 = _mm256_loadu_si256((const __m256i *)q8); q8 += 32; + const __m256i q4b_1 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_1, 4), m4b)), + _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_1, m4b))); + const __m256i q4b_2 = MM256_SET_M128I(_mm_shuffle_epi8(values128, _mm_and_si128(_mm_srli_epi16(q4bits_2, 4), m4b)), + _mm_shuffle_epi8(values128, _mm_and_si128(q4bits_2, m4b))); + const __m256i p16_1 = mul_add_epi8(q4b_1, q8b_1); + const __m256i p16_2 = mul_add_epi8(q4b_2, q8b_2); + const int16_t ls1 = ((x[ibl].scales_l[ib/2] & 0xf) | ((sh << 4) & 0x30)) - 32; + const int16_t ls2 = ((x[ibl].scales_l[ib/2] >> 4) | ((sh << 2) & 0x30)) - 32; + sh >>= 4; + const __m256i p_1 = _mm256_madd_epi16(p16_1, _mm256_set1_epi16(ls1)); + const __m256i p_2 = _mm256_madd_epi16(p16_2, _mm256_set1_epi16(ls2)); + sumi1 = _mm256_add_epi32(p_1, sumi1); + sumi2 = _mm256_add_epi32(p_2, sumi2); + } + accum = _mm256_fmadd_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[ibl].d)*y[ibl].d), + _mm256_cvtepi32_ps(_mm256_add_epi32(sumi1, sumi2)), accum); + } + + *s = hsum_float_8(accum); + +#else + float sumf = 0; + for (int ibl = 0; ibl < nb; ++ibl) { + const float d4d8 = GGML_FP16_TO_FP32(x[ibl].d) * y[ibl].d; + uint16_t h = x[ibl].scales_h; + const uint8_t * qs = x[ibl].qs; + const int8_t * q8 = y[ibl].qs; + for (int ib = 0; ib < QK_K/32; ib += 2) { + const uint8_t ls1 = (x[ibl].scales_l[ib/2] & 0xf) | ((h << 4) & 0x30); + const uint8_t ls2 = (x[ibl].scales_l[ib/2] >> 4) | ((h << 2) & 0x30); + h >>= 4; + const float d1 = d4d8*(ls1 - 32); + const float d2 = d4d8*(ls2 - 32); + int sumi1 = 0, sumi2 = 0; + for (int j = 0; j < 16; ++j) { + sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf]; + sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4]; + } + sumf += d1 * (sumi1 + sumi2); + qs += 16; + q8 += 32; + sumi1 = sumi2 = 0; + for (int j = 0; j < 16; ++j) { + sumi1 += q8[j+ 0] * kvalues_iq4nl[qs[j] & 0xf]; + sumi2 += q8[j+16] * kvalues_iq4nl[qs[j] >> 4]; + } + sumf += d2 * (sumi1 + sumi2); + qs += 16; + q8 += 32; + } + } + *s = sumf; +#endif +#endif +} + +// ================================ IQ2 quantization ============================================= + +typedef struct { + uint64_t * grid; + int * map; + uint16_t * neighbours; +} iq2_entry_t; + +static iq2_entry_t iq2_data[4] = { + {NULL, NULL, NULL}, + {NULL, NULL, NULL}, + {NULL, NULL, NULL}, + {NULL, NULL, NULL}, +}; + +static inline int iq2_data_index(enum ggml_type type) { + GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S); + return type == GGML_TYPE_IQ2_XXS ? 0 : + type == GGML_TYPE_IQ2_XS ? 1 : + type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? 2 : 3; +} + +static inline int iq2_grid_size(enum ggml_type type) { + GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S); + return type == GGML_TYPE_IQ2_XXS ? 256 : + type == GGML_TYPE_IQ2_XS ? 512 : + type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? NGRID_IQ1S : 1024; +} + +static int iq2_compare_func(const void * left, const void * right) { + const int * l = (const int *)left; + const int * r = (const int *)right; + return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0; +} + +void iq2xs_init_impl(enum ggml_type type) { + const int gindex = iq2_data_index(type); + const int grid_size = iq2_grid_size(type); + if (iq2_data[gindex].grid) { + return; + } + static const uint16_t kgrid_2bit_256[256] = { + 0, 2, 5, 8, 10, 17, 20, 32, 34, 40, 42, 65, 68, 80, 88, 97, + 100, 128, 130, 138, 162, 257, 260, 272, 277, 320, 388, 408, 512, 514, 546, 642, + 1025, 1028, 1040, 1057, 1060, 1088, 1090, 1096, 1120, 1153, 1156, 1168, 1188, 1280, 1282, 1288, + 1312, 1350, 1385, 1408, 1425, 1545, 1552, 1600, 1668, 1700, 2048, 2053, 2056, 2068, 2088, 2113, + 2116, 2128, 2130, 2184, 2308, 2368, 2562, 2580, 4097, 4100, 4112, 4129, 4160, 4192, 4228, 4240, + 4245, 4352, 4360, 4384, 4432, 4442, 4480, 4644, 4677, 5120, 5128, 5152, 5157, 5193, 5248, 5400, + 5474, 5632, 5654, 6145, 6148, 6160, 6208, 6273, 6400, 6405, 6560, 6737, 8192, 8194, 8202, 8260, + 8289, 8320, 8322, 8489, 8520, 8704, 8706, 9217, 9220, 9232, 9280, 9302, 9472, 9537, 9572, 9872, + 10248, 10272, 10388, 10820, 16385, 16388, 16400, 16408, 16417, 16420, 16448, 16456, 16470, 16480, 16513, 16516, + 16528, 16640, 16672, 16737, 16768, 16773, 16897, 16912, 16968, 16982, 17000, 17408, 17416, 17440, 17536, 17561, + 17682, 17700, 17920, 18433, 18436, 18448, 18496, 18501, 18688, 18776, 18785, 18818, 19013, 19088, 20480, 20488, + 20497, 20505, 20512, 20608, 20616, 20740, 20802, 20900, 21137, 21648, 21650, 21770, 22017, 22100, 22528, 22545, + 22553, 22628, 22848, 23048, 24580, 24592, 24640, 24680, 24832, 24917, 25112, 25184, 25600, 25605, 25872, 25874, + 25988, 26690, 32768, 32770, 32778, 32833, 32898, 33028, 33048, 33088, 33297, 33793, 33796, 33808, 33813, 33856, + 33888, 34048, 34118, 34196, 34313, 34368, 34400, 34818, 35076, 35345, 36868, 36880, 36900, 36928, 37025, 37142, + 37248, 37445, 37888, 37922, 37956, 38225, 39041, 39200, 40962, 41040, 41093, 41225, 41472, 42008, 43088, 43268, + }; + static const uint16_t kgrid_2bit_512[512] = { + 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70, + 73, 80, 82, 85, 88, 97, 100, 128, 130, 133, 136, 145, 148, 153, 160, 257, + 260, 262, 265, 272, 274, 277, 280, 282, 289, 292, 320, 322, 325, 328, 337, 340, + 352, 360, 385, 388, 400, 512, 514, 517, 520, 529, 532, 544, 577, 580, 592, 597, + 640, 650, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1088, 1090, 1093, 1096, + 1105, 1108, 1110, 1120, 1153, 1156, 1168, 1280, 1282, 1285, 1288, 1297, 1300, 1312, 1345, 1348, + 1360, 1377, 1408, 1537, 1540, 1552, 1574, 1600, 1602, 1668, 2048, 2050, 2053, 2056, 2058, 2065, + 2068, 2080, 2085, 2113, 2116, 2128, 2136, 2176, 2208, 2218, 2305, 2308, 2320, 2368, 2433, 2441, + 2560, 2592, 2600, 2710, 2720, 4097, 4100, 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4160, + 4162, 4165, 4168, 4177, 4180, 4192, 4202, 4225, 4228, 4240, 4352, 4354, 4357, 4360, 4369, 4372, + 4384, 4417, 4420, 4432, 4480, 4500, 4502, 4609, 4612, 4614, 4624, 4672, 4704, 5120, 5122, 5125, + 5128, 5137, 5140, 5152, 5185, 5188, 5193, 5200, 5220, 5248, 5377, 5380, 5392, 5440, 5632, 5652, + 5705, 6145, 6148, 6160, 6162, 6208, 6228, 6278, 6400, 6405, 6502, 6737, 6825, 8192, 8194, 8197, + 8200, 8202, 8209, 8212, 8224, 8257, 8260, 8272, 8320, 8352, 8449, 8452, 8464, 8512, 8520, 8549, + 8704, 8738, 8832, 8872, 9217, 9220, 9232, 9257, 9280, 9472, 9537, 9554, 9625, 9729, 9754, 9894, + 10240, 10248, 10250, 10272, 10325, 10376, 10402, 10600, 10640, 10760, 10784, 10882, 10888, 10890, 16385, 16388, + 16390, 16393, 16400, 16402, 16405, 16408, 16417, 16420, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16480, + 16485, 16513, 16516, 16528, 16640, 16642, 16645, 16648, 16657, 16660, 16672, 16705, 16708, 16720, 16768, 16773, + 16802, 16897, 16900, 16912, 16914, 16937, 16960, 17408, 17410, 17413, 17416, 17425, 17428, 17433, 17440, 17473, + 17476, 17488, 17536, 17556, 17665, 17668, 17680, 17700, 17728, 17818, 17920, 17930, 17988, 18000, 18433, 18436, + 18448, 18496, 18501, 18516, 18530, 18688, 18705, 18756, 18768, 18793, 18948, 20480, 20482, 20485, 20488, 20497, + 20500, 20512, 20520, 20545, 20548, 20560, 20608, 20737, 20740, 20752, 20757, 20800, 20802, 20992, 21060, 21162, + 21505, 21508, 21520, 21537, 21568, 21600, 21633, 21665, 21760, 21768, 21888, 21896, 22049, 22120, 22177, 22528, + 22548, 22593, 22608, 22681, 22810, 22848, 22850, 23173, 24577, 24580, 24592, 24640, 24660, 24674, 24710, 24745, + 24832, 25124, 25162, 25234, 25600, 25622, 25872, 25920, 25925, 26020, 26625, 26730, 26917, 27142, 27220, 27234, + 32768, 32770, 32773, 32776, 32785, 32788, 32800, 32810, 32833, 32836, 32848, 32896, 32898, 32936, 32938, 33025, + 33028, 33030, 33040, 33088, 33105, 33113, 33280, 33312, 33408, 33410, 33440, 33448, 33793, 33796, 33808, 33810, + 33813, 33856, 33888, 33929, 34048, 34116, 34213, 34328, 34410, 34816, 34824, 34853, 34906, 34944, 34946, 34984, + 35078, 35362, 35456, 35464, 35478, 35496, 36865, 36868, 36880, 36928, 36950, 36996, 37120, 37154, 37220, 37462, + 37513, 37888, 37893, 37956, 37968, 37976, 38185, 38288, 38290, 38465, 38993, 39078, 39241, 39445, 39520, 40960, + 40962, 40968, 40970, 40992, 41002, 41120, 41297, 41305, 41382, 41472, 41474, 41480, 41514, 41600, 41632, 42048, + 42133, 42597, 42648, 43018, 43040, 43042, 43048, 43168, 43176, 43268, 43396, 43398, 43560, 43562, 43665, 43690, + }; + static const uint16_t kgrid_1bit_2048[NGRID_IQ1S] = { + 0, 2, 5, 8, 10, 17, 21, 32, 34, 40, 42, 69, 81, 84, 86, 101, + 128, 130, 136, 138, 149, 160, 162, 168, 170, 260, 261, 273, 276, 278, 281, 282, + 293, 321, 326, 329, 338, 341, 346, 353, 356, 358, 360, 389, 401, 404, 406, 421, + 512, 514, 520, 522, 533, 544, 546, 552, 554, 581, 593, 601, 612, 617, 640, 642, + 648, 650, 657, 661, 665, 672, 674, 680, 682, 1041, 1044, 1046, 1061, 1089, 1097, 1109, + 1114, 1124, 1125, 1169, 1177, 1189, 1281, 1284, 1285, 1286, 1301, 1304, 1306, 1321, 1344, 1349, + 1354, 1360, 1361, 1364, 1365, 1366, 1369, 1376, 1378, 1381, 1384, 1386, 1409, 1425, 1429, 1432, + 1434, 1441, 1444, 1445, 1446, 1449, 1556, 1561, 1601, 1604, 1616, 1618, 1621, 1624, 1632, 1633, + 1638, 1641, 1669, 1681, 1684, 1689, 2048, 2050, 2056, 2058, 2069, 2080, 2082, 2088, 2090, 2117, + 2129, 2134, 2149, 2176, 2178, 2184, 2186, 2197, 2208, 2210, 2216, 2218, 2309, 2321, 2324, 2329, + 2340, 2341, 2369, 2384, 2385, 2389, 2401, 2404, 2409, 2449, 2452, 2454, 2457, 2469, 2560, 2562, + 2568, 2570, 2581, 2592, 2594, 2600, 2602, 2629, 2641, 2649, 2657, 2661, 2688, 2690, 2693, 2696, + 2698, 2709, 2720, 2722, 2728, 2730, 4112, 4113, 4116, 4121, 4132, 4133, 4161, 4164, 4176, 4181, + 4184, 4193, 4196, 4197, 4201, 4241, 4244, 4246, 4257, 4261, 4353, 4356, 4358, 4361, 4368, 4370, + 4373, 4376, 4385, 4388, 4393, 4421, 4426, 4432, 4433, 4434, 4436, 4437, 4438, 4441, 4448, 4453, + 4484, 4498, 4501, 4513, 4516, 4625, 4628, 4630, 4645, 4672, 4678, 4681, 4690, 4693, 4696, 4698, + 4708, 4710, 4741, 4753, 4756, 4758, 4773, 5121, 5126, 5129, 5140, 5141, 5144, 5145, 5153, 5158, + 5185, 5189, 5190, 5192, 5194, 5201, 5204, 5205, 5206, 5209, 5218, 5221, 5224, 5252, 5257, 5264, + 5268, 5269, 5272, 5273, 5274, 5281, 5284, 5285, 5289, 5378, 5381, 5386, 5393, 5396, 5397, 5398, + 5401, 5408, 5410, 5413, 5416, 5418, 5441, 5444, 5445, 5446, 5457, 5458, 5460, 5461, 5462, 5465, + 5466, 5473, 5476, 5477, 5478, 5481, 5504, 5506, 5508, 5509, 5512, 5514, 5520, 5521, 5524, 5525, + 5526, 5529, 5530, 5536, 5538, 5541, 5633, 5636, 5637, 5638, 5653, 5654, 5656, 5658, 5665, 5670, + 5696, 5698, 5700, 5701, 5704, 5706, 5713, 5717, 5718, 5720, 5721, 5729, 5732, 5733, 5736, 5737, + 5738, 5766, 5770, 5778, 5781, 5796, 5801, 6161, 6166, 6181, 6209, 6212, 6214, 6217, 6224, 6229, + 6232, 6234, 6240, 6241, 6244, 6246, 6249, 6277, 6289, 6292, 6309, 6416, 6418, 6421, 6426, 6433, + 6437, 6466, 6468, 6469, 6472, 6481, 6484, 6485, 6486, 6489, 6490, 6496, 6501, 6506, 6537, 6545, + 6546, 6549, 6552, 6561, 6566, 6569, 6665, 6678, 6692, 6694, 6724, 6726, 6729, 6736, 6738, 6741, + 6744, 6753, 6758, 6761, 6789, 6801, 6806, 6810, 8192, 8194, 8200, 8202, 8213, 8224, 8226, 8229, + 8232, 8234, 8261, 8273, 8281, 8289, 8293, 8320, 8322, 8328, 8330, 8341, 8352, 8354, 8357, 8360, + 8362, 8453, 8465, 8468, 8473, 8485, 8514, 8516, 8521, 8533, 8536, 8538, 8545, 8548, 8549, 8550, + 8581, 8592, 8598, 8601, 8613, 8705, 8712, 8714, 8721, 8725, 8736, 8738, 8744, 8746, 8773, 8785, + 8790, 8793, 8805, 8833, 8840, 8842, 8849, 8853, 8864, 8866, 8872, 8874, 9221, 9236, 9238, 9241, + 9253, 9284, 9285, 9286, 9289, 9298, 9301, 9304, 9306, 9318, 9349, 9361, 9364, 9369, 9377, 9381, + 9481, 9493, 9505, 9513, 9536, 9541, 9544, 9553, 9556, 9557, 9561, 9570, 9573, 9576, 9609, 9616, + 9620, 9621, 9624, 9626, 9633, 9636, 9638, 9641, 9733, 9744, 9746, 9753, 9765, 9793, 9801, 9813, + 9824, 9825, 9833, 9860, 9862, 9872, 9882, 10240, 10242, 10248, 10250, 10261, 10272, 10274, 10280, 10282, + 10309, 10321, 10324, 10341, 10368, 10370, 10376, 10378, 10400, 10402, 10408, 10410, 10505, 10513, 10516, 10521, + 10533, 10566, 10569, 10578, 10581, 10593, 10596, 10598, 10601, 10629, 10640, 10646, 10649, 10660, 10661, 10752, + 10754, 10760, 10762, 10784, 10786, 10792, 10794, 10821, 10833, 10838, 10841, 10853, 10880, 10882, 10888, 10890, + 10901, 10912, 10914, 10920, 10922, 16389, 16401, 16406, 16421, 16457, 16466, 16469, 16472, 16474, 16481, 16484, + 16486, 16532, 16537, 16545, 16550, 16640, 16641, 16644, 16646, 16649, 16658, 16661, 16662, 16664, 16666, 16673, + 16678, 16681, 16709, 16712, 16714, 16721, 16724, 16725, 16726, 16729, 16730, 16741, 16744, 16746, 16769, 16772, + 16774, 16784, 16786, 16789, 16800, 16801, 16802, 16901, 16913, 16916, 16918, 16933, 16961, 16978, 16981, 16986, + 16996, 17001, 17033, 17044, 17061, 17409, 17429, 17433, 17449, 17477, 17480, 17482, 17489, 17492, 17493, 17494, + 17505, 17506, 17509, 17512, 17514, 17537, 17542, 17545, 17552, 17554, 17557, 17568, 17569, 17577, 17665, 17666, + 17669, 17674, 17681, 17684, 17685, 17686, 17689, 17696, 17701, 17706, 17729, 17732, 17733, 17734, 17737, 17744, + 17745, 17748, 17749, 17750, 17752, 17753, 17761, 17764, 17765, 17766, 17769, 17794, 17796, 17797, 17800, 17809, + 17812, 17813, 17814, 17817, 17818, 17829, 17832, 17834, 17921, 17925, 17929, 17940, 17941, 17944, 17946, 17953, + 17956, 17961, 17984, 17986, 17989, 17992, 18000, 18001, 18002, 18005, 18006, 18009, 18018, 18021, 18024, 18049, + 18053, 18058, 18068, 18069, 18081, 18084, 18086, 18437, 18449, 18453, 18458, 18469, 18498, 18505, 18512, 18517, + 18520, 18529, 18532, 18534, 18537, 18565, 18577, 18580, 18582, 18585, 18597, 18689, 18693, 18694, 18698, 18704, + 18708, 18709, 18712, 18721, 18724, 18726, 18752, 18757, 18762, 18769, 18770, 18772, 18773, 18774, 18777, 18784, + 18786, 18789, 18790, 18794, 18822, 18825, 18834, 18837, 18838, 18840, 18849, 18852, 18854, 18857, 18966, 19012, + 19014, 19017, 19029, 19032, 19034, 19044, 19049, 19092, 19109, 20481, 20484, 20485, 20486, 20489, 20498, 20501, + 20506, 20513, 20516, 20521, 20544, 20549, 20552, 20561, 20564, 20565, 20566, 20569, 20581, 20584, 20614, 20617, + 20629, 20632, 20640, 20641, 20646, 20649, 20741, 20744, 20745, 20746, 20753, 20756, 20757, 20758, 20760, 20761, + 20768, 20773, 20774, 20776, 20778, 20801, 20804, 20805, 20806, 20809, 20816, 20817, 20818, 20820, 20821, 20822, + 20824, 20825, 20826, 20833, 20836, 20837, 20838, 20841, 20866, 20869, 20881, 20884, 20885, 20886, 20889, 20896, + 20901, 20906, 20993, 20998, 21010, 21013, 21018, 21025, 21028, 21058, 21061, 21066, 21073, 21076, 21077, 21078, + 21081, 21090, 21093, 21125, 21136, 21138, 21141, 21145, 21146, 21156, 21508, 21509, 21521, 21524, 21525, 21526, + 21528, 21529, 21537, 21541, 21544, 21546, 21569, 21572, 21573, 21574, 21577, 21578, 21584, 21585, 21588, 21589, + 21590, 21592, 21593, 21594, 21601, 21602, 21604, 21605, 21606, 21609, 21632, 21640, 21642, 21649, 21652, 21653, + 21654, 21657, 21665, 21668, 21669, 21674, 21761, 21762, 21764, 21765, 21766, 21769, 21776, 21777, 21778, 21780, + 21781, 21782, 21785, 21786, 21793, 21796, 21797, 21798, 21801, 21824, 21825, 21826, 21828, 21829, 21830, 21832, + 21833, 21840, 21841, 21842, 21844, 21845, 21846, 21848, 21849, 21850, 21856, 21857, 21860, 21861, 21862, 21864, + 21865, 21866, 21889, 21892, 21893, 21897, 21898, 21904, 21905, 21908, 21909, 21910, 21912, 21913, 21921, 21924, + 21925, 21926, 21929, 22016, 22017, 22018, 22020, 22022, 22024, 22025, 22033, 22036, 22037, 22040, 22041, 22048, + 22049, 22050, 22052, 22053, 22054, 22056, 22057, 22081, 22085, 22086, 22088, 22089, 22090, 22096, 22097, 22098, + 22100, 22101, 22102, 22104, 22105, 22106, 22113, 22116, 22117, 22121, 22146, 22149, 22150, 22152, 22153, 22154, + 22161, 22165, 22170, 22178, 22181, 22182, 22184, 22185, 22532, 22533, 22534, 22537, 22544, 22549, 22552, 22561, + 22570, 22597, 22600, 22602, 22609, 22612, 22613, 22614, 22616, 22617, 22624, 22626, 22628, 22629, 22658, 22665, + 22672, 22674, 22677, 22680, 22689, 22697, 22785, 22786, 22789, 22794, 22801, 22804, 22805, 22806, 22809, 22821, + 22849, 22852, 22853, 22854, 22857, 22864, 22865, 22866, 22868, 22869, 22870, 22872, 22873, 22874, 22881, 22884, + 22885, 22886, 22889, 22913, 22917, 22921, 22929, 22932, 22933, 22934, 22936, 22937, 22949, 23044, 23048, 23061, + 23066, 23072, 23077, 23078, 23081, 23109, 23112, 23113, 23121, 23125, 23126, 23128, 23129, 23138, 23141, 23144, + 23146, 23169, 23178, 23186, 23189, 23190, 23192, 23194, 23201, 24581, 24596, 24598, 24601, 24613, 24644, 24656, + 24661, 24662, 24664, 24666, 24673, 24676, 24678, 24681, 24705, 24726, 24741, 24833, 24836, 24838, 24841, 24850, + 24853, 24865, 24866, 24870, 24873, 24901, 24905, 24913, 24917, 24918, 24921, 24933, 24934, 24938, 24964, 24970, + 24978, 24981, 24993, 24998, 25001, 25105, 25110, 25113, 25152, 25153, 25158, 25173, 25174, 25176, 25184, 25221, + 25233, 25238, 25253, 25617, 25618, 25621, 25622, 25626, 25633, 25638, 25641, 25664, 25666, 25669, 25672, 25674, + 25681, 25684, 25685, 25686, 25689, 25690, 25696, 25698, 25701, 25732, 25733, 25737, 25744, 25746, 25748, 25749, + 25750, 25752, 25754, 25761, 25764, 25769, 25861, 25864, 25866, 25873, 25877, 25878, 25881, 25924, 25925, 25926, + 25929, 25936, 25937, 25940, 25941, 25942, 25945, 25953, 25956, 25957, 25958, 25961, 25990, 25993, 25994, 26001, + 26005, 26006, 26009, 26010, 26018, 26021, 26022, 26024, 26114, 26121, 26133, 26144, 26150, 26152, 26153, 26176, + 26181, 26184, 26186, 26193, 26196, 26197, 26198, 26200, 26202, 26208, 26213, 26216, 26240, 26242, 26245, 26250, + 26260, 26262, 26264, 26265, 26272, 26276, 26278, 26282, 26646, 26649, 26661, 26689, 26706, 26709, 26714, 26721, + 26729, 26757, 26769, 26776, 26790, 26881, 26884, 26896, 26901, 26913, 26916, 26918, 26921, 26944, 26945, 26949, + 26950, 26952, 26961, 26964, 26965, 26966, 26969, 26976, 26981, 26986, 27010, 27012, 27018, 27029, 27041, 27044, + 27045, 27049, 27153, 27158, 27160, 27201, 27204, 27209, 27216, 27221, 27224, 27226, 27236, 27237, 27241, 27270, + 27284, 27288, 27290, 27302, 32768, 32770, 32776, 32778, 32800, 32802, 32808, 32810, 32837, 32848, 32849, 32852, + 32854, 32857, 32869, 32896, 32898, 32904, 32906, 32917, 32928, 32930, 32936, 32938, 33029, 33041, 33044, 33046, + 33049, 33061, 33089, 33092, 33097, 33104, 33106, 33109, 33110, 33112, 33113, 33124, 33126, 33129, 33157, 33161, + 33172, 33174, 33177, 33189, 33280, 33282, 33288, 33290, 33301, 33312, 33314, 33320, 33322, 33361, 33364, 33369, + 33381, 33408, 33410, 33416, 33418, 33429, 33440, 33442, 33448, 33450, 33812, 33817, 33857, 33860, 33873, 33877, + 33882, 33889, 33892, 33897, 33940, 33945, 34049, 34057, 34066, 34069, 34074, 34086, 34089, 34112, 34113, 34117, + 34120, 34129, 34132, 34133, 34134, 34137, 34138, 34149, 34150, 34152, 34154, 34177, 34180, 34182, 34185, 34192, + 34194, 34197, 34200, 34214, 34321, 34326, 34329, 34341, 34369, 34372, 34377, 34378, 34384, 34389, 34393, 34394, + 34401, 34406, 34410, 34437, 34449, 34458, 34468, 34816, 34818, 34824, 34826, 34837, 34848, 34850, 34856, 34858, + 34881, 34885, 34897, 34900, 34905, 34917, 34921, 34944, 34946, 34952, 34954, 34965, 34976, 34978, 34984, 34986, + 35077, 35078, 35089, 35092, 35094, 35109, 35137, 35140, 35142, 35145, 35152, 35154, 35157, 35162, 35169, 35172, + 35205, 35222, 35225, 35237, 35328, 35330, 35336, 35338, 35349, 35360, 35362, 35368, 35370, 35397, 35409, 35412, + 35414, 35456, 35458, 35464, 35466, 35477, 35488, 35490, 35496, 35498, 36869, 36881, 36886, 36888, 36889, 36901, + 36929, 36934, 36937, 36949, 36952, 36954, 36969, 36970, 36997, 37009, 37012, 37014, 37017, 37029, 37121, 37124, + 37126, 37129, 37136, 37141, 37144, 37146, 37153, 37156, 37158, 37161, 37184, 37189, 37200, 37201, 37204, 37205, + 37206, 37209, 37218, 37221, 37252, 37254, 37266, 37269, 37272, 37281, 37284, 37286, 37289, 37381, 37393, 37396, + 37401, 37413, 37444, 37446, 37449, 37456, 37458, 37461, 37464, 37478, 37481, 37509, 37524, 37526, 37545, 37889, + 37892, 37894, 37904, 37909, 37912, 37926, 37952, 37962, 37969, 37972, 37973, 37974, 37976, 37977, 37984, 37985, + 37986, 37989, 38020, 38022, 38034, 38036, 38037, 38040, 38049, 38057, 38144, 38149, 38152, 38154, 38160, 38161, + 38164, 38165, 38166, 38169, 38177, 38181, 38185, 38186, 38209, 38212, 38213, 38214, 38217, 38224, 38225, 38226, + 38228, 38229, 38230, 38232, 38233, 38234, 38241, 38244, 38245, 38246, 38249, 38273, 38277, 38280, 38289, 38290, + 38292, 38293, 38294, 38297, 38298, 38304, 38306, 38309, 38312, 38314, 38401, 38404, 38416, 38421, 38425, 38432, + 38438, 38441, 38469, 38472, 38473, 38481, 38482, 38485, 38486, 38489, 38501, 38504, 38530, 38532, 38537, 38538, + 38546, 38548, 38549, 38564, 38566, 38569, 38917, 38934, 38937, 38949, 38977, 38982, 38992, 38994, 38997, 38998, + 39002, 39012, 39013, 39045, 39057, 39062, 39065, 39077, 39172, 39174, 39177, 39184, 39186, 39189, 39192, 39194, + 39200, 39201, 39204, 39206, 39232, 39234, 39237, 39240, 39242, 39249, 39252, 39253, 39254, 39257, 39266, 39269, + 39270, 39274, 39297, 39300, 39312, 39314, 39317, 39322, 39329, 39334, 39429, 39445, 39461, 39492, 39494, 39497, + 39504, 39509, 39512, 39521, 39557, 39569, 39572, 39573, 39574, 40960, 40962, 40968, 40970, 40981, 40992, 40994, + 41000, 41002, 41029, 41041, 41044, 41046, 41049, 41088, 41090, 41096, 41098, 41109, 41120, 41122, 41128, 41130, + 41221, 41225, 41233, 41236, 41238, 41241, 41242, 41286, 41289, 41297, 41301, 41304, 41306, 41313, 41316, 41349, + 41360, 41362, 41366, 41369, 41474, 41480, 41482, 41488, 41497, 41506, 41512, 41514, 41541, 41553, 41558, 41561, + 41573, 41600, 41602, 41608, 41610, 41621, 41632, 41634, 41640, 41642, 42009, 42021, 42049, 42052, 42064, 42068, + 42069, 42072, 42074, 42081, 42085, 42086, 42088, 42089, 42117, 42246, 42249, 42256, 42258, 42261, 42264, 42278, + 42281, 42306, 42309, 42321, 42324, 42325, 42326, 42329, 42341, 42346, 42369, 42372, 42373, 42374, 42377, 42386, + 42389, 42392, 42501, 42513, 42518, 42522, 42529, 42533, 42564, 42566, 42570, 42578, 42581, 42582, 42584, 42592, + 42594, 42630, 42640, 42645, 42646, 42649, 42657, 42660, 42662, 43008, 43010, 43016, 43018, 43040, 43042, 43048, + 43050, 43089, 43092, 43094, 43097, 43136, 43138, 43144, 43146, 43157, 43168, 43170, 43176, 43178, 43269, 43284, + 43289, 43297, 43301, 43329, 43344, 43349, 43354, 43361, 43366, 43369, 43408, 43414, 43520, 43522, 43528, 43530, + 43552, 43554, 43560, 43562, 43601, 43604, 43606, 43648, 43650, 43656, 43658, 43669, 43680, 43682, 43688, 43690, + }; + static const uint16_t kgrid_2bit_1024[1024] = { + 0, 2, 5, 8, 10, 17, 20, 22, 25, 32, 34, 37, 40, 65, 68, 70, + 73, 80, 82, 85, 88, 97, 100, 102, 105, 128, 130, 133, 136, 145, 148, 160, + 165, 170, 257, 260, 262, 265, 272, 274, 277, 280, 289, 292, 320, 322, 325, 328, + 337, 340, 342, 345, 352, 357, 360, 385, 388, 400, 402, 405, 417, 420, 512, 514, + 517, 520, 529, 532, 544, 554, 577, 580, 582, 585, 592, 597, 640, 645, 650, 660, + 674, 1025, 1028, 1030, 1033, 1040, 1042, 1045, 1048, 1057, 1060, 1062, 1065, 1088, 1090, 1093, + 1096, 1098, 1105, 1108, 1110, 1113, 1120, 1122, 1125, 1153, 1156, 1158, 1161, 1168, 1173, 1176, + 1185, 1188, 1280, 1282, 1285, 1288, 1290, 1297, 1300, 1302, 1305, 1312, 1317, 1320, 1345, 1348, + 1350, 1353, 1360, 1362, 1365, 1368, 1377, 1380, 1408, 1410, 1413, 1416, 1425, 1428, 1440, 1537, + 1540, 1542, 1545, 1552, 1557, 1600, 1605, 1608, 1617, 1620, 1632, 1665, 1668, 1680, 2048, 2050, + 2053, 2056, 2065, 2068, 2070, 2073, 2080, 2085, 2090, 2113, 2116, 2118, 2121, 2128, 2130, 2133, + 2136, 2145, 2148, 2176, 2181, 2196, 2218, 2305, 2308, 2320, 2322, 2325, 2328, 2337, 2368, 2373, + 2376, 2385, 2388, 2400, 2433, 2448, 2560, 2577, 2580, 2594, 2600, 2602, 2640, 2713, 4097, 4100, + 4102, 4105, 4112, 4114, 4117, 4120, 4129, 4132, 4134, 4160, 4162, 4165, 4168, 4177, 4180, 4182, + 4185, 4192, 4194, 4197, 4200, 4225, 4228, 4230, 4240, 4245, 4248, 4257, 4260, 4352, 4354, 4357, + 4360, 4362, 4369, 4372, 4374, 4377, 4384, 4386, 4389, 4392, 4417, 4420, 4422, 4425, 4432, 4434, + 4437, 4440, 4449, 4452, 4480, 4482, 4485, 4488, 4497, 4500, 4609, 4612, 4617, 4624, 4629, 4641, + 4644, 4672, 4677, 4689, 4692, 4737, 4740, 4752, 5120, 5122, 5125, 5128, 5137, 5140, 5142, 5145, + 5152, 5157, 5160, 5185, 5188, 5190, 5193, 5200, 5202, 5205, 5208, 5217, 5220, 5248, 5250, 5253, + 5256, 5265, 5268, 5280, 5377, 5380, 5382, 5385, 5392, 5394, 5397, 5400, 5409, 5412, 5440, 5442, + 5445, 5448, 5457, 5460, 5472, 5505, 5508, 5520, 5632, 5637, 5640, 5649, 5652, 5664, 5697, 5700, + 5712, 5760, 5802, 6145, 6148, 6150, 6153, 6160, 6165, 6168, 6177, 6208, 6210, 6213, 6216, 6225, + 6228, 6240, 6273, 6276, 6400, 6402, 6405, 6408, 6417, 6420, 6432, 6465, 6468, 6480, 6505, 6562, + 6660, 6672, 6720, 6742, 8192, 8194, 8197, 8200, 8209, 8212, 8214, 8217, 8224, 8229, 8234, 8257, + 8260, 8272, 8274, 8277, 8292, 8320, 8330, 8340, 8362, 8449, 8452, 8464, 8466, 8469, 8481, 8512, + 8514, 8517, 8529, 8532, 8544, 8577, 8580, 8592, 8704, 8714, 8738, 8744, 8746, 8772, 8784, 8840, + 8842, 8872, 9217, 9220, 9222, 9225, 9232, 9237, 9240, 9249, 9252, 9280, 9282, 9285, 9288, 9297, + 9300, 9312, 9345, 9348, 9360, 9472, 9477, 9480, 9489, 9492, 9504, 9537, 9540, 9552, 9574, 9600, + 9729, 9732, 9744, 9792, 9817, 10240, 10245, 10257, 10260, 10305, 10308, 10320, 10378, 10410, 10497, 10500, + 10512, 10645, 10762, 10786, 10852, 10888, 10890, 16385, 16388, 16390, 16393, 16400, 16402, 16405, 16408, 16410, + 16417, 16420, 16422, 16448, 16450, 16453, 16456, 16458, 16465, 16468, 16470, 16473, 16480, 16482, 16485, 16513, + 16516, 16528, 16533, 16536, 16545, 16548, 16640, 16642, 16645, 16648, 16657, 16660, 16662, 16665, 16672, 16674, + 16677, 16705, 16708, 16710, 16713, 16720, 16722, 16725, 16728, 16737, 16740, 16768, 16770, 16773, 16776, 16785, + 16788, 16800, 16897, 16900, 16912, 16914, 16917, 16920, 16932, 16960, 16965, 16968, 16977, 16980, 16992, 17025, + 17028, 17408, 17410, 17413, 17416, 17418, 17425, 17428, 17430, 17433, 17440, 17442, 17445, 17448, 17473, 17476, + 17478, 17481, 17488, 17490, 17493, 17496, 17505, 17508, 17536, 17538, 17541, 17544, 17553, 17556, 17568, 17665, + 17668, 17670, 17673, 17680, 17682, 17685, 17688, 17697, 17700, 17728, 17730, 17733, 17736, 17745, 17748, 17760, + 17770, 17793, 17796, 17808, 17920, 17922, 17925, 17928, 17937, 17940, 17952, 17985, 17988, 18000, 18048, 18085, + 18433, 18436, 18441, 18448, 18450, 18453, 18456, 18465, 18468, 18496, 18498, 18501, 18504, 18513, 18516, 18528, + 18564, 18576, 18688, 18690, 18693, 18696, 18705, 18708, 18720, 18753, 18756, 18768, 18816, 18838, 18945, 18948, + 18960, 19008, 20480, 20482, 20485, 20488, 20497, 20500, 20502, 20505, 20512, 20514, 20517, 20520, 20545, 20548, + 20550, 20553, 20560, 20562, 20565, 20568, 20577, 20580, 20608, 20610, 20613, 20616, 20625, 20628, 20737, 20740, + 20742, 20745, 20752, 20754, 20757, 20760, 20769, 20772, 20800, 20802, 20805, 20808, 20817, 20820, 20832, 20865, + 20868, 20880, 20992, 20997, 21000, 21009, 21012, 21024, 21057, 21060, 21072, 21097, 21120, 21505, 21508, 21510, + 21513, 21520, 21522, 21525, 21528, 21537, 21540, 21568, 21570, 21573, 21576, 21585, 21588, 21600, 21633, 21636, + 21648, 21760, 21762, 21765, 21768, 21777, 21780, 21792, 21825, 21828, 21840, 21888, 22017, 22020, 22032, 22054, + 22080, 22528, 22530, 22533, 22536, 22545, 22548, 22560, 22593, 22596, 22608, 22618, 22656, 22785, 22788, 22800, + 22848, 23040, 23065, 23173, 23208, 24577, 24580, 24582, 24592, 24594, 24597, 24600, 24609, 24612, 24640, 24645, + 24648, 24657, 24660, 24672, 24708, 24720, 24832, 24834, 24837, 24840, 24849, 24852, 24864, 24897, 24900, 24912, + 24960, 24985, 25092, 25104, 25152, 25174, 25249, 25600, 25605, 25608, 25617, 25620, 25632, 25665, 25668, 25680, + 25728, 25857, 25860, 25872, 25920, 25930, 25960, 26002, 26112, 26260, 26625, 26628, 26640, 26725, 26776, 26880, + 26922, 27202, 27297, 32768, 32770, 32773, 32776, 32785, 32788, 32793, 32800, 32805, 32833, 32836, 32848, 32850, + 32853, 32856, 32865, 32896, 32901, 32913, 32916, 33025, 33028, 33033, 33040, 33042, 33045, 33048, 33057, 33060, + 33088, 33090, 33093, 33096, 33105, 33108, 33153, 33156, 33168, 33193, 33280, 33285, 33290, 33297, 33300, 33345, + 33348, 33360, 33793, 33796, 33798, 33801, 33808, 33810, 33813, 33816, 33825, 33856, 33858, 33861, 33864, 33873, + 33876, 33888, 33921, 33924, 33936, 34048, 34050, 34053, 34056, 34065, 34068, 34080, 34113, 34116, 34128, 34176, + 34186, 34305, 34308, 34320, 34345, 34368, 34816, 34821, 34833, 34836, 34881, 34884, 34896, 34978, 35073, 35076, + 35136, 35173, 35362, 35416, 35418, 35458, 35490, 36865, 36868, 36873, 36880, 36882, 36885, 36888, 36900, 36928, + 36930, 36933, 36936, 36945, 36948, 36960, 36993, 36996, 37008, 37120, 37125, 37137, 37140, 37185, 37188, 37200, + 37210, 37377, 37380, 37392, 37440, 37542, 37888, 37890, 37893, 37896, 37905, 37908, 37920, 37953, 37956, 37968, + 38016, 38038, 38145, 38148, 38160, 38208, 38296, 38305, 38400, 38470, 38500, 38913, 38916, 38928, 38950, 38976, + 39081, 39168, 39241, 39250, 39568, 40960, 40965, 40970, 40980, 40994, 41002, 41025, 41028, 41040, 41122, 41130, + 41280, 41317, 41474, 41482, 41506, 41512, 41514, 41602, 41608, 41610, 41640, 41985, 41988, 42000, 42048, 42121, + 42148, 42240, 42265, 42577, 43018, 43048, 43170, 43348, 43398, 43528, 43530, 43552, 43554, 43560, 43656, 43690, + }; + + const int kmap_size = 43692; + //const int nwant = type == GGML_TYPE_IQ1_S ? 3 : 2; + const int nwant = type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? 3 : type == GGML_TYPE_IQ2_S ? 1 : 2; + const uint16_t * kgrid = type == GGML_TYPE_IQ2_XXS ? kgrid_2bit_256 : + type == GGML_TYPE_IQ2_XS ? kgrid_2bit_512 : + type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M ? kgrid_1bit_2048 : kgrid_2bit_1024; + uint64_t * kgrid_q2xs; + int * kmap_q2xs; + uint16_t * kneighbors_q2xs; + + //printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size); + uint64_t * the_grid = (uint64_t *)malloc(grid_size*sizeof(uint64_t)); + for (int k = 0; k < grid_size; ++k) { + int8_t * pos = (int8_t *)(the_grid + k); + for (int i = 0; i < 8; ++i) { + int l = (kgrid[k] >> 2*i) & 0x3; + pos[i] = 2*l + 1; + } + } + kgrid_q2xs = the_grid; + iq2_data[gindex].grid = the_grid; + kmap_q2xs = (int *)malloc(kmap_size*sizeof(int)); + iq2_data[gindex].map = kmap_q2xs; + for (int i = 0; i < kmap_size; ++i) kmap_q2xs[i] = -1; + uint64_t aux64; + uint8_t * aux8 = (uint8_t *)&aux64; + for (int i = 0; i < grid_size; ++i) { + aux64 = kgrid_q2xs[i]; + uint16_t index = 0; + for (int k=0; k<8; ++k) { + uint16_t q = (aux8[k] - 1)/2; + index |= (q << 2*k); + } + kmap_q2xs[index] = i; + } + int8_t pos[8]; + int * dist2 = (int *)malloc(2*grid_size*sizeof(int)); + int num_neighbors = 0, num_not_in_map = 0; + for (int i = 0; i < kmap_size; ++i) { + if (kmap_q2xs[i] >= 0) continue; + ++num_not_in_map; + for (int k = 0; k < 8; ++k) { + int l = (i >> 2*k) & 0x3; + pos[k] = 2*l + 1; + } + for (int j = 0; j < grid_size; ++j) { + const int8_t * pg = (const int8_t *)(kgrid_q2xs + j); + int d2 = 0; + for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]); + dist2[2*j+0] = d2; + dist2[2*j+1] = j; + } + qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func); + int n = 0; int d2 = dist2[0]; + int nhave = 1; + for (int j = 0; j < grid_size; ++j) { + if (dist2[2*j] > d2) { + if (nhave == nwant) break; + d2 = dist2[2*j]; + ++nhave; + } + ++n; + } + num_neighbors += n; + } + //printf("%s: %d neighbours in total\n", __func__, num_neighbors); + kneighbors_q2xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t)); + iq2_data[gindex].neighbours = kneighbors_q2xs; + int counter = 0; + for (int i = 0; i < kmap_size; ++i) { + if (kmap_q2xs[i] >= 0) continue; + for (int k = 0; k < 8; ++k) { + int l = (i >> 2*k) & 0x3; + pos[k] = 2*l + 1; + } + for (int j = 0; j < grid_size; ++j) { + const int8_t * pg = (const int8_t *)(kgrid_q2xs + j); + int d2 = 0; + for (int k = 0; k < 8; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]); + dist2[2*j+0] = d2; + dist2[2*j+1] = j; + } + qsort(dist2, grid_size, 2*sizeof(int), iq2_compare_func); + kmap_q2xs[i] = -(counter + 1); + int d2 = dist2[0]; + uint16_t * start = &kneighbors_q2xs[counter++]; + int n = 0, nhave = 1; + for (int j = 0; j < grid_size; ++j) { + if (dist2[2*j] > d2) { + if (nhave == nwant) break; + d2 = dist2[2*j]; + ++nhave; + } + kneighbors_q2xs[counter++] = dist2[2*j+1]; + ++n; + } + *start = n; + } + free(dist2); +} + +void iq2xs_free_impl(enum ggml_type type) { + GGML_ASSERT(type == GGML_TYPE_IQ2_XXS || type == GGML_TYPE_IQ2_XS || type == GGML_TYPE_IQ1_S || type == GGML_TYPE_IQ1_M || type == GGML_TYPE_IQ2_S); + const int gindex = iq2_data_index(type); + if (iq2_data[gindex].grid) { + free(iq2_data[gindex].grid); iq2_data[gindex].grid = NULL; + free(iq2_data[gindex].map); iq2_data[gindex].map = NULL; + free(iq2_data[gindex].neighbours); iq2_data[gindex].neighbours = NULL; + } +} + +static int iq2_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid, + const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) { + int num_neighbors = neighbours[0]; + GGML_ASSERT(num_neighbors > 0); + float best_d2 = FLT_MAX; + int grid_index = -1; + for (int j = 1; j <= num_neighbors; ++j) { + const int8_t * pg = (const int8_t *)(grid + neighbours[j]); + float d2 = 0; + for (int i = 0; i < 8; ++i) { + float q = pg[i]; + float diff = scale*q - xval[i]; + d2 += weight[i]*diff*diff; + } + if (d2 < best_d2) { + best_d2 = d2; grid_index = neighbours[j]; + } + } + GGML_ASSERT(grid_index >= 0); + const int8_t * pg = (const int8_t *)(grid + grid_index); + for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2; + return grid_index; +} + +static void quantize_row_iq2_xxs_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) { + + const int gindex = iq2_data_index(GGML_TYPE_IQ2_XXS); + + const uint64_t * kgrid_q2xs = iq2_data[gindex].grid; + const int * kmap_q2xs = iq2_data[gindex].map; + const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours; + + GGML_ASSERT(quant_weights && "missing quantization weights"); + GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?"); + GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?"); + GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?"); + GGML_ASSERT(n%QK_K == 0); + + const int kMaxQ = 3; + + const int64_t nbl = n/QK_K; + + block_iq2_xxs * y = vy; + + float scales[QK_K/32]; + float weight[32]; + float xval[32]; + int8_t L[32]; + int8_t Laux[32]; + float waux[32]; + uint8_t block_signs[4]; + uint32_t q2[2*(QK_K/32)]; + + for (int ibl = 0; ibl < nbl; ++ibl) { + + y[ibl].d = GGML_FP32_TO_FP16(0.f); + memset(q2, 0, QK_K/4); + + float max_scale = 0; + + const float * xbl = x + QK_K*ibl; + float sumx2 = 0; + for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i]; + float sigma2 = sumx2/QK_K; + + for (int ib = 0; ib < QK_K/32; ++ib) { + const float * xb = xbl + 32*ib; + const float * qw = quant_weights + QK_K*ibl + 32*ib; + for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]); + for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]); + for (int k = 0; k < 4; ++k) { + int nflip = 0; + uint8_t s = 0; + for (int i = 0; i < 8; ++i) { + if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i]; + else { + xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i); + } + } + if (nflip%2) { + int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin]; + for (int i = 1; i < 8; ++i) { + float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i]; + if (ax < min) { + min = ax; imin = i; + } + } + xval[8*k+imin] = -xval[8*k+imin]; + s ^= (1 << imin); + } + block_signs[k] = s & 127; + } + float max = xval[0]; + for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]); + if (!max) { + scales[ib] = 0; + memset(L, 0, 32); + continue; + } + float scale = make_qp_quants(32, kMaxQ+1, xval, (uint8_t*)L, weight); + float eff_max = scale*kMaxQ; + float best = 0; + for (int is = -6; is <= 6; ++is) { + float id = (2*kMaxQ-1+is*0.1f)/eff_max; + float this_scale = 1/id; + for (int k = 0; k < 4; ++k) { + for (int i = 0; i < 8; ++i) { + int l = nearest_int(0.5f*(id*xval[8*k+i]-1)); + Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l)); + } + uint16_t u = 0; + for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i); + int grid_index = kmap_q2xs[u]; + if (grid_index < 0) { + const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1; + grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k); + } + } + float sumqx = 0, sumq2 = 0; + for (int i = 0; i < 32; ++i) { + float w = weight[i]; + float q = 2*Laux[i] + 1; + sumqx += w*xval[i]*q; + sumq2 += w*q*q; + } + if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { + scale = sumqx/sumq2; best = scale*sumqx; + memcpy(L, Laux, 32); + } + } + if (scale > 0) { + float id = 1/scale; + for (int k = 0; k < 4; ++k) { + uint16_t u = 0; + for (int i = 0; i < 8; ++i) { + int l = nearest_int(0.5f*(id*xval[8*k+i]-1)); + l = MAX(0, MIN(kMaxQ-1, l)); + u |= (l << 2*i); + } + int grid_index = kmap_q2xs[u]; + if (grid_index < 0) { + const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1; + grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k); + } + const int8_t * pg = (const int8_t *)(kgrid_q2xs + grid_index); + for (int i = 0; i < 8; ++i) L[8*k+i] = (pg[i] - 1)/2; + } + float sumqx = 0, sumq2 = 0; + for (int i = 0; i < 32; ++i) { + float w = weight[i]; + float q = 2*L[i] + 1; + sumqx += w*xval[i]*q; + sumq2 += w*q*q; + } + if (sumq2 > 0) scale = sumqx/sumq2; + } + if (scale < 0) { + // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale) + // and correspondingly flip quant signs. + scale = -scale; + for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127; + } + for (int k = 0; k < 4; ++k) { + uint16_t u = 0; + for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i); + int grid_index = kmap_q2xs[u]; + if (grid_index < 0) { + printf("Oops: found point %u not on grid:", u); + for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]); + printf("\n"); + GGML_ASSERT(false); + } + q2[2*ib+0] |= (grid_index << 8*k); + q2[2*ib+1] |= (block_signs[k] << 7*k); + } + GGML_ASSERT(scale >= 0); + scales[ib] = scale; + max_scale = MAX(max_scale, scale); + } + + if (!max_scale) { + memset(y[ibl].qs, 0, QK_K/4); + continue; + } + + float d = max_scale/31; + y[ibl].d = GGML_FP32_TO_FP16(d); + float id = 1/d; + for (int ib = 0; ib < QK_K/32; ++ib) { + int l = nearest_int(0.5f*(id*scales[ib]-1)); + l = MAX(0, MIN(15, l)); + q2[2*ib+1] |= ((uint32_t)l << 28); + } + memcpy(y[ibl].qs, q2, QK_K/4); + } +} + +static void quantize_row_iq2_xs_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) { + + const int gindex = iq2_data_index(GGML_TYPE_IQ2_XS); + + const uint64_t * kgrid_q2xs = iq2_data[gindex].grid; + const int * kmap_q2xs = iq2_data[gindex].map; + const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours; + + GGML_ASSERT(quant_weights && "missing quantization weights"); + GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?"); + GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?"); + GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?"); + GGML_ASSERT(n%QK_K == 0); + + const int kMaxQ = 3; + + const int64_t nbl = n/QK_K; + + block_iq2_xs * y = vy; + + float scales[QK_K/16]; + float weight[16]; + float xval[16]; + int8_t L[16]; + int8_t Laux[16]; + float waux[16]; + bool is_on_grid[2]; + bool is_on_grid_aux[2]; + uint8_t block_signs[2]; + uint16_t q2[2*(QK_K/16)]; + + for (int ibl = 0; ibl < nbl; ++ibl) { + + y[ibl].d = GGML_FP32_TO_FP16(0.f); + memset(q2, 0, QK_K/4); + memset(y[ibl].scales, 0, QK_K/32); + + float max_scale = 0; + + const float * xbl = x + QK_K*ibl; + float sumx2 = 0; + for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i]; + float sigma2 = sumx2/QK_K; + + for (int ib = 0; ib < QK_K/16; ++ib) { + const float * xb = xbl + 16*ib; + const float * qw = quant_weights + QK_K*ibl + 16*ib; + for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]); + for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]); + for (int k = 0; k < 2; ++k) { + int nflip = 0; + uint8_t s = 0; + for (int i = 0; i < 8; ++i) { + if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i]; + else { + xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i); + } + } + if (nflip%2) { + int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin]; + for (int i = 1; i < 8; ++i) { + float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i]; + if (ax < min) { + min = ax; imin = i; + } + } + xval[8*k+imin] = -xval[8*k+imin]; + s ^= (1 << imin); + } + block_signs[k] = s & 127; + } + float max = xval[0]; + for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]); + if (!max) { + scales[ib] = 0; + memset(L, 0, 16); + continue; + } + float best = 0; + float scale = max/(2*kMaxQ-1); + is_on_grid[0] = is_on_grid[1] = true; + for (int is = -9; is <= 9; ++is) { + float id = (2*kMaxQ-1+is*0.1f)/max; + float this_scale = 1/id; + for (int k = 0; k < 2; ++k) { + for (int i = 0; i < 8; ++i) { + int l = nearest_int(0.5f*(id*xval[8*k+i]-1)); + Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l)); + } + uint16_t u = 0; + for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i); + int grid_index = kmap_q2xs[u]; + is_on_grid_aux[k] = true; + if (grid_index < 0) { + is_on_grid_aux[k] = false; + const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1; + grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k); + } + } + float sumqx = 0, sumq2 = 0; + for (int i = 0; i < 16; ++i) { + float w = weight[i]; + float q = 2*Laux[i] + 1; + sumqx += w*xval[i]*q; + sumq2 += w*q*q; + } + if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { + scale = sumqx/sumq2; best = scale*sumqx; + for (int i = 0; i < 16; ++i) L[i] = Laux[i]; + for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k]; + } + } + int n_not_ongrid = 0; + for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid; + if (n_not_ongrid > 0 && scale > 0) { + float id = 1/scale; + for (int k = 0; k < 2; ++k) { + if (is_on_grid[k]) continue; + uint16_t u = 0; + for (int i = 0; i < 8; ++i) { + int l = nearest_int(0.5f*(id*xval[8*k+i]-1)); + l = MAX(0, MIN(kMaxQ-1, l)); + u |= (l << 2*i); + L[8*k + i] = l; + } + int grid_index = kmap_q2xs[u]; + if (grid_index < 0) { + const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1; + grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k); + } + } + float sumqx = 0, sumq2 = 0; + for (int i = 0; i < 16; ++i) { + float w = weight[i]; + float q = 2*L[i] + 1; + sumqx += w*xval[i]*q; + sumq2 += w*q*q; + } + if (sumq2 > 0) scale = sumqx/sumq2; + } + if (scale < 0) { + scale = -scale; + for (int k = 0; k < 2; ++k) block_signs[k] = (~block_signs[k]) & 127; + } + for (int k = 0; k < 2; ++k) { + uint16_t u = 0; + for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i); + int grid_index = kmap_q2xs[u]; + if (grid_index < 0) { + printf("Oops: found point %u not on grid:", u); + for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]); + printf("\n"); + GGML_ASSERT(false); + } + q2[2*ib+k] = grid_index | (block_signs[k] << 9); + } + GGML_ASSERT(scale >= 0); + scales[ib] = scale; + max_scale = MAX(max_scale, scale); + } + + if (!max_scale) { + memset(y[ibl].qs, 0, QK_K/4); + continue; + } + + float d = max_scale/31; + y[ibl].d = GGML_FP32_TO_FP16(d); + float id = 1/d; + for (int ib = 0; ib < QK_K/16; ++ib) { + int l = nearest_int(0.5f*(id*scales[ib]-1)); + l = MAX(0, MIN(15, l)); + if (ib%2 == 0) y[ibl].scales[ib/2] = l; + else y[ibl].scales[ib/2] |= (l << 4); + } + memcpy(y[ibl].qs, q2, QK_K/4); + + } +} + +size_t quantize_iq2_xxs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { + GGML_ASSERT(n_per_row%QK_K == 0); + int64_t nblock = n_per_row/QK_K; + char * qrow = (char *)dst; + for (int64_t row = 0; row < nrow; ++row) { + quantize_row_iq2_xxs_impl(src, qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += nblock*sizeof(block_iq2_xxs); + } + return nrow * nblock * sizeof(block_iq2_xxs); +} + +size_t quantize_iq2_xs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { + GGML_ASSERT(n_per_row%QK_K == 0); + int64_t nblock = n_per_row/QK_K; + char * qrow = (char *)dst; + for (int64_t row = 0; row < nrow; ++row) { + quantize_row_iq2_xs_impl(src, qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += nblock*sizeof(block_iq2_xs); + } + return nrow * nblock * sizeof(block_iq2_xs); +} + +// +// ============================================= 3-bit using D4 lattice +// + +typedef struct { + uint32_t * grid; + int * map; + uint16_t * neighbours; +} iq3_entry_t; + +static iq3_entry_t iq3_data[2] = { + {NULL, NULL, NULL}, + {NULL, NULL, NULL}, +}; + +static inline int iq3_data_index(int grid_size) { + (void)grid_size; + GGML_ASSERT(grid_size == 256 || grid_size == 512); + return grid_size == 256 ? 0 : 1; +} + +static int iq3_compare_func(const void * left, const void * right) { + const int * l = (const int *)left; + const int * r = (const int *)right; + return l[0] < r[0] ? -1 : l[0] > r[0] ? 1 : l[1] < r[1] ? -1 : l[1] > r[1] ? 1 : 0; +} + +void iq3xs_init_impl(int grid_size) { + const int gindex = iq3_data_index(grid_size); + if (iq3_data[gindex].grid) { + return; + } + static const uint16_t kgrid_256[256] = { + 0, 2, 4, 9, 11, 15, 16, 18, 25, 34, 59, 61, 65, 67, 72, 74, + 81, 85, 88, 90, 97, 108, 120, 128, 130, 132, 137, 144, 146, 153, 155, 159, + 169, 175, 189, 193, 199, 200, 202, 213, 248, 267, 287, 292, 303, 315, 317, 321, + 327, 346, 362, 413, 436, 456, 460, 462, 483, 497, 513, 515, 520, 522, 529, 531, + 536, 538, 540, 551, 552, 576, 578, 585, 592, 594, 641, 643, 648, 650, 657, 664, + 698, 704, 706, 720, 729, 742, 758, 769, 773, 808, 848, 852, 870, 889, 901, 978, + 992, 1024, 1026, 1033, 1035, 1040, 1042, 1046, 1049, 1058, 1089, 1091, 1093, 1096, 1098, 1105, + 1112, 1139, 1143, 1144, 1152, 1154, 1161, 1167, 1168, 1170, 1183, 1184, 1197, 1217, 1224, 1228, + 1272, 1276, 1309, 1323, 1347, 1367, 1377, 1404, 1473, 1475, 1486, 1509, 1537, 1544, 1546, 1553, + 1555, 1576, 1589, 1594, 1600, 1602, 1616, 1625, 1636, 1638, 1665, 1667, 1672, 1685, 1706, 1722, + 1737, 1755, 1816, 1831, 1850, 1856, 1862, 1874, 1901, 1932, 1950, 1971, 2011, 2032, 2052, 2063, + 2077, 2079, 2091, 2095, 2172, 2192, 2207, 2208, 2224, 2230, 2247, 2277, 2308, 2345, 2356, 2389, + 2403, 2424, 2501, 2504, 2506, 2520, 2570, 2593, 2616, 2624, 2630, 2646, 2669, 2700, 2714, 2746, + 2754, 2795, 2824, 2835, 2839, 2874, 2882, 2905, 2984, 3028, 3042, 3092, 3108, 3110, 3124, 3153, + 3185, 3215, 3252, 3288, 3294, 3364, 3397, 3434, 3483, 3523, 3537, 3587, 3589, 3591, 3592, 3610, + 3626, 3670, 3680, 3722, 3749, 3754, 3776, 3789, 3803, 3824, 3857, 3873, 3904, 3906, 3924, 3992, + }; + static const uint16_t kgrid_512[512] = { + 0, 1, 2, 5, 7, 8, 9, 10, 12, 14, 16, 17, 21, 27, 32, 34, + 37, 39, 41, 43, 48, 50, 57, 60, 63, 64, 65, 66, 68, 72, 73, 77, + 80, 83, 87, 89, 93, 100, 113, 117, 122, 128, 129, 133, 135, 136, 139, 142, + 145, 149, 152, 156, 162, 165, 167, 169, 171, 184, 187, 195, 201, 205, 208, 210, + 217, 219, 222, 228, 232, 234, 247, 249, 253, 256, 267, 271, 273, 276, 282, 288, + 291, 297, 312, 322, 324, 336, 338, 342, 347, 353, 357, 359, 374, 379, 390, 393, + 395, 409, 426, 441, 448, 450, 452, 464, 466, 470, 475, 488, 492, 512, 513, 514, + 516, 520, 521, 523, 525, 527, 528, 530, 537, 540, 542, 556, 558, 561, 570, 576, + 577, 579, 582, 584, 588, 593, 600, 603, 609, 616, 618, 632, 638, 640, 650, 653, + 655, 656, 660, 666, 672, 675, 685, 688, 698, 705, 708, 711, 712, 715, 721, 727, + 728, 732, 737, 754, 760, 771, 773, 778, 780, 793, 795, 802, 806, 808, 812, 833, + 840, 843, 849, 856, 858, 873, 912, 916, 919, 932, 934, 961, 963, 968, 970, 977, + 989, 993, 1010, 1016, 1024, 1025, 1027, 1029, 1031, 1032, 1034, 1036, 1038, 1041, 1043, 1047, + 1048, 1050, 1057, 1059, 1061, 1064, 1066, 1079, 1080, 1083, 1085, 1088, 1090, 1096, 1099, 1103, + 1106, 1109, 1113, 1116, 1122, 1129, 1153, 1156, 1159, 1169, 1171, 1176, 1183, 1185, 1195, 1199, + 1209, 1212, 1216, 1218, 1221, 1225, 1234, 1236, 1241, 1243, 1250, 1256, 1270, 1281, 1287, 1296, + 1299, 1306, 1309, 1313, 1338, 1341, 1348, 1353, 1362, 1375, 1376, 1387, 1400, 1408, 1410, 1415, + 1425, 1453, 1457, 1477, 1481, 1494, 1496, 1507, 1512, 1538, 1545, 1547, 1549, 1551, 1554, 1561, + 1563, 1565, 1570, 1572, 1575, 1577, 1587, 1593, 1601, 1603, 1605, 1612, 1617, 1619, 1632, 1648, + 1658, 1662, 1664, 1674, 1680, 1690, 1692, 1704, 1729, 1736, 1740, 1745, 1747, 1751, 1752, 1761, + 1763, 1767, 1773, 1787, 1795, 1801, 1806, 1810, 1817, 1834, 1840, 1844, 1857, 1864, 1866, 1877, + 1882, 1892, 1902, 1915, 1934, 1953, 1985, 1987, 2000, 2002, 2013, 2048, 2052, 2058, 2064, 2068, + 2071, 2074, 2081, 2088, 2104, 2114, 2119, 2121, 2123, 2130, 2136, 2141, 2147, 2153, 2157, 2177, + 2179, 2184, 2189, 2193, 2203, 2208, 2223, 2226, 2232, 2244, 2249, 2251, 2256, 2258, 2265, 2269, + 2304, 2306, 2324, 2335, 2336, 2361, 2373, 2375, 2385, 2418, 2443, 2460, 2480, 2504, 2509, 2520, + 2531, 2537, 2562, 2568, 2572, 2578, 2592, 2596, 2599, 2602, 2614, 2620, 2625, 2627, 2629, 2634, + 2641, 2650, 2682, 2688, 2697, 2707, 2712, 2718, 2731, 2754, 2759, 2760, 2775, 2788, 2793, 2805, + 2811, 2817, 2820, 2832, 2842, 2854, 2890, 2902, 2921, 2923, 2978, 3010, 3012, 3026, 3081, 3083, + 3085, 3097, 3099, 3120, 3136, 3152, 3159, 3188, 3210, 3228, 3234, 3245, 3250, 3256, 3264, 3276, + 3281, 3296, 3349, 3363, 3378, 3392, 3395, 3420, 3440, 3461, 3488, 3529, 3531, 3584, 3588, 3591, + 3600, 3602, 3614, 3616, 3628, 3634, 3650, 3657, 3668, 3683, 3685, 3713, 3716, 3720, 3726, 3729, + 3736, 3753, 3778, 3802, 3805, 3819, 3841, 3845, 3851, 3856, 3880, 3922, 3938, 3970, 3993, 4032, + }; + + const int kmap_size = 4096; + const int nwant = grid_size == 256 ? 2 : 3; + const uint16_t * kgrid = grid_size == 256 ? kgrid_256 : kgrid_512; + uint32_t * kgrid_q3xs; + int * kmap_q3xs; + uint16_t * kneighbors_q3xs; + + //printf("================================================================= %s(grid_size = %d)\n", __func__, grid_size); + uint32_t * the_grid = (uint32_t *)malloc(grid_size*sizeof(uint32_t)); + for (int k = 0; k < grid_size; ++k) { + int8_t * pos = (int8_t *)(the_grid + k); + for (int i = 0; i < 4; ++i) { + int l = (kgrid[k] >> 3*i) & 0x7; + pos[i] = 2*l + 1; + } + } + kgrid_q3xs = the_grid; + iq3_data[gindex].grid = the_grid; + kmap_q3xs = (int *)malloc(kmap_size*sizeof(int)); + iq3_data[gindex].map = kmap_q3xs; + for (int i = 0; i < kmap_size; ++i) kmap_q3xs[i] = -1; + uint32_t aux32; + uint8_t * aux8 = (uint8_t *)&aux32; + for (int i = 0; i < grid_size; ++i) { + aux32 = kgrid_q3xs[i]; + uint16_t index = 0; + for (int k=0; k<4; ++k) { + uint16_t q = (aux8[k] - 1)/2; + index |= (q << 3*k); + } + kmap_q3xs[index] = i; + } + int8_t pos[4]; + int * dist2 = (int *)malloc(2*grid_size*sizeof(int)); + int num_neighbors = 0, num_not_in_map = 0; + for (int i = 0; i < kmap_size; ++i) { + if (kmap_q3xs[i] >= 0) continue; + ++num_not_in_map; + for (int k = 0; k < 4; ++k) { + int l = (i >> 3*k) & 0x7; + pos[k] = 2*l + 1; + } + for (int j = 0; j < grid_size; ++j) { + const int8_t * pg = (const int8_t *)(kgrid_q3xs + j); + int d2 = 0; + for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]); + dist2[2*j+0] = d2; + dist2[2*j+1] = j; + } + qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func); + int n = 0; int d2 = dist2[0]; + int nhave = 1; + for (int j = 0; j < grid_size; ++j) { + if (dist2[2*j] > d2) { + if (nhave == nwant) break; + d2 = dist2[2*j]; + ++nhave; + } + ++n; + } + num_neighbors += n; + } + //printf("%s: %d neighbours in total\n", __func__, num_neighbors); + kneighbors_q3xs = (uint16_t *)malloc((num_neighbors + num_not_in_map)*sizeof(uint16_t)); + iq3_data[gindex].neighbours = kneighbors_q3xs; + int counter = 0; + for (int i = 0; i < kmap_size; ++i) { + if (kmap_q3xs[i] >= 0) continue; + for (int k = 0; k < 4; ++k) { + int l = (i >> 3*k) & 0x7; + pos[k] = 2*l + 1; + } + for (int j = 0; j < grid_size; ++j) { + const int8_t * pg = (const int8_t *)(kgrid_q3xs + j); + int d2 = 0; + for (int k = 0; k < 4; ++k) d2 += (pg[k] - pos[k])*(pg[k] - pos[k]); + dist2[2*j+0] = d2; + dist2[2*j+1] = j; + } + qsort(dist2, grid_size, 2*sizeof(int), iq3_compare_func); + kmap_q3xs[i] = -(counter + 1); + int d2 = dist2[0]; + uint16_t * start = &kneighbors_q3xs[counter++]; + int n = 0, nhave = 1; + for (int j = 0; j < grid_size; ++j) { + if (dist2[2*j] > d2) { + if (nhave == nwant) break; + d2 = dist2[2*j]; + ++nhave; + } + kneighbors_q3xs[counter++] = dist2[2*j+1]; + ++n; + } + *start = n; + } + free(dist2); +} + +void iq3xs_free_impl(int grid_size) { + GGML_ASSERT(grid_size == 256 || grid_size == 512); + const int gindex = iq3_data_index(grid_size); + if (iq3_data[gindex].grid) { + free(iq3_data[gindex].grid); iq3_data[gindex].grid = NULL; + free(iq3_data[gindex].map); iq3_data[gindex].map = NULL; + free(iq3_data[gindex].neighbours); iq3_data[gindex].neighbours = NULL; + } +} + +static int iq3_find_best_neighbour(const uint16_t * restrict neighbours, const uint32_t * restrict grid, + const float * restrict xval, const float * restrict weight, float scale, int8_t * restrict L) { + int num_neighbors = neighbours[0]; + GGML_ASSERT(num_neighbors > 0); + float best_d2 = FLT_MAX; + int grid_index = -1; + for (int j = 1; j <= num_neighbors; ++j) { + const int8_t * pg = (const int8_t *)(grid + neighbours[j]); + float d2 = 0; + for (int i = 0; i < 4; ++i) { + float q = pg[i]; + float diff = scale*q - xval[i]; + d2 += weight[i]*diff*diff; + } + if (d2 < best_d2) { + best_d2 = d2; grid_index = neighbours[j]; + } + } + GGML_ASSERT(grid_index >= 0); + const int8_t * pg = (const int8_t *)(grid + grid_index); + for (int i = 0; i < 4; ++i) L[i] = (pg[i] - 1)/2; + return grid_index; +} + +static void quantize_row_iq3_xxs_impl(int grid_size, const float * restrict x, void * restrict vy, int64_t n, + const float * restrict quant_weights) { + + const int gindex = iq3_data_index(grid_size); + + const uint32_t * kgrid_q3xs = iq3_data[gindex].grid; + const int * kmap_q3xs = iq3_data[gindex].map; + const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours; + + //GGML_ASSERT(quant_weights && "missing quantization weights"); + GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?"); + GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?"); + GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?"); + GGML_ASSERT(n%QK_K == 0); + + const int kMaxQ = 8; + + const int64_t nbl = n/QK_K; + + ggml_fp16_t * dh; + uint8_t * qs; + int block_size; + if (grid_size == 256) { + block_iq3_xxs * y = vy; + dh = &y->d; + qs = y->qs; + block_size = sizeof(block_iq3_xxs); + } else { + block_iq3_s * y = vy; + dh = &y->d; + qs = y->qs; + block_size = sizeof(block_iq3_s); + } + int quant_size = block_size - sizeof(ggml_fp16_t); + + float scales[QK_K/32]; + float weight[32]; + float xval[32]; + int8_t L[32]; + int8_t Laux[32]; + float waux[32]; + bool is_on_grid[8]; + bool is_on_grid_aux[8]; + uint8_t block_signs[8]; + uint8_t q3[3*(QK_K/8)+QK_K/32]; + uint32_t * scales_and_signs = (uint32_t *)(q3 + QK_K/4); + uint8_t * qh = q3 + 3*(QK_K/8); + + for (int ibl = 0; ibl < nbl; ++ibl) { + + dh[0] = GGML_FP32_TO_FP16(0.f); + memset(q3, 0, 3*QK_K/8+QK_K/32); + + float max_scale = 0; + + const float * xbl = x + QK_K*ibl; + float sumx2 = 0; + for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i]; + float sigma2 = 2*sumx2/QK_K; + + for (int ib = 0; ib < QK_K/32; ++ib) { + const float * xb = xbl + 32*ib; + if (quant_weights) { + const float * qw = quant_weights + QK_K*ibl + 32*ib; + for (int i = 0; i < 32; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]); + } else { + for (int i = 0; i < 32; ++i) weight[i] = xb[i]*xb[i]; + } + for (int i = 0; i < 32; ++i) waux[i] = sqrtf(weight[i]); + for (int k = 0; k < 4; ++k) { + int nflip = 0; + uint8_t s = 0; + for (int i = 0; i < 8; ++i) { + if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i]; + else { + xval[8*k + i] = -xb[8*k + i]; ++nflip; s |= (1 << i); + } + } + if (nflip%2) { + int imin = 0; float min = weight[8*k+imin]*xb[8*k+imin]*xb[8*k+imin]; + for (int i = 1; i < 8; ++i) { + float ax = weight[8*k+i]*xb[8*k+i]*xb[8*k+i]; + if (ax < min) { + min = ax; imin = i; + } + } + xval[8*k+imin] = -xval[8*k+imin]; + s ^= (1 << imin); + } + block_signs[k] = s & 127; + } + float max = xval[0]; + for (int i = 1; i < 32; ++i) max = MAX(max, xval[i]); + if (!max) { + scales[ib] = 0; + memset(L, 0, 32); + continue; + } + float best = 0; + float scale = max/(2*kMaxQ-1); + for (int is = -15; is <= 15; ++is) { + float id = (2*kMaxQ-1+is*0.2f)/max; + float this_scale = 1/id; + for (int k = 0; k < 8; ++k) { + for (int i = 0; i < 4; ++i) { + int l = nearest_int(0.5f*(id*xval[4*k+i]-1)); + Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l)); + } + uint16_t u = 0; + for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i); + int grid_index = kmap_q3xs[u]; + is_on_grid_aux[k] = true; + if (grid_index < 0) { + is_on_grid_aux[k] = false; + const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1; + grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k); + } + } + float sumqx = 0, sumq2 = 0; + for (int i = 0; i < 32; ++i) { + float w = weight[i]; + float q = 2*Laux[i] + 1; + sumqx += w*xval[i]*q; + sumq2 += w*q*q; + } + if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { + scale = sumqx/sumq2; best = scale*sumqx; + for (int i = 0; i < 32; ++i) L[i] = Laux[i]; + for (int k = 0; k < 8; ++k) is_on_grid[k] = is_on_grid_aux[k]; + } + } + int n_not_ongrid = 0; + for (int k = 0; k < 8; ++k) if (!is_on_grid[k]) ++n_not_ongrid; + if (n_not_ongrid > 0 && scale > 0) { + float id = 1/scale; + for (int k = 0; k < 8; ++k) { + if (is_on_grid[k]) continue; + uint16_t u = 0; + for (int i = 0; i < 4; ++i) { + int l = nearest_int(0.5f*(id*xval[4*k+i]-1)); + l = MAX(0, MIN(kMaxQ-1, l)); + u |= (l << 3*i); + } + int grid_index = kmap_q3xs[u]; + if (grid_index < 0) { + const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1; + grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k); + } + const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index); + for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2; + } + float sumqx = 0, sumq2 = 0; + for (int i = 0; i < 32; ++i) { + float w = weight[i]; + float q = 2*L[i] + 1; + sumqx += w*xval[i]*q; + sumq2 += w*q*q; + } + if (sumq2 > 0) scale = sumqx/sumq2; + } + if (scale < 0) { + // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale) + // and correspondingly flip quant signs. + scale = -scale; + for (int k = 0; k < 4; ++k) block_signs[k] = (~block_signs[k]) & 127; + } + for (int k = 0; k < 8; ++k) { + uint16_t u = 0; + for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i); + int grid_index = kmap_q3xs[u]; + if (grid_index < 0) { + printf("Oops: found point %u not on grid:", u); + for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]); + printf("\n"); + GGML_ASSERT(false); + } + if (grid_size == 256) { + q3[8*ib+k] = grid_index; + } else { + q3[8*ib+k] = grid_index & 255; + qh[ib] |= ((grid_index >> 8) << k); + } + + } + scales_and_signs[ib] = block_signs[0] | (block_signs[1] << 7) | (block_signs[2] << 14) | (block_signs[3] << 21); + GGML_ASSERT(scale >= 0); + scales[ib] = scale; + max_scale = MAX(max_scale, scale); + } + + if (!max_scale) { + memset(qs, 0, quant_size); + dh += block_size/sizeof(ggml_fp16_t); + qs += block_size; + continue; + } + + float d = max_scale/31; + dh[0] = GGML_FP32_TO_FP16(d * 1.0125f); // small improvement via this fudge factor + float id = 1/d; + for (int ib = 0; ib < QK_K/32; ++ib) { + int l = nearest_int(0.5f*(id*scales[ib]-1)); + l = MAX(0, MIN(15, l)); + scales_and_signs[ib] |= ((uint32_t)l << 28); + } + memcpy(qs, q3, quant_size); + + dh += block_size/sizeof(ggml_fp16_t); + qs += block_size; + + } +} + +size_t quantize_iq3_xxs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { + GGML_ASSERT(n_per_row%QK_K == 0); + int64_t nblock = n_per_row/QK_K; + char * qrow = (char *)dst; + for (int64_t row = 0; row < nrow; ++row) { + quantize_row_iq3_xxs_impl(256, src, qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += nblock*sizeof(block_iq3_xxs); + } + return nrow * nblock * sizeof(block_iq3_xxs); +} + +void quantize_row_iq3_xxs(const float * restrict x, void * restrict vy, int64_t k) { + assert(k % QK_K == 0); + block_iq3_xxs * restrict y = vy; + quantize_row_iq3_xxs_reference(x, y, k); +} + +void quantize_row_iq3_xxs_reference(const float * restrict x, block_iq3_xxs * restrict y, int64_t k) { + assert(k % QK_K == 0); + quantize_row_iq3_xxs_impl(256, x, y, k, NULL); +} + +static void quantize_row_iq3_s_impl(int block_size, const float * restrict x, void * restrict vy, int n, + const float * restrict quant_weights, + float * scales, + float * weight, + float * xval, + int8_t * L, + int8_t * Laux, + float * waux, + bool * is_on_grid, + bool * is_on_grid_aux, + uint8_t * block_signs) { + + const int gindex = iq3_data_index(512); + + const uint32_t * kgrid_q3xs = iq3_data[gindex].grid; + const int * kmap_q3xs = iq3_data[gindex].map; + const uint16_t * kneighbors_q3xs = iq3_data[gindex].neighbours; + + //GGML_ASSERT(quant_weights && "missing quantization weights"); + GGML_ASSERT(kgrid_q3xs && "forgot to call ggml_quantize_init()?"); + GGML_ASSERT(kmap_q3xs && "forgot to call ggml_quantize_init()?"); + GGML_ASSERT(kneighbors_q3xs && "forgot to call ggml_quantize_init()?"); + GGML_ASSERT(n%QK_K == 0); + + const int kMaxQ = 8; + + const int64_t nbl = n/QK_K; + + block_iq3_s * y = vy; + + const int bs4 = block_size/4; + const int bs8 = block_size/8; + + for (int ibl = 0; ibl < nbl; ++ibl) { + + memset(&y[ibl], 0, sizeof(block_iq3_s)); + y[ibl].d = GGML_FP32_TO_FP16(0.f); + + uint8_t * qs = y[ibl].qs; + uint8_t * qh = y[ibl].qh; + uint8_t * signs = y[ibl].signs; + + float max_scale = 0; + + const float * xbl = x + QK_K*ibl; + float sumx2 = 0; + for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i]; + float sigma2 = 2*sumx2/QK_K; + + for (int ib = 0; ib < QK_K/block_size; ++ib) { + const float * xb = xbl + block_size*ib; + if (quant_weights) { + const float * qw = quant_weights + QK_K*ibl + block_size*ib; + for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]); + } else { + for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i]; + } + for (int i = 0; i < block_size; ++i) waux[i] = sqrtf(weight[i]); + for (int k = 0; k < bs8; ++k) { + uint8_t s = 0; + for (int i = 0; i < 8; ++i) { + if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i]; + else { + xval[8*k + i] = -xb[8*k + i]; s |= (1 << i); + } + } + block_signs[k] = s; + } + float max = xval[0]; + for (int i = 1; i < block_size; ++i) max = MAX(max, xval[i]); + if (!max) { + scales[ib] = 0; + continue; + } + float best = 0; + float scale = max/(2*kMaxQ-1); + for (int k = 0; k < bs4; ++k) is_on_grid[k] = false; + for (int is = -9; is <= 9; ++is) { + float id = (2*kMaxQ-1+is*0.2f)/max; + float this_scale = 1/id; + for (int k = 0; k < bs4; ++k) { + for (int i = 0; i < 4; ++i) { + int l = nearest_int(0.5f*(id*xval[4*k+i]-1)); + Laux[4*k+i] = MAX(0, MIN(kMaxQ-1, l)); + } + uint16_t u = 0; + for (int i = 0; i < 4; ++i) u |= (Laux[4*k+i] << 3*i); + int grid_index = kmap_q3xs[u]; + is_on_grid_aux[k] = true; + if (grid_index < 0) { + is_on_grid_aux[k] = false; + const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1; + grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, this_scale, Laux + 4*k); + } + } + float sumqx = 0, sumq2 = 0; + for (int i = 0; i < block_size; ++i) { + float w = weight[i]; + float q = 2*Laux[i] + 1; + sumqx += w*xval[i]*q; + sumq2 += w*q*q; + } + if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { + scale = sumqx/sumq2; best = scale*sumqx; + for (int i = 0; i < block_size; ++i) L[i] = Laux[i]; + for (int k = 0; k < bs4; ++k) is_on_grid[k] = is_on_grid_aux[k]; + } + } + int n_not_ongrid = 0; + for (int k = 0; k < bs4; ++k) if (!is_on_grid[k]) ++n_not_ongrid; + if (n_not_ongrid > 0 && scale > 0) { + float id = 1/scale; + for (int k = 0; k < bs4; ++k) { + //if (is_on_grid[k]) continue; + uint16_t u = 0; + for (int i = 0; i < 4; ++i) { + int l = nearest_int(0.5f*(id*xval[4*k+i]-1)); + l = MAX(0, MIN(kMaxQ-1, l)); + u |= (l << 3*i); + } + int grid_index = kmap_q3xs[u]; + if (grid_index < 0) { + const uint16_t * neighbours = kneighbors_q3xs - kmap_q3xs[u] - 1; + grid_index = iq3_find_best_neighbour(neighbours, kgrid_q3xs, xval + 4*k, waux + 4*k, scale, L + 4*k); + } + const int8_t * pg = (const int8_t *)(kgrid_q3xs + grid_index); + for (int i = 0; i < 4; ++i) L[4*k+i] = (pg[i] - 1)/2; + } + float sumqx = 0, sumq2 = 0; + for (int i = 0; i < block_size; ++i) { + float w = weight[i]; + float q = 2*L[i] + 1; + sumqx += w*xval[i]*q; + sumq2 += w*q*q; + } + if (sumq2 > 0) scale = sumqx/sumq2; + } + if (scale < 0) { + // This should never happen, but just in case, flip scale so that it is positive (we use uint's to encode the scale) + // and correspondingly flip quant signs. + scale = -scale; + for (int k = 0; k < bs8; ++k) block_signs[k] = ~block_signs[k]; + } + for (int k = 0; k < bs4; ++k) { + uint16_t u = 0; + for (int i = 0; i < 4; ++i) u |= (L[4*k+i] << 3*i); + int grid_index = kmap_q3xs[u]; + if (grid_index < 0) { + printf("Oops: found point %u not on grid:", u); + for (int i = 0; i < 4; ++i) printf(" %d", L[4*k+i]); + printf("\n"); + GGML_ASSERT(false); + } + qs[k] = grid_index & 255; + qh[(ib*bs4+k)/8] |= ((grid_index >> 8) << ((ib*bs4+k)%8)); + } + qs += bs4; + for (int k = 0; k < bs8; ++k) signs[k] = block_signs[k]; + signs += bs8; + GGML_ASSERT(scale >= 0); + scales[ib] = scale; + max_scale = MAX(max_scale, scale); + } + + if (!max_scale) { + continue; + } + + float d = max_scale/31; + y[ibl].d = GGML_FP32_TO_FP16(d * 1.033f); + float id = 1/d; + for (int ib = 0; ib < QK_K/block_size; ib += 2) { + int l1 = nearest_int(0.5f*(id*scales[ib+0]-1)); + l1 = MAX(0, MIN(15, l1)); + int l2 = nearest_int(0.5f*(id*scales[ib+1]-1)); + l2 = MAX(0, MIN(15, l2)); + y[ibl].scales[ib/2] = l1 | (l2 << 4); + } + + } +} + +#define IQ3S_BLOCK_SIZE 32 +size_t quantize_iq3_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { + GGML_ASSERT(n_per_row%QK_K == 0); + int64_t nblock = n_per_row/QK_K; + float scales[QK_K/IQ3S_BLOCK_SIZE]; + float weight[IQ3S_BLOCK_SIZE]; + float xval[IQ3S_BLOCK_SIZE]; + int8_t L[IQ3S_BLOCK_SIZE]; + int8_t Laux[IQ3S_BLOCK_SIZE]; + float waux[IQ3S_BLOCK_SIZE]; + bool is_on_grid[IQ3S_BLOCK_SIZE/4]; + bool is_on_grid_aux[IQ3S_BLOCK_SIZE/4]; + uint8_t block_signs[IQ3S_BLOCK_SIZE/8]; + char * qrow = (char *)dst; + for (int64_t row = 0; row < nrow; ++row) { + quantize_row_iq3_s_impl(IQ3S_BLOCK_SIZE, src, qrow, n_per_row, quant_weights, + scales, weight, xval, L, Laux, waux, is_on_grid, is_on_grid_aux, block_signs); + src += n_per_row; + qrow += nblock*sizeof(block_iq3_s); + } + return nrow * nblock * sizeof(block_iq3_s); +} + +void quantize_row_iq3_s(const float * restrict x, void * restrict vy, int64_t k) { + assert(k % QK_K == 0); + block_iq3_s * restrict y = vy; + quantize_row_iq3_s_reference(x, y, k); +} + +void quantize_row_iq3_s_reference(const float * restrict x, block_iq3_s * restrict y, int64_t k) { + assert(k % QK_K == 0); + quantize_iq3_s(x, y, 1, k, NULL); +} + + +// =================================== 1.5 bpw =================================================== + +static int iq1_find_best_neighbour(const uint16_t * restrict neighbours, const uint64_t * restrict grid, + const float * restrict xval, const float * restrict weight, float * scale, int8_t * restrict L, int ngrid) { + int num_neighbors = neighbours[0]; + GGML_ASSERT(num_neighbors > 0); + float best_score = 0; + int grid_index = -1; + for (int j = 1; j <= num_neighbors; ++j) { + const int8_t * pg = (const int8_t *)(grid + neighbours[j]); + float sumqx = 0, sumq2 = 0; + for (int i = 0; i < 8; ++i) { + float q = (pg[i] - 3)/2; + float w = weight[i]; + sumqx += w*q*xval[i]; + sumq2 += w*q*q; + } + if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) { + *scale = sumqx/sumq2; best_score = *scale * sumqx; + grid_index = neighbours[j]; + } + } + if (grid_index < 0) { + for (int i = 0; i < ngrid; ++i) { + const int8_t * grid_i = (const int8_t *)(grid + i); + float sumqx = 0, sumq2 = 0; + for (int j = 0; j < 8; ++j) { + float w = weight[j]; + float q = (grid_i[j] - 3)/2; + sumqx += w*q*xval[j]; + sumq2 += w*q*q; + } + if (sumqx > 0 && sumq2 > 0 && sumqx*sumqx > best_score*sumq2) { + *scale = sumqx/sumq2; best_score = *scale*sumqx; + grid_index = i; + } + } + } + if (grid_index < 0) { + printf("Oops, did not find grid point\n"); + printf("Have %d neighbours\n", num_neighbors); + for (int j = 1; j <= num_neighbors; ++j) { + const int8_t * pg = (const int8_t *)(grid + neighbours[j]); + float sumqx = 0, sumq2 = 0; + for (int i = 0; i < 8; ++i) { + float q = (pg[i] - 3)/2; + float w = weight[i]; + sumqx += w*q*xval[i]; + sumq2 += w*q*q; + } + printf(" neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2); + } + } + GGML_ASSERT(grid_index >= 0); + //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + *scale *= 1.05f; // This is a fudge factor. Don't ask me why it improves the result. + //!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! + const int8_t * pg = (const int8_t *)(grid + grid_index); + for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2; + return grid_index; +} + +static int iq1_find_best_neighbour2(const uint16_t * restrict neighbours, const uint64_t * restrict grid, + const float * restrict xval, const float * restrict weight, float scale, const float * restrict xg, int8_t * restrict L, int ngrid) { + int num_neighbors = neighbours[0]; + GGML_ASSERT(num_neighbors > 0); + float best_score = FLT_MAX; + int grid_index = -1; + for (int j = 1; j <= num_neighbors; ++j) { + const int8_t * pg = (const int8_t *)(grid + neighbours[j]); + float d2 = 0; + for (int i = 0; i < 8; ++i) { + float q = xg[(pg[i] - 1)/2]; + float w = weight[i]; + float diff = scale*q - xval[i]; + d2 += w*diff*diff; + } + if (d2 < best_score) { + best_score = d2; + grid_index = neighbours[j]; + } + } + if (grid_index < 0) { + for (int i = 0; i < ngrid; ++i) { + const int8_t * grid_i = (const int8_t *)(grid + i); + float d2 = 0; + for (int j = 0; j < 8; ++j) { + float w = weight[j]; + float q = xg[(grid_i[j] - 1)/2]; + float diff = scale*q - xval[i]; + d2 += w*diff*diff; + } + if (d2 < best_score) { + best_score = d2; + grid_index = i; + } + } + } + if (grid_index < 0) { + printf("Oops, did not find grid point\n"); + printf("Have %d neighbours\n", num_neighbors); + for (int j = 1; j <= num_neighbors; ++j) { + const int8_t * pg = (const int8_t *)(grid + neighbours[j]); + float sumqx = 0, sumq2 = 0; + for (int i = 0; i < 8; ++i) { + float q = xg[(pg[i] - 1)/2]; + float w = weight[i]; + sumqx += w*q*xval[i]; + sumq2 += w*q*q; + } + printf(" neighbour %d: sumqx = %g sumq2 = %g\n", j, (double)sumqx, (double)sumq2); + } + } + GGML_ASSERT(grid_index >= 0); + const int8_t * pg = (const int8_t *)(grid + grid_index); + for (int i = 0; i < 8; ++i) L[i] = (pg[i] - 1)/2; + return grid_index; +} + +static int iq1_sort_helper(const void * left, const void * right) { + const float * l = left; + const float * r = right; + return *l < *r ? -1 : *l > *r ? 1 : 0; +} + +#define IQ1S_BLOCK_SIZE 32 +#define IQ1M_BLOCK_SIZE 16 +static void quantize_row_iq1_s_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights, + float * scales, + float * weight, + float * sumx, + float * sumw, + float * pairs, + int8_t * L, + uint16_t * index, + int8_t * shifts) { + + const int gindex = iq2_data_index(GGML_TYPE_IQ1_S); + + const uint64_t * kgrid_q2xs = iq2_data[gindex].grid; + const int * kmap_q2xs = iq2_data[gindex].map; + const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours; + + GGML_ASSERT(quant_weights && "missing quantization weights"); + GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?"); + GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?"); + GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?"); + GGML_ASSERT(n%QK_K == 0); + + block_iq1_s * y = vy; + + const int64_t nbl = n/QK_K; + + const int block_size = IQ1S_BLOCK_SIZE; + + const float x_p[3] = {-1 + IQ1S_DELTA, IQ1S_DELTA, 1 + IQ1S_DELTA}; + const float x_m[3] = {-1 - IQ1S_DELTA, -IQ1S_DELTA, 1 - IQ1S_DELTA}; + + + int * idx = (int *)(pairs + 1); + + for (int ibl = 0; ibl < nbl; ++ibl) { + + y[ibl].d = GGML_FP32_TO_FP16(0.f); + memset(y[ibl].qs, 0, QK_K/8); + memset(y[ibl].qh, 0, QK_K/16); + + float max_scale = 0; + + const float * xbl = x + QK_K*ibl; + float sumx2 = 0; + for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i]; + float sigma2 = 2*sumx2/QK_K; + + for (int ib = 0; ib < QK_K/block_size; ++ib) { + const float * xb = xbl + block_size*ib; + const float * qw = quant_weights + QK_K*ibl + block_size*ib; + for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]); + float max = fabsf(xb[0]); + for (int i = 1; i < block_size; ++i) max = MAX(max, fabsf(xb[i])); + if (!max) { + scales[ib] = 0; + memset(L, 1, block_size); + continue; + } + // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem. + // With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two + // boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights + // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and + // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale + // for each possible and score for each split. + for (int j = 0; j < block_size; ++j) { + pairs[2*j] = xb[j]; + idx[2*j] = j; + } + qsort(pairs, block_size, 2*sizeof(float), iq1_sort_helper); + { + sumx[0] = sumw[0] = 0; + for (int j = 0; j < block_size; ++j) { + int i = idx[2*j]; + sumx[j+1] = sumx[j] + weight[i]*xb[i]; + sumw[j+1] = sumw[j] + weight[i]; + } + } + float best_score = 0, scale = max; + int besti1 = -1, besti2 = -1, best_shift = 0; + for (int i1 = 0; i1 <= block_size; ++i1) { + for (int i2 = i1; i2 <= block_size; ++i2) { + float sumqx = (sumx[i1] - sumx[0])*x_p[0] + (sumx[i2] - sumx[i1])*x_p[1] + (sumx[block_size] - sumx[i2])*x_p[2]; + float sumq2 = (sumw[i1] - sumw[0])*x_p[0]*x_p[0] + (sumw[i2] - sumw[i1])*x_p[1]*x_p[1] + (sumw[block_size] - sumw[i2])*x_p[2]*x_p[2]; + if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) { + scale = sumqx/sumq2; best_score = scale*sumqx; + besti1 = i1; besti2 = i2; best_shift = 1; + } + sumqx = (sumx[i1] - sumx[0])*x_m[0] + (sumx[i2] - sumx[i1])*x_m[1] + (sumx[block_size] - sumx[i2])*x_m[2]; + sumq2 = (sumw[i1] - sumw[0])*x_m[0]*x_m[0] + (sumw[i2] - sumw[i1])*x_m[1]*x_m[1] + (sumw[block_size] - sumw[i2])*x_m[2]*x_m[2]; + if (sumq2 > 0 && sumqx*sumqx > best_score*sumq2) { + scale = sumqx/sumq2; best_score = scale*sumqx; + besti1 = i1; besti2 = i2; best_shift = -1; + } + } + } + GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_shift != 0); + for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0; + for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1; + for (int j = besti2; j < block_size; ++j) L[idx[2*j]] = 2; + if (scale < 0) { + for (int j = 0; j < block_size; ++j) L[j] = 2 - L[j]; + scale = -scale; best_shift = -best_shift; + } + bool all_on_grid = true; + const float * xx = best_shift == 1 ? x_p : x_m; + for (int k = 0; k < block_size/8; ++k) { + uint16_t u = 0; + for (int j = 0; j < 8; ++j) u |= (L[8*k+j] << 2*j); + int grid_index = kmap_q2xs[u]; + if (grid_index < 0) { + all_on_grid = false; + const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1; + grid_index = iq1_find_best_neighbour2(neighbours, kgrid_q2xs, xb + 8*k, weight + 8*k, scale, xx, L + 8*k, NGRID_IQ1S); + GGML_ASSERT(grid_index >= 0); + } + index[k] = grid_index; + } + if (!all_on_grid) { + float sumqx = 0, sumq2 = 0; + for (int k = 0; k < block_size/8; ++k) { + const int8_t * pg = (const int8_t *)(kgrid_q2xs + index[k]); + for (int j = 0; j < 8; ++j) { + float w = weight[8*k + j]; + float q = xx[(pg[j] - 1)/2]; + sumqx += w*q*xb[8*k+j]; + sumq2 += w*q*q; + } + } + if (sumqx > 0 && sumq2 > 0) scale = sumqx/sumq2; + } + uint16_t h = 0; + for (int k = 0; k < block_size/8; ++k) { + y[ibl].qs[(block_size/8)*ib + k] = index[k] & 255; + h |= (index[k] >> 8) << 3*k; + } + y[ibl].qh[ib] = h; + GGML_ASSERT(scale >= 0); + scales[ib] = scale; + shifts[ib] = best_shift; + max_scale = MAX(max_scale, scale); + } + + if (!max_scale) { + continue; + } + + float d = max_scale/15; + y[ibl].d = GGML_FP32_TO_FP16(d*1.125f); // 1.125f is another fudge factor. Don't ask me why it is needed. + float id = 1/d; + for (int ib = 0; ib < QK_K/block_size; ++ib) { + int l = nearest_int(0.5f*(id*scales[ib]-1)); + l = MAX(0, MIN(7, l)); + if (shifts[ib] == -1) l |= 8; + y[ibl].qh[ib] |= (l << 12); + } + } +} + +size_t quantize_iq1_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { + GGML_ASSERT(n_per_row%QK_K == 0); + float scales[QK_K/IQ1S_BLOCK_SIZE]; + float weight[IQ1S_BLOCK_SIZE]; + int8_t L[IQ1S_BLOCK_SIZE]; + float sumx[IQ1S_BLOCK_SIZE+1]; + float sumw[IQ1S_BLOCK_SIZE+1]; + float pairs[2*IQ1S_BLOCK_SIZE]; + uint16_t index[IQ1S_BLOCK_SIZE/8]; + int8_t shifts[QK_K/IQ1S_BLOCK_SIZE]; + int64_t nblock = n_per_row/QK_K; + char * qrow = (char *)dst; + for (int64_t row = 0; row < nrow; ++row) { + quantize_row_iq1_s_impl(src, qrow, n_per_row, quant_weights, scales, weight, sumx, sumw, pairs, L, index, shifts); + src += n_per_row; + qrow += nblock*sizeof(block_iq1_s); + } + return nrow * nblock * sizeof(block_iq1_s); +} + +static void quantize_row_iq1_m_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights, + float * scales, + float * weight, + float * pairs, + int8_t * L, + uint16_t * index, + int8_t * shifts) { + + const int gindex = iq2_data_index(GGML_TYPE_IQ1_M); + + const uint64_t * kgrid_q2xs = iq2_data[gindex].grid; + const int * kmap_q2xs = iq2_data[gindex].map; + const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours; + + //GGML_ASSERT(quant_weights && "missing quantization weights"); + GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?"); + GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?"); + GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?"); + GGML_ASSERT(n%QK_K == 0); + + block_iq1_m * y = vy; + + const int64_t nbl = n/QK_K; + + const int block_size = IQ1M_BLOCK_SIZE; + + const float x_p[3] = {-1 + IQ1M_DELTA, IQ1M_DELTA, 1 + IQ1M_DELTA}; + const float x_m[3] = {-1 - IQ1M_DELTA, -IQ1M_DELTA, 1 - IQ1M_DELTA}; + const uint8_t masks[4] = {0x00, 0x80, 0x08, 0x88}; + + int * idx = (int *)(pairs + 1); + + float sumqx[4], sumq2[4]; + + iq1m_scale_t s; + const float * xx; + + for (int ibl = 0; ibl < nbl; ++ibl) { + +#if QK_K == 64 + y[ibl].d = GGML_FP32_TO_FP16(0.f); +#endif + memset(y[ibl].qs, 0, QK_K/8); + memset(y[ibl].qh, 0, QK_K/16); + memset(y[ibl].scales, 0, QK_K/32); + + float max_scale = 0; + + const float * xbl = x + QK_K*ibl; + float sumx2 = 0; + for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i]; + float sigma2 = 2*sumx2/QK_K; + + for (int ib = 0; ib < QK_K/block_size; ++ib) { + const float * xb = xbl + block_size*ib; + if (quant_weights) { + const float * qw = quant_weights + QK_K*ibl + block_size*ib; + for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]); + } else { + for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i]; + } + float max = fabsf(xb[0]); + for (int i = 1; i < block_size; ++i) max = MAX(max, fabsf(xb[i])); + if (!max) { + scales[ib] = 0; + memset(L, 1, block_size); + continue; + } + // Here we solve exactly the sum of squared difference (SSD) weighted minimization problem. + // With just 3 allowed quant values (-1, 0, 1), we can search exhaustively for the two + // boundaries that split the weights xb[i] into 3 groups. To do so, we sort the weights + // in ascending order, compute Si = sum[weight[j] xb[j], j = 0...i] and + // Wi = sum[weight[j], j = 0...i], and use these to quckly get get the optimum scale + // for each possible and score for each split. + for (int j = 0; j < block_size; ++j) { + pairs[2*j] = xb[j]; + idx[2*j] = j; + } + qsort(pairs, block_size, 2*sizeof(float), iq1_sort_helper); + float best_score = 0, scale = max; + int besti1 = -1, besti2 = -1, best_k = -1; + // 0: +, + + // 1: +, - + // 2: -, + + // 3: -, - + for (int i1 = 0; i1 <= block_size; ++i1) { + for (int i2 = i1; i2 <= block_size; ++i2) { + memset(sumqx, 0, 4*sizeof(float)); + memset(sumq2, 0, 4*sizeof(float)); + for (int j = 0; j < i1; ++j) { + int i = idx[2*j]; + if (i < block_size/2) { + sumqx[0] += weight[i]*x_p[0]*xb[i]; + sumqx[1] += weight[i]*x_p[0]*xb[i]; + sumqx[2] += weight[i]*x_m[0]*xb[i]; + sumqx[3] += weight[i]*x_m[0]*xb[i]; + sumq2[0] += weight[i]*x_p[0]*x_p[0]; + sumq2[1] += weight[i]*x_p[0]*x_p[0]; + sumq2[2] += weight[i]*x_m[0]*x_m[0]; + sumq2[3] += weight[i]*x_m[0]*x_m[0]; + } else { + sumqx[0] += weight[i]*x_p[0]*xb[i]; + sumqx[2] += weight[i]*x_p[0]*xb[i]; + sumqx[1] += weight[i]*x_m[0]*xb[i]; + sumqx[3] += weight[i]*x_m[0]*xb[i]; + sumq2[0] += weight[i]*x_p[0]*x_p[0]; + sumq2[2] += weight[i]*x_p[0]*x_p[0]; + sumq2[1] += weight[i]*x_m[0]*x_m[0]; + sumq2[3] += weight[i]*x_m[0]*x_m[0]; + } + } + for (int j = i1; j < i2; ++j) { + int i = idx[2*j]; + if (i < block_size/2) { + sumqx[0] += weight[i]*x_p[1]*xb[i]; + sumqx[1] += weight[i]*x_p[1]*xb[i]; + sumqx[2] += weight[i]*x_m[1]*xb[i]; + sumqx[3] += weight[i]*x_m[1]*xb[i]; + sumq2[0] += weight[i]*x_p[1]*x_p[1]; + sumq2[1] += weight[i]*x_p[1]*x_p[1]; + sumq2[2] += weight[i]*x_m[1]*x_m[1]; + sumq2[3] += weight[i]*x_m[1]*x_m[1]; + } else { + sumqx[0] += weight[i]*x_p[1]*xb[i]; + sumqx[2] += weight[i]*x_p[1]*xb[i]; + sumqx[1] += weight[i]*x_m[1]*xb[i]; + sumqx[3] += weight[i]*x_m[1]*xb[i]; + sumq2[0] += weight[i]*x_p[1]*x_p[1]; + sumq2[2] += weight[i]*x_p[1]*x_p[1]; + sumq2[1] += weight[i]*x_m[1]*x_m[1]; + sumq2[3] += weight[i]*x_m[1]*x_m[1]; + } + } + for (int j = i2; j < block_size; ++j) { + int i = idx[2*j]; + if (i < block_size/2) { + sumqx[0] += weight[i]*x_p[2]*xb[i]; + sumqx[1] += weight[i]*x_p[2]*xb[i]; + sumqx[2] += weight[i]*x_m[2]*xb[i]; + sumqx[3] += weight[i]*x_m[2]*xb[i]; + sumq2[0] += weight[i]*x_p[2]*x_p[2]; + sumq2[1] += weight[i]*x_p[2]*x_p[2]; + sumq2[2] += weight[i]*x_m[2]*x_m[2]; + sumq2[3] += weight[i]*x_m[2]*x_m[2]; + } else { + sumqx[0] += weight[i]*x_p[2]*xb[i]; + sumqx[2] += weight[i]*x_p[2]*xb[i]; + sumqx[1] += weight[i]*x_m[2]*xb[i]; + sumqx[3] += weight[i]*x_m[2]*xb[i]; + sumq2[0] += weight[i]*x_p[2]*x_p[2]; + sumq2[2] += weight[i]*x_p[2]*x_p[2]; + sumq2[1] += weight[i]*x_m[2]*x_m[2]; + sumq2[3] += weight[i]*x_m[2]*x_m[2]; + } + } + for (int k = 0; k < 4; ++k) { + if (sumq2[k] > 0 && sumqx[k]*sumqx[k] > best_score*sumq2[k]) { + scale = sumqx[k]/sumq2[k]; best_score = scale*sumqx[k]; + besti1 = i1; besti2 = i2; best_k = k; + } + } + } + } + GGML_ASSERT(besti1 >= 0 && besti2 >= 0 && best_k >= 0); + for (int j = 0; j < besti1; ++j) L[idx[2*j]] = 0; + for (int j = besti1; j < besti2; ++j) L[idx[2*j]] = 1; + for (int j = besti2; j < block_size; ++j) L[idx[2*j]] = 2; + if (scale < 0) { + for (int j = 0; j < block_size; ++j) L[j] = 2 - L[j]; + scale = -scale; + best_k = best_k == 0 ? 3 : best_k == 1 ? 2 : best_k == 2 ? 1 : 0; + } + bool all_on_grid = true; + for (int k = 0; k < block_size/8; ++k) { + if (k == 0) xx = best_k < 2 ? x_p : x_m; + else xx = best_k%2 == 0 ? x_p : x_m; + uint16_t u = 0; + for (int j = 0; j < 8; ++j) u |= (L[8*k+j] << 2*j); + int grid_index = kmap_q2xs[u]; + if (grid_index < 0) { + all_on_grid = false; + const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1; + grid_index = iq1_find_best_neighbour2(neighbours, kgrid_q2xs, xb + 8*k, weight + 8*k, scale, xx, L + 8*k, NGRID_IQ1S); + GGML_ASSERT(grid_index >= 0); + } + index[k] = grid_index; + } + if (!all_on_grid) { + float sumqx_f = 0, sumq2_f = 0; + for (int k = 0; k < block_size/8; ++k) { + if (k == 0) xx = best_k < 2 ? x_p : x_m; + else xx = best_k%2 == 0 ? x_p : x_m; + const int8_t * pg = (const int8_t *)(kgrid_q2xs + index[k]); + for (int j = 0; j < 8; ++j) { + float w = weight[8*k + j]; + float q = xx[(pg[j] - 1)/2]; + sumqx_f += w*q*xb[8*k+j]; + sumq2_f += w*q*q; + } + } + if (sumqx_f > 0 && sumq2_f > 0) scale = sumqx_f/sumq2_f; + } + y[ibl].qs[2*ib + 0] = index[0] & 255; + y[ibl].qs[2*ib + 1] = index[1] & 255; + y[ibl].qh[ib] = (index[0] >> 8) | ((index[1] >> 8) << 4); + GGML_ASSERT(scale >= 0); + scales[ib] = scale; + shifts[ib] = best_k; + max_scale = MAX(max_scale, scale); + } + + if (!max_scale) { + continue; + } + + uint16_t * sc = (uint16_t *)y[ibl].scales; +#if QK_K == 64 + float d = max_scale/31; +#else + float d = max_scale/15; +#endif + float id = 1/d; + float sumqx_f = 0, sumq2_f = 0; + for (int ib = 0; ib < QK_K/block_size; ++ib) { + int l = nearest_int(0.5f*(id*scales[ib+0]-1)); +#if QK_K == 64 + l = MAX(0, MIN(15, l)); + sc[ib/4] |= (l << 4*(ib%4)); +#else + l = MAX(0, MIN(7, l)); + sc[ib/4] |= (l << 3*(ib%4)); +#endif + y[ibl].qh[ib] |= masks[shifts[ib]]; + const float * xb = xbl + block_size*ib; + if (quant_weights) { + const float * qw = quant_weights + QK_K*ibl + block_size*ib; + for (int i = 0; i < block_size; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]); + } else { + for (int i = 0; i < block_size; ++i) weight[i] = xb[i]*xb[i]; + } + for (int k = 0; k < block_size/8; ++k) { + if (k == 0) xx = shifts[ib] < 2 ? x_p : x_m; + else xx = shifts[ib]%2 == 0 ? x_p : x_m; + const int8_t * pg = (const int8_t *)(kgrid_q2xs + y[ibl].qs[2*ib+k] + ((y[ibl].qh[ib] << (8 - 4*k)) & 0x700)); + for (int j = 0; j < 8; ++j) { + float w = weight[8*k + j]; + float q = xx[(pg[j] - 1)/2]*(2*l+1); + sumqx_f += w*q*xb[8*k+j]; + sumq2_f += w*q*q; + } + } + } + if (sumq2_f > 0) d = sumqx_f/sumq2_f; + s.f16 = GGML_FP32_TO_FP16(d*1.1125f); // 1.1125f is another fudge factor. Don't ask me why it is needed. +#if QK_K == 64 + y[ibl].d = s.f16; +#else + sc[0] |= ((s.u16 & 0x000f) << 12); + sc[1] |= ((s.u16 & 0x00f0) << 8); + sc[2] |= ((s.u16 & 0x0f00) << 4); + sc[3] |= ((s.u16 & 0xf000) << 0); +#endif + } +} + +size_t quantize_iq1_m(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { + GGML_ASSERT(n_per_row%QK_K == 0); + float scales[QK_K/IQ1M_BLOCK_SIZE]; + float weight[IQ1M_BLOCK_SIZE]; + int8_t L[IQ1M_BLOCK_SIZE]; + float pairs[2*IQ1M_BLOCK_SIZE]; + uint16_t index[IQ1M_BLOCK_SIZE/8]; + int8_t shifts[QK_K/IQ1M_BLOCK_SIZE]; + int64_t nblock = n_per_row/QK_K; + char * qrow = (char *)dst; + for (int64_t row = 0; row < nrow; ++row) { + quantize_row_iq1_m_impl(src, qrow, n_per_row, quant_weights, scales, weight, pairs, L, index, shifts); + src += n_per_row; + qrow += nblock*sizeof(block_iq1_m); + } + return nrow * nblock * sizeof(block_iq1_m); +} + +// ============================ 4-bit non-linear quants + +static inline int best_index_int8(int n, const int8_t * val, float x) { + if (x <= val[0]) return 0; + if (x >= val[n-1]) return n-1; + int ml = 0, mu = n-1; + while (mu-ml > 1) { + int mav = (ml+mu)/2; + if (x < val[mav]) mu = mav; else ml = mav; + } + return x - val[mu-1] < val[mu] - x ? mu-1 : mu; +} + +static void quantize_row_iq4_nl_impl(const int super_block_size, const int block_size, const float * restrict x, + ggml_fp16_t * dh, uint8_t * q4, uint16_t * scales_h, uint8_t * scales_l, + float * scales, float * weight, uint8_t * L, + const int8_t * values, + const float * quant_weights, + const int ntry) { + + float sigma2 = 0; + for (int j = 0; j < super_block_size; ++j) sigma2 += x[j]*x[j]; + sigma2 *= 2.f/super_block_size; + + memset(q4, 0, super_block_size/2); + dh[0] = GGML_FP32_TO_FP16(0.f); + + float max_scale = 0, amax_scale = 0; + for (int ib = 0; ib < super_block_size/block_size; ++ib) { + const float * xb = x + ib*block_size; + uint8_t * Lb = L + ib*block_size; + if (quant_weights) { + const float * qw = quant_weights + ib*block_size; + for (int j = 0; j < block_size; ++j) weight[j] = qw[j] * sqrtf(sigma2 + xb[j]*xb[j]); + } else { + for (int j = 0; j < block_size; ++j) weight[j] = xb[j]*xb[j]; + } + float amax = 0, max = 0; + for (int j = 0; j < block_size; ++j) { + float ax = fabsf(xb[j]); + if (ax > amax) { + amax = ax; max = xb[j]; + } + } + if (!amax) { + scales[ib] = 0; + continue; + } + float d = ntry > 0 ? -max/values[0] : max/values[0]; + float id = 1/d; + float sumqx = 0, sumq2 = 0; + for (int j = 0; j < block_size; ++j) { + float al = id*xb[j]; + int l = best_index_int8(16, values, al); + Lb[j] = l; + float q = values[l]; + float w = weight[j]; + sumqx += w*q*xb[j]; + sumq2 += w*q*q; + } + d = sumqx/sumq2; + float best = d*sumqx; + for (int itry = -ntry; itry <= ntry; ++itry) { + id = (itry + values[0])/max; + sumqx = sumq2 = 0; + for (int j = 0; j < block_size; ++j) { + float al = id*xb[j]; + int l = best_index_int8(16, values, al); + float q = values[l]; + float w = weight[j]; + sumqx += w*q*xb[j]; + sumq2 += w*q*q; + } + if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { + d = sumqx/sumq2; best = d * sumqx; + } + } + scales[ib] = d; + float abs_d = fabsf(d); + if (abs_d > amax_scale) { + amax_scale = abs_d; max_scale = d; + } + } + + if (super_block_size/block_size > 1) { + int nb = super_block_size/block_size; + memset(scales_h, 0, ((nb+7)/8)*sizeof(uint16_t)); + float d = -max_scale/32; + dh[0] = GGML_FP32_TO_FP16(d); + float id = d ? 1/d : 0.f; + for (int ib = 0; ib < super_block_size/block_size; ++ib) { + int l = nearest_int(id*scales[ib]); + l = MAX(-32, MIN(31, l)); + float dl = d * l; + float idl = dl ? 1/dl : 0.f; + uint8_t * Lb = L + ib*block_size; + const float * xb = x + ib*block_size; + for (int j = 0; j < block_size; ++j) { + Lb[j] = best_index_int8(16, values, idl*xb[j]); + } + l += 32; + uint8_t l_l = l & 0xf; + uint8_t l_h = l >> 4; + if (ib%2 == 0) scales_l[ib/2] = l_l; + else scales_l[ib/2] |= (l_l << 4); + scales_h[ib/8] |= (l_h << 2*(ib%8)); + } + } else { + dh[0] = GGML_FP32_TO_FP16(scales[0]); + if (ntry > 0) { + float id = scales[0] ? 1/scales[0] : 0; + for (int j = 0; j < super_block_size; ++j) { + L[j] = best_index_int8(16, values, id*x[j]); + } + } + } + + for (int i = 0; i < super_block_size/32; ++i) { + for (int j = 0; j < 16; ++j) { + q4[16*i + j] = L[32*i + j] | (L[32*i + 16 + j] << 4); + } + } +} + +size_t quantize_iq4_nl(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { + GGML_ASSERT(n_per_row%QK4_NL == 0); + int64_t nblock = n_per_row/QK4_NL; + char * qrow = (char *)dst; + uint8_t L[QK4_NL]; + float weight[QK4_NL]; + uint16_t unused_h; + uint8_t * unused_l = NULL; + float scale; + for (int64_t row = 0; row < nrow; ++row) { + block_iq4_nl * iq4 = (block_iq4_nl *)qrow; + for (int ibl = 0; ibl < nblock; ++ibl) { + const float * qw = quant_weights ? quant_weights + QK4_NL*ibl : NULL; + quantize_row_iq4_nl_impl(QK4_NL, 32, src + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l, + &scale, weight, L, kvalues_iq4nl, qw, 7); + } + src += n_per_row; + qrow += nblock*sizeof(block_iq4_nl); + } + return nrow * nblock * sizeof(block_iq4_nl); +} + +void quantize_row_iq4_nl(const float * restrict x, void * restrict vy, int64_t k) { + GGML_ASSERT(k%QK4_NL == 0); + int64_t nblock = k/QK4_NL; + uint8_t L[QK4_NL]; + float weight[QK4_NL]; + uint16_t unused_h; + uint8_t * unused_l = NULL; + float scale; + block_iq4_nl * iq4 = (block_iq4_nl *)vy; + for (int ibl = 0; ibl < nblock; ++ibl) { + quantize_row_iq4_nl_impl(QK4_NL, 32, x + QK4_NL*ibl, &iq4[ibl].d, iq4[ibl].qs, &unused_h, unused_l, + &scale, weight, L, kvalues_iq4nl, NULL, -1); + } +} + +void quantize_row_iq4_nl_reference(const float * restrict x, block_iq4_nl * restrict y, int64_t k) { + assert(k % QK4_NL == 0); + quantize_row_iq4_nl(x, y, k); +} + +size_t quantize_iq4_xs(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { +#if QK_K == 64 + return quantize_iq4_nl(src, dst, nrow, n_per_row, quant_weights); +#else + GGML_ASSERT(n_per_row%QK_K == 0); + int64_t nblock = n_per_row/QK_K; + char * qrow = (char *)dst; + uint8_t L[QK_K]; + float weight[32]; + float scales[QK_K/32]; + for (int64_t row = 0; row < nrow; ++row) { + block_iq4_xs * iq4 = (block_iq4_xs *)qrow; + for (int ibl = 0; ibl < nblock; ++ibl) { + const float * qw = quant_weights ? quant_weights + QK_K*ibl : NULL; + quantize_row_iq4_nl_impl(QK_K, 32, src + QK_K*ibl, &iq4[ibl].d, iq4[ibl].qs, &iq4[ibl].scales_h, iq4[ibl].scales_l, + scales, weight, L, kvalues_iq4nl, qw, 7); + } + src += n_per_row; + qrow += nblock*sizeof(block_iq4_xs); + } + return nrow * nblock * sizeof(block_iq4_xs); +#endif +} + +void quantize_row_iq4_xs(const float * restrict x, void * restrict vy, int64_t k) { + assert(k % QK_K == 0); + block_iq4_xs * restrict y = vy; + quantize_row_iq4_xs_reference(x, y, k); +} + +void quantize_row_iq4_xs_reference(const float * restrict x, block_iq4_xs * restrict y, int64_t k) { + assert(k % QK_K == 0); + quantize_iq4_xs(x, y, 1, k, NULL); +} + +// =============================== 2.5625 bpw + +static void quantize_row_iq2_s_impl(const float * restrict x, void * restrict vy, int64_t n, const float * restrict quant_weights) { + + const int gindex = iq2_data_index(GGML_TYPE_IQ2_S); + + const uint64_t * kgrid_q2xs = iq2_data[gindex].grid; + const int * kmap_q2xs = iq2_data[gindex].map; + const uint16_t * kneighbors_q2xs = iq2_data[gindex].neighbours; + + GGML_ASSERT(kmap_q2xs && "forgot to call ggml_quantize_init()?"); + GGML_ASSERT(kgrid_q2xs && "forgot to call ggml_quantize_init()?"); + GGML_ASSERT(kneighbors_q2xs && "forgot to call ggml_quantize_init()?"); + GGML_ASSERT(n%QK_K == 0); + + const int kMaxQ = 3; + + const int64_t nbl = n/QK_K; + + block_iq2_s * y = vy; + + float scales[QK_K/16]; + float weight[16]; + float xval[16]; + int8_t L[16]; + int8_t Laux[16]; + float waux[16]; + bool is_on_grid[2]; + bool is_on_grid_aux[2]; + uint8_t block_signs[2]; + + for (int ibl = 0; ibl < nbl; ++ibl) { + + memset(&y[ibl], 0, sizeof(block_iq2_s)); + y[ibl].d = GGML_FP32_TO_FP16(0.f); + + float max_scale = 0; + + const float * xbl = x + QK_K*ibl; + float sumx2 = 0; + for (int i = 0; i < QK_K; ++i) sumx2 += xbl[i]*xbl[i]; + float sigma2 = 2*sumx2/QK_K; + + for (int ib = 0; ib < QK_K/16; ++ib) { + const float * xb = xbl + 16*ib; + if (quant_weights) { + const float * qw = quant_weights + QK_K*ibl + 16*ib; + for (int i = 0; i < 16; ++i) weight[i] = qw[i] * sqrtf(sigma2 + xb[i]*xb[i]); + } else { + for (int i = 0; i < 16; ++i) weight[i] = 0.25f*sigma2 + xb[i]*xb[i]; + } + for (int i = 0; i < 16; ++i) waux[i] = sqrtf(weight[i]); + for (int k = 0; k < 2; ++k) { + uint8_t s = 0; + for (int i = 0; i < 8; ++i) { + if (xb[8*k + i] >= 0) xval[8*k + i] = xb[8*k + i]; + else { + xval[8*k + i] = -xb[8*k + i]; s |= (1 << i); + } + } + block_signs[k] = s; + } + float max = xval[0]; + for (int i = 1; i < 16; ++i) max = MAX(max, xval[i]); + if (!max) { + scales[ib] = 0; + continue; + } + float best = 0; + float scale = max/(2*kMaxQ-1); + is_on_grid[0] = is_on_grid[1] = true; + for (int is = -9; is <= 9; ++is) { + float id = (2*kMaxQ-1+is*0.1f)/max; + float this_scale = 1/id; + for (int k = 0; k < 2; ++k) { + for (int i = 0; i < 8; ++i) { + int l = nearest_int(0.5f*(id*xval[8*k+i]-1)); + Laux[8*k+i] = MAX(0, MIN(kMaxQ-1, l)); + } + uint16_t u = 0; + for (int i = 0; i < 8; ++i) u |= (Laux[8*k+i] << 2*i); + int grid_index = kmap_q2xs[u]; + is_on_grid_aux[k] = true; + if (grid_index < 0) { + is_on_grid_aux[k] = false; + const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1; + grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, this_scale, Laux + 8*k); + } + } + float sumqx = 0, sumq2 = 0; + for (int i = 0; i < 16; ++i) { + float w = weight[i]; + float q = 2*Laux[i] + 1; + sumqx += w*xval[i]*q; + sumq2 += w*q*q; + } + if (sumq2 > 0 && sumqx*sumqx > best*sumq2) { + scale = sumqx/sumq2; best = scale*sumqx; + for (int i = 0; i < 16; ++i) L[i] = Laux[i]; + for (int k = 0; k < 2; ++k) is_on_grid[k] = is_on_grid_aux[k]; + } + } + int n_not_ongrid = 0; + for (int k = 0; k < 2; ++k) if (!is_on_grid[k]) ++n_not_ongrid; + if (n_not_ongrid > 0 && scale > 0) { + float id = 1/scale; + for (int k = 0; k < 2; ++k) { + if (is_on_grid[k]) continue; + uint16_t u = 0; + for (int i = 0; i < 8; ++i) { + int l = nearest_int(0.5f*(id*xval[8*k+i]-1)); + l = MAX(0, MIN(kMaxQ-1, l)); + u |= (l << 2*i); + L[8*k + i] = l; + } + int grid_index = kmap_q2xs[u]; + if (grid_index < 0) { + const uint16_t * neighbours = kneighbors_q2xs - kmap_q2xs[u] - 1; + grid_index = iq2_find_best_neighbour(neighbours, kgrid_q2xs, xval + 8*k, waux + 8*k, scale, L + 8*k); + } + } + float sumqx = 0, sumq2 = 0; + for (int i = 0; i < 16; ++i) { + float w = weight[i]; + float q = 2*L[i] + 1; + sumqx += w*xval[i]*q; + sumq2 += w*q*q; + } + if (sumq2 > 0) scale = sumqx/sumq2; + } + if (scale < 0) { + scale = -scale; + for (int k = 0; k < 2; ++k) block_signs[k] = ~block_signs[k]; + } + for (int k = 0; k < 2; ++k) { + uint16_t u = 0; + for (int i = 0; i < 8; ++i) u |= (L[8*k+i] << 2*i); + int grid_index = kmap_q2xs[u]; + if (grid_index < 0) { + printf("Oops: found point %u not on grid:", u); + for (int i = 0; i < 8; ++i) printf(" %d", L[8*k+i]); + printf("\n"); + GGML_ASSERT(false); + } + const int i8 = 2*ib + k; + y[ibl].qs[i8] = grid_index & 255; + y[ibl].qh[i8/4] |= ((grid_index >> 8) << 2*(i8%4)); + y[ibl].qs[QK_K/8 + i8] = block_signs[k]; + } + GGML_ASSERT(scale >= 0); + scales[ib] = scale; + max_scale = MAX(max_scale, scale); + } + + if (!max_scale) { + continue; + } + + float d = max_scale/31; + y[ibl].d = GGML_FP32_TO_FP16(d * 0.9875f); + float id = 1/d; + for (int ib = 0; ib < QK_K/16; ++ib) { + int l = nearest_int(0.5f*(id*scales[ib]-1)); + l = MAX(0, MIN(15, l)); + if (ib%2 == 0) y[ibl].scales[ib/2] = l; + else y[ibl].scales[ib/2] |= (l << 4); + } + } +} + +size_t quantize_iq2_s(const float * restrict src, void * restrict dst, int64_t nrow, int64_t n_per_row, const float * quant_weights) { + GGML_ASSERT(n_per_row%QK_K == 0); + int64_t nblock = n_per_row/QK_K; + char * qrow = (char *)dst; + for (int64_t row = 0; row < nrow; ++row) { + quantize_row_iq2_s_impl(src, qrow, n_per_row, quant_weights); + src += n_per_row; + qrow += nblock*sizeof(block_iq2_s); + } + return nrow * nblock * sizeof(block_iq2_s); +} + +void quantize_row_iq2_s_reference(const float * restrict x, block_iq2_s * restrict y, int64_t k) { + assert(k % QK_K == 0); + quantize_iq2_s(x, y, 1, k, NULL); +} + +void quantize_row_iq2_s(const float * restrict x, void * restrict vy, int64_t k) { + assert(k % QK_K == 0); + block_iq2_s * restrict y = vy; + quantize_row_iq2_s_reference(x, y, k); +} diff --git a/llama/ggml-quants.h b/llama/ggml-quants.h new file mode 100644 index 00000000..4d436a8f --- /dev/null +++ b/llama/ggml-quants.h @@ -0,0 +1,133 @@ +#pragma once + +#define GGML_COMMON_DECL_C +#include "ggml-common.h" + +#include "ggml.h" + +// GGML internal header + +#ifdef __cplusplus +extern "C" { +#endif + +// Quantization +void quantize_row_q4_0_reference(const float * GGML_RESTRICT x, block_q4_0 * GGML_RESTRICT y, int64_t k); +void quantize_row_q4_1_reference(const float * GGML_RESTRICT x, block_q4_1 * GGML_RESTRICT y, int64_t k); +void quantize_row_q5_0_reference(const float * GGML_RESTRICT x, block_q5_0 * GGML_RESTRICT y, int64_t k); +void quantize_row_q5_1_reference(const float * GGML_RESTRICT x, block_q5_1 * GGML_RESTRICT y, int64_t k); +void quantize_row_q8_0_reference(const float * GGML_RESTRICT x, block_q8_0 * GGML_RESTRICT y, int64_t k); +void quantize_row_q8_1_reference(const float * GGML_RESTRICT x, block_q8_1 * GGML_RESTRICT y, int64_t k); + +void quantize_row_q2_K_reference(const float * GGML_RESTRICT x, block_q2_K * GGML_RESTRICT y, int64_t k); +void quantize_row_q3_K_reference(const float * GGML_RESTRICT x, block_q3_K * GGML_RESTRICT y, int64_t k); +void quantize_row_q4_K_reference(const float * GGML_RESTRICT x, block_q4_K * GGML_RESTRICT y, int64_t k); +void quantize_row_q5_K_reference(const float * GGML_RESTRICT x, block_q5_K * GGML_RESTRICT y, int64_t k); +void quantize_row_q6_K_reference(const float * GGML_RESTRICT x, block_q6_K * GGML_RESTRICT y, int64_t k); +void quantize_row_q8_K_reference(const float * GGML_RESTRICT x, block_q8_K * GGML_RESTRICT y, int64_t k); + +void quantize_row_iq3_xxs_reference(const float * GGML_RESTRICT x, block_iq3_xxs * GGML_RESTRICT y, int64_t k); +void quantize_row_iq4_nl_reference (const float * GGML_RESTRICT x, block_iq4_nl * GGML_RESTRICT y, int64_t k); +void quantize_row_iq4_xs_reference (const float * GGML_RESTRICT x, block_iq4_xs * GGML_RESTRICT y, int64_t k); +void quantize_row_iq3_s_reference (const float * GGML_RESTRICT x, block_iq3_s * GGML_RESTRICT y, int64_t k); +void quantize_row_iq2_s_reference (const float * GGML_RESTRICT x, block_iq2_s * GGML_RESTRICT y, int64_t k); + +void quantize_row_q4_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_q4_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_q5_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_q5_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_q8_0(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_q8_1(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); + +void quantize_row_q2_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_q3_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_q4_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_q5_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_q6_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_q8_K(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); + +void quantize_row_iq3_xxs(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_iq4_nl (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_iq4_xs (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_iq3_s (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); +void quantize_row_iq2_s (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); + +// Dequantization +void dequantize_row_q4_0(const block_q4_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_q4_1(const block_q4_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_q5_0(const block_q5_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_q5_1(const block_q5_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_q8_0(const block_q8_0 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +//void dequantize_row_q8_1(const block_q8_1 * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); + +void dequantize_row_q2_K(const block_q2_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_q3_K(const block_q3_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_q4_K(const block_q4_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_q5_K(const block_q5_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_q6_K(const block_q6_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_q8_K(const block_q8_K * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); + +void dequantize_row_iq2_xxs(const block_iq2_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_iq2_xs (const block_iq2_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_iq2_s (const block_iq2_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_iq3_xxs(const block_iq3_xxs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_iq1_s (const block_iq1_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_iq1_m (const block_iq1_m * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_iq4_nl (const block_iq4_nl * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_iq4_xs (const block_iq4_xs * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); +void dequantize_row_iq3_s (const block_iq3_s * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); + +// Dot product +void ggml_vec_dot_q4_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_q4_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_q5_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_q5_1_q8_1(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_q8_0_q8_0(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); + +void ggml_vec_dot_q2_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_q3_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_q4_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_q5_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_q6_K_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); + +void ggml_vec_dot_iq2_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_iq2_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_iq2_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_iq3_xxs_q8_K(int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_iq1_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_iq1_m_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_iq4_nl_q8_0 (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_iq4_xs_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); +void ggml_vec_dot_iq3_s_q8_K (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT vx, size_t bx, const void * GGML_RESTRICT vy, size_t by, int nrc); + +// Quantization utilizing an importance matrix (a.k.a. "Activation aWare Quantization") +size_t quantize_iq2_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_iq2_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_iq2_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_iq3_xxs(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_iq1_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_iq1_m (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_iq4_nl (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_iq4_xs (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_iq3_s (const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); + +size_t quantize_q2_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_q3_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_q4_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_q5_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_q6_K(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_q4_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_q4_1(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_q5_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_q5_1(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); +size_t quantize_q8_0(const float * GGML_RESTRICT src, void * GGML_RESTRICT dst, int64_t nrows, int64_t n_per_row, const float * imatrix); + +void iq2xs_init_impl(enum ggml_type type); +void iq2xs_free_impl(enum ggml_type type); +void iq3xs_init_impl(int grid_size); +void iq3xs_free_impl(int grid_size); + +#ifdef __cplusplus +} +#endif + diff --git a/llama/ggml.c b/llama/ggml.c new file mode 100644 index 00000000..a3b312e4 --- /dev/null +++ b/llama/ggml.c @@ -0,0 +1,21821 @@ +#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows +#define _USE_MATH_DEFINES // For M_PI on MSVC + +#include "ggml-impl.h" +#include "ggml-quants.h" +#include "ggml.h" +#include "sgemm.h" + +#if defined(_MSC_VER) || defined(__MINGW32__) +#include // using malloc.h with MSC/MINGW +#elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__) +#include +#endif + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#if defined(__gnu_linux__) +#include +#endif + +#ifdef GGML_USE_METAL +#include +#endif + +#ifdef __ARM_FEATURE_MATMUL_INT8 +#undef GGML_USE_LLAMAFILE +#endif + +#if defined(_MSC_VER) +// disable "possible loss of data" to avoid hundreds of casts +// we should just be careful :) +#pragma warning(disable: 4244 4267) + +// disable POSIX deprecation warnings +// these functions are never going away, anyway +#pragma warning(disable: 4996) +#endif + +#if defined(_WIN32) + +#define WIN32_LEAN_AND_MEAN +#ifndef NOMINMAX + #define NOMINMAX +#endif +#include + +typedef volatile LONG atomic_int; +typedef atomic_int atomic_bool; + +static void atomic_store(atomic_int * ptr, LONG val) { + InterlockedExchange(ptr, val); +} +static LONG atomic_load(atomic_int * ptr) { + return InterlockedCompareExchange(ptr, 0, 0); +} +static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) { + return InterlockedExchangeAdd(ptr, inc); +} +static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) { + return atomic_fetch_add(ptr, -(dec)); +} + +typedef HANDLE pthread_t; + +typedef DWORD thread_ret_t; +static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) { + (void) unused; + HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL); + if (handle == NULL) + { + return EAGAIN; + } + + *out = handle; + return 0; +} + +static int pthread_join(pthread_t thread, void * unused) { + (void) unused; + int ret = (int) WaitForSingleObject(thread, INFINITE); + CloseHandle(thread); + return ret; +} + +static int sched_yield (void) { + Sleep (0); + return 0; +} +#else +#include +#include + +typedef void * thread_ret_t; + +#include +#include +#include + +#endif + +#ifdef GGML_USE_CPU_HBM +#include +#endif + +#if defined(__APPLE__) +#include +#endif + +#if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \ + (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH)) + +#include + +void ggml_print_backtrace(void) { + /* + #include + #include + + void * trace[100]; + + int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0])); + + backtrace_symbols_fd(trace, nptrs, STDERR_FILENO); + */ + + // backtrack_symbols does not show line numbers, use gdb instead + char attach[32]; + snprintf(attach, sizeof(attach), "attach %d", getpid()); + int pid = fork(); + if (pid == 0) { + execlp("gdb", "gdb", "--batch", + "-ex", "set style enabled on", + "-ex", attach, + "-ex", "bt -frame-info source-and-location", + "-ex", "detach", + "-ex", "quit", + (char *) NULL); + } else { + waitpid(pid, NULL, 0); + } +} +#else +void ggml_print_backtrace(void) { + // platform not supported +} +#endif + +/*#define GGML_PERF*/ +#define GGML_DEBUG 0 +#define GGML_GELU_FP16 +#define GGML_GELU_QUICK_FP16 +#define GGML_SILU_FP16 +// #define GGML_CROSS_ENTROPY_EXP_FP16 +// #define GGML_FLASH_ATTN_EXP_FP16 + +#define GGML_SOFT_MAX_UNROLL 4 +#define GGML_VEC_DOT_UNROLL 2 +#define GGML_VEC_MAD_UNROLL 32 + +// +// logging +// + +#if (GGML_DEBUG >= 1) +#define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__) +#else +#define GGML_PRINT_DEBUG(...) +#endif + +#if (GGML_DEBUG >= 5) +#define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__) +#else +#define GGML_PRINT_DEBUG_5(...) +#endif + +#if (GGML_DEBUG >= 10) +#define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__) +#else +#define GGML_PRINT_DEBUG_10(...) +#endif + +#define GGML_PRINT(...) printf(__VA_ARGS__) + +// +// end of logging block +// + +#ifdef GGML_USE_ACCELERATE +// uncomment to use vDSP for soft max computation +// note: not sure if it is actually faster +//#define GGML_SOFT_MAX_ACCELERATE +#endif + +#if defined(_MSC_VER) || defined(__MINGW32__) +#define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN) +#define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr) +#else +inline static void * ggml_aligned_malloc(size_t size) { + if (size == 0) { + GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n"); + return NULL; + } + void * aligned_memory = NULL; +#ifdef GGML_USE_CPU_HBM + int result = hbw_posix_memalign(&aligned_memory, 16, size); +#elif GGML_USE_METAL + int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size); +#else + int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size); +#endif + if (result != 0) { + // Handle allocation failure + const char *error_desc = "unknown allocation error"; + switch (result) { + case EINVAL: + error_desc = "invalid alignment value"; + break; + case ENOMEM: + error_desc = "insufficient memory"; + break; + } + GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0)); + GGML_ASSERT(false); + return NULL; + } + return aligned_memory; +} +#define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size) +#ifdef GGML_USE_CPU_HBM +#define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr) +#else +#define GGML_ALIGNED_FREE(ptr) free(ptr) +#endif +#endif + +inline static void * ggml_malloc(size_t size) { + if (size == 0) { + GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n"); + return NULL; + } + void * result = malloc(size); + if (result == NULL) { + GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0)); + GGML_ASSERT(false); + } + return result; +} + +// calloc +inline static void * ggml_calloc(size_t num, size_t size) { + if (num == 0 || size == 0) { + GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n"); + return NULL; + } + void * result = calloc(num, size); + if (result == NULL) { + GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0)); + GGML_ASSERT(false); + } + return result; +} + +#define GGML_MALLOC(size) ggml_malloc(size) +#define GGML_CALLOC(num, size) ggml_calloc(num, size) + +#define GGML_FREE(ptr) free(ptr) + +#define UNUSED GGML_UNUSED +#define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0) + +#if defined(GGML_USE_ACCELERATE) +#include +#if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions +#include "ggml-opencl.h" +#endif +#elif defined(GGML_USE_OPENBLAS) +#if defined(GGML_BLAS_USE_MKL) +#include +#else +#include +#endif +#elif defined(GGML_USE_CLBLAST) +#include "ggml-opencl.h" +#endif + +// floating point type used to accumulate sums +typedef double ggml_float; + +#undef MIN +#undef MAX + +#define MIN(a, b) ((a) < (b) ? (a) : (b)) +#define MAX(a, b) ((a) > (b) ? (a) : (b)) + +// +// global data +// + +// precomputed gelu table for f16 (128 KB) +static ggml_fp16_t ggml_table_gelu_f16[1 << 16]; + +// precomputed quick gelu table for f16 (128 KB) +static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16]; + +// precomputed silu table for f16 (128 KB) +static ggml_fp16_t ggml_table_silu_f16[1 << 16]; + +// precomputed exp table for f16 (128 KB) +static ggml_fp16_t ggml_table_exp_f16[1 << 16]; + +// precomputed f32 table for f16 (256 KB) (ggml-impl.h) +float ggml_table_f32_f16[1 << 16]; + +const char * ggml_status_to_string(enum ggml_status status) { + switch (status) { + case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)"; + case GGML_STATUS_FAILED: return "GGML status: error (operation failed)"; + case GGML_STATUS_SUCCESS: return "GGML status: success"; + case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)"; + } + + return "GGML status: unknown"; +} + +// note: do not use these inside ggml.c +// these are meant to be used via the ggml.h API +float ggml_fp16_to_fp32(ggml_fp16_t x) { + return GGML_FP16_TO_FP32(x); +} + +ggml_fp16_t ggml_fp32_to_fp16(float x) { + return GGML_FP32_TO_FP16(x); +} + +void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) { + for (int64_t i = 0; i < n; i++) { + y[i] = GGML_FP16_TO_FP32(x[i]); + } +} + +void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) { + int64_t i = 0; +#if defined(__F16C__) + for (; i + 7 < n; i += 8) { + __m256 x_vec = _mm256_loadu_ps(x + i); + __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT); + _mm_storeu_si128((__m128i *)(y + i), y_vec); + } + for(; i + 3 < n; i += 4) { + __m128 x_vec = _mm_loadu_ps(x + i); + __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT); + _mm_storel_epi64((__m128i *)(y + i), y_vec); + } +#endif + for (; i < n; i++) { + y[i] = GGML_FP32_TO_FP16(x[i]); + } +} + +bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) { + return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0; +} + +// +// timing +// + +#if defined(_MSC_VER) || defined(__MINGW32__) +static int64_t timer_freq, timer_start; +void ggml_time_init(void) { + LARGE_INTEGER t; + QueryPerformanceFrequency(&t); + timer_freq = t.QuadPart; + + // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq + // and the uptime is high enough. + // We subtract the program start time to reduce the likelihood of that happening. + QueryPerformanceCounter(&t); + timer_start = t.QuadPart; +} +int64_t ggml_time_ms(void) { + LARGE_INTEGER t; + QueryPerformanceCounter(&t); + return ((t.QuadPart-timer_start) * 1000) / timer_freq; +} +int64_t ggml_time_us(void) { + LARGE_INTEGER t; + QueryPerformanceCounter(&t); + return ((t.QuadPart-timer_start) * 1000000) / timer_freq; +} +#else +void ggml_time_init(void) {} +int64_t ggml_time_ms(void) { + struct timespec ts; + clock_gettime(CLOCK_MONOTONIC, &ts); + return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000; +} + +int64_t ggml_time_us(void) { + struct timespec ts; + clock_gettime(CLOCK_MONOTONIC, &ts); + return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000; +} +#endif + +int64_t ggml_cycles(void) { + return clock(); +} + +int64_t ggml_cycles_per_ms(void) { + return CLOCKS_PER_SEC/1000; +} + +#ifdef GGML_PERF +#define ggml_perf_time_ms() ggml_time_ms() +#define ggml_perf_time_us() ggml_time_us() +#define ggml_perf_cycles() ggml_cycles() +#define ggml_perf_cycles_per_ms() ggml_cycles_per_ms() +#else +#define ggml_perf_time_ms() 0 +#define ggml_perf_time_us() 0 +#define ggml_perf_cycles() 0 +#define ggml_perf_cycles_per_ms() 0 +#endif + +// +// cross-platform UTF-8 file paths +// + +#ifdef _WIN32 +static wchar_t * ggml_mbstowcs(const char * mbs) { + int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0); + if (!wlen) { + errno = EINVAL; + return NULL; + } + + wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t)); + wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen); + if (!wlen) { + GGML_FREE(wbuf); + errno = EINVAL; + return NULL; + } + + return wbuf; +} +#endif + +FILE * ggml_fopen(const char * fname, const char * mode) { +#ifdef _WIN32 + FILE * file = NULL; + + // convert fname (UTF-8) + wchar_t * wfname = ggml_mbstowcs(fname); + if (wfname) { + // convert mode (ANSI) + wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t)); + wchar_t * wmode_p = wmode; + do { + *wmode_p++ = (wchar_t)*mode; + } while (*mode++); + + // open file + file = _wfopen(wfname, wmode); + + GGML_FREE(wfname); + GGML_FREE(wmode); + } + + return file; +#else + return fopen(fname, mode); +#endif +} + +// +// cache line +// + +#if defined(__cpp_lib_hardware_interference_size) +#define CACHE_LINE_SIZE hardware_destructive_interference_size +#else +#if defined(__POWER9_VECTOR__) +#define CACHE_LINE_SIZE 128 +#else +#define CACHE_LINE_SIZE 64 +#endif +#endif + +static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float); + +static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc); +static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc); + +static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = { + [GGML_TYPE_I8] = { + .type_name = "i8", + .blck_size = 1, + .type_size = sizeof(int8_t), + .is_quantized = false, + }, + [GGML_TYPE_I16] = { + .type_name = "i16", + .blck_size = 1, + .type_size = sizeof(int16_t), + .is_quantized = false, + }, + [GGML_TYPE_I32] = { + .type_name = "i32", + .blck_size = 1, + .type_size = sizeof(int32_t), + .is_quantized = false, + }, + [GGML_TYPE_I64] = { + .type_name = "i64", + .blck_size = 1, + .type_size = sizeof(int64_t), + .is_quantized = false, + }, + [GGML_TYPE_F64] = { + .type_name = "f64", + .blck_size = 1, + .type_size = sizeof(double), + .is_quantized = false, + .nrows = 1, + }, + [GGML_TYPE_F32] = { + .type_name = "f32", + .blck_size = 1, + .type_size = sizeof(float), + .is_quantized = false, + .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32, + .vec_dot_type = GGML_TYPE_F32, + .nrows = 1, + }, + [GGML_TYPE_F16] = { + .type_name = "f16", + .blck_size = 1, + .type_size = sizeof(ggml_fp16_t), + .is_quantized = false, + .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row, + .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row, + .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row, + .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16, + .vec_dot_type = GGML_TYPE_F16, + .nrows = 1, + }, + [GGML_TYPE_Q4_0] = { + .type_name = "q4_0", + .blck_size = QK4_0, + .type_size = sizeof(block_q4_0), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_q4_0, + .from_float = quantize_row_q4_0, + .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference, + .vec_dot = ggml_vec_dot_q4_0_q8_0, + .vec_dot_type = GGML_TYPE_Q8_0, +#if defined (__ARM_FEATURE_MATMUL_INT8) + .nrows = 2, +#else + .nrows = 1, +#endif + }, + [GGML_TYPE_Q4_1] = { + .type_name = "q4_1", + .blck_size = QK4_1, + .type_size = sizeof(block_q4_1), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_q4_1, + .from_float = quantize_row_q4_1, + .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference, + .vec_dot = ggml_vec_dot_q4_1_q8_1, + .vec_dot_type = GGML_TYPE_Q8_1, +#if defined (__ARM_FEATURE_MATMUL_INT8) + .nrows = 2, +#else + .nrows = 1, +#endif + }, + [4] = { // GGML_TYPE_Q4_2 + .type_name = "DEPRECATED", + .blck_size = 0, + .type_size = 0, + .is_quantized = false, + .to_float = NULL, + .from_float = NULL, + .from_float_reference = NULL, + .vec_dot = NULL, + .vec_dot_type = GGML_TYPE_COUNT, + .nrows = 1, + }, + [5] = { // GGML_TYPE_Q4_3 + .type_name = "DEPRECATED", + .blck_size = 0, + .type_size = 0, + .is_quantized = false, + .to_float = NULL, + .from_float = NULL, + .from_float_reference = NULL, + .vec_dot = NULL, + .vec_dot_type = GGML_TYPE_COUNT, + .nrows = 1, + }, + [GGML_TYPE_Q5_0] = { + .type_name = "q5_0", + .blck_size = QK5_0, + .type_size = sizeof(block_q5_0), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_q5_0, + .from_float = quantize_row_q5_0, + .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference, + .vec_dot = ggml_vec_dot_q5_0_q8_0, + .vec_dot_type = GGML_TYPE_Q8_0, + .nrows = 1, + }, + [GGML_TYPE_Q5_1] = { + .type_name = "q5_1", + .blck_size = QK5_1, + .type_size = sizeof(block_q5_1), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_q5_1, + .from_float = quantize_row_q5_1, + .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference, + .vec_dot = ggml_vec_dot_q5_1_q8_1, + .vec_dot_type = GGML_TYPE_Q8_1, + .nrows = 1, + }, + [GGML_TYPE_Q8_0] = { + .type_name = "q8_0", + .blck_size = QK8_0, + .type_size = sizeof(block_q8_0), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_q8_0, + .from_float = quantize_row_q8_0, + .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference, + .vec_dot = ggml_vec_dot_q8_0_q8_0, + .vec_dot_type = GGML_TYPE_Q8_0, +#if defined (__ARM_FEATURE_MATMUL_INT8) + .nrows = 2, +#else + .nrows = 1, +#endif + }, + [GGML_TYPE_Q8_1] = { + .type_name = "q8_1", + .blck_size = QK8_1, + .type_size = sizeof(block_q8_1), + .is_quantized = true, + .from_float = quantize_row_q8_1, + .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference, + .vec_dot_type = GGML_TYPE_Q8_1, + .nrows = 1, + }, + [GGML_TYPE_Q2_K] = { + .type_name = "q2_K", + .blck_size = QK_K, + .type_size = sizeof(block_q2_K), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_q2_K, + .from_float = quantize_row_q2_K, + .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference, + .vec_dot = ggml_vec_dot_q2_K_q8_K, + .vec_dot_type = GGML_TYPE_Q8_K, + .nrows = 1, + }, + [GGML_TYPE_Q3_K] = { + .type_name = "q3_K", + .blck_size = QK_K, + .type_size = sizeof(block_q3_K), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_q3_K, + .from_float = quantize_row_q3_K, + .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference, + .vec_dot = ggml_vec_dot_q3_K_q8_K, + .vec_dot_type = GGML_TYPE_Q8_K, + .nrows = 1, + }, + [GGML_TYPE_Q4_K] = { + .type_name = "q4_K", + .blck_size = QK_K, + .type_size = sizeof(block_q4_K), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_q4_K, + .from_float = quantize_row_q4_K, + .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference, + .vec_dot = ggml_vec_dot_q4_K_q8_K, + .vec_dot_type = GGML_TYPE_Q8_K, + .nrows = 1, + }, + [GGML_TYPE_Q5_K] = { + .type_name = "q5_K", + .blck_size = QK_K, + .type_size = sizeof(block_q5_K), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_q5_K, + .from_float = quantize_row_q5_K, + .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference, + .vec_dot = ggml_vec_dot_q5_K_q8_K, + .vec_dot_type = GGML_TYPE_Q8_K, + .nrows = 1, + }, + [GGML_TYPE_Q6_K] = { + .type_name = "q6_K", + .blck_size = QK_K, + .type_size = sizeof(block_q6_K), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_q6_K, + .from_float = quantize_row_q6_K, + .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference, + .vec_dot = ggml_vec_dot_q6_K_q8_K, + .vec_dot_type = GGML_TYPE_Q8_K, + .nrows = 1, + }, + [GGML_TYPE_IQ2_XXS] = { + .type_name = "iq2_xxs", + .blck_size = QK_K, + .type_size = sizeof(block_iq2_xxs), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs, + .from_float = NULL, + .from_float_reference = NULL, + .vec_dot = ggml_vec_dot_iq2_xxs_q8_K, + .vec_dot_type = GGML_TYPE_Q8_K, + .nrows = 1, + }, + [GGML_TYPE_IQ2_XS] = { + .type_name = "iq2_xs", + .blck_size = QK_K, + .type_size = sizeof(block_iq2_xs), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_iq2_xs, + .from_float = NULL, + .from_float_reference = NULL, + .vec_dot = ggml_vec_dot_iq2_xs_q8_K, + .vec_dot_type = GGML_TYPE_Q8_K, + .nrows = 1, + }, + [GGML_TYPE_IQ3_XXS] = { + .type_name = "iq3_xxs", + .blck_size = QK_K, + .type_size = sizeof(block_iq3_xxs), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs, + .from_float = quantize_row_iq3_xxs, + .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference, + .vec_dot = ggml_vec_dot_iq3_xxs_q8_K, + .vec_dot_type = GGML_TYPE_Q8_K, + .nrows = 1, + }, + [GGML_TYPE_IQ3_S] = { + .type_name = "iq3_s", + .blck_size = QK_K, + .type_size = sizeof(block_iq3_s), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_iq3_s, + .from_float = quantize_row_iq3_s, + .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference, + .vec_dot = ggml_vec_dot_iq3_s_q8_K, + .vec_dot_type = GGML_TYPE_Q8_K, + .nrows = 1, + }, + [GGML_TYPE_IQ2_S] = { + .type_name = "iq2_s", + .blck_size = QK_K, + .type_size = sizeof(block_iq2_s), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_iq2_s, + .from_float = quantize_row_iq2_s, + .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference, + .vec_dot = ggml_vec_dot_iq2_s_q8_K, + .vec_dot_type = GGML_TYPE_Q8_K, + .nrows = 1, + }, + [GGML_TYPE_IQ1_S] = { + .type_name = "iq1_s", + .blck_size = QK_K, + .type_size = sizeof(block_iq1_s), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_iq1_s, + .from_float = NULL, + .from_float_reference = NULL, + .vec_dot = ggml_vec_dot_iq1_s_q8_K, + .vec_dot_type = GGML_TYPE_Q8_K, + .nrows = 1, + }, + [GGML_TYPE_IQ1_M] = { + .type_name = "iq1_m", + .blck_size = QK_K, + .type_size = sizeof(block_iq1_m), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_iq1_m, + .from_float = NULL, + .from_float_reference = NULL, + .vec_dot = ggml_vec_dot_iq1_m_q8_K, + .vec_dot_type = GGML_TYPE_Q8_K, + .nrows = 1, + }, + [GGML_TYPE_IQ4_NL] = { + .type_name = "iq4_nl", + .blck_size = QK4_NL, + .type_size = sizeof(block_iq4_nl), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_iq4_nl, + .from_float = quantize_row_iq4_nl, + .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference, + .vec_dot = ggml_vec_dot_iq4_nl_q8_0, + .vec_dot_type = GGML_TYPE_Q8_0, + .nrows = 1, + }, + [GGML_TYPE_IQ4_XS] = { + .type_name = "iq4_xs", +#if QK_K == 64 + .blck_size = QK4_NL, +#else + .blck_size = QK_K, +#endif + .type_size = sizeof(block_iq4_xs), + .is_quantized = true, + .to_float = (ggml_to_float_t) dequantize_row_iq4_xs, + .from_float = quantize_row_iq4_xs, + .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference, + .vec_dot = ggml_vec_dot_iq4_xs_q8_K, +#if QK_K == 64 + .vec_dot_type = GGML_TYPE_Q8_0, +#else + .vec_dot_type = GGML_TYPE_Q8_K, +#endif + .nrows = 1, + }, + [GGML_TYPE_Q8_K] = { + .type_name = "q8_K", + .blck_size = QK_K, + .type_size = sizeof(block_q8_K), + .is_quantized = true, + .from_float = quantize_row_q8_K, + } +}; + +// For internal test use +ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) { + GGML_ASSERT(type < GGML_TYPE_COUNT); + return type_traits[type]; +} + +// +// simd mappings +// + +#if defined(__ARM_NEON) +#if !defined(__aarch64__) + +// 64-bit compatibility + +inline static float vaddvq_f32(float32x4_t v) { + return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3); +} + +#endif +#endif + +// we define a common set of C macros which map to specific intrinsics based on the current architecture +// we then implement the fundamental computation operations below using only these macros +// adding support for new architectures requires to define the corresponding SIMD macros +// +// GGML_F32_STEP / GGML_F16_STEP +// number of elements to process in a single step +// +// GGML_F32_EPR / GGML_F16_EPR +// number of elements to fit in a single register +// + +#if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA) + +#define GGML_SIMD + +// F32 NEON + +#define GGML_F32_STEP 16 +#define GGML_F32_EPR 4 + +#define GGML_F32x4 float32x4_t +#define GGML_F32x4_ZERO vdupq_n_f32(0.0f) +#define GGML_F32x4_SET1(x) vdupq_n_f32(x) +#define GGML_F32x4_LOAD vld1q_f32 +#define GGML_F32x4_STORE vst1q_f32 +#define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c) +#define GGML_F32x4_ADD vaddq_f32 +#define GGML_F32x4_MUL vmulq_f32 +#define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x) +#define GGML_F32x4_REDUCE(res, x) \ +{ \ + int offset = GGML_F32_ARR >> 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = vaddq_f32(x[i], x[offset+i]); \ + } \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = vaddq_f32(x[i], x[offset+i]); \ + } \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = vaddq_f32(x[i], x[offset+i]); \ + } \ + res = GGML_F32x4_REDUCE_ONE(x[0]); \ +} + +#define GGML_F32_VEC GGML_F32x4 +#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO +#define GGML_F32_VEC_SET1 GGML_F32x4_SET1 +#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD +#define GGML_F32_VEC_STORE GGML_F32x4_STORE +#define GGML_F32_VEC_FMA GGML_F32x4_FMA +#define GGML_F32_VEC_ADD GGML_F32x4_ADD +#define GGML_F32_VEC_MUL GGML_F32x4_MUL +#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE + +// F16 NEON + +#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) + #define GGML_F16_STEP 32 + #define GGML_F16_EPR 8 + + #define GGML_F16x8 float16x8_t + #define GGML_F16x8_ZERO vdupq_n_f16(0.0f) + #define GGML_F16x8_SET1(x) vdupq_n_f16(x) + #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x)) + #define GGML_F16x8_STORE vst1q_f16 + #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c) + #define GGML_F16x8_ADD vaddq_f16 + #define GGML_F16x8_MUL vmulq_f16 + #define GGML_F16x8_REDUCE(res, x) \ + do { \ + int offset = GGML_F16_ARR >> 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = vaddq_f16(x[i], x[offset+i]); \ + } \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = vaddq_f16(x[i], x[offset+i]); \ + } \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = vaddq_f16(x[i], x[offset+i]); \ + } \ + const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \ + const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \ + res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \ + } while (0) + + #define GGML_F16_VEC GGML_F16x8 + #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO + #define GGML_F16_VEC_SET1 GGML_F16x8_SET1 + #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p) + #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i]) + #define GGML_F16_VEC_FMA GGML_F16x8_FMA + #define GGML_F16_VEC_ADD GGML_F16x8_ADD + #define GGML_F16_VEC_MUL GGML_F16x8_MUL + #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE +#else + // if FP16 vector arithmetic is not supported, we use FP32 instead + // and take advantage of the vcvt_ functions to convert to/from FP16 + + #define GGML_F16_STEP 16 + #define GGML_F16_EPR 4 + + #define GGML_F32Cx4 float32x4_t + #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f) + #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x) + #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x))) + #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y)) + #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c) + #define GGML_F32Cx4_ADD vaddq_f32 + #define GGML_F32Cx4_MUL vmulq_f32 + #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE + + #define GGML_F16_VEC GGML_F32Cx4 + #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO + #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1 + #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p) + #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i]) + #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA + #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD + #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL + #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE +#endif + +#elif defined(__AVX512F__) + +#define GGML_SIMD + +// F32 AVX512 + +#define GGML_F32_STEP 64 +#define GGML_F32_EPR 16 + +#define GGML_F32x16 __m512 +#define GGML_F32x16_ZERO _mm512_setzero_ps() +#define GGML_F32x16_SET1(x) _mm512_set1_ps(x) +#define GGML_F32x16_LOAD _mm512_loadu_ps +#define GGML_F32x16_STORE _mm512_storeu_ps +// _mm512_fmadd_ps is defined in AVX512F so no guard is required +#define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a) +#define GGML_F32x16_ADD _mm512_add_ps +#define GGML_F32x16_MUL _mm512_mul_ps +#define GGML_F32x16_REDUCE(res, x) \ +do { \ + int offset = GGML_F32_ARR >> 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = _mm512_add_ps(x[i], x[offset+i]); \ + } \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = _mm512_add_ps(x[i], x[offset+i]); \ + } \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = _mm512_add_ps(x[i], x[offset+i]); \ + } \ + res = _mm512_reduce_add_ps(x[0]); \ +} while (0) + +// TODO: is this optimal ? + +#define GGML_F32_VEC GGML_F32x16 +#define GGML_F32_VEC_ZERO GGML_F32x16_ZERO +#define GGML_F32_VEC_SET1 GGML_F32x16_SET1 +#define GGML_F32_VEC_LOAD GGML_F32x16_LOAD +#define GGML_F32_VEC_STORE GGML_F32x16_STORE +#define GGML_F32_VEC_FMA GGML_F32x16_FMA +#define GGML_F32_VEC_ADD GGML_F32x16_ADD +#define GGML_F32_VEC_MUL GGML_F32x16_MUL +#define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE + +// F16 AVX512 + +// F16 AVX + +#define GGML_F16_STEP 64 +#define GGML_F16_EPR 16 + +// AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead + +#define GGML_F32Cx16 __m512 +#define GGML_F32Cx16_ZERO _mm512_setzero_ps() +#define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x) + +// unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F +// so F16C guard isn't required +#define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((__m256i *)(x))) +#define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0)) + +#define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a) +#define GGML_F32Cx16_ADD _mm512_add_ps +#define GGML_F32Cx16_MUL _mm512_mul_ps +#define GGML_F32Cx16_REDUCE(res, x) \ +do { \ + int offset = GGML_F32_ARR >> 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = _mm512_add_ps(x[i], x[offset+i]); \ + } \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = _mm512_add_ps(x[i], x[offset+i]); \ + } \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = _mm512_add_ps(x[i], x[offset+i]); \ + } \ + res = _mm512_reduce_add_ps(x[0]); \ +} while (0) + +#define GGML_F16_VEC GGML_F32Cx16 +#define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO +#define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1 +#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p) +#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i]) +#define GGML_F16_VEC_FMA GGML_F32Cx16_FMA +#define GGML_F16_VEC_ADD GGML_F32Cx16_ADD +#define GGML_F16_VEC_MUL GGML_F32Cx16_MUL +#define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE + +#elif defined(__AVX__) + +#define GGML_SIMD + +// F32 AVX + +#define GGML_F32_STEP 32 +#define GGML_F32_EPR 8 + +#define GGML_F32x8 __m256 +#define GGML_F32x8_ZERO _mm256_setzero_ps() +#define GGML_F32x8_SET1(x) _mm256_set1_ps(x) +#define GGML_F32x8_LOAD _mm256_loadu_ps +#define GGML_F32x8_STORE _mm256_storeu_ps +#if defined(__FMA__) + #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a) +#else + #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a) +#endif +#define GGML_F32x8_ADD _mm256_add_ps +#define GGML_F32x8_MUL _mm256_mul_ps +#define GGML_F32x8_REDUCE(res, x) \ +do { \ + int offset = GGML_F32_ARR >> 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = _mm256_add_ps(x[i], x[offset+i]); \ + } \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = _mm256_add_ps(x[i], x[offset+i]); \ + } \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = _mm256_add_ps(x[i], x[offset+i]); \ + } \ + const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \ + _mm256_extractf128_ps(x[0], 1)); \ + const __m128 t1 = _mm_hadd_ps(t0, t0); \ + res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \ +} while (0) +// TODO: is this optimal ? + +#define GGML_F32_VEC GGML_F32x8 +#define GGML_F32_VEC_ZERO GGML_F32x8_ZERO +#define GGML_F32_VEC_SET1 GGML_F32x8_SET1 +#define GGML_F32_VEC_LOAD GGML_F32x8_LOAD +#define GGML_F32_VEC_STORE GGML_F32x8_STORE +#define GGML_F32_VEC_FMA GGML_F32x8_FMA +#define GGML_F32_VEC_ADD GGML_F32x8_ADD +#define GGML_F32_VEC_MUL GGML_F32x8_MUL +#define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE + +// F16 AVX + +#define GGML_F16_STEP 32 +#define GGML_F16_EPR 8 + +// F16 arithmetic is not supported by AVX, so we use F32 instead + +#define GGML_F32Cx8 __m256 +#define GGML_F32Cx8_ZERO _mm256_setzero_ps() +#define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x) + +#if defined(__F16C__) +// the _mm256_cvt intrinsics require F16C +#define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x))) +#define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0)) +#else +static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) { + float tmp[8]; + + for (int i = 0; i < 8; i++) { + tmp[i] = GGML_FP16_TO_FP32(x[i]); + } + + return _mm256_loadu_ps(tmp); +} +static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) { + float arr[8]; + + _mm256_storeu_ps(arr, y); + + for (int i = 0; i < 8; i++) + x[i] = GGML_FP32_TO_FP16(arr[i]); +} +#define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x) +#define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y) +#endif + +#define GGML_F32Cx8_FMA GGML_F32x8_FMA +#define GGML_F32Cx8_ADD _mm256_add_ps +#define GGML_F32Cx8_MUL _mm256_mul_ps +#define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE + +#define GGML_F16_VEC GGML_F32Cx8 +#define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO +#define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1 +#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p) +#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i]) +#define GGML_F16_VEC_FMA GGML_F32Cx8_FMA +#define GGML_F16_VEC_ADD GGML_F32Cx8_ADD +#define GGML_F16_VEC_MUL GGML_F32Cx8_MUL +#define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE + +#elif defined(__POWER9_VECTOR__) + +#define GGML_SIMD + +// F32 POWER9 + +#define GGML_F32_STEP 32 +#define GGML_F32_EPR 4 + +#define GGML_F32x4 vector float +#define GGML_F32x4_ZERO 0.0f +#define GGML_F32x4_SET1 vec_splats +#define GGML_F32x4_LOAD(p) vec_xl(0, p) +#define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p) +#define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a) +#define GGML_F32x4_ADD vec_add +#define GGML_F32x4_MUL vec_mul +#define GGML_F32x4_REDUCE(res, x) \ +{ \ + int offset = GGML_F32_ARR >> 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = vec_add(x[i], x[offset+i]); \ + } \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = vec_add(x[i], x[offset+i]); \ + } \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = vec_add(x[i], x[offset+i]); \ + } \ + res = vec_extract(x[0], 0) + \ + vec_extract(x[0], 1) + \ + vec_extract(x[0], 2) + \ + vec_extract(x[0], 3); \ +} + +#define GGML_F32_VEC GGML_F32x4 +#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO +#define GGML_F32_VEC_SET1 GGML_F32x4_SET1 +#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD +#define GGML_F32_VEC_STORE GGML_F32x4_STORE +#define GGML_F32_VEC_FMA GGML_F32x4_FMA +#define GGML_F32_VEC_ADD GGML_F32x4_ADD +#define GGML_F32_VEC_MUL GGML_F32x4_MUL +#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE + +// F16 POWER9 +#define GGML_F16_STEP GGML_F32_STEP +#define GGML_F16_EPR GGML_F32_EPR +#define GGML_F16_VEC GGML_F32x4 +#define GGML_F16_VEC_ZERO GGML_F32x4_ZERO +#define GGML_F16_VEC_SET1 GGML_F32x4_SET1 +#define GGML_F16_VEC_FMA GGML_F32x4_FMA +#define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE +// Use vec_xl, not vec_ld, in case the load address is not aligned. +#define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \ + vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \ + vec_extract_fp32_from_shortl(vec_xl(0, p)) +#define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i] +#define GGML_F16_VEC_STORE(p, r, i) \ + if (i & 0x1) \ + vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \ + r[i - GGML_ENDIAN_BYTE(0)]), \ + 0, p - GGML_F16_EPR) + +#elif defined(__wasm_simd128__) + +#define GGML_SIMD + +// F32 WASM + +#define GGML_F32_STEP 16 +#define GGML_F32_EPR 4 + +#define GGML_F32x4 v128_t +#define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f) +#define GGML_F32x4_SET1(x) wasm_f32x4_splat(x) +#define GGML_F32x4_LOAD wasm_v128_load +#define GGML_F32x4_STORE wasm_v128_store +#define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a) +#define GGML_F32x4_ADD wasm_f32x4_add +#define GGML_F32x4_MUL wasm_f32x4_mul +#define GGML_F32x4_REDUCE(res, x) \ +{ \ + int offset = GGML_F32_ARR >> 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = wasm_f32x4_add(x[i], x[offset+i]); \ + } \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = wasm_f32x4_add(x[i], x[offset+i]); \ + } \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = wasm_f32x4_add(x[i], x[offset+i]); \ + } \ + res = wasm_f32x4_extract_lane(x[0], 0) + \ + wasm_f32x4_extract_lane(x[0], 1) + \ + wasm_f32x4_extract_lane(x[0], 2) + \ + wasm_f32x4_extract_lane(x[0], 3); \ +} + +#define GGML_F32_VEC GGML_F32x4 +#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO +#define GGML_F32_VEC_SET1 GGML_F32x4_SET1 +#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD +#define GGML_F32_VEC_STORE GGML_F32x4_STORE +#define GGML_F32_VEC_FMA GGML_F32x4_FMA +#define GGML_F32_VEC_ADD GGML_F32x4_ADD +#define GGML_F32_VEC_MUL GGML_F32x4_MUL +#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE + +// F16 WASM + +#define GGML_F16_STEP 16 +#define GGML_F16_EPR 4 + +inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) { + float tmp[4]; + + tmp[0] = GGML_FP16_TO_FP32(p[0]); + tmp[1] = GGML_FP16_TO_FP32(p[1]); + tmp[2] = GGML_FP16_TO_FP32(p[2]); + tmp[3] = GGML_FP16_TO_FP32(p[3]); + + return wasm_v128_load(tmp); +} + +inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) { + float tmp[4]; + + wasm_v128_store(tmp, x); + + p[0] = GGML_FP32_TO_FP16(tmp[0]); + p[1] = GGML_FP32_TO_FP16(tmp[1]); + p[2] = GGML_FP32_TO_FP16(tmp[2]); + p[3] = GGML_FP32_TO_FP16(tmp[3]); +} + +#define GGML_F16x4 v128_t +#define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f) +#define GGML_F16x4_SET1(x) wasm_f32x4_splat(x) +#define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x) +#define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y) +#define GGML_F16x4_FMA GGML_F32x4_FMA +#define GGML_F16x4_ADD wasm_f32x4_add +#define GGML_F16x4_MUL wasm_f32x4_mul +#define GGML_F16x4_REDUCE(res, x) \ +{ \ + int offset = GGML_F16_ARR >> 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = wasm_f32x4_add(x[i], x[offset+i]); \ + } \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = wasm_f32x4_add(x[i], x[offset+i]); \ + } \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = wasm_f32x4_add(x[i], x[offset+i]); \ + } \ + res = wasm_f32x4_extract_lane(x[0], 0) + \ + wasm_f32x4_extract_lane(x[0], 1) + \ + wasm_f32x4_extract_lane(x[0], 2) + \ + wasm_f32x4_extract_lane(x[0], 3); \ +} + +#define GGML_F16_VEC GGML_F16x4 +#define GGML_F16_VEC_ZERO GGML_F16x4_ZERO +#define GGML_F16_VEC_SET1 GGML_F16x4_SET1 +#define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p) +#define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i]) +#define GGML_F16_VEC_FMA GGML_F16x4_FMA +#define GGML_F16_VEC_ADD GGML_F16x4_ADD +#define GGML_F16_VEC_MUL GGML_F16x4_MUL +#define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE + +#elif defined(__SSE3__) + +#define GGML_SIMD + +// F32 SSE + +#define GGML_F32_STEP 32 +#define GGML_F32_EPR 4 + +#define GGML_F32x4 __m128 +#define GGML_F32x4_ZERO _mm_setzero_ps() +#define GGML_F32x4_SET1(x) _mm_set1_ps(x) +#define GGML_F32x4_LOAD _mm_loadu_ps +#define GGML_F32x4_STORE _mm_storeu_ps +#if defined(__FMA__) + // TODO: Does this work? + #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a) +#else + #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a) +#endif +#define GGML_F32x4_ADD _mm_add_ps +#define GGML_F32x4_MUL _mm_mul_ps +#define GGML_F32x4_REDUCE(res, x) \ +{ \ + int offset = GGML_F32_ARR >> 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = _mm_add_ps(x[i], x[offset+i]); \ + } \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = _mm_add_ps(x[i], x[offset+i]); \ + } \ + offset >>= 1; \ + for (int i = 0; i < offset; ++i) { \ + x[i] = _mm_add_ps(x[i], x[offset+i]); \ + } \ + const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \ + res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \ +} +// TODO: is this optimal ? + +#define GGML_F32_VEC GGML_F32x4 +#define GGML_F32_VEC_ZERO GGML_F32x4_ZERO +#define GGML_F32_VEC_SET1 GGML_F32x4_SET1 +#define GGML_F32_VEC_LOAD GGML_F32x4_LOAD +#define GGML_F32_VEC_STORE GGML_F32x4_STORE +#define GGML_F32_VEC_FMA GGML_F32x4_FMA +#define GGML_F32_VEC_ADD GGML_F32x4_ADD +#define GGML_F32_VEC_MUL GGML_F32x4_MUL +#define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE + +// F16 SSE + +#define GGML_F16_STEP 32 +#define GGML_F16_EPR 4 + +static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) { + float tmp[4]; + + tmp[0] = GGML_FP16_TO_FP32(x[0]); + tmp[1] = GGML_FP16_TO_FP32(x[1]); + tmp[2] = GGML_FP16_TO_FP32(x[2]); + tmp[3] = GGML_FP16_TO_FP32(x[3]); + + return _mm_loadu_ps(tmp); +} + +static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) { + float arr[4]; + + _mm_storeu_ps(arr, y); + + x[0] = GGML_FP32_TO_FP16(arr[0]); + x[1] = GGML_FP32_TO_FP16(arr[1]); + x[2] = GGML_FP32_TO_FP16(arr[2]); + x[3] = GGML_FP32_TO_FP16(arr[3]); +} + +#define GGML_F32Cx4 __m128 +#define GGML_F32Cx4_ZERO _mm_setzero_ps() +#define GGML_F32Cx4_SET1(x) _mm_set1_ps(x) +#define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x) +#define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y) +#define GGML_F32Cx4_FMA GGML_F32x4_FMA +#define GGML_F32Cx4_ADD _mm_add_ps +#define GGML_F32Cx4_MUL _mm_mul_ps +#define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE + +#define GGML_F16_VEC GGML_F32Cx4 +#define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO +#define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1 +#define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p) +#define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i]) +#define GGML_F16_VEC_FMA GGML_F32Cx4_FMA +#define GGML_F16_VEC_ADD GGML_F32Cx4_ADD +#define GGML_F16_VEC_MUL GGML_F32Cx4_MUL +#define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE + +#endif + +// GGML_F32_ARR / GGML_F16_ARR +// number of registers to use per step +#ifdef GGML_SIMD +#define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR) +#define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR) +#endif + +// +// fundamental operations +// + +inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; } + +inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; } + +inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; } + +inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; } + +inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; } +inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; } +inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; } +inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; } +inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; } +inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; } +inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; } +inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; } +inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; } +inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; } + +static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) { + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + +#ifdef GGML_SIMD + float sumf = 0.0f; + const int np = (n & ~(GGML_F32_STEP - 1)); + + GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO }; + + GGML_F32_VEC ax[GGML_F32_ARR]; + GGML_F32_VEC ay[GGML_F32_ARR]; + + for (int i = 0; i < np; i += GGML_F32_STEP) { + for (int j = 0; j < GGML_F32_ARR; j++) { + ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR); + ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR); + + sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]); + } + } + + // reduce sum0..sum3 to sum0 + GGML_F32_VEC_REDUCE(sumf, sum); + + // leftovers + for (int i = np; i < n; ++i) { + sumf += x[i]*y[i]; + } +#else + // scalar + ggml_float sumf = 0.0; + for (int i = 0; i < n; ++i) { + sumf += (ggml_float)(x[i]*y[i]); + } +#endif + + *s = sumf; +} + +static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) { + assert(nrc == 1); + UNUSED(nrc); + UNUSED(bx); + UNUSED(by); + UNUSED(bs); + + ggml_float sumf = 0.0; + +#if defined(GGML_SIMD) + const int np = (n & ~(GGML_F16_STEP - 1)); + + GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO }; + + GGML_F16_VEC ax[GGML_F16_ARR]; + GGML_F16_VEC ay[GGML_F16_ARR]; + + for (int i = 0; i < np; i += GGML_F16_STEP) { + for (int j = 0; j < GGML_F16_ARR; j++) { + ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j); + ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); + + sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]); + } + } + + // reduce sum0..sum3 to sum0 + GGML_F16_VEC_REDUCE(sumf, sum); + + // leftovers + for (int i = np; i < n; ++i) { + sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i])); + } +#else + for (int i = 0; i < n; ++i) { + sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i])); + } +#endif + + *s = sumf; +} + +// compute GGML_VEC_DOT_UNROLL dot products at once +// xs - x row stride in bytes +inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) { + ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 }; + + ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL]; + + for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) { + x[i] = (ggml_fp16_t *) ((char *) xv + i*xs); + } + +#if defined(GGML_SIMD) + const int np = (n & ~(GGML_F16_STEP - 1)); + + GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } }; + + GGML_F16_VEC ax[GGML_F16_ARR]; + GGML_F16_VEC ay[GGML_F16_ARR]; + + for (int i = 0; i < np; i += GGML_F16_STEP) { + for (int j = 0; j < GGML_F16_ARR; j++) { + ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j); + + for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) { + ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j); + + sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]); + } + } + } + + // reduce sum0..sum3 to sum0 + for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) { + GGML_F16_VEC_REDUCE(sumf[k], sum[k]); + } + + // leftovers + for (int i = np; i < n; ++i) { + for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) { + sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i])); + } + } +#else + for (int i = 0; i < n; ++i) { + for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) { + sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i])); + } + } +#endif + + for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) { + s[i] = sumf[i]; + } +} + +inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) { +#if defined(GGML_SIMD) + const int np = (n & ~(GGML_F32_STEP - 1)); + + GGML_F32_VEC vx = GGML_F32_VEC_SET1(v); + + GGML_F32_VEC ax[GGML_F32_ARR]; + GGML_F32_VEC ay[GGML_F32_ARR]; + + for (int i = 0; i < np; i += GGML_F32_STEP) { + for (int j = 0; j < GGML_F32_ARR; j++) { + ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR); + ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR); + ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx); + + GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]); + } + } + + // leftovers + for (int i = np; i < n; ++i) { + y[i] += x[i]*v; + } +#else + // scalar + for (int i = 0; i < n; ++i) { + y[i] += x[i]*v; + } +#endif +} + +// xs and vs are byte strides of x and v +inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) { + + const float * restrict x[GGML_VEC_MAD_UNROLL]; + const float * restrict v[GGML_VEC_MAD_UNROLL]; + + for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) { + x[i] = (const float *) ((const char *) xv + i*xs); + v[i] = (const float *) ((const char *) vv + i*vs); + } + +#if defined(GGML_SIMD) + const int np = (n & ~(GGML_F32_STEP - 1)); + + GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL]; + + for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) { + vx[k] = GGML_F32_VEC_SET1(v[k][0]); + } + + GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR]; + GGML_F32_VEC ay[GGML_F32_ARR]; + + for (int i = 0; i < np; i += GGML_F32_STEP) { + for (int j = 0; j < GGML_F32_ARR; j++) { + ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR); + + for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) { + ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR); + ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]); + } + + GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]); + } + } + + // leftovers + for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) { + for (int i = np; i < n; ++i) { + y[i] += x[k][i]*v[k][0]; + } + } +#else + // scalar + for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) { + for (int i = 0; i < n; ++i) { + y[i] += x[k][i]*v[k][0]; + } + } +#endif +} + +//inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; } +inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { +#if defined(GGML_USE_ACCELERATE) + vDSP_vsmul(y, 1, &v, y, 1, n); +#elif defined(GGML_SIMD) + const int np = (n & ~(GGML_F32_STEP - 1)); + + GGML_F32_VEC vx = GGML_F32_VEC_SET1(v); + + GGML_F32_VEC ay[GGML_F32_ARR]; + + for (int i = 0; i < np; i += GGML_F32_STEP) { + for (int j = 0; j < GGML_F32_ARR; j++) { + ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR); + ay[j] = GGML_F32_VEC_MUL(ay[j], vx); + + GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]); + } + } + + // leftovers + for (int i = np; i < n; ++i) { + y[i] *= v; + } +#else + // scalar + for (int i = 0; i < n; ++i) { + y[i] *= v; + } +#endif +} + +inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); } +inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; } +inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); } +inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); } +inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); } +inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); } +inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; } +inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); } +inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; } +inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; } +inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); } +// TODO: optimize performance +inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); } +inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); } + +static const float GELU_COEF_A = 0.044715f; +static const float GELU_QUICK_COEF = -1.702f; +static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f; + +inline static float ggml_gelu_f32(float x) { + return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x))); +} + +inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { + const uint16_t * i16 = (const uint16_t *) x; + for (int i = 0; i < n; ++i) { + y[i] = ggml_table_gelu_f16[i16[i]]; + } +} + +#ifdef GGML_GELU_FP16 +inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) { + uint16_t t; + for (int i = 0; i < n; ++i) { + if (x[i] <= -10.0f) { + y[i] = 0.0f; + } else if (x[i] >= 10.0f) { + y[i] = x[i]; + } else { + ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]); + memcpy(&t, &fp16, sizeof(uint16_t)); + y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]); + } + } +} +#else +inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) { + for (int i = 0; i < n; ++i) { + y[i] = ggml_gelu_f32(x[i]); + } +} +#endif + +inline static float ggml_gelu_quick_f32(float x) { + return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x))); +} + +//inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { +// const uint16_t * i16 = (const uint16_t *) x; +// for (int i = 0; i < n; ++i) { +// y[i] = ggml_table_gelu_quick_f16[i16[i]]; +// } +//} + +#ifdef GGML_GELU_QUICK_FP16 +inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) { + uint16_t t; + for (int i = 0; i < n; ++i) { + ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]); + memcpy(&t, &fp16, sizeof(uint16_t)); + y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]); + } +} +#else +inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) { + for (int i = 0; i < n; ++i) { + y[i] = ggml_gelu_quick_f32(x[i]); + } +} +#endif + +// Sigmoid Linear Unit (SiLU) function +inline static float ggml_silu_f32(float x) { + return x/(1.0f + expf(-x)); +} + +//inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) { +// const uint16_t * i16 = (const uint16_t *) x; +// for (int i = 0; i < n; ++i) { +// y[i] = ggml_table_silu_f16[i16[i]]; +// } +//} + +#ifdef GGML_SILU_FP16 +inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) { + uint16_t t; + for (int i = 0; i < n; ++i) { + ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]); + memcpy(&t, &fp16, sizeof(uint16_t)); + y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]); + } +} +#else +inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) { + for (int i = 0; i < n; ++i) { + y[i] = ggml_silu_f32(x[i]); + } +} +#endif + +inline static float ggml_silu_backward_f32(float x, float dy) { + const float s = 1.0f/(1.0f + expf(-x)); + return dy*s*(1.0f + x*(1.0f - s)); +} + +#ifdef GGML_SILU_FP16 +inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) { + for (int i = 0; i < n; ++i) { + // we did not use x[i] to compute forward silu but its f16 equivalent + // take derivative at f16 of x[i]: + ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]); + float usedx = GGML_FP16_TO_FP32(fp16); + dx[i] = ggml_silu_backward_f32(usedx, dy[i]); + } +} +#else +inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) { + for (int i = 0; i < n; ++i) { + dx[i] = ggml_silu_backward_f32(x[i], dy[i]); + } +} +#endif + +inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) { +#ifndef GGML_USE_ACCELERATE + ggml_float sum = 0.0; + for (int i = 0; i < n; ++i) { + sum += (ggml_float)x[i]; + } + *s = sum; +#else + vDSP_sve(x, 1, s, n); +#endif +} + +inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) { + ggml_float sum = 0.0; + for (int i = 0; i < n; ++i) { + sum += (ggml_float)x[i]; + } + *s = sum; +} + +inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) { + float sum = 0.0f; + for (int i = 0; i < n; ++i) { + sum += GGML_FP16_TO_FP32(x[i]); + } + *s = sum; +} + +inline static void ggml_vec_max_f32(const int n, float * s, const float * x) { +#ifndef GGML_USE_ACCELERATE + float max = -INFINITY; + for (int i = 0; i < n; ++i) { + max = MAX(max, x[i]); + } + *s = max; +#else + vDSP_maxv(x, 1, s, n); +#endif +} + +inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) { + ggml_vec_norm_f32(n, s, x); + *s = 1.f/(*s); +} + +inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) { + float max = -INFINITY; + int idx = 0; + for (int i = 0; i < n; ++i) { + max = MAX(max, x[i]); + if (max == x[i]) { idx = i; } + } + *s = idx; +} + +// +// data types +// + +static const char * GGML_OP_NAME[GGML_OP_COUNT] = { + "NONE", + + "DUP", + "ADD", + "ADD1", + "ACC", + "SUB", + "MUL", + "DIV", + "SQR", + "SQRT", + "LOG", + "SUM", + "SUM_ROWS", + "MEAN", + "ARGMAX", + "REPEAT", + "REPEAT_BACK", + "CONCAT", + "SILU_BACK", + "NORM", + "RMS_NORM", + "RMS_NORM_BACK", + "GROUP_NORM", + + "MUL_MAT", + "MUL_MAT_ID", + "OUT_PROD", + + "SCALE", + "SET", + "CPY", + "CONT", + "RESHAPE", + "VIEW", + "PERMUTE", + "TRANSPOSE", + "GET_ROWS", + "GET_ROWS_BACK", + "DIAG", + "DIAG_MASK_INF", + "DIAG_MASK_ZERO", + "SOFT_MAX", + "SOFT_MAX_BACK", + "ROPE", + "ROPE_BACK", + "ALIBI", + "CLAMP", + "CONV_TRANSPOSE_1D", + "IM2COL", + "CONV_TRANSPOSE_2D", + "POOL_1D", + "POOL_2D", + "UPSCALE", + "PAD", + "ARANGE", + "TIMESTEP_EMBEDDING", + "ARGSORT", + "LEAKY_RELU", + + "FLASH_ATTN", + "FLASH_FF", + "FLASH_ATTN_BACK", + "SSM_CONV", + "SSM_SCAN", + "WIN_PART", + "WIN_UNPART", + "GET_REL_POS", + "ADD_REL_POS", + + "UNARY", + + "MAP_UNARY", + "MAP_BINARY", + + "MAP_CUSTOM1_F32", + "MAP_CUSTOM2_F32", + "MAP_CUSTOM3_F32", + + "MAP_CUSTOM1", + "MAP_CUSTOM2", + "MAP_CUSTOM3", + + "CROSS_ENTROPY_LOSS", + "CROSS_ENTROPY_LOSS_BACK", +}; + +static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76"); + +static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = { + "none", + + "x", + "x+y", + "x+y", + "view(x,nb,offset)+=y->x", + "x-y", + "x*y", + "x/y", + "x^2", + "√x", + "log(x)", + "Σx", + "Σx_k", + "Σx/n", + "argmax(x)", + "repeat(x)", + "repeat_back(x)", + "concat(x, y)", + "silu_back(x)", + "norm(x)", + "rms_norm(x)", + "rms_norm_back(x)", + "group_norm(x)", + + "X*Y", + "X[i]*Y", + "X*Y", + + "x*v", + "y-\\>view(x)", + "x-\\>y", + "cont(x)", + "reshape(x)", + "view(x)", + "permute(x)", + "transpose(x)", + "get_rows(x)", + "get_rows_back(x)", + "diag(x)", + "diag_mask_inf(x)", + "diag_mask_zero(x)", + "soft_max(x)", + "soft_max_back(x)", + "rope(x)", + "rope_back(x)", + "alibi(x)", + "clamp(x)", + "conv_transpose_1d(x)", + "im2col(x)", + "conv_transpose_2d(x)", + "pool_1d(x)", + "pool_2d(x)", + "upscale(x)", + "pad(x)", + "arange(start, stop, step)", + "timestep_embedding(timesteps, dim, max_period)", + "argsort(x)", + "leaky_relu(x)", + + "flash_attn(x)", + "flash_ff(x)", + "flash_attn_back(x)", + "ssm_conv(x)", + "ssm_scan(x)", + "win_part(x)", + "win_unpart(x)", + "get_rel_pos(x)", + "add_rel_pos(x)", + + "unary(x)", + + "f(x)", + "f(x,y)", + + "custom_f32(x)", + "custom_f32(x,y)", + "custom_f32(x,y,z)", + + "custom(x)", + "custom(x,y)", + "custom(x,y,z)", + + "cross_entropy_loss(x,y)", + "cross_entropy_loss_back(x,y)", +}; + +static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76"); + +static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2"); + + +static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = { + "ABS", + "SGN", + "NEG", + "STEP", + "TANH", + "ELU", + "RELU", + "GELU", + "GELU_QUICK", + "SILU", + "HARDSWISH", + "HARDSIGMOID", +}; + +static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12"); + + +static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN"); +static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN"); + +// WARN: +// Mis-configuration can lead to problem that's hard to reason about: +// * At best it crash or talks nosense. +// * At worst it talks slightly difference but hard to perceive. +// +// An op has to enable INIT or FINALIZE when any of it's branch needs that pass. +// Take care about compile options (e.g., GGML_USE_xxx). +static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 }; +static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 }; + +static void ggml_setup_op_has_task_pass(void) { + { // INIT + bool * p = GGML_OP_HAS_INIT; + + p[GGML_OP_ACC ] = true; + p[GGML_OP_MUL_MAT ] = true; + p[GGML_OP_MUL_MAT_ID ] = true; + p[GGML_OP_OUT_PROD ] = true; + p[GGML_OP_SET ] = true; + p[GGML_OP_GET_ROWS_BACK ] = true; + p[GGML_OP_DIAG_MASK_INF ] = true; + p[GGML_OP_DIAG_MASK_ZERO ] = true; + p[GGML_OP_CONV_TRANSPOSE_1D ] = true; + p[GGML_OP_CONV_TRANSPOSE_2D ] = true; + p[GGML_OP_FLASH_ATTN_BACK ] = true; + p[GGML_OP_CROSS_ENTROPY_LOSS ] = true; + p[GGML_OP_ADD_REL_POS ] = true; + } + + { // FINALIZE + bool * p = GGML_OP_HAS_FINALIZE; + + p[GGML_OP_CROSS_ENTROPY_LOSS ] = true; + } +} + +// +// ggml context +// + +struct ggml_context { + size_t mem_size; + void * mem_buffer; + bool mem_buffer_owned; + bool no_alloc; + bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers + + int n_objects; + + struct ggml_object * objects_begin; + struct ggml_object * objects_end; + + struct ggml_scratch scratch; + struct ggml_scratch scratch_save; +}; + +struct ggml_context_container { + bool used; + + struct ggml_context context; +}; + +// +// NUMA support +// + +#define GGML_NUMA_MAX_NODES 8 +#define GGML_NUMA_MAX_CPUS 512 + +struct ggml_numa_node { + uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node + uint32_t n_cpus; +}; + +struct ggml_numa_nodes { + enum ggml_numa_strategy numa_strategy; + struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES]; + uint32_t n_nodes; + uint32_t total_cpus; // hardware threads on system + uint32_t current_node; // node on which main process is execting +#if defined(__gnu_linux__) + cpu_set_t cpuset; // cpuset from numactl +#else + uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype +#endif +}; + +// +// ggml state +// + +struct ggml_state { + struct ggml_context_container contexts[GGML_MAX_CONTEXTS]; + struct ggml_numa_nodes numa; +}; + +// global state +static struct ggml_state g_state; +static atomic_int g_state_barrier = 0; + +// barrier via spin lock +inline static void ggml_critical_section_start(void) { + int processing = atomic_fetch_add(&g_state_barrier, 1); + + while (processing > 0) { + // wait for other threads to finish + atomic_fetch_sub(&g_state_barrier, 1); + sched_yield(); // TODO: reconsider this + processing = atomic_fetch_add(&g_state_barrier, 1); + } +} + +// TODO: make this somehow automatically executed +// some sort of "sentry" mechanism +inline static void ggml_critical_section_end(void) { + atomic_fetch_sub(&g_state_barrier, 1); +} + +#if defined(__gnu_linux__) +static cpu_set_t ggml_get_numa_affinity(void) { + cpu_set_t cpuset; + pthread_t thread; + thread = pthread_self(); + CPU_ZERO(&cpuset); + pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset); + return cpuset; +} +#else +static uint32_t ggml_get_numa_affinity(void) { + return 0; // no NUMA support +} +#endif + +void ggml_numa_init(enum ggml_numa_strategy numa_flag) { + if (g_state.numa.n_nodes > 0) { + fprintf(stderr, "ggml_numa_init: NUMA already initialized\n"); + + return; + } + +#if defined(__gnu_linux__) + struct stat st; + char path[256]; + int rv; + + // set numa scheme + g_state.numa.numa_strategy = numa_flag; + + GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy); + + g_state.numa.cpuset = ggml_get_numa_affinity(); + + // enumerate nodes + while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) { + rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes); + GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path)); + if (stat(path, &st) != 0) { break; } + ++g_state.numa.n_nodes; + } + + // enumerate CPUs + while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) { + rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus); + GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path)); + if (stat(path, &st) != 0) { break; } + ++g_state.numa.total_cpus; + } + + GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus); + + // figure out which node we're on + uint current_cpu; + int getcpu_ret = 0; +#if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) + getcpu_ret = getcpu(¤t_cpu, &g_state.numa.current_node); +#else + // old glibc doesn't have a wrapper for this call. Fall back on direct syscall +# if !defined(SYS_getcpu) && defined(SYS_get_cpu) +# define SYS_getcpu SYS_get_cpu // some older glibc versions use this name +# endif + getcpu_ret = syscall(SYS_getcpu, ¤t_cpu, &g_state.numa.current_node); +#endif + + if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) { + g_state.numa.n_nodes = 0; + return; + } + + GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu); + + for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) { + struct ggml_numa_node * node = &g_state.numa.nodes[n]; + GGML_PRINT_DEBUG("CPUs on node %u:", n); + node->n_cpus = 0; + for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) { + rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c); + GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path)); + if (stat(path, &st) == 0) { + node->cpus[node->n_cpus++] = c; + GGML_PRINT_DEBUG(" %u", c); + } + } + GGML_PRINT_DEBUG("\n"); + } + + if (ggml_is_numa()) { + FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r"); + if (fptr != NULL) { + char buf[42]; + if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) { + GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n"); + } + fclose(fptr); + } + } +#else + GGML_UNUSED(numa_flag); + // TODO +#endif +} + +bool ggml_is_numa(void) { + return g_state.numa.n_nodes > 1; +} + +//////////////////////////////////////////////////////////////////////////////// + +void ggml_print_object(const struct ggml_object * obj) { + GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n", + obj->type, obj->offs, obj->size, (const void *) obj->next); +} + +void ggml_print_objects(const struct ggml_context * ctx) { + struct ggml_object * obj = ctx->objects_begin; + + GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx); + + while (obj != NULL) { + ggml_print_object(obj); + obj = obj->next; + } + + GGML_PRINT("%s: --- end ---\n", __func__); +} + +GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3]; +} + +GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return tensor->ne[1]*tensor->ne[2]*tensor->ne[3]; +} + +GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) { + size_t nbytes; + size_t blck_size = ggml_blck_size(tensor->type); + if (blck_size == 1) { + nbytes = ggml_type_size(tensor->type); + for (int i = 0; i < GGML_MAX_DIMS; ++i) { + nbytes += (tensor->ne[i] - 1)*tensor->nb[i]; + } + } + else { + nbytes = tensor->ne[0]*tensor->nb[0]/blck_size; + for (int i = 1; i < GGML_MAX_DIMS; ++i) { + nbytes += (tensor->ne[i] - 1)*tensor->nb[i]; + } + } + + return nbytes; +} + +size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) { + return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN); +} + +GGML_CALL int ggml_blck_size(enum ggml_type type) { + return type_traits[type].blck_size; +} + +GGML_CALL size_t ggml_type_size(enum ggml_type type) { + return type_traits[type].type_size; +} + +GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) { + assert(ne % ggml_blck_size(type) == 0); + return ggml_type_size(type)*ne/ggml_blck_size(type); +} + +double ggml_type_sizef(enum ggml_type type) { + return ((double)(type_traits[type].type_size))/type_traits[type].blck_size; +} + +GGML_CALL const char * ggml_type_name(enum ggml_type type) { + return type_traits[type].type_name; +} + +GGML_CALL bool ggml_is_quantized(enum ggml_type type) { + return type_traits[type].is_quantized; +} + +GGML_CALL const char * ggml_op_name(enum ggml_op op) { + return GGML_OP_NAME[op]; +} + +const char * ggml_op_symbol(enum ggml_op op) { + return GGML_OP_SYMBOL[op]; +} + +const char * ggml_unary_op_name(enum ggml_unary_op op) { + return GGML_UNARY_OP_NAME[op]; +} + +GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) { + if (t->op == GGML_OP_UNARY) { + enum ggml_unary_op uop = ggml_get_unary_op(t); + return ggml_unary_op_name(uop); + } + else { + return ggml_op_name(t->op); + } +} + +GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) { + return ggml_type_size(tensor->type); +} + +bool ggml_is_scalar(const struct ggml_tensor * tensor) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1; +} + +bool ggml_is_vector(const struct ggml_tensor * tensor) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1; +} + +bool ggml_is_matrix(const struct ggml_tensor * tensor) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return tensor->ne[2] == 1 && tensor->ne[3] == 1; +} + +bool ggml_is_3d(const struct ggml_tensor * tensor) { + return tensor->ne[3] == 1; +} + +int ggml_n_dims(const struct ggml_tensor * tensor) { + for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) { + if (tensor->ne[i] > 1) { + return i + 1; + } + } + return 1; +} + +static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return (t0->ne[0] == t1->ne[0]) && + (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable + (t1->ne[3]%t0->ne[3] == 0); +} + +static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return (t0->ne[1] == t1->ne[1]) && + (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable + (t1->ne[3]%t0->ne[3] == 0); +} + +enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) { + enum ggml_type wtype = GGML_TYPE_COUNT; + + switch (ftype) { + case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break; + case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break; + case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break; + case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break; + case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break; + case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break; + case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break; + case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break; + case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break; + case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break; + case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break; + case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break; + case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break; + case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break; + case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break; + case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break; + case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break; + case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break; + case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break; + case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break; + case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break; + case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break; + case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break; + } + + GGML_ASSERT(wtype != GGML_TYPE_COUNT); + + return wtype; +} + +size_t ggml_tensor_overhead(void) { + return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE; +} + +GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) { + return tensor->nb[0] > tensor->nb[1]; +} + +GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return + tensor->nb[0] == ggml_type_size(tensor->type) && + tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) && + tensor->nb[2] == tensor->nb[1]*tensor->ne[1] && + tensor->nb[3] == tensor->nb[2]*tensor->ne[2]; +} + +static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return + tensor->nb[0] == ggml_type_size(tensor->type) && + tensor->nb[2] == tensor->nb[1]*tensor->ne[1] && + tensor->nb[3] == tensor->nb[2]*tensor->ne[2]; +} + +GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3]; +} + +static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return + tensor->nb[0] == ggml_type_size(tensor->type) && + tensor->nb[2] == tensor->nb[1]*tensor->ne[1] && + tensor->nb[3] == tensor->nb[2]*tensor->ne[2]; +} + +GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) { + for (int i = 0; i < GGML_MAX_DIMS; ++i) { + if (tensor->ne[i] == 0) { + // empty if any dimension has no elements + return true; + } + } + return false; +} + +bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return + (t0->ne[0] == t1->ne[0] ) && + (t0->ne[1] == t1->ne[1] ) && + (t0->ne[2] == t1->ne[2] ) && + (t0->ne[3] == t1->ne[3] ); +} + +// check if t1 can be represented as a repeatition of t0 +static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return ggml_is_empty(t0) ? ggml_is_empty(t1) : + (t1->ne[0]%t0->ne[0] == 0) && + (t1->ne[1]%t0->ne[1] == 0) && + (t1->ne[2]%t0->ne[2] == 0) && + (t1->ne[3]%t0->ne[3] == 0); +} + +static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) { + static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function"); + + return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1); +} + +static inline int ggml_up32(int n) { + return (n + 31) & ~31; +} + +//static inline int ggml_up64(int n) { +// return (n + 63) & ~63; +//} + +static inline int ggml_up(int n, int m) { + // assert m is a power of 2 + GGML_ASSERT((m & (m - 1)) == 0); + return (n + m - 1) & ~(m - 1); +} + +// assert that pointer is aligned to GGML_MEM_ALIGN +#define ggml_assert_aligned(ptr) \ + GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0) + +//////////////////////////////////////////////////////////////////////////////// + +struct ggml_context * ggml_init(struct ggml_init_params params) { + // make this function thread safe + ggml_critical_section_start(); + + static bool is_first_call = true; + + if (is_first_call) { + // initialize time system (required on Windows) + ggml_time_init(); + + // initialize GELU, Quick GELU, SILU and EXP F32 tables + { + const uint64_t t_start = ggml_time_us(); UNUSED(t_start); + + ggml_fp16_t ii; + for (int i = 0; i < (1 << 16); ++i) { + uint16_t ui = i; + memcpy(&ii, &ui, sizeof(ii)); + const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii); + ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f)); + ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f)); + ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f)); + ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f)); + } + + const uint64_t t_end = ggml_time_us(); UNUSED(t_end); + + GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f); + } + + // initialize g_state + { + const uint64_t t_start = ggml_time_us(); UNUSED(t_start); + + g_state = (struct ggml_state) { + /*.contexts =*/ { { 0 } }, + /*.numa =*/ { + .n_nodes = 0, + .total_cpus = 0, + }, + }; + + for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) { + g_state.contexts[i].used = false; + } + + const uint64_t t_end = ggml_time_us(); UNUSED(t_end); + + GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f); + } + +#if defined(GGML_USE_CLBLAST) + ggml_cl_init(); +#endif + + ggml_setup_op_has_task_pass(); + + is_first_call = false; + } + + // find non-used context in g_state + struct ggml_context * ctx = NULL; + + for (int i = 0; i < GGML_MAX_CONTEXTS; i++) { + if (!g_state.contexts[i].used) { + g_state.contexts[i].used = true; + ctx = &g_state.contexts[i].context; + + GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i); + break; + } + } + + if (ctx == NULL) { + GGML_PRINT_DEBUG("%s: no unused context found\n", __func__); + + ggml_critical_section_end(); + + return NULL; + } + + // allow to call ggml_init with 0 size + if (params.mem_size == 0) { + params.mem_size = GGML_MEM_ALIGN; + } + + const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN); + + *ctx = (struct ggml_context) { + /*.mem_size =*/ mem_size, + /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size), + /*.mem_buffer_owned =*/ params.mem_buffer ? false : true, + /*.no_alloc =*/ params.no_alloc, + /*.no_alloc_save =*/ params.no_alloc, + /*.n_objects =*/ 0, + /*.objects_begin =*/ NULL, + /*.objects_end =*/ NULL, + /*.scratch =*/ { 0, 0, NULL, }, + /*.scratch_save =*/ { 0, 0, NULL, }, + }; + + GGML_ASSERT(ctx->mem_buffer != NULL); + + ggml_assert_aligned(ctx->mem_buffer); + + GGML_PRINT_DEBUG("%s: context initialized\n", __func__); + + ggml_critical_section_end(); + + return ctx; +} + +void ggml_free(struct ggml_context * ctx) { + if (ctx == NULL) { + return; + } + + // make this function thread safe + ggml_critical_section_start(); + + bool found = false; + + for (int i = 0; i < GGML_MAX_CONTEXTS; i++) { + if (&g_state.contexts[i].context == ctx) { + g_state.contexts[i].used = false; + + GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n", + __func__, i, ggml_used_mem(ctx)); + + if (ctx->mem_buffer_owned) { + GGML_ALIGNED_FREE(ctx->mem_buffer); + } + + found = true; + break; + } + } + + if (!found) { + GGML_PRINT_DEBUG("%s: context not found\n", __func__); + } + + ggml_critical_section_end(); +} + +size_t ggml_used_mem(const struct ggml_context * ctx) { + return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size; +} + +size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) { + const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0; + + ctx->scratch = scratch; + + return result; +} + +bool ggml_get_no_alloc(struct ggml_context * ctx) { + return ctx->no_alloc; +} + +void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) { + ctx->no_alloc = no_alloc; +} + +void * ggml_get_mem_buffer(const struct ggml_context * ctx) { + return ctx->mem_buffer; +} + +size_t ggml_get_mem_size(const struct ggml_context * ctx) { + return ctx->mem_size; +} + +size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) { + size_t max_size = 0; + + for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) { + size_t bytes = ggml_nbytes(tensor); + max_size = MAX(max_size, bytes); + } + + return max_size; +} + +// IMPORTANT: +// when creating "opt" tensors, always save and load the scratch buffer +// this is an error prone process, but it is necessary to support inplace +// operators when using scratch buffers +// TODO: implement a better way +static void ggml_scratch_save(struct ggml_context * ctx) { + // this is needed to allow opt tensors to store their data + // TODO: again, need to find a better way + ctx->no_alloc_save = ctx->no_alloc; + ctx->no_alloc = false; + + ctx->scratch_save = ctx->scratch; + ctx->scratch.data = NULL; +} + +static void ggml_scratch_load(struct ggml_context * ctx) { + ctx->no_alloc = ctx->no_alloc_save; + + ctx->scratch = ctx->scratch_save; +} + +//////////////////////////////////////////////////////////////////////////////// + +static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) { + // always insert objects at the end of the context's memory pool + struct ggml_object * obj_cur = ctx->objects_end; + + const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs; + const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size; + const size_t cur_end = cur_offs + cur_size; + + // align to GGML_MEM_ALIGN + size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN); + + char * const mem_buffer = ctx->mem_buffer; + struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end); + + if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) { + GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n", + __func__, cur_end + size_needed, ctx->mem_size); + assert(false); + return NULL; + } + + *obj_new = (struct ggml_object) { + .offs = cur_end + GGML_OBJECT_SIZE, + .size = size_needed, + .next = NULL, + .type = type, + }; + + ggml_assert_aligned(mem_buffer + obj_new->offs); + + if (obj_cur != NULL) { + obj_cur->next = obj_new; + } else { + // this is the first object in this context + ctx->objects_begin = obj_new; + } + + ctx->objects_end = obj_new; + + //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size); + + return obj_new; +} + +static struct ggml_tensor * ggml_new_tensor_impl( + struct ggml_context * ctx, + enum ggml_type type, + int n_dims, + const int64_t * ne, + struct ggml_tensor * view_src, + size_t view_offs) { + + assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS); + + // find the base tensor and absolute offset + if (view_src != NULL && view_src->view_src != NULL) { + view_offs += view_src->view_offs; + view_src = view_src->view_src; + } + + size_t data_size = ggml_row_size(type, ne[0]); + for (int i = 1; i < n_dims; i++) { + data_size *= ne[i]; + } + + GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src)); + + void * data = view_src != NULL ? view_src->data : NULL; + if (data != NULL) { + data = (char *) data + view_offs; + } + + size_t obj_alloc_size = 0; + + if (view_src == NULL && !ctx->no_alloc) { + if (ctx->scratch.data != NULL) { + // allocate tensor data in the scratch buffer + if (ctx->scratch.offs + data_size > ctx->scratch.size) { + GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n", + __func__, ctx->scratch.offs + data_size, ctx->scratch.size); + assert(false); + return NULL; + } + + data = (char * const) ctx->scratch.data + ctx->scratch.offs; + + ctx->scratch.offs += data_size; + } else { + // allocate tensor data in the context's memory pool + obj_alloc_size = data_size; + } + } + + struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size); + + // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here + + struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs); + + *result = (struct ggml_tensor) { + /*.type =*/ type, + /*.backend =*/ GGML_BACKEND_TYPE_CPU, + /*.buffer =*/ NULL, + /*.ne =*/ { 1, 1, 1, 1 }, + /*.nb =*/ { 0, 0, 0, 0 }, + /*.op =*/ GGML_OP_NONE, + /*.op_params =*/ { 0 }, + /*.flags =*/ 0, + /*.grad =*/ NULL, + /*.src =*/ { NULL }, + /*.perf_runs =*/ 0, + /*.perf_cycles =*/ 0, + /*.perf_time_us =*/ 0, + /*.view_src =*/ view_src, + /*.view_offs =*/ view_offs, + /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data, + /*.name =*/ { 0 }, + /*.extra =*/ NULL, + /*.padding =*/ { 0 }, + }; + + // TODO: this should not be needed as long as we don't rely on aligned SIMD loads + //ggml_assert_aligned(result->data); + + for (int i = 0; i < n_dims; i++) { + result->ne[i] = ne[i]; + } + + result->nb[0] = ggml_type_size(type); + result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type)); + for (int i = 2; i < GGML_MAX_DIMS; i++) { + result->nb[i] = result->nb[i - 1]*result->ne[i - 1]; + } + + ctx->n_objects++; + + return result; +} + +struct ggml_tensor * ggml_new_tensor( + struct ggml_context * ctx, + enum ggml_type type, + int n_dims, + const int64_t * ne) { + return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0); +} + +struct ggml_tensor * ggml_new_tensor_1d( + struct ggml_context * ctx, + enum ggml_type type, + int64_t ne0) { + return ggml_new_tensor(ctx, type, 1, &ne0); +} + +struct ggml_tensor * ggml_new_tensor_2d( + struct ggml_context * ctx, + enum ggml_type type, + int64_t ne0, + int64_t ne1) { + const int64_t ne[2] = { ne0, ne1 }; + return ggml_new_tensor(ctx, type, 2, ne); +} + +struct ggml_tensor * ggml_new_tensor_3d( + struct ggml_context * ctx, + enum ggml_type type, + int64_t ne0, + int64_t ne1, + int64_t ne2) { + const int64_t ne[3] = { ne0, ne1, ne2 }; + return ggml_new_tensor(ctx, type, 3, ne); +} + +struct ggml_tensor * ggml_new_tensor_4d( + struct ggml_context * ctx, + enum ggml_type type, + int64_t ne0, + int64_t ne1, + int64_t ne2, + int64_t ne3) { + const int64_t ne[4] = { ne0, ne1, ne2, ne3 }; + return ggml_new_tensor(ctx, type, 4, ne); +} + +struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) { + ggml_scratch_save(ctx); + + struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1); + + ggml_scratch_load(ctx); + + ggml_set_i32(result, value); + + return result; +} + +struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) { + ggml_scratch_save(ctx); + + struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1); + + ggml_scratch_load(ctx); + + ggml_set_f32(result, value); + + return result; +} + +struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) { + return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne); +} + +static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) { + GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings + assert(params_size <= GGML_MAX_OP_PARAMS); + memcpy(tensor->op_params, params, params_size); +} + +static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) { + assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t)); + return ((const int32_t *)(tensor->op_params))[i]; +} + +static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) { + assert(i < GGML_MAX_OP_PARAMS / sizeof(float)); + return ((const float *)(tensor->op_params))[i]; +} + +static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) { + assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t)); + ((int32_t *)(tensor->op_params))[i] = value; +} + +static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) { + assert(i < GGML_MAX_OP_PARAMS / sizeof(float)); + ((float *)(tensor->op_params))[i] = value; +} + +struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) { + memset(tensor->data, 0, ggml_nbytes(tensor)); + return tensor; +} + +struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) { + const int n = ggml_nrows(tensor); + const int nc = tensor->ne[0]; + const size_t n1 = tensor->nb[1]; + + char * const data = tensor->data; + + switch (tensor->type) { + case GGML_TYPE_I8: + { + assert(tensor->nb[0] == sizeof(int8_t)); + for (int i = 0; i < n; i++) { + ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value); + } + } break; + case GGML_TYPE_I16: + { + assert(tensor->nb[0] == sizeof(int16_t)); + for (int i = 0; i < n; i++) { + ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value); + } + } break; + case GGML_TYPE_I32: + { + assert(tensor->nb[0] == sizeof(int32_t)); + for (int i = 0; i < n; i++) { + ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value); + } + } break; + case GGML_TYPE_F16: + { + assert(tensor->nb[0] == sizeof(ggml_fp16_t)); + for (int i = 0; i < n; i++) { + ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value)); + } + } break; + case GGML_TYPE_F32: + { + assert(tensor->nb[0] == sizeof(float)); + for (int i = 0; i < n; i++) { + ggml_vec_set_f32(nc, (float *)(data + i*n1), value); + } + } break; + default: + { + GGML_ASSERT(false); + } break; + } + + return tensor; +} + +struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) { + const int n = ggml_nrows(tensor); + const int nc = tensor->ne[0]; + const size_t n1 = tensor->nb[1]; + + char * const data = tensor->data; + + switch (tensor->type) { + case GGML_TYPE_I8: + { + assert(tensor->nb[0] == sizeof(int8_t)); + for (int i = 0; i < n; i++) { + ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value); + } + } break; + case GGML_TYPE_I16: + { + assert(tensor->nb[0] == sizeof(int16_t)); + for (int i = 0; i < n; i++) { + ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value); + } + } break; + case GGML_TYPE_I32: + { + assert(tensor->nb[0] == sizeof(int32_t)); + for (int i = 0; i < n; i++) { + ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value); + } + } break; + case GGML_TYPE_F16: + { + assert(tensor->nb[0] == sizeof(ggml_fp16_t)); + for (int i = 0; i < n; i++) { + ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value)); + } + } break; + case GGML_TYPE_F32: + { + assert(tensor->nb[0] == sizeof(float)); + for (int i = 0; i < n; i++) { + ggml_vec_set_f32(nc, (float *)(data + i*n1), value); + } + } break; + default: + { + GGML_ASSERT(false); + } break; + } + + return tensor; +} + +void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) { + const int64_t ne2 = tensor->ne[2]; + const int64_t ne1 = tensor->ne[1]; + const int64_t ne0 = tensor->ne[0]; + + const int64_t i3_ = (i/(ne2*ne1*ne0)); + const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0); + const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0; + const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0); + + if (i0) { + * i0 = i0_; + } + if (i1) { + * i1 = i1_; + } + if (i2) { + * i2 = i2_; + } + if (i3) { + * i3 = i3_; + } +} + +int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) { + if (!ggml_is_contiguous(tensor)) { + int64_t id[4] = { 0, 0, 0, 0 }; + ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]); + return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]); + } + switch (tensor->type) { + case GGML_TYPE_I8: + { + GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); + return ((int8_t *)(tensor->data))[i]; + } + case GGML_TYPE_I16: + { + GGML_ASSERT(tensor->nb[0] == sizeof(int16_t)); + return ((int16_t *)(tensor->data))[i]; + } + case GGML_TYPE_I32: + { + GGML_ASSERT(tensor->nb[0] == sizeof(int32_t)); + return ((int32_t *)(tensor->data))[i]; + } + case GGML_TYPE_F16: + { + GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); + return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]); + } + case GGML_TYPE_F32: + { + GGML_ASSERT(tensor->nb[0] == sizeof(float)); + return ((float *)(tensor->data))[i]; + } + default: + { + GGML_ASSERT(false); + } + } + + return 0.0f; +} + +void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) { + if (!ggml_is_contiguous(tensor)) { + int64_t id[4] = { 0, 0, 0, 0 }; + ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]); + ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value); + return; + } + switch (tensor->type) { + case GGML_TYPE_I8: + { + GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); + ((int8_t *)(tensor->data))[i] = value; + } break; + case GGML_TYPE_I16: + { + GGML_ASSERT(tensor->nb[0] == sizeof(int16_t)); + ((int16_t *)(tensor->data))[i] = value; + } break; + case GGML_TYPE_I32: + { + GGML_ASSERT(tensor->nb[0] == sizeof(int32_t)); + ((int32_t *)(tensor->data))[i] = value; + } break; + case GGML_TYPE_F16: + { + GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); + ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value); + } break; + case GGML_TYPE_F32: + { + GGML_ASSERT(tensor->nb[0] == sizeof(float)); + ((float *)(tensor->data))[i] = value; + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) { + void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]; + switch (tensor->type) { + case GGML_TYPE_I8: + return ((int8_t *) data)[0]; + case GGML_TYPE_I16: + return ((int16_t *) data)[0]; + case GGML_TYPE_I32: + return ((int32_t *) data)[0]; + case GGML_TYPE_F16: + return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]); + case GGML_TYPE_F32: + return ((float *) data)[0]; + default: + GGML_ASSERT(false); + } + + return 0.0f; +} + +void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) { + void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]; + switch (tensor->type) { + case GGML_TYPE_I8: + { + ((int8_t *)(data))[0] = value; + } break; + case GGML_TYPE_I16: + { + ((int16_t *)(data))[0] = value; + } break; + case GGML_TYPE_I32: + { + ((int32_t *)(data))[0] = value; + } break; + case GGML_TYPE_F16: + { + ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value); + } break; + case GGML_TYPE_F32: + { + ((float *)(data))[0] = value; + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) { + if (!ggml_is_contiguous(tensor)) { + int64_t id[4] = { 0, 0, 0, 0 }; + ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]); + return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]); + } + switch (tensor->type) { + case GGML_TYPE_I8: + { + GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); + return ((int8_t *)(tensor->data))[i]; + } + case GGML_TYPE_I16: + { + GGML_ASSERT(tensor->nb[0] == sizeof(int16_t)); + return ((int16_t *)(tensor->data))[i]; + } + case GGML_TYPE_I32: + { + GGML_ASSERT(tensor->nb[0] == sizeof(int32_t)); + return ((int32_t *)(tensor->data))[i]; + } + case GGML_TYPE_F16: + { + GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); + return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]); + } + case GGML_TYPE_F32: + { + GGML_ASSERT(tensor->nb[0] == sizeof(float)); + return ((float *)(tensor->data))[i]; + } + default: + { + GGML_ASSERT(false); + } + } + + return 0.0f; +} + +void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) { + if (!ggml_is_contiguous(tensor)) { + int64_t id[4] = { 0, 0, 0, 0 }; + ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]); + ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value); + return; + } + switch (tensor->type) { + case GGML_TYPE_I8: + { + GGML_ASSERT(tensor->nb[0] == sizeof(int8_t)); + ((int8_t *)(tensor->data))[i] = value; + } break; + case GGML_TYPE_I16: + { + GGML_ASSERT(tensor->nb[0] == sizeof(int16_t)); + ((int16_t *)(tensor->data))[i] = value; + } break; + case GGML_TYPE_I32: + { + GGML_ASSERT(tensor->nb[0] == sizeof(int32_t)); + ((int32_t *)(tensor->data))[i] = value; + } break; + case GGML_TYPE_F16: + { + GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t)); + ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value); + } break; + case GGML_TYPE_F32: + { + GGML_ASSERT(tensor->nb[0] == sizeof(float)); + ((float *)(tensor->data))[i] = value; + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) { + void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]; + switch (tensor->type) { + case GGML_TYPE_I8: + return ((int8_t *) data)[0]; + case GGML_TYPE_I16: + return ((int16_t *) data)[0]; + case GGML_TYPE_I32: + return ((int32_t *) data)[0]; + case GGML_TYPE_F16: + return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]); + case GGML_TYPE_F32: + return ((float *) data)[0]; + default: + GGML_ASSERT(false); + } + + return 0.0f; +} + +void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) { + void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3]; + switch (tensor->type) { + case GGML_TYPE_I8: + { + ((int8_t *)(data))[0] = value; + } break; + case GGML_TYPE_I16: + { + ((int16_t *)(data))[0] = value; + } break; + case GGML_TYPE_I32: + { + ((int32_t *)(data))[0] = value; + } break; + case GGML_TYPE_F16: + { + ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value); + } break; + case GGML_TYPE_F32: + { + ((float *)(data))[0] = value; + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +void * ggml_get_data(const struct ggml_tensor * tensor) { + return tensor->data; +} + +float * ggml_get_data_f32(const struct ggml_tensor * tensor) { + assert(tensor->type == GGML_TYPE_F32); + return (float *)(tensor->data); +} + +GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) { + GGML_ASSERT(tensor->op == GGML_OP_UNARY); + return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0); +} + +const char * ggml_get_name(const struct ggml_tensor * tensor) { + return tensor->name; +} + +struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) { + strncpy(tensor->name, name, sizeof(tensor->name) - 1); + tensor->name[sizeof(tensor->name) - 1] = '\0'; + return tensor; +} + +struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) { + va_list args; + va_start(args, fmt); + vsnprintf(tensor->name, sizeof(tensor->name), fmt, args); + va_end(args); + return tensor; +} + +struct ggml_tensor * ggml_view_tensor( + struct ggml_context * ctx, + struct ggml_tensor * src) { + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0); + ggml_format_name(result, "%s (view)", src->name); + + for (int i = 0; i < GGML_MAX_DIMS; i++) { + result->nb[i] = src->nb[i]; + } + + return result; +} + +struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) { + struct ggml_object * obj = ctx->objects_begin; + + char * const mem_buffer = ctx->mem_buffer; + + while (obj != NULL) { + if (obj->type == GGML_OBJECT_TYPE_TENSOR) { + return (struct ggml_tensor *)(mem_buffer + obj->offs); + } + + obj = obj->next; + } + + return NULL; +} + +struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) { + struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE); + obj = obj->next; + + char * const mem_buffer = ctx->mem_buffer; + + while (obj != NULL) { + if (obj->type == GGML_OBJECT_TYPE_TENSOR) { + return (struct ggml_tensor *)(mem_buffer + obj->offs); + } + + obj = obj->next; + } + + return NULL; +} + +struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) { + struct ggml_object * obj = ctx->objects_begin; + + char * const mem_buffer = ctx->mem_buffer; + + while (obj != NULL) { + if (obj->type == GGML_OBJECT_TYPE_TENSOR) { + struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs); + if (strcmp(cur->name, name) == 0) { + return cur; + } + } + + obj = obj->next; + } + + return NULL; +} + +//////////////////////////////////////////////////////////////////////////////// + +// ggml_dup + +static struct ggml_tensor * ggml_dup_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_DUP; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +struct ggml_tensor * ggml_dup( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_dup_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_dup_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_dup_impl(ctx, a, true); +} + +// ggml_add + +static struct ggml_tensor * ggml_add_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + bool inplace) { + GGML_ASSERT(ggml_can_repeat(b, a)); + + bool is_node = false; + + if (!inplace && (a->grad || b->grad)) { + // TODO: support backward pass for broadcasting + GGML_ASSERT(ggml_are_same_shape(a, b)); + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_ADD; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +struct ggml_tensor * ggml_add( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_add_impl(ctx, a, b, false); +} + +struct ggml_tensor * ggml_add_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_add_impl(ctx, a, b, true); +} + +// ggml_add_cast + +static struct ggml_tensor * ggml_add_cast_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + enum ggml_type type) { + // TODO: support less-strict constraint + // GGML_ASSERT(ggml_can_repeat(b, a)); + GGML_ASSERT(ggml_can_repeat_rows(b, a)); + GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16 + + bool is_node = false; + + if (a->grad || b->grad) { + // TODO: support backward pass for broadcasting + GGML_ASSERT(ggml_are_same_shape(a, b)); + is_node = true; + } + + struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne); + + result->op = GGML_OP_ADD; + result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +struct ggml_tensor * ggml_add_cast( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + enum ggml_type type) { + return ggml_add_cast_impl(ctx, a, b, type); +} + +// ggml_add1 + +static struct ggml_tensor * ggml_add1_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + bool inplace) { + GGML_ASSERT(ggml_is_scalar(b)); + GGML_ASSERT(ggml_is_padded_1d(a)); + + bool is_node = false; + + if (a->grad || b->grad) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_ADD1; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +struct ggml_tensor * ggml_add1( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_add1_impl(ctx, a, b, false); +} + +struct ggml_tensor * ggml_add1_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_add1_impl(ctx, a, b, true); +} + +// ggml_acc + +static struct ggml_tensor * ggml_acc_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t nb1, + size_t nb2, + size_t nb3, + size_t offset, + bool inplace) { + GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a)); + GGML_ASSERT(ggml_is_contiguous(a)); + GGML_ASSERT(a->type == GGML_TYPE_F32); + GGML_ASSERT(b->type == GGML_TYPE_F32); + + bool is_node = false; + + if (!inplace && (a->grad || b->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 }; + ggml_set_op_params(result, params, sizeof(params)); + + result->op = GGML_OP_ACC; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +struct ggml_tensor * ggml_acc( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t nb1, + size_t nb2, + size_t nb3, + size_t offset) { + return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false); +} + +struct ggml_tensor * ggml_acc_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t nb1, + size_t nb2, + size_t nb3, + size_t offset) { + return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true); +} + +// ggml_sub + +static struct ggml_tensor * ggml_sub_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + bool inplace) { + GGML_ASSERT(ggml_are_same_shape(a, b)); + + bool is_node = false; + + if (!inplace && (a->grad || b->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_SUB; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +struct ggml_tensor * ggml_sub( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_sub_impl(ctx, a, b, false); +} + +struct ggml_tensor * ggml_sub_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_sub_impl(ctx, a, b, true); +} + +// ggml_mul + +static struct ggml_tensor * ggml_mul_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + bool inplace) { + GGML_ASSERT(ggml_can_repeat(b, a)); + + bool is_node = false; + + if (!inplace && (a->grad || b->grad)) { + // TODO: support backward pass for broadcasting + GGML_ASSERT(ggml_are_same_shape(a, b)); + is_node = true; + } + + if (inplace) { + GGML_ASSERT(!is_node); + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_MUL; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +struct ggml_tensor * ggml_mul( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_mul_impl(ctx, a, b, false); +} + +struct ggml_tensor * ggml_mul_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_mul_impl(ctx, a, b, true); +} + +// ggml_div + +static struct ggml_tensor * ggml_div_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + bool inplace) { + GGML_ASSERT(ggml_can_repeat(b, a)); + + bool is_node = false; + + if (!inplace && (a->grad || b->grad)) { + is_node = true; + } + + if (inplace) { + GGML_ASSERT(!is_node); + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_DIV; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +struct ggml_tensor * ggml_div( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_div_impl(ctx, a, b, false); +} + +struct ggml_tensor * ggml_div_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_div_impl(ctx, a, b, true); +} + +// ggml_sqr + +static struct ggml_tensor * ggml_sqr_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_SQR; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +struct ggml_tensor * ggml_sqr( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_sqr_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_sqr_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_sqr_impl(ctx, a, true); +} + +// ggml_sqrt + +static struct ggml_tensor * ggml_sqrt_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_SQRT; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +struct ggml_tensor * ggml_sqrt( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_sqrt_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_sqrt_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_sqrt_impl(ctx, a, true); +} + +// ggml_log + +static struct ggml_tensor * ggml_log_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_LOG; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +struct ggml_tensor * ggml_log( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_log_impl(ctx, a, false); +} + +struct ggml_tensor * ggml_log_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_log_impl(ctx, a, true); +} + +// ggml_sum + +struct ggml_tensor * ggml_sum( + struct ggml_context * ctx, + struct ggml_tensor * a) { + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1); + + result->op = GGML_OP_SUM; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +// ggml_sum_rows + +struct ggml_tensor * ggml_sum_rows( + struct ggml_context * ctx, + struct ggml_tensor * a) { + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + int64_t ne[GGML_MAX_DIMS] = { 1 }; + for (int i = 1; i < GGML_MAX_DIMS; ++i) { + ne[i] = a->ne[i]; + } + + struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne); + + result->op = GGML_OP_SUM_ROWS; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +// ggml_mean + +struct ggml_tensor * ggml_mean( + struct ggml_context * ctx, + struct ggml_tensor * a) { + bool is_node = false; + + if (a->grad) { + GGML_ASSERT(false); // TODO: implement + is_node = true; + } + + int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); + + result->op = GGML_OP_MEAN; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +// ggml_argmax + +struct ggml_tensor * ggml_argmax( + struct ggml_context * ctx, + struct ggml_tensor * a) { + GGML_ASSERT(ggml_is_matrix(a)); + bool is_node = false; + + if (a->grad) { + GGML_ASSERT(false); + is_node = true; + } + + struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]); + + result->op = GGML_OP_ARGMAX; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +// ggml_repeat + +struct ggml_tensor * ggml_repeat( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + GGML_ASSERT(ggml_can_repeat(a, b)); + + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne); + + result->op = GGML_OP_REPEAT; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +// ggml_repeat_back + +struct ggml_tensor * ggml_repeat_back( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + GGML_ASSERT(ggml_can_repeat(b, a)); + + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + if (ggml_are_same_shape(a, b) && !is_node) { + return a; + } + + struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne); + + result->op = GGML_OP_REPEAT_BACK; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +// ggml_concat + +struct ggml_tensor * ggml_concat( + struct ggml_context* ctx, + struct ggml_tensor* a, + struct ggml_tensor* b) { + GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]); + + bool is_node = false; + + if (a->grad || b->grad) { + is_node = true; + } + + struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]); + + result->op = GGML_OP_CONCAT; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +// ggml_abs + +struct ggml_tensor * ggml_abs( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary(ctx, a, GGML_UNARY_OP_ABS); +} + +struct ggml_tensor * ggml_abs_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS); +} + +// ggml_sgn + +struct ggml_tensor * ggml_sgn( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary(ctx, a, GGML_UNARY_OP_SGN); +} + +struct ggml_tensor * ggml_sgn_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN); +} + +// ggml_neg + +struct ggml_tensor * ggml_neg( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary(ctx, a, GGML_UNARY_OP_NEG); +} + +struct ggml_tensor * ggml_neg_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG); +} + +// ggml_step + +struct ggml_tensor * ggml_step( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary(ctx, a, GGML_UNARY_OP_STEP); +} + +struct ggml_tensor * ggml_step_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP); +} + +// ggml_tanh + +struct ggml_tensor * ggml_tanh( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary(ctx, a, GGML_UNARY_OP_TANH); +} + +struct ggml_tensor * ggml_tanh_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH); +} + +// ggml_elu + +struct ggml_tensor * ggml_elu( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary(ctx, a, GGML_UNARY_OP_ELU); +} + +struct ggml_tensor * ggml_elu_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU); +} + +// ggml_relu + +struct ggml_tensor * ggml_relu( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary(ctx, a, GGML_UNARY_OP_RELU); +} + +struct ggml_tensor * ggml_relu_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU); +} + +// ggml_leaky_relu + +struct ggml_tensor * ggml_leaky_relu( + struct ggml_context * ctx, + struct ggml_tensor * a, float negative_slope, bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + ggml_set_op_params(result, &negative_slope, sizeof(negative_slope)); + + result->op = GGML_OP_LEAKY_RELU; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +// ggml_gelu + +struct ggml_tensor * ggml_gelu( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary(ctx, a, GGML_UNARY_OP_GELU); +} + +struct ggml_tensor * ggml_gelu_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU); +} + +// ggml_gelu_quick + +struct ggml_tensor * ggml_gelu_quick( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK); +} + +struct ggml_tensor * ggml_gelu_quick_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK); +} + +// ggml_silu + +struct ggml_tensor * ggml_silu( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary(ctx, a, GGML_UNARY_OP_SILU); +} + +struct ggml_tensor * ggml_silu_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU); +} + +// ggml_silu_back + +struct ggml_tensor * ggml_silu_back( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + bool is_node = false; + + if (a->grad || b->grad) { + // TODO: implement backward + is_node = true; + } + + struct ggml_tensor * result = ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_SILU_BACK; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +// ggml hardswish +struct ggml_tensor * ggml_hardswish( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH); +} + +// ggml hardsigmoid +struct ggml_tensor * ggml_hardsigmoid( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID); +} + +// ggml_norm + +static struct ggml_tensor * ggml_norm_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + float eps, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + ggml_set_op_params(result, &eps, sizeof(eps)); + + result->op = GGML_OP_NORM; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +struct ggml_tensor * ggml_norm( + struct ggml_context * ctx, + struct ggml_tensor * a, + float eps) { + return ggml_norm_impl(ctx, a, eps, false); +} + +struct ggml_tensor * ggml_norm_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + float eps) { + return ggml_norm_impl(ctx, a, eps, true); +} + +// ggml_rms_norm + +static struct ggml_tensor * ggml_rms_norm_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + float eps, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + ggml_set_op_params(result, &eps, sizeof(eps)); + + result->op = GGML_OP_RMS_NORM; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +struct ggml_tensor * ggml_rms_norm( + struct ggml_context * ctx, + struct ggml_tensor * a, + float eps) { + return ggml_rms_norm_impl(ctx, a, eps, false); +} + +struct ggml_tensor * ggml_rms_norm_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + float eps) { + return ggml_rms_norm_impl(ctx, a, eps, true); +} + +// ggml_rms_norm_back + +struct ggml_tensor * ggml_rms_norm_back( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + float eps) { + bool is_node = false; + + if (a->grad) { + // TODO: implement backward + is_node = true; + } + + struct ggml_tensor * result = ggml_dup_tensor(ctx, a); + + ggml_set_op_params(result, &eps, sizeof(eps)); + + result->op = GGML_OP_RMS_NORM_BACK; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +// ggml_group_norm + +static struct ggml_tensor * ggml_group_norm_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_groups, + bool inplace) { + + bool is_node = false; + if (!inplace && (a->grad)) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op_params[0] = n_groups; + + result->op = GGML_OP_GROUP_NORM; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +struct ggml_tensor * ggml_group_norm( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_groups) { + return ggml_group_norm_impl(ctx, a, n_groups, false); +} + +struct ggml_tensor * ggml_group_norm_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_groups) { + return ggml_group_norm_impl(ctx, a, n_groups, true); +} + +// ggml_mul_mat + +struct ggml_tensor * ggml_mul_mat( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + GGML_ASSERT(ggml_can_mul_mat(a, b)); + GGML_ASSERT(!ggml_is_transposed(a)); + + bool is_node = false; + + if (a->grad || b->grad) { + is_node = true; + } + + const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); + + result->op = GGML_OP_MUL_MAT; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +void ggml_mul_mat_set_prec( + struct ggml_tensor * a, + enum ggml_prec prec) { + const int32_t prec_i32 = (int32_t) prec; + + ggml_set_op_params_i32(a, 0, prec_i32); +} + +// ggml_mul_mat_id + +/* + c = ggml_mul_mat_id(ctx, as, b, ids); + + as -> [cols, rows, n_expert] + ids -> [n_experts_used, n_tokens] (i32) + b -> [cols, n_expert_used, n_tokens] + c -> [cols, n_expert_used, n_tokens] + + in b, n_experts_used can be broadcasted to match the n_expert_used of ids + + c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids +*/ +struct ggml_tensor * ggml_mul_mat_id( + struct ggml_context * ctx, + struct ggml_tensor * as, + struct ggml_tensor * b, + struct ggml_tensor * ids) { + GGML_ASSERT(!ggml_is_transposed(as)); + GGML_ASSERT(ids->type == GGML_TYPE_I32); + + GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert) + GGML_ASSERT(b->ne[3] == 1); // b is 3d + GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d + GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row + GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat + GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast + + bool is_node = false; + + if (as->grad || b->grad) { + is_node = true; + } + + const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); + + result->op = GGML_OP_MUL_MAT_ID; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = as; + result->src[1] = b; + result->src[2] = ids; + + return result; +} + +// ggml_out_prod + +struct ggml_tensor * ggml_out_prod( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + GGML_ASSERT(ggml_can_out_prod(a, b)); + GGML_ASSERT(!ggml_is_transposed(a)); + + bool is_node = false; + + if (a->grad || b->grad) { + is_node = true; + } + + // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3] + const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); + + result->op = GGML_OP_OUT_PROD; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +// ggml_scale + +static struct ggml_tensor * ggml_scale_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + float s, + bool inplace) { + GGML_ASSERT(ggml_is_padded_1d(a)); + + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + ggml_set_op_params(result, &s, sizeof(s)); + + result->op = GGML_OP_SCALE; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +struct ggml_tensor * ggml_scale( + struct ggml_context * ctx, + struct ggml_tensor * a, + float s) { + return ggml_scale_impl(ctx, a, s, false); +} + +struct ggml_tensor * ggml_scale_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + float s) { + return ggml_scale_impl(ctx, a, s, true); +} + +// ggml_set + +static struct ggml_tensor * ggml_set_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t nb1, + size_t nb2, + size_t nb3, + size_t offset, + bool inplace) { + GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b)); + + bool is_node = false; + + if (a->grad || b->grad) { + is_node = true; + } + + // make a view of the destination + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 }; + ggml_set_op_params(result, params, sizeof(params)); + + result->op = GGML_OP_SET; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +struct ggml_tensor * ggml_set( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t nb1, + size_t nb2, + size_t nb3, + size_t offset) { + return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false); +} + +struct ggml_tensor * ggml_set_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t nb1, + size_t nb2, + size_t nb3, + size_t offset) { + return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true); +} + +struct ggml_tensor * ggml_set_1d( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t offset) { + return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false); +} + +struct ggml_tensor * ggml_set_1d_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t offset) { + return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true); +} + +struct ggml_tensor * ggml_set_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t nb1, + size_t offset) { + return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false); +} + +struct ggml_tensor * ggml_set_2d_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t nb1, + size_t offset) { + return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true); +} + +// ggml_cpy + +static struct ggml_tensor * ggml_cpy_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b)); + + bool is_node = false; + + if (a->grad || b->grad) { + // inplace is false and either one have a grad + is_node = true; + } + + // make a view of the destination + struct ggml_tensor * result = ggml_view_tensor(ctx, b); + if (strlen(b->name) > 0) { + ggml_format_name(result, "%s (copy of %s)", b->name, a->name); + } else { + ggml_format_name(result, "%s (copy)", a->name); + } + + result->op = GGML_OP_CPY; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +struct ggml_tensor * ggml_cpy( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_cpy_impl(ctx, a, b); +} + +struct ggml_tensor * ggml_cast( + struct ggml_context * ctx, + struct ggml_tensor * a, + enum ggml_type type) { + bool is_node = false; + + struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne); + ggml_format_name(result, "%s (copy)", a->name); + + result->op = GGML_OP_CPY; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = result; + + return result; +} + +// ggml_cont + +static struct ggml_tensor * ggml_cont_impl( + struct ggml_context * ctx, + struct ggml_tensor * a) { + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + struct ggml_tensor * result = ggml_dup_tensor(ctx, a); + ggml_format_name(result, "%s (cont)", a->name); + + result->op = GGML_OP_CONT; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +struct ggml_tensor * ggml_cont( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_cont_impl(ctx, a); +} + +// make contiguous, with new shape +GGML_API struct ggml_tensor * ggml_cont_1d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0) { + return ggml_cont_4d(ctx, a, ne0, 1, 1, 1); +} + +GGML_API struct ggml_tensor * ggml_cont_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1) { + return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1); +} + +GGML_API struct ggml_tensor * ggml_cont_3d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2) { + return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1); +} + +struct ggml_tensor * ggml_cont_4d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2, + int64_t ne3) { + GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3)); + + bool is_node = false; + + struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3); + ggml_format_name(result, "%s (cont)", a->name); + + result->op = GGML_OP_CONT; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +// ggml_reshape + +struct ggml_tensor * ggml_reshape( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + GGML_ASSERT(ggml_is_contiguous(a)); + // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous. + GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b)); + + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + if (b->grad) { + // gradient propagation is not supported + //GGML_ASSERT(false); + } + + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0); + ggml_format_name(result, "%s (reshaped)", a->name); + + result->op = GGML_OP_RESHAPE; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +struct ggml_tensor * ggml_reshape_1d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0) { + GGML_ASSERT(ggml_is_contiguous(a)); + GGML_ASSERT(ggml_nelements(a) == ne0); + + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + const int64_t ne[1] = { ne0 }; + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0); + ggml_format_name(result, "%s (reshaped)", a->name); + + result->op = GGML_OP_RESHAPE; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +struct ggml_tensor * ggml_reshape_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1) { + GGML_ASSERT(ggml_is_contiguous(a)); + GGML_ASSERT(ggml_nelements(a) == ne0*ne1); + + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + const int64_t ne[2] = { ne0, ne1 }; + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0); + ggml_format_name(result, "%s (reshaped)", a->name); + + result->op = GGML_OP_RESHAPE; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +struct ggml_tensor * ggml_reshape_3d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2) { + GGML_ASSERT(ggml_is_contiguous(a)); + GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2); + + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + const int64_t ne[3] = { ne0, ne1, ne2 }; + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0); + ggml_format_name(result, "%s (reshaped)", a->name); + + result->op = GGML_OP_RESHAPE; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +struct ggml_tensor * ggml_reshape_4d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2, + int64_t ne3) { + GGML_ASSERT(ggml_is_contiguous(a)); + GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3); + + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + const int64_t ne[4] = { ne0, ne1, ne2, ne3 }; + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0); + ggml_format_name(result, "%s (reshaped)", a->name); + + result->op = GGML_OP_RESHAPE; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +static struct ggml_tensor * ggml_view_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_dims, + const int64_t * ne, + size_t offset) { + + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset); + ggml_format_name(result, "%s (view)", a->name); + + ggml_set_op_params(result, &offset, sizeof(offset)); + + result->op = GGML_OP_VIEW; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +// ggml_view_1d + +struct ggml_tensor * ggml_view_1d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + size_t offset) { + + struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset); + + return result; +} + +// ggml_view_2d + +struct ggml_tensor * ggml_view_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + size_t nb1, + size_t offset) { + + const int64_t ne[2] = { ne0, ne1 }; + + struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset); + + result->nb[1] = nb1; + result->nb[2] = result->nb[1]*ne1; + result->nb[3] = result->nb[2]; + + return result; +} + +// ggml_view_3d + +struct ggml_tensor * ggml_view_3d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2, + size_t nb1, + size_t nb2, + size_t offset) { + + const int64_t ne[3] = { ne0, ne1, ne2 }; + + struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset); + + result->nb[1] = nb1; + result->nb[2] = nb2; + result->nb[3] = result->nb[2]*ne2; + + return result; +} + +// ggml_view_4d + +struct ggml_tensor * ggml_view_4d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2, + int64_t ne3, + size_t nb1, + size_t nb2, + size_t nb3, + size_t offset) { + + const int64_t ne[4] = { ne0, ne1, ne2, ne3 }; + + struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset); + + result->nb[1] = nb1; + result->nb[2] = nb2; + result->nb[3] = nb3; + + return result; +} + +// ggml_permute + +struct ggml_tensor * ggml_permute( + struct ggml_context * ctx, + struct ggml_tensor * a, + int axis0, + int axis1, + int axis2, + int axis3) { + GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS); + GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS); + GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS); + GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS); + + GGML_ASSERT(axis0 != axis1); + GGML_ASSERT(axis0 != axis2); + GGML_ASSERT(axis0 != axis3); + GGML_ASSERT(axis1 != axis2); + GGML_ASSERT(axis1 != axis3); + GGML_ASSERT(axis2 != axis3); + + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + struct ggml_tensor * result = ggml_view_tensor(ctx, a); + ggml_format_name(result, "%s (permuted)", a->name); + + int ne[GGML_MAX_DIMS]; + int nb[GGML_MAX_DIMS]; + + ne[axis0] = a->ne[0]; + ne[axis1] = a->ne[1]; + ne[axis2] = a->ne[2]; + ne[axis3] = a->ne[3]; + + nb[axis0] = a->nb[0]; + nb[axis1] = a->nb[1]; + nb[axis2] = a->nb[2]; + nb[axis3] = a->nb[3]; + + result->ne[0] = ne[0]; + result->ne[1] = ne[1]; + result->ne[2] = ne[2]; + result->ne[3] = ne[3]; + + result->nb[0] = nb[0]; + result->nb[1] = nb[1]; + result->nb[2] = nb[2]; + result->nb[3] = nb[3]; + + result->op = GGML_OP_PERMUTE; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + int32_t params[] = { axis0, axis1, axis2, axis3 }; + ggml_set_op_params(result, params, sizeof(params)); + + return result; +} + +// ggml_transpose + +struct ggml_tensor * ggml_transpose( + struct ggml_context * ctx, + struct ggml_tensor * a) { + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + struct ggml_tensor * result = ggml_view_tensor(ctx, a); + ggml_format_name(result, "%s (transposed)", a->name); + + result->ne[0] = a->ne[1]; + result->ne[1] = a->ne[0]; + + result->nb[0] = a->nb[1]; + result->nb[1] = a->nb[0]; + + result->op = GGML_OP_TRANSPOSE; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +// ggml_get_rows + +struct ggml_tensor * ggml_get_rows( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + GGML_ASSERT(a->ne[2] == b->ne[1]); + GGML_ASSERT(b->ne[3] == 1); + GGML_ASSERT(b->type == GGML_TYPE_I32); + + bool is_node = false; + + if (a->grad || b->grad) { + is_node = true; + } + + // TODO: implement non F32 return + enum ggml_type type = GGML_TYPE_F32; + if (a->type == GGML_TYPE_I32) { + type = a->type; + } + struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]); + + result->op = GGML_OP_GET_ROWS; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +// ggml_get_rows_back + +struct ggml_tensor * ggml_get_rows_back( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c) { + GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32); + GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0])); + + bool is_node = false; + + if (a->grad || b->grad) { + is_node = true; + } + + // TODO: implement non F32 return + //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]); + struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]); + + result->op = GGML_OP_GET_ROWS_BACK; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +// ggml_diag + +struct ggml_tensor * ggml_diag( + struct ggml_context * ctx, + struct ggml_tensor * a) { + GGML_ASSERT(a->ne[1] == 1); + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] }; + struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne); + + result->op = GGML_OP_DIAG; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +// ggml_diag_mask_inf + +static struct ggml_tensor * ggml_diag_mask_inf_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past, + bool inplace) { + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + int32_t params[] = { n_past }; + ggml_set_op_params(result, params, sizeof(params)); + + result->op = GGML_OP_DIAG_MASK_INF; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +struct ggml_tensor * ggml_diag_mask_inf( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past) { + return ggml_diag_mask_inf_impl(ctx, a, n_past, false); +} + +struct ggml_tensor * ggml_diag_mask_inf_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past) { + return ggml_diag_mask_inf_impl(ctx, a, n_past, true); +} + +// ggml_diag_mask_zero + +static struct ggml_tensor * ggml_diag_mask_zero_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past, + bool inplace) { + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + int32_t params[] = { n_past }; + ggml_set_op_params(result, params, sizeof(params)); + + result->op = GGML_OP_DIAG_MASK_ZERO; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +struct ggml_tensor * ggml_diag_mask_zero( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past) { + return ggml_diag_mask_zero_impl(ctx, a, n_past, false); +} + +struct ggml_tensor * ggml_diag_mask_zero_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past) { + return ggml_diag_mask_zero_impl(ctx, a, n_past, true); +} + +// ggml_soft_max + +static struct ggml_tensor * ggml_soft_max_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * mask, + struct ggml_tensor * pos, + float scale, + float max_bias, + bool inplace) { + GGML_ASSERT(ggml_is_contiguous(a)); + + if (mask) { + GGML_ASSERT(ggml_is_contiguous(mask)); + GGML_ASSERT(ggml_is_matrix(mask)); + GGML_ASSERT(ggml_can_repeat_rows(mask, a)); + } + + if (pos) { + GGML_ASSERT(ggml_is_vector(pos)); + GGML_ASSERT(pos->type == GGML_TYPE_F32); + GGML_ASSERT(pos->ne[0] == a->ne[0]); + } + + if (max_bias > 0.0f) { + GGML_ASSERT(pos); + } + + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + float params[] = { scale, max_bias }; + ggml_set_op_params(result, params, sizeof(params)); + + result->op = GGML_OP_SOFT_MAX; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = mask; + result->src[2] = pos; + + return result; +} + +struct ggml_tensor * ggml_soft_max( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false); +} + +struct ggml_tensor * ggml_soft_max_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true); +} + +struct ggml_tensor * ggml_soft_max_ext( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * mask, + struct ggml_tensor * pos, + float scale, + float max_bias) { + return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false); +} + +// ggml_soft_max_back + +static struct ggml_tensor * ggml_soft_max_back_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + bool inplace) { + bool is_node = false; + + if (a->grad || b->grad) { + is_node = true; // TODO : implement backward pass + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_SOFT_MAX_BACK; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +struct ggml_tensor * ggml_soft_max_back( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_soft_max_back_impl(ctx, a, b, false); +} + +struct ggml_tensor * ggml_soft_max_back_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_soft_max_back_impl(ctx, a, b, true); +} + +// ggml_rope + +static struct ggml_tensor * ggml_rope_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int n_dims, + int mode, + int n_ctx, + int n_orig_ctx, + float freq_base, + float freq_scale, + float ext_factor, + float attn_factor, + float beta_fast, + float beta_slow, + float xpos_base, + bool xpos_down, + bool inplace) { + GGML_ASSERT(ggml_is_vector(b)); + GGML_ASSERT(b->type == GGML_TYPE_I32); + GGML_ASSERT(a->ne[2] == b->ne[0]); + + bool is_node = false; + + if (a->grad) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx }; + memcpy(params + 5, &freq_base, sizeof(float)); + memcpy(params + 6, &freq_scale, sizeof(float)); + memcpy(params + 7, &ext_factor, sizeof(float)); + memcpy(params + 8, &attn_factor, sizeof(float)); + memcpy(params + 9, &beta_fast, sizeof(float)); + memcpy(params + 10, &beta_slow, sizeof(float)); + memcpy(params + 11, &xpos_base, sizeof(float)); + memcpy(params + 12, &xpos_down, sizeof(bool)); + ggml_set_op_params(result, params, sizeof(params)); + + result->op = GGML_OP_ROPE; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +struct ggml_tensor * ggml_rope( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int n_dims, + int mode, + int n_ctx) { + return ggml_rope_impl( + ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false + ); +} + +struct ggml_tensor * ggml_rope_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int n_dims, + int mode, + int n_ctx) { + return ggml_rope_impl( + ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true + ); +} + +struct ggml_tensor * ggml_rope_custom( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int n_dims, + int mode, + int n_ctx, + int n_orig_ctx, + float freq_base, + float freq_scale, + float ext_factor, + float attn_factor, + float beta_fast, + float beta_slow) { + return ggml_rope_impl( + ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false + ); +} + +struct ggml_tensor * ggml_rope_custom_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int n_dims, + int mode, + int n_ctx, + int n_orig_ctx, + float freq_base, + float freq_scale, + float ext_factor, + float attn_factor, + float beta_fast, + float beta_slow) { + return ggml_rope_impl( + ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true + ); +} + +struct ggml_tensor * ggml_rope_xpos_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int n_dims, + float base, + bool down) { + return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true); +} + +// ggml_rope_back + +struct ggml_tensor * ggml_rope_back( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int n_dims, + int mode, + int n_ctx, + int n_orig_ctx, + float freq_base, + float freq_scale, + float ext_factor, + float attn_factor, + float beta_fast, + float beta_slow, + float xpos_base, + bool xpos_down) { + GGML_ASSERT(ggml_is_vector(b)); + GGML_ASSERT(b->type == GGML_TYPE_I32); + GGML_ASSERT(a->ne[2] == b->ne[0]); + + GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet"); + + bool is_node = false; + + if (a->grad) { + is_node = false; // TODO: implement backward + } + + struct ggml_tensor * result = ggml_dup_tensor(ctx, a); + + int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx }; + memcpy(params + 5, &freq_base, sizeof(float)); + memcpy(params + 6, &freq_scale, sizeof(float)); + memcpy(params + 7, &ext_factor, sizeof(float)); + memcpy(params + 8, &attn_factor, sizeof(float)); + memcpy(params + 9, &beta_fast, sizeof(float)); + memcpy(params + 10, &beta_slow, sizeof(float)); + memcpy(params + 11, &xpos_base, sizeof(float)); + memcpy(params + 12, &xpos_down, sizeof(bool)); + ggml_set_op_params(result, params, sizeof(params)); + + result->op = GGML_OP_ROPE_BACK; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +// ggml_alibi + +struct ggml_tensor * ggml_alibi( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past, + int n_head, + float bias_max) { + GGML_ASSERT(n_past >= 0); + bool is_node = false; + + if (a->grad) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + // TODO: when implement backward, fix this: + //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + struct ggml_tensor * result = ggml_view_tensor(ctx, a); + + int32_t op_params[3] = { n_past, n_head }; + memcpy(op_params + 2, &bias_max, sizeof(float)); + ggml_set_op_params(result, op_params, sizeof(op_params)); + + result->op = GGML_OP_ALIBI; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +// ggml_clamp + +struct ggml_tensor * ggml_clamp( + struct ggml_context * ctx, + struct ggml_tensor * a, + float min, + float max) { + bool is_node = false; + + if (a->grad) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + // TODO: when implement backward, fix this: + struct ggml_tensor * result = ggml_view_tensor(ctx, a); + + float params[] = { min, max }; + ggml_set_op_params(result, params, sizeof(params)); + + result->op = GGML_OP_CLAMP; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +// ggml_conv_1d + +static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) { + return (ins + 2 * p - d * (ks - 1) - 1) / s + 1; +} + +GGML_API struct ggml_tensor * ggml_conv_1d( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int s0, + int p0, + int d0) { + struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K] + + struct ggml_tensor * result = + ggml_mul_mat(ctx, + ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K] + ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K] + + result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL] + + return result; +} + +// ggml_conv_1d_ph + +struct ggml_tensor* ggml_conv_1d_ph( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int s, + int d) { + return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d); +} + +// ggml_conv_transpose_1d + +static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) { + return (ins - 1) * s - 2 * p + d * (ks - 1) + 1; +} + +GGML_API struct ggml_tensor * ggml_conv_transpose_1d( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int s0, + int p0, + int d0) { + GGML_ASSERT(ggml_is_matrix(b)); + GGML_ASSERT(a->ne[2] == b->ne[1]); + GGML_ASSERT(a->ne[3] == 1); + + GGML_ASSERT(p0 == 0); + GGML_ASSERT(d0 == 1); + + bool is_node = false; + + if (a->grad || b->grad) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + const int64_t ne[4] = { + ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/), + a->ne[1], b->ne[2], 1, + }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); + + int32_t params[] = { s0, p0, d0 }; + ggml_set_op_params(result, params, sizeof(params)); + + result->op = GGML_OP_CONV_TRANSPOSE_1D; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +// ggml_conv_depthwise +struct ggml_tensor * ggml_conv_depthwise_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int s0, + int s1, + int p0, + int p1, + int d0, + int d1) { + + struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]); + struct ggml_tensor * im2col = ggml_im2col(ctx, new_a, + ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]), + s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW] + struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW] + + new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW] + struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b); + result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW] + + return result; +} +// ggml_conv_2d + +// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW] +// a: [OC,IC, KH, KW] +// b: [N, IC, IH, IW] +// result: [N, OH, OW, IC*KH*KW] +struct ggml_tensor * ggml_im2col( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int s0, + int s1, + int p0, + int p1, + int d0, + int d1, + bool is_2D, + enum ggml_type dst_type) { + + if(is_2D) { + GGML_ASSERT(a->ne[2] == b->ne[2]); + } else { + GGML_ASSERT(a->ne[1] == b->ne[1]); + } + bool is_node = false; + + if (a->grad || b->grad) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0; + const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0); + + const int64_t ne[4] = { + is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0], + OW, + is_2D ? OH : b->ne[2], + is_2D ? b->ne[3] : 1, + }; + + struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne); + int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) }; + ggml_set_op_params(result, params, sizeof(params)); + + result->op = GGML_OP_IM2COL; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +// a: [OC,IC, KH, KW] +// b: [N, IC, IH, IW] +// result: [N, OC, OH, OW] +struct ggml_tensor * ggml_conv_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int s0, + int s1, + int p0, + int p1, + int d0, + int d1) { + struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW] + + struct ggml_tensor * result = + ggml_mul_mat(ctx, + ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW] + ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW] + + result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW] + result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW] + + + return result; +} + +// ggml_conv_2d_sk_p0 +struct ggml_tensor * ggml_conv_2d_sk_p0( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1); +} + +// ggml_conv_2d_s1_ph + +struct ggml_tensor * ggml_conv_2d_s1_ph( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1); +} + +// ggml_conv_transpose_2d_p0 + +static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) { + return (ins - 1) * s - 2 * p + ks; +} + +struct ggml_tensor * ggml_conv_transpose_2d_p0( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int stride) { + GGML_ASSERT(a->ne[3] == b->ne[2]); + + bool is_node = false; + + if (a->grad || b->grad) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + const int64_t ne[4] = { + ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/), + ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/), + a->ne[2], b->ne[3], + }; + + struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); + + ggml_set_op_params_i32(result, 0, stride); + + result->op = GGML_OP_CONV_TRANSPOSE_2D; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +// ggml_pool_* + +static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) { + return (ins + 2 * p - ks) / s + 1; +} + +// ggml_pool_1d + +struct ggml_tensor * ggml_pool_1d( + struct ggml_context * ctx, + struct ggml_tensor * a, + enum ggml_op_pool op, + int k0, + int s0, + int p0) { + + bool is_node = false; + + if (a->grad) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + const int64_t ne[4] = { + ggml_calc_pool_output_size(a->ne[0], k0, s0, p0), + a->ne[1], + a->ne[2], + a->ne[3], + }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); + + int32_t params[] = { op, k0, s0, p0 }; + ggml_set_op_params(result, params, sizeof(params)); + + result->op = GGML_OP_POOL_1D; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +// ggml_pool_2d + +struct ggml_tensor * ggml_pool_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + enum ggml_op_pool op, + int k0, + int k1, + int s0, + int s1, + float p0, + float p1) { + + bool is_node = false; + + if (a->grad) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + struct ggml_tensor * result; + const int64_t ne[3] = { + ggml_calc_pool_output_size(a->ne[0], k0, s0, p0), + ggml_calc_pool_output_size(a->ne[1], k1, s1, p1), + a->ne[2], + }; + result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne); + + int32_t params[] = { op, k0, k1, s0, s1, p0, p1 }; + ggml_set_op_params(result, params, sizeof(params)); + + result->op = GGML_OP_POOL_2D; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + return result; +} + +// ggml_upscale + +static struct ggml_tensor * ggml_upscale_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + int scale_factor) { + bool is_node = false; + + if (a->grad) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, + a->ne[0] * scale_factor, + a->ne[1] * scale_factor, + a->ne[2], a->ne[3]); + + result->op = GGML_OP_UPSCALE; + result->op_params[0] = scale_factor; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +struct ggml_tensor * ggml_pad( + struct ggml_context * ctx, + struct ggml_tensor * a, + int p0, int p1, int p2, int p3) { + bool is_node = false; + + if (a->grad) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, + a->ne[0] + p0, + a->ne[1] + p1, + a->ne[2] + p2, + a->ne[3] + p3); + + result->op = GGML_OP_PAD; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +struct ggml_tensor * ggml_upscale( + struct ggml_context * ctx, + struct ggml_tensor * a, + int scale_factor) { + return ggml_upscale_impl(ctx, a, scale_factor); +} + +struct ggml_tensor * ggml_arange( + struct ggml_context * ctx, + float start, + float stop, + float step) { + + GGML_ASSERT(stop > start); + + const int64_t steps = (int64_t) ceilf((stop - start) / step); + + struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps); + + result->op = GGML_OP_ARANGE; + ggml_set_op_params_f32(result, 0, start); + ggml_set_op_params_f32(result, 1, stop); + ggml_set_op_params_f32(result, 2, step); + + return result; +} + +struct ggml_tensor * ggml_timestep_embedding( + struct ggml_context * ctx, + struct ggml_tensor * timesteps, + int dim, + int max_period) { + bool is_node = false; + + if (timesteps->grad) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + int actual_dim = dim; + if (dim % 2 != 0) { + actual_dim = dim + 1; + } + + struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]); + + result->op = GGML_OP_TIMESTEP_EMBEDDING; + ggml_set_op_params_i32(result, 0, dim); + ggml_set_op_params_i32(result, 1, max_period); + + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = timesteps; + + return result; +} + +// ggml_argsort + +struct ggml_tensor * ggml_argsort( + struct ggml_context * ctx, + struct ggml_tensor * a, + enum ggml_sort_order order) { + bool is_node = false; + + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne); + + ggml_set_op_params_i32(result, 0, (int32_t) order); + + result->op = GGML_OP_ARGSORT; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +// ggml_top_k + +struct ggml_tensor * ggml_top_k( + struct ggml_context * ctx, + struct ggml_tensor * a, + int k) { + GGML_ASSERT(a->ne[0] >= k); + + struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC); + + result = ggml_view_4d(ctx, result, + k, result->ne[1], result->ne[2], result->ne[3], + result->nb[1], result->nb[2], result->nb[3], + 0); + + return result; +} + +// ggml_flash_attn + +struct ggml_tensor * ggml_flash_attn( + struct ggml_context * ctx, + struct ggml_tensor * q, + struct ggml_tensor * k, + struct ggml_tensor * v, + bool masked) { + GGML_ASSERT(ggml_can_mul_mat(k, q)); + // TODO: check if vT can be multiplied by (k*qT) + + bool is_node = false; + + if (q->grad || k->grad || v->grad) { + is_node = true; + } + + //struct ggml_tensor * result = ggml_dup_tensor(ctx, q); + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne); + + int32_t t = masked ? 1 : 0; + ggml_set_op_params(result, &t, sizeof(t)); + + result->op = GGML_OP_FLASH_ATTN; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = q; + result->src[1] = k; + result->src[2] = v; + + return result; +} + +// ggml_flash_ff + +struct ggml_tensor * ggml_flash_ff( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b0, + struct ggml_tensor * b1, + struct ggml_tensor * c0, + struct ggml_tensor * c1) { + GGML_ASSERT(ggml_can_mul_mat(b0, a)); + // TODO: more checks + + bool is_node = false; + + if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) { + is_node = true; + } + + //struct ggml_tensor * result = ggml_dup_tensor(ctx, a); + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne); + + result->op = GGML_OP_FLASH_FF; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b0; + result->src[2] = b1; + result->src[3] = c0; + result->src[4] = c1; + + return result; +} + +// ggml_flash_attn_back + +struct ggml_tensor * ggml_flash_attn_back( + struct ggml_context * ctx, + struct ggml_tensor * q, + struct ggml_tensor * k, + struct ggml_tensor * v, + struct ggml_tensor * d, + bool masked) { + GGML_ASSERT(ggml_can_mul_mat(k, q)); + // TODO: check if vT can be multiplied by (k*qT) + + // d shape [D,N,ne2,ne3] + // q shape [D,N,ne2,ne3] + // k shape [D,M,kvne2,ne3] + // v shape [M,D,kvne2,ne3] + + const int64_t D = q->ne[0]; + const int64_t N = q->ne[1]; + const int64_t M = k->ne[1]; + const int64_t ne2 = q->ne[2]; + const int64_t ne3 = q->ne[3]; + const int64_t kvne2 = k->ne[2]; + + GGML_ASSERT(k->ne[0] == D); + GGML_ASSERT(v->ne[0] == M); + GGML_ASSERT(v->ne[1] == D); + GGML_ASSERT(d->ne[0] == D); + GGML_ASSERT(d->ne[1] == N); + GGML_ASSERT(k->ne[2] == kvne2); + GGML_ASSERT(k->ne[3] == ne3); + GGML_ASSERT(v->ne[2] == kvne2); + GGML_ASSERT(v->ne[3] == ne3); + GGML_ASSERT(d->ne[2] == ne2); + GGML_ASSERT(d->ne[3] == ne3); + + GGML_ASSERT(ne2 % kvne2 == 0); + + bool is_node = false; + + if (q->grad || k->grad || v->grad) { + // when using this operation (in backwards pass) these grads are set. + // we don't want to create (big) grad of our result, so is_node is false. + is_node = false; + } + + // store gradients of q, k and v as continuous tensors concatenated in result. + // note: v and gradv are actually transposed, i.e. v->ne[0] != D. + const int64_t elem_q = ggml_nelements(q); + const int64_t elem_k = ggml_nelements(k); + const int64_t elem_v = ggml_nelements(v); + + enum ggml_type result_type = GGML_TYPE_F32; + GGML_ASSERT(ggml_blck_size(result_type) == 1); + const size_t tsize = ggml_type_size(result_type); + + const size_t offs_q = 0; + const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN); + const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN); + const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN); + + const size_t nelements = (end + tsize - 1)/tsize; + + struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements); + + int32_t masked_i = masked ? 1 : 0; + ggml_set_op_params(result, &masked_i, sizeof(masked_i)); + + result->op = GGML_OP_FLASH_ATTN_BACK; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = q; + result->src[1] = k; + result->src[2] = v; + result->src[3] = d; + + return result; +} + +// ggml_ssm_conv + +struct ggml_tensor * ggml_ssm_conv( + struct ggml_context * ctx, + struct ggml_tensor * s, + struct ggml_tensor * x, + struct ggml_tensor * c, + struct ggml_tensor * sq) { + GGML_ASSERT(ggml_is_3d(s)); + GGML_ASSERT(ggml_is_matrix(x)); + GGML_ASSERT(ggml_is_matrix(c)); + GGML_ASSERT(ggml_is_matrix(sq)); + GGML_ASSERT(sq->type == GGML_TYPE_I32); + + const int64_t d_conv = c->ne[0]; + const int64_t d_inner = c->ne[1]; + const int64_t n_tokens = x->ne[1]; + const int64_t n_kv = s->ne[2]; + + GGML_ASSERT( s->ne[0] == d_conv - 1); + GGML_ASSERT( s->ne[1] == d_inner); + GGML_ASSERT( x->ne[0] == d_inner); + GGML_ASSERT(sq->ne[0] == n_kv); + GGML_ASSERT(sq->ne[1] == n_tokens); + + bool is_node = false; + + if (s->grad || x->grad || c->grad || sq->grad) { + GGML_ASSERT(false); // TODO: implement + is_node = true; + } + + // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv} + struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv)); + + result->op = GGML_OP_SSM_CONV; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = s; + result->src[1] = x; + result->src[2] = c; + result->src[3] = sq; + + return result; +} + +// ggml_ssm_scan + +struct ggml_tensor * ggml_ssm_scan( + struct ggml_context * ctx, + struct ggml_tensor * s, + struct ggml_tensor * x, + struct ggml_tensor * dt, + struct ggml_tensor * A, + struct ggml_tensor * B, + struct ggml_tensor * C, + struct ggml_tensor * sq) { + GGML_ASSERT(ggml_is_contiguous(s)); + GGML_ASSERT(ggml_is_contiguous(x)); + GGML_ASSERT(ggml_is_contiguous(dt)); + GGML_ASSERT(ggml_is_contiguous(A)); + GGML_ASSERT(sq->type == GGML_TYPE_I32); + GGML_ASSERT(B->nb[0] == ggml_type_size(B->type)); + GGML_ASSERT(C->nb[0] == ggml_type_size(C->type)); + GGML_ASSERT(ggml_are_same_shape(x, dt)); + + { + const int64_t d_state = s->ne[0]; + const int64_t d_inner = s->ne[1]; + const int64_t n_tokens = x->ne[1]; + + GGML_ASSERT(x->ne[0] == d_inner); + GGML_ASSERT(A->ne[0] == d_state); + GGML_ASSERT(A->ne[1] == d_inner); + GGML_ASSERT(B->ne[0] == d_state); + GGML_ASSERT(B->ne[1] == n_tokens); + GGML_ASSERT(C->ne[0] == d_state); + GGML_ASSERT(C->ne[1] == n_tokens); + } + + bool is_node = false; + + if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) { + GGML_ASSERT(false); // TODO: implement + is_node = true; + } + + // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv} + struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s)); + + result->op = GGML_OP_SSM_SCAN; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = s; + result->src[1] = x; + result->src[2] = dt; + result->src[3] = A; + result->src[4] = B; + result->src[5] = C; + result->src[6] = sq; + + return result; +} + +// ggml_win_part + +struct ggml_tensor * ggml_win_part( + struct ggml_context * ctx, + struct ggml_tensor * a, + int w) { + GGML_ASSERT(a->ne[3] == 1); + GGML_ASSERT(a->type == GGML_TYPE_F32); + + bool is_node = false; + + if (a->grad) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + // padding + const int px = (w - a->ne[1]%w)%w; + const int py = (w - a->ne[2]%w)%w; + + const int npx = (px + a->ne[1])/w; + const int npy = (py + a->ne[2])/w; + const int np = npx*npy; + + const int64_t ne[4] = { a->ne[0], w, w, np, }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne); + + int32_t params[] = { npx, npy, w }; + ggml_set_op_params(result, params, sizeof(params)); + + result->op = GGML_OP_WIN_PART; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +// ggml_win_unpart + +struct ggml_tensor * ggml_win_unpart( + struct ggml_context * ctx, + struct ggml_tensor * a, + int w0, + int h0, + int w) { + GGML_ASSERT(a->type == GGML_TYPE_F32); + + bool is_node = false; + + if (a->grad) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + const int64_t ne[4] = { a->ne[0], w0, h0, 1, }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne); + + int32_t params[] = { w }; + ggml_set_op_params(result, params, sizeof(params)); + + result->op = GGML_OP_WIN_UNPART; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +// ggml_get_rel_pos + +struct ggml_tensor * ggml_get_rel_pos( + struct ggml_context * ctx, + struct ggml_tensor * a, + int qh, + int kh) { + GGML_ASSERT(qh == kh); + GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]); + + bool is_node = false; + + if (a->grad) { + GGML_ASSERT(false); // TODO: implement backward + is_node = true; + } + + const int64_t ne[4] = { a->ne[0], kh, qh, 1, }; + struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne); + + result->op = GGML_OP_GET_REL_POS; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +// ggml_add_rel_pos + +static struct ggml_tensor * ggml_add_rel_pos_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * pw, + struct ggml_tensor * ph, + bool inplace) { + GGML_ASSERT(ggml_are_same_shape(pw, ph)); + GGML_ASSERT(ggml_is_contiguous(a)); + GGML_ASSERT(ggml_is_contiguous(pw)); + GGML_ASSERT(ggml_is_contiguous(ph)); + GGML_ASSERT(ph->type == GGML_TYPE_F32); + GGML_ASSERT(pw->type == GGML_TYPE_F32); + GGML_ASSERT(pw->ne[3] == a->ne[2]); + GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]); + GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]); + + bool is_node = false; + + if (!inplace && (a->grad || pw->grad || ph->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + ggml_set_op_params_i32(result, 0, inplace ? 1 : 0); + + result->op = GGML_OP_ADD_REL_POS; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = pw; + result->src[2] = ph; + + return result; +} + +struct ggml_tensor * ggml_add_rel_pos( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * pw, + struct ggml_tensor * ph) { + return ggml_add_rel_pos_impl(ctx, a, pw, ph, false); +} + +struct ggml_tensor * ggml_add_rel_pos_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * pw, + struct ggml_tensor * ph) { + return ggml_add_rel_pos_impl(ctx, a, pw, ph, true); +} + +// gmml_unary + +static struct ggml_tensor * ggml_unary_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + enum ggml_unary_op op, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + ggml_set_op_params_i32(result, 0, (int32_t) op); + + result->op = GGML_OP_UNARY; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +struct ggml_tensor * ggml_unary( + struct ggml_context * ctx, + struct ggml_tensor * a, + enum ggml_unary_op op) { + return ggml_unary_impl(ctx, a, op, false); +} + +struct ggml_tensor * ggml_unary_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + enum ggml_unary_op op) { + return ggml_unary_impl(ctx, a, op, true); +} + +// ggml_map_unary + +static struct ggml_tensor * ggml_map_unary_impl_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + const ggml_unary_op_f32_t fun, + bool inplace) { + bool is_node = false; + + if (!inplace && a->grad) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + ggml_set_op_params(result, (const void *) &fun, sizeof(fun)); + + result->op = GGML_OP_MAP_UNARY; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +struct ggml_tensor * ggml_map_unary_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + const ggml_unary_op_f32_t fun) { + return ggml_map_unary_impl_f32(ctx, a, fun, false); +} + +struct ggml_tensor * ggml_map_unary_inplace_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + const ggml_unary_op_f32_t fun) { + return ggml_map_unary_impl_f32(ctx, a, fun, true); +} + +// ggml_map_binary + +static struct ggml_tensor * ggml_map_binary_impl_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + const ggml_binary_op_f32_t fun, + bool inplace) { + GGML_ASSERT(ggml_are_same_shape(a, b)); + + bool is_node = false; + + if (!inplace && (a->grad || b->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + ggml_set_op_params(result, (const void *) &fun, sizeof(fun)); + + result->op = GGML_OP_MAP_BINARY; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +struct ggml_tensor * ggml_map_binary_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + const ggml_binary_op_f32_t fun) { + return ggml_map_binary_impl_f32(ctx, a, b, fun, false); +} + +struct ggml_tensor * ggml_map_binary_inplace_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + const ggml_binary_op_f32_t fun) { + return ggml_map_binary_impl_f32(ctx, a, b, fun, true); +} + +// ggml_map_custom1_f32 + +static struct ggml_tensor * ggml_map_custom1_impl_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + const ggml_custom1_op_f32_t fun, + bool inplace) { + bool is_node = false; + + if (!inplace && a->grad) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + ggml_set_op_params(result, (const void *) &fun, sizeof(fun)); + + result->op = GGML_OP_MAP_CUSTOM1_F32; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +struct ggml_tensor * ggml_map_custom1_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + const ggml_custom1_op_f32_t fun) { + return ggml_map_custom1_impl_f32(ctx, a, fun, false); +} + +struct ggml_tensor * ggml_map_custom1_inplace_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + const ggml_custom1_op_f32_t fun) { + return ggml_map_custom1_impl_f32(ctx, a, fun, true); +} + +// ggml_map_custom2_f32 + +static struct ggml_tensor * ggml_map_custom2_impl_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + const ggml_custom2_op_f32_t fun, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad || b->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + ggml_set_op_params(result, (const void *) &fun, sizeof(fun)); + + result->op = GGML_OP_MAP_CUSTOM2_F32; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +struct ggml_tensor * ggml_map_custom2_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + const ggml_custom2_op_f32_t fun) { + return ggml_map_custom2_impl_f32(ctx, a, b, fun, false); +} + +struct ggml_tensor * ggml_map_custom2_inplace_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + const ggml_custom2_op_f32_t fun) { + return ggml_map_custom2_impl_f32(ctx, a, b, fun, true); +} + +// ggml_map_custom3_f32 + +static struct ggml_tensor * ggml_map_custom3_impl_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c, + const ggml_custom3_op_f32_t fun, + bool inplace) { + bool is_node = false; + + if (!inplace && (a->grad || b->grad || c->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + ggml_set_op_params(result, (const void *) &fun, sizeof(fun)); + + result->op = GGML_OP_MAP_CUSTOM3_F32; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + result->src[2] = c; + + return result; +} + +struct ggml_tensor * ggml_map_custom3_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c, + const ggml_custom3_op_f32_t fun) { + return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false); +} + +struct ggml_tensor * ggml_map_custom3_inplace_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c, + const ggml_custom3_op_f32_t fun) { + return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true); +} + +// ggml_map_custom1 +struct ggml_map_custom1_op_params { + ggml_custom1_op_t fun; + int n_tasks; + void * userdata; +}; + +static struct ggml_tensor * ggml_map_custom1_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + const ggml_custom1_op_t fun, + int n_tasks, + void * userdata, + bool inplace) { + GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0); + + bool is_node = false; + + if (!inplace && a->grad) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + struct ggml_map_custom1_op_params params = { + /*.fun =*/ fun, + /*.n_tasks =*/ n_tasks, + /*.userdata =*/ userdata + }; + ggml_set_op_params(result, (const void *) ¶ms, sizeof(params)); + + result->op = GGML_OP_MAP_CUSTOM1; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + + return result; +} + +struct ggml_tensor * ggml_map_custom1( + struct ggml_context * ctx, + struct ggml_tensor * a, + const ggml_custom1_op_t fun, + int n_tasks, + void * userdata) { + return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false); +} + +struct ggml_tensor * ggml_map_custom1_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + const ggml_custom1_op_t fun, + int n_tasks, + void * userdata) { + return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true); +} + +// ggml_map_custom2 + +struct ggml_map_custom2_op_params { + ggml_custom2_op_t fun; + int n_tasks; + void * userdata; +}; + +static struct ggml_tensor * ggml_map_custom2_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + const ggml_custom2_op_t fun, + int n_tasks, + void * userdata, + bool inplace) { + GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0); + + bool is_node = false; + + if (!inplace && (a->grad || b->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + struct ggml_map_custom2_op_params params = { + /*.fun =*/ fun, + /*.n_tasks =*/ n_tasks, + /*.userdata =*/ userdata + }; + ggml_set_op_params(result, (const void *) ¶ms, sizeof(params)); + + result->op = GGML_OP_MAP_CUSTOM2; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +struct ggml_tensor * ggml_map_custom2( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + const ggml_custom2_op_t fun, + int n_tasks, + void * userdata) { + return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false); +} + +struct ggml_tensor * ggml_map_custom2_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + const ggml_custom2_op_t fun, + int n_tasks, + void * userdata) { + return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true); +} + +// ggml_map_custom3 + +struct ggml_map_custom3_op_params { + ggml_custom3_op_t fun; + int n_tasks; + void * userdata; +}; + +static struct ggml_tensor * ggml_map_custom3_impl( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c, + const ggml_custom3_op_t fun, + int n_tasks, + void * userdata, + bool inplace) { + GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0); + + bool is_node = false; + + if (!inplace && (a->grad || b->grad || c->grad)) { + is_node = true; + } + + struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a); + + struct ggml_map_custom3_op_params params = { + /*.fun =*/ fun, + /*.n_tasks =*/ n_tasks, + /*.userdata =*/ userdata + }; + ggml_set_op_params(result, (const void *) ¶ms, sizeof(params)); + + result->op = GGML_OP_MAP_CUSTOM3; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + result->src[2] = c; + + return result; +} + +struct ggml_tensor * ggml_map_custom3( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c, + const ggml_custom3_op_t fun, + int n_tasks, + void * userdata) { + return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false); +} + +struct ggml_tensor * ggml_map_custom3_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c, + const ggml_custom3_op_t fun, + int n_tasks, + void * userdata) { + return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true); +} + +// ggml_cross_entropy_loss + +struct ggml_tensor * ggml_cross_entropy_loss( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b) { + GGML_ASSERT(ggml_are_same_shape(a, b)); + bool is_node = false; + + if (a->grad || b->grad) { + is_node = true; + } + + struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1); + + result->op = GGML_OP_CROSS_ENTROPY_LOSS; + result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; + result->src[0] = a; + result->src[1] = b; + + return result; +} + +// ggml_cross_entropy_loss_back + +struct ggml_tensor * ggml_cross_entropy_loss_back( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c) { + GGML_ASSERT(ggml_are_same_shape(a, b)); + GGML_ASSERT(ggml_is_scalar(c)); + + struct ggml_tensor * result = ggml_dup_tensor(ctx, a); + + result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK; + result->grad = NULL; + result->src[0] = a; + result->src[1] = b; + result->src[2] = c; + + return result; +} + +//////////////////////////////////////////////////////////////////////////////// + +void ggml_set_param( + struct ggml_context * ctx, + struct ggml_tensor * tensor) { + tensor->flags |= GGML_TENSOR_FLAG_PARAM; + + GGML_ASSERT(tensor->grad == NULL); + tensor->grad = ggml_dup_tensor(ctx, tensor); + ggml_format_name(tensor->grad, "%s (grad)", tensor->name); +} + +// ggml_compute_forward_dup + +static void ggml_compute_forward_dup_same_cont( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); + GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0)); + GGML_ASSERT(src0->type == dst->type); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const size_t nb00 = src0->nb[0]; + const size_t nb0 = dst->nb[0]; + + const int ith = params->ith; // thread index + const int nth = params->nth; // number of threads + + // parallelize by elements + const int ne = ggml_nelements(dst); + const int dr = (ne + nth - 1) / nth; + const int ie0 = dr * ith; + const int ie1 = MIN(ie0 + dr, ne); + + if (ie0 < ie1) { + memcpy( + ((char *) dst->data + ie0*nb0), + ((char *) src0->data + ie0*nb00), + (ie1 - ie0) * ggml_type_size(src0->type)); + } + +} +static void ggml_compute_forward_dup_f16( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + GGML_TENSOR_UNARY_OP_LOCALS + + const int ith = params->ith; // thread index + const int nth = params->nth; // number of threads + + if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) { + ggml_compute_forward_dup_same_cont(params, dst); + return; + } + + // parallelize by rows + const int nr = ne01; + // number of rows per thread + const int dr = (nr + nth - 1) / nth; + // row range for this thread + const int ir0 = dr * ith; + const int ir1 = MIN(ir0 + dr, nr); + + if (src0->type == dst->type && + ne00 == ne0 && + nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) { + // copy by rows + const size_t rs = ne00*nb00; + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = ir0; i01 < ir1; i01++) { + memcpy( + ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3), + ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03), + rs); + } + } + } + return; + } + + // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy + + if (ggml_is_contiguous(dst)) { + if (nb00 == sizeof(ggml_fp16_t)) { + if (dst->type == GGML_TYPE_F16) { + size_t id = 0; + const size_t rs = ne00 * nb00; + char * dst_ptr = (char *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + id += rs * ir0; + for (int i01 = ir0; i01 < ir1; i01++) { + const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03; + memcpy(dst_ptr + id, src0_ptr, rs); + id += rs; + } + id += rs * (ne01 - ir1); + } + } + } else if (dst->type == GGML_TYPE_F32) { + size_t id = 0; + float * dst_ptr = (float *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + id += ne00 * ir0; + for (int i01 = ir0; i01 < ir1; i01++) { + const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); + for (int i00 = 0; i00 < ne00; i00++) { + dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]); + id++; + } + } + id += ne00 * (ne01 - ir1); + } + } + } else if (type_traits[dst->type].from_float) { + ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float; + float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith; + + size_t id = 0; + size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type)); + char * dst_ptr = (char *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + id += rs * ir0; + for (int i01 = ir0; i01 < ir1; i01++) { + const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); + + for (int i00 = 0; i00 < ne00; i00++) { + src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]); + } + + quantize_row_q(src0_f32, dst_ptr + id, ne00); + id += rs; + } + id += rs * (ne01 - ir1); + } + } + } else { + GGML_ASSERT(false); // TODO: implement + } + } else { + //printf("%s: this is not optimal - fix me\n", __func__); + + if (dst->type == GGML_TYPE_F32) { + size_t id = 0; + float * dst_ptr = (float *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + id += ne00 * ir0; + for (int i01 = ir0; i01 < ir1; i01++) { + for (int i00 = 0; i00 < ne00; i00++) { + const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + + dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr); + id++; + } + } + id += ne00 * (ne01 - ir1); + } + } + } else if (dst->type == GGML_TYPE_F16) { + size_t id = 0; + ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + id += ne00 * ir0; + for (int i01 = ir0; i01 < ir1; i01++) { + for (int i00 = 0; i00 < ne00; i00++) { + const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + + dst_ptr[id] = *src0_ptr; + id++; + } + } + id += ne00 * (ne01 - ir1); + } + } + } else { + GGML_ASSERT(false); // TODO: implement + } + } + return; + } + + // dst counters + int64_t i10 = 0; + int64_t i11 = 0; + int64_t i12 = 0; + int64_t i13 = 0; + + if (dst->type == GGML_TYPE_F16) { + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + i10 += ne00 * ir0; + while (i10 >= ne0) { + i10 -= ne0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + for (int64_t i01 = ir0; i01 < ir1; i01++) { + for (int64_t i00 = 0; i00 < ne00; i00++) { + const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); + + memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t)); + + if (++i10 == ne00) { + i10 = 0; + if (++i11 == ne01) { + i11 = 0; + if (++i12 == ne02) { + i12 = 0; + if (++i13 == ne03) { + i13 = 0; + } + } + } + } + } + } + i10 += ne00 * (ne01 - ir1); + while (i10 >= ne0) { + i10 -= ne0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + } + } + } else if (dst->type == GGML_TYPE_F32) { + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + i10 += ne00 * ir0; + while (i10 >= ne0) { + i10 -= ne0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + for (int64_t i01 = ir0; i01 < ir1; i01++) { + for (int64_t i00 = 0; i00 < ne00; i00++) { + const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); + + *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr); + + if (++i10 == ne0) { + i10 = 0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + } + } + i10 += ne00 * (ne01 - ir1); + while (i10 >= ne0) { + i10 -= ne0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + } + } + } else { + GGML_ASSERT(false); // TODO: implement + } +} + +static void ggml_compute_forward_dup_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + GGML_TENSOR_UNARY_OP_LOCALS + + const int ith = params->ith; // thread index + const int nth = params->nth; // number of threads + + if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) { + ggml_compute_forward_dup_same_cont(params, dst); + return; + } + + // parallelize by rows + const int nr = ne01; + // number of rows per thread + const int dr = (nr + nth - 1) / nth; + // row range for this thread + const int ir0 = dr * ith; + const int ir1 = MIN(ir0 + dr, nr); + + if (src0->type == dst->type && + ne00 == ne0 && + nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) { + // copy by rows + const size_t rs = ne00*nb00; + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = ir0; i01 < ir1; i01++) { + memcpy( + ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3), + ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03), + rs); + } + } + } + return; + } + + if (ggml_is_contiguous(dst)) { + // TODO: simplify + if (nb00 == sizeof(float)) { + if (dst->type == GGML_TYPE_F32) { + size_t id = 0; + const size_t rs = ne00 * nb00; + char * dst_ptr = (char *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + id += rs * ir0; + for (int i01 = ir0; i01 < ir1; i01++) { + const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03; + memcpy(dst_ptr + id, src0_ptr, rs); + id += rs; + } + id += rs * (ne01 - ir1); + } + } + } else if (type_traits[dst->type].from_float) { + ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float; + + size_t id = 0; + size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type)); + char * dst_ptr = (char *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + id += rs * ir0; + for (int i01 = ir0; i01 < ir1; i01++) { + const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); + quantize_row_q(src0_ptr, dst_ptr + id, ne00); + id += rs; + } + id += rs * (ne01 - ir1); + } + } + } else { + GGML_ASSERT(false); // TODO: implement + } + } else { + //printf("%s: this is not optimal - fix me\n", __func__); + + if (dst->type == GGML_TYPE_F32) { + size_t id = 0; + float * dst_ptr = (float *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + id += ne00 * ir0; + for (int i01 = ir0; i01 < ir1; i01++) { + for (int i00 = 0; i00 < ne00; i00++) { + const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + + dst_ptr[id] = *src0_ptr; + id++; + } + } + id += ne00 * (ne01 - ir1); + } + } + } else if (dst->type == GGML_TYPE_F16) { + size_t id = 0; + ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data; + + for (int i03 = 0; i03 < ne03; i03++) { + for (int i02 = 0; i02 < ne02; i02++) { + id += ne00 * ir0; + for (int i01 = ir0; i01 < ir1; i01++) { + for (int i00 = 0; i00 < ne00; i00++) { + const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + + dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr); + id++; + } + } + id += ne00 * (ne01 - ir1); + } + } + } else { + GGML_ASSERT(false); // TODO: implement + } + } + + return; + } + + // dst counters + + int64_t i10 = 0; + int64_t i11 = 0; + int64_t i12 = 0; + int64_t i13 = 0; + + if (dst->type == GGML_TYPE_F32) { + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + i10 += ne00 * ir0; + while (i10 >= ne0) { + i10 -= ne0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + for (int64_t i01 = ir0; i01 < ir1; i01++) { + for (int64_t i00 = 0; i00 < ne00; i00++) { + const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); + + memcpy(dst_ptr, src0_ptr, sizeof(float)); + + if (++i10 == ne0) { + i10 = 0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + } + } + i10 += ne00 * (ne01 - ir1); + while (i10 >= ne0) { + i10 -= ne0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + } + } + } else if (dst->type == GGML_TYPE_F16) { + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + i10 += ne00 * ir0; + while (i10 >= ne0) { + i10 -= ne0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + for (int64_t i01 = ir0; i01 < ir1; i01++) { + for (int64_t i00 = 0; i00 < ne00; i00++) { + const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); + + *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr); + + if (++i10 == ne0) { + i10 = 0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + } + } + i10 += ne00 * (ne01 - ir1); + while (i10 >= ne0) { + i10 -= ne0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + } + } + } else { + GGML_ASSERT(false); // TODO: implement + } +} + +// A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy. +static void ggml_compute_forward_dup_bytes( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); + GGML_ASSERT(src0->type == dst->type); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) { + ggml_compute_forward_dup_same_cont(params, dst); + return; + } + + GGML_TENSOR_UNARY_OP_LOCALS; + + const size_t type_size = ggml_type_size(src0->type); + const int ith = params->ith; // thread index + const int nth = params->nth; // number of threads + + + // parallelize by rows + const int nr = ne01; + // number of rows per thread + const int dr = (nr + nth - 1) / nth; + // row range for this thread + const int ir0 = dr * ith; + const int ir1 = MIN(ir0 + dr, nr); + + if (src0->type == dst->type && + ne00 == ne0 && + nb00 == type_size && nb0 == type_size) { + // copy by rows + const size_t rs = ne00 * type_size; + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = ir0; i01 < ir1; i01++) { + memcpy( + ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3), + ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03), + rs); + } + } + } + return; + } + + if (ggml_is_contiguous(dst)) { + size_t id = 0; + char * dst_ptr = (char *) dst->data; + const size_t rs = ne00 * type_size; + + if (nb00 == type_size) { + // src0 is contigous on first dimension, copy by rows + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + id += rs * ir0; + for (int64_t i01 = ir0; i01 < ir1; i01++) { + const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03; + memcpy(dst_ptr + id, src0_ptr, rs); + id += rs; + } + id += rs * (ne01 - ir1); + } + } + } else { + //printf("%s: this is not optimal - fix me\n", __func__); + + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + id += rs * ir0; + for (int64_t i01 = ir0; i01 < ir1; i01++) { + for (int64_t i00 = 0; i00 < ne00; i00++) { + const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03; + memcpy(dst_ptr + id, src0_ptr, type_size); + + id += type_size; + } + } + id += rs * (ne01 - ir1); + } + } + } + + return; + } + + // dst counters + + int64_t i10 = 0; + int64_t i11 = 0; + int64_t i12 = 0; + int64_t i13 = 0; + + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + i10 += ne00 * ir0; + while (i10 >= ne0) { + i10 -= ne0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + for (int64_t i01 = ir0; i01 < ir1; i01++) { + for (int64_t i00 = 0; i00 < ne00; i00++) { + const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3); + + memcpy(dst_ptr, src0_ptr, type_size); + + if (++i10 == ne0) { + i10 = 0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + } + } + i10 += ne00 * (ne01 - ir1); + while (i10 >= ne0) { + i10 -= ne0; + if (++i11 == ne1) { + i11 = 0; + if (++i12 == ne2) { + i12 = 0; + if (++i13 == ne3) { + i13 = 0; + } + } + } + } + } + } +} + +static void ggml_compute_forward_dup( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + if (src0->type == dst->type) { + ggml_compute_forward_dup_bytes(params, dst); + return; + } + + switch (src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_dup_f16(params, dst); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_dup_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_add + +static void ggml_compute_forward_add_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int ith = params->ith; + const int nth = params->nth; + +#ifdef GGML_USE_CLBLAST + if (src1->backend == GGML_BACKEND_TYPE_GPU) { + // TODO: OpenCL kernel support full broadcast + GGML_ASSERT(ggml_can_repeat_rows(src1, src0)); + if (ith == 0) { + ggml_cl_add(src0, src1, dst); + } + return; + } +#endif + + const int nr = ggml_nrows(src0); + + GGML_TENSOR_BINARY_OP_LOCALS + + GGML_ASSERT( nb0 == sizeof(float)); + GGML_ASSERT(nb00 == sizeof(float)); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + if (nb10 == sizeof(float)) { + for (int ir = ir0; ir < ir1; ++ir) { + // src1 is broadcastable across src0 and dst in i1, i2, i3 + const int64_t i03 = ir/(ne02*ne01); + const int64_t i02 = (ir - i03*ne02*ne01)/ne01; + const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01); + + const int64_t i13 = i03 % ne13; + const int64_t i12 = i02 % ne12; + const int64_t i11 = i01 % ne11; + const int64_t nr0 = ne00 / ne10; + + float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 ); + float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01); + float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11); + + for (int64_t r = 0; r < nr0; ++r) { +#ifdef GGML_USE_ACCELERATE + vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10); +#else + ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr); +#endif + } + } + } else { + // src1 is not contiguous + for (int ir = ir0; ir < ir1; ++ir) { + // src1 is broadcastable across src0 and dst in i1, i2, i3 + const int64_t i03 = ir/(ne02*ne01); + const int64_t i02 = (ir - i03*ne02*ne01)/ne01; + const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01); + + const int64_t i13 = i03 % ne13; + const int64_t i12 = i02 % ne12; + const int64_t i11 = i01 % ne11; + + float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 ); + float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01); + + for (int64_t i0 = 0; i0 < ne0; ++i0) { + const int64_t i10 = i0 % ne10; + float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10); + + dst_ptr[i0] = src0_ptr[i0] + *src1_ptr; + } + } + } +} + +static void ggml_compute_forward_add_f16_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(src0); + + GGML_TENSOR_BINARY_OP_LOCALS + + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + + if (dst->type == GGML_TYPE_F32) { + GGML_ASSERT( nb0 == sizeof(float)); + } + else { + GGML_ASSERT(dst->type == GGML_TYPE_F16); + GGML_ASSERT( nb0 == sizeof(ggml_fp16_t)); + } + + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + if (nb10 == sizeof(float)) { + if (dst->type == GGML_TYPE_F16) { + for (int ir = ir0; ir < ir1; ++ir) { + // src0, src1 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + + ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1); + ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); + float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11); + + for (int i = 0; i < ne0; i++) { + dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]); + } + } + } else { + for (int ir = ir0; ir < ir1; ++ir) { + // src0, src1 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + + float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1); + ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); + float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11); + + for (int i = 0; i < ne0; i++) { + dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]; + } + } + } + } + else { + // src1 is not contiguous + GGML_ASSERT(false); + } +} + +static void ggml_compute_forward_add_f16_f16( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(src0); + + GGML_TENSOR_BINARY_OP_LOCALS + + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F16); + GGML_ASSERT(dst->type == GGML_TYPE_F16); + + GGML_ASSERT( nb0 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + if (nb10 == sizeof(ggml_fp16_t)) { + for (int ir = ir0; ir < ir1; ++ir) { + // src0, src1 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + + ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1); + ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); + ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11); + + for (int i = 0; i < ne0; i++) { + dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i])); + } + } + } + else { + // src1 is not contiguous + GGML_ASSERT(false); + } +} + +static void ggml_compute_forward_add_q_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int nr = ggml_nrows(src0); + + GGML_TENSOR_BINARY_OP_LOCALS + + const int ith = params->ith; + const int nth = params->nth; + + const enum ggml_type type = src0->type; + const enum ggml_type dtype = dst->type; + ggml_to_float_t const dequantize_row_q = type_traits[type].to_float; + ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float; + + // we don't support permuted src0 or src1 + GGML_ASSERT(nb00 == ggml_type_size(type)); + GGML_ASSERT(nb10 == sizeof(float)); + + // dst cannot be transposed or permuted + GGML_ASSERT(nb0 <= nb1); + GGML_ASSERT(nb1 <= nb2); + GGML_ASSERT(nb2 <= nb3); + + GGML_ASSERT(ggml_is_quantized(src0->type)); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith; + + for (int ir = ir0; ir < ir1; ++ir) { + // src0 indices + const int i03 = ir/(ne02*ne01); + const int i02 = (ir - i03*ne02*ne01)/ne01; + const int i01 = (ir - i03*ne02*ne01 - i02*ne01); + + // src1 and dst are same shape as src0 => same indices + const int i13 = i03; + const int i12 = i02; + const int i11 = i01; + + const int i3 = i03; + const int i2 = i02; + const int i1 = i01; + + void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)); + float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)); + void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3)); + + assert(ne00 % 32 == 0); + + // unquantize row from src0 to temp buffer + dequantize_row_q(src0_row, wdata, ne00); + // add src1 + ggml_vec_acc_f32(ne00, wdata, src1_row); + // quantize row to dst + if (quantize_row_q != NULL) { + quantize_row_q(wdata, dst_row, ne00); + } else { + memcpy(dst_row, wdata, ne0*nb0); + } + } +} + +static void ggml_compute_forward_add( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + if (src1->type == GGML_TYPE_F32) { + ggml_compute_forward_add_f32(params, dst); + } + else { + GGML_ASSERT(false); + } + } break; + case GGML_TYPE_F16: + { + if (src1->type == GGML_TYPE_F16) { + ggml_compute_forward_add_f16_f16(params, dst); + } + else if (src1->type == GGML_TYPE_F32) { + ggml_compute_forward_add_f16_f32(params, dst); + } + else { + GGML_ASSERT(false); + } + } break; + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: + case GGML_TYPE_IQ2_XXS: + case GGML_TYPE_IQ2_XS: + case GGML_TYPE_IQ3_XXS: + case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ1_M: + case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_XS: + case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ2_S: + { + ggml_compute_forward_add_q_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_add1 + +static void ggml_compute_forward_add1_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + GGML_ASSERT(ggml_is_scalar(src1)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(src0); + + GGML_TENSOR_UNARY_OP_LOCALS + + GGML_ASSERT( nb0 == sizeof(float)); + GGML_ASSERT(nb00 == sizeof(float)); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int ir = ir0; ir < ir1; ++ir) { + // src0 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + +#ifdef GGML_USE_ACCELERATE + UNUSED(ggml_vec_add1_f32); + + vDSP_vadd( + (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1, + (float *) ((char *) src1->data), 0, + (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1, + ne0); +#else + ggml_vec_add1_f32(ne0, + (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), + (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), + *(float *) src1->data); +#endif + } +} + +static void ggml_compute_forward_add1_f16_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + GGML_ASSERT(ggml_is_scalar(src1)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + // scalar to add + const float v = *(float *) src1->data; + + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(src0); + + GGML_TENSOR_UNARY_OP_LOCALS + + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT(dst->type == GGML_TYPE_F16); + + GGML_ASSERT( nb0 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int ir = ir0; ir < ir1; ++ir) { + // src0 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + + ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ); + ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); + for (int i = 0; i < ne0; i++) { + dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v); + } + } +} + +static void ggml_compute_forward_add1_f16_f16( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + GGML_ASSERT(ggml_is_scalar(src1)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + // scalar to add + const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data); + + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(src0); + + GGML_TENSOR_UNARY_OP_LOCALS + + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F16); + GGML_ASSERT(dst->type == GGML_TYPE_F16); + + GGML_ASSERT( nb0 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int ir = ir0; ir < ir1; ++ir) { + // src0 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + + ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ); + ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); + for (int i = 0; i < ne0; i++) { + dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v); + } + } +} + +static void ggml_compute_forward_add1_q_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + GGML_ASSERT(ggml_is_scalar(src1)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + // scalar to add + const float v = *(float *) src1->data; + + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(src0); + + GGML_TENSOR_UNARY_OP_LOCALS + + const enum ggml_type type = src0->type; + ggml_to_float_t const dequantize_row_q = type_traits[type].to_float; + ggml_from_float_t const quantize_row_q = type_traits[type].from_float; + + // we don't support permuted src0 + GGML_ASSERT(nb00 == ggml_type_size(type)); + + // dst cannot be transposed or permuted + GGML_ASSERT(nb0 <= nb1); + GGML_ASSERT(nb1 <= nb2); + GGML_ASSERT(nb2 <= nb3); + + GGML_ASSERT(ggml_is_quantized(src0->type)); + GGML_ASSERT(dst->type == src0->type); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith; + + for (int ir = ir0; ir < ir1; ++ir) { + // src0 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + + void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03)); + void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 )); + + assert(ne0 % 32 == 0); + + // unquantize row from src0 to temp buffer + dequantize_row_q(src0_row, wdata, ne0); + // add src1 + ggml_vec_acc1_f32(ne0, wdata, v); + // quantize row to dst + quantize_row_q(wdata, dst_row, ne0); + } +} + +static void ggml_compute_forward_add1( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_add1_f32(params, dst); + } break; + case GGML_TYPE_F16: + { + if (src1->type == GGML_TYPE_F16) { + ggml_compute_forward_add1_f16_f16(params, dst); + } + else if (src1->type == GGML_TYPE_F32) { + ggml_compute_forward_add1_f16_f32(params, dst); + } + else { + GGML_ASSERT(false); + } + } break; + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + case GGML_TYPE_Q8_1: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: + case GGML_TYPE_IQ2_XXS: + case GGML_TYPE_IQ2_XS: + case GGML_TYPE_IQ3_XXS: + case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ1_M: + case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_XS: + case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ2_S: + { + ggml_compute_forward_add1_q_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_acc + +static void ggml_compute_forward_acc_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0)); + + // view src0 and dst with these strides and data offset inbytes during acc + // nb0 is implicitly element_size because src0 and dst are contiguous + size_t nb1 = ((int32_t *) dst->op_params)[0]; + size_t nb2 = ((int32_t *) dst->op_params)[1]; + size_t nb3 = ((int32_t *) dst->op_params)[2]; + size_t offset = ((int32_t *) dst->op_params)[3]; + bool inplace = (bool) ((int32_t *) dst->op_params)[4]; + + if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) { + if (params->ith != 0) { + return; + } + // memcpy needs to be synchronized across threads to avoid race conditions. + // => do it in INIT phase + memcpy( + ((char *) dst->data), + ((char *) src0->data), + ggml_nbytes(dst)); + } + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(src1); + const int nc = src1->ne[0]; + + GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) + GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) + + // src0 and dst as viewed during acc + const size_t nb0 = ggml_element_size(src0); + + const size_t nb00 = nb0; + const size_t nb01 = nb1; + const size_t nb02 = nb2; + const size_t nb03 = nb3; + + GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst)); + GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0)); + + GGML_ASSERT(nb10 == sizeof(float)); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int ir = ir0; ir < ir1; ++ir) { + // src0 and dst are viewed with shape of src1 and offset + // => same indices + const int i3 = ir/(ne12*ne11); + const int i2 = (ir - i3*ne12*ne11)/ne11; + const int i1 = (ir - i3*ne12*ne11 - i2*ne11); + +#ifdef GGML_USE_ACCELERATE + vDSP_vadd( + (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1, + (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1, + (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc); +#else + ggml_vec_add_f32(nc, + (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), + (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), + (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11)); +#endif + } +} + +static void ggml_compute_forward_acc( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_acc_f32(params, dst); + } break; + case GGML_TYPE_F16: + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + case GGML_TYPE_Q8_1: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: + case GGML_TYPE_IQ2_XXS: + case GGML_TYPE_IQ2_XS: + case GGML_TYPE_IQ3_XXS: + case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ1_M: + case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_XS: + case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ2_S: + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_sub + +static void ggml_compute_forward_sub_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int nr = ggml_nrows(src0); + + GGML_TENSOR_BINARY_OP_LOCALS + + GGML_ASSERT( nb0 == sizeof(float)); + GGML_ASSERT(nb00 == sizeof(float)); + + if (nb10 == sizeof(float)) { + for (int ir = 0; ir < nr; ++ir) { + // src0, src1 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + +#ifdef GGML_USE_ACCELERATE + vDSP_vsub( + (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1, + (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1, + (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1, + ne0); +#else + ggml_vec_sub_f32(ne0, + (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), + (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), + (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11)); +#endif + // } + // } + } + } else { + // src1 is not contiguous + for (int ir = 0; ir < nr; ++ir) { + // src0, src1 and dst are same shape => same indices + const int i3 = ir/(ne2*ne1); + const int i2 = (ir - i3*ne2*ne1)/ne1; + const int i1 = (ir - i3*ne2*ne1 - i2*ne1); + + float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ); + float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01); + for (int i0 = 0; i0 < ne0; i0++) { + float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10); + + dst_ptr[i0] = src0_ptr[i0] - *src1_ptr; + } + } + } +} + +static void ggml_compute_forward_sub( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_sub_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_mul + +static void ggml_compute_forward_mul_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + const int ith = params->ith; + const int nth = params->nth; + +#if defined(GGML_USE_CLBLAST) + if (src1->backend == GGML_BACKEND_TYPE_GPU) { + // TODO: OpenCL kernel support full broadcast + GGML_ASSERT(ggml_can_repeat_rows(src1, src0)); + if (ith == 0) { + ggml_cl_mul(src0, src1, dst); + } + return; + } +#endif + + const int64_t nr = ggml_nrows(src0); + + GGML_TENSOR_BINARY_OP_LOCALS + + GGML_ASSERT( nb0 == sizeof(float)); + GGML_ASSERT(nb00 == sizeof(float)); + + if (nb10 == sizeof(float)) { + for (int64_t ir = ith; ir < nr; ir += nth) { + // src0 and dst are same shape => same indices + const int64_t i03 = ir/(ne02*ne01); + const int64_t i02 = (ir - i03*ne02*ne01)/ne01; + const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01); + + const int64_t i13 = i03 % ne13; + const int64_t i12 = i02 % ne12; + const int64_t i11 = i01 % ne11; + const int64_t nr0 = ne00 / ne10; + + float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 ); + float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01); + float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11); + + for (int64_t r = 0 ; r < nr0; ++r) { +#ifdef GGML_USE_ACCELERATE + UNUSED(ggml_vec_mul_f32); + + vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10); +#else + ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr); +#endif + } + } + } else { + // src1 is not contiguous + for (int64_t ir = ith; ir < nr; ir += nth) { + // src0 and dst are same shape => same indices + // src1 is broadcastable across src0 and dst in i1, i2, i3 + const int64_t i03 = ir/(ne02*ne01); + const int64_t i02 = (ir - i03*ne02*ne01)/ne01; + const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01); + + const int64_t i13 = i03 % ne13; + const int64_t i12 = i02 % ne12; + const int64_t i11 = i01 % ne11; + + float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 ); + float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01); + + for (int64_t i0 = 0; i0 < ne00; ++i0) { + const int64_t i10 = i0 % ne10; + float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10); + + dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr); + } + } + } +} + +static void ggml_compute_forward_mul( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now"); + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_mul_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_div + +static void ggml_compute_forward_div_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int ith = params->ith; + const int nth = params->nth; + + const int64_t nr = ggml_nrows(src0); + + GGML_TENSOR_BINARY_OP_LOCALS + + GGML_ASSERT( nb0 == sizeof(float)); + GGML_ASSERT(nb00 == sizeof(float)); + + if (nb10 == sizeof(float)) { + for (int64_t ir = ith; ir < nr; ir += nth) { + // src0 and dst are same shape => same indices + const int64_t i03 = ir/(ne02*ne01); + const int64_t i02 = (ir - i03*ne02*ne01)/ne01; + const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01); + + const int64_t i13 = i03 % ne13; + const int64_t i12 = i02 % ne12; + const int64_t i11 = i01 % ne11; + const int64_t nr0 = ne00 / ne10; + + float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 ); + float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01); + float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11); + + for (int64_t r = 0; r < nr0; ++r) { +#ifdef GGML_USE_ACCELERATE + UNUSED(ggml_vec_div_f32); + + vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10); +#else + ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr); +#endif + } + } + } else { + // src1 is not contiguous + for (int64_t ir = ith; ir < nr; ir += nth) { + // src0 and dst are same shape => same indices + // src1 is broadcastable across src0 and dst in i1, i2, i3 + const int64_t i03 = ir/(ne02*ne01); + const int64_t i02 = (ir - i03*ne02*ne01)/ne01; + const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01); + + const int64_t i13 = i03 % ne13; + const int64_t i12 = i02 % ne12; + const int64_t i11 = i01 % ne11; + + float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 ); + float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01); + + for (int64_t i0 = 0; i0 < ne00; ++i0) { + const int64_t i10 = i0 % ne10; + float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10); + + dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr); + } + } + } +} + +static void ggml_compute_forward_div( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_div_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_sqr + +static void ggml_compute_forward_sqr_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert( dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_sqr_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +static void ggml_compute_forward_sqr( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_sqr_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_sqrt + +static void ggml_compute_forward_sqrt_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert( dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_sqrt_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +static void ggml_compute_forward_sqrt( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_sqrt_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_log + +static void ggml_compute_forward_log_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + GGML_ASSERT(params->ith == 0); + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + GGML_ASSERT( dst->nb[0] == sizeof(float)); + GGML_ASSERT(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_log_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +static void ggml_compute_forward_log( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_log_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_sum + +static void ggml_compute_forward_sum_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + assert(params->ith == 0); + assert(ggml_is_scalar(dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + assert(ggml_is_scalar(dst)); + assert(src0->nb[0] == sizeof(float)); + + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) + GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) + + ggml_float sum = 0; + ggml_float row_sum = 0; + + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + ggml_vec_sum_f32_ggf(ne00, + &row_sum, + (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03)); + sum += row_sum; + } + } + } + ((float *) dst->data)[0] = sum; +} + +static void ggml_compute_forward_sum_f16( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + assert(params->ith == 0); + assert(ggml_is_scalar(dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + assert(src0->nb[0] == sizeof(ggml_fp16_t)); + + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) + GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) + + float sum = 0; + float row_sum = 0; + + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + ggml_vec_sum_f16_ggf(ne00, + &row_sum, + (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03)); + sum += row_sum; + } + } + } + ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum); +} + +static void ggml_compute_forward_sum( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_sum_f32(params, dst); + } break; + case GGML_TYPE_F16: + { + ggml_compute_forward_sum_f16(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_sum_rows + +static void ggml_compute_forward_sum_rows_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + GGML_ASSERT(params->ith == 0); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + GGML_ASSERT(src0->nb[0] == sizeof(float)); + GGML_ASSERT(dst->nb[0] == sizeof(float)); + + GGML_TENSOR_UNARY_OP_LOCALS + + GGML_ASSERT(ne0 == 1); + GGML_ASSERT(ne1 == ne01); + GGML_ASSERT(ne2 == ne02); + GGML_ASSERT(ne3 == ne03); + + for (int64_t i3 = 0; i3 < ne03; i3++) { + for (int64_t i2 = 0; i2 < ne02; i2++) { + for (int64_t i1 = 0; i1 < ne01; i1++) { + float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03); + float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3); + float row_sum = 0; + ggml_vec_sum_f32(ne00, &row_sum, src_row); + dst_row[0] = row_sum; + } + } + } +} + +static void ggml_compute_forward_sum_rows( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_sum_rows_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_mean + +static void ggml_compute_forward_mean_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + assert(params->ith == 0); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + assert(src0->nb[0] == sizeof(float)); + + GGML_TENSOR_UNARY_OP_LOCALS + + assert(ne0 == 1); + assert(ne1 == ne01); + assert(ne2 == ne02); + assert(ne3 == ne03); + + UNUSED(ne0); + UNUSED(ne1); + UNUSED(ne2); + UNUSED(ne3); + + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + ggml_vec_sum_f32(ne00, + (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3), + (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03)); + + *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00; + } + } + } +} + +static void ggml_compute_forward_mean( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_mean_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_argmax + +static void ggml_compute_forward_argmax_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + assert(params->ith == 0); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + assert(src0->nb[0] == sizeof(float)); + assert(dst->nb[0] == sizeof(float)); + + const int64_t ne00 = src0->ne[0]; + const int64_t ne01 = src0->ne[1]; + + const size_t nb01 = src0->nb[1]; + const size_t nb0 = dst->nb[0]; + + for (int64_t i1 = 0; i1 < ne01; i1++) { + float * src = (float *) ((char *) src0->data + i1*nb01); + int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0); + int v = 0; + ggml_vec_argmax_f32(ne00, &v, src); + dst_[0] = v; + } +} + +static void ggml_compute_forward_argmax( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_argmax_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_repeat + +static void ggml_compute_forward_repeat_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + GGML_ASSERT(params->ith == 0); + GGML_ASSERT(ggml_can_repeat(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + GGML_TENSOR_UNARY_OP_LOCALS + + // guaranteed to be an integer due to the check in ggml_can_repeat + const int nr0 = (int)(ne0/ne00); + const int nr1 = (int)(ne1/ne01); + const int nr2 = (int)(ne2/ne02); + const int nr3 = (int)(ne3/ne03); + + // TODO: support for transposed / permuted tensors + GGML_ASSERT(nb0 == sizeof(float)); + GGML_ASSERT(nb00 == sizeof(float)); + + // TODO: maybe this is not optimal? + for (int i3 = 0; i3 < nr3; i3++) { + for (int k3 = 0; k3 < ne03; k3++) { + for (int i2 = 0; i2 < nr2; i2++) { + for (int k2 = 0; k2 < ne02; k2++) { + for (int i1 = 0; i1 < nr1; i1++) { + for (int k1 = 0; k1 < ne01; k1++) { + for (int i0 = 0; i0 < nr0; i0++) { + ggml_vec_cpy_f32(ne00, + (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0), + (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01)); + } + } + } + } + } + } + } +} + +static void ggml_compute_forward_repeat_f16( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + GGML_ASSERT(params->ith == 0); + GGML_ASSERT(ggml_can_repeat(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + GGML_TENSOR_UNARY_OP_LOCALS + + // guaranteed to be an integer due to the check in ggml_can_repeat + const int nr0 = (int)(ne0/ne00); + const int nr1 = (int)(ne1/ne01); + const int nr2 = (int)(ne2/ne02); + const int nr3 = (int)(ne3/ne03); + + // TODO: support for transposed / permuted tensors + GGML_ASSERT(nb0 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); + + // TODO: maybe this is not optimal? + for (int i3 = 0; i3 < nr3; i3++) { + for (int k3 = 0; k3 < ne03; k3++) { + for (int i2 = 0; i2 < nr2; i2++) { + for (int k2 = 0; k2 < ne02; k2++) { + for (int i1 = 0; i1 < nr1; i1++) { + for (int k1 = 0; k1 < ne01; k1++) { + for (int i0 = 0; i0 < nr0; i0++) { + ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0); + ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01); + // ggml_vec_cpy_f16(ne00, y, x) + for (int i = 0; i < ne00; ++i) { + y[i] = x[i]; + } + } + } + } + } + } + } + } +} + +static void ggml_compute_forward_repeat( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F16: + case GGML_TYPE_I16: + { + ggml_compute_forward_repeat_f16(params, dst); + } break; + case GGML_TYPE_F32: + case GGML_TYPE_I32: + { + ggml_compute_forward_repeat_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_repeat_back + +static void ggml_compute_forward_repeat_back_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + GGML_ASSERT(params->ith == 0); + GGML_ASSERT(ggml_can_repeat(dst, src0)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + GGML_TENSOR_UNARY_OP_LOCALS + + // guaranteed to be an integer due to the check in ggml_can_repeat + const int nr0 = (int)(ne00/ne0); + const int nr1 = (int)(ne01/ne1); + const int nr2 = (int)(ne02/ne2); + const int nr3 = (int)(ne03/ne3); + + // TODO: support for transposed / permuted tensors + GGML_ASSERT(nb0 == sizeof(float)); + GGML_ASSERT(nb00 == sizeof(float)); + + if (ggml_is_contiguous(dst)) { + ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0); + } else { + for (int k3 = 0; k3 < ne3; k3++) { + for (int k2 = 0; k2 < ne2; k2++) { + for (int k1 = 0; k1 < ne1; k1++) { + ggml_vec_set_f32(ne0, + (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3), + 0); + } + } + } + } + + // TODO: maybe this is not optimal? + for (int i3 = 0; i3 < nr3; i3++) { + for (int k3 = 0; k3 < ne3; k3++) { + for (int i2 = 0; i2 < nr2; i2++) { + for (int k2 = 0; k2 < ne2; k2++) { + for (int i1 = 0; i1 < nr1; i1++) { + for (int k1 = 0; k1 < ne1; k1++) { + for (int i0 = 0; i0 < nr0; i0++) { + ggml_vec_acc_f32(ne0, + (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1), + (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00)); + } + } + } + } + } + } + } +} + +static void ggml_compute_forward_repeat_back( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_repeat_back_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_concat + +static void ggml_compute_forward_concat_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + GGML_ASSERT(src0->nb[0] == sizeof(float)); + + const int ith = params->ith; + const int nth = params->nth; + + GGML_TENSOR_BINARY_OP_LOCALS + + // TODO: support for transposed / permuted tensors + GGML_ASSERT(nb0 == sizeof(float)); + GGML_ASSERT(nb00 == sizeof(float)); + GGML_ASSERT(nb10 == sizeof(float)); + + for (int i3 = 0; i3 < ne3; i3++) { + for (int i2 = ith; i2 < ne2; i2 += nth) { + if (i2 < ne02) { // src0 + for (int i1 = 0; i1 < ne1; i1++) { + for (int i0 = 0; i0 < ne0; i0++) { + const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03); + + float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3); + *y = *x; + } + } + } // src1 + else { + for (int i1 = 0; i1 < ne1; i1++) { + for (int i0 = 0; i0 < ne0; i0++) { + const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13); + + float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3); + *y = *x; + } + } + } + } + } +} + +static void ggml_compute_forward_concat( + const struct ggml_compute_params* params, + struct ggml_tensor* dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + case GGML_TYPE_I32: + { + ggml_compute_forward_concat_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_abs + +static void ggml_compute_forward_abs_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert(dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_abs_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +static void ggml_compute_forward_abs( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_abs_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_sgn + +static void ggml_compute_forward_sgn_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert(dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_sgn_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +static void ggml_compute_forward_sgn( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_sgn_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_neg + +static void ggml_compute_forward_neg_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert(dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_neg_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +static void ggml_compute_forward_neg( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_neg_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_step + +static void ggml_compute_forward_step_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert(dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_step_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +static void ggml_compute_forward_step( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_step_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_tanh + +static void ggml_compute_forward_tanh_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert(dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_tanh_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +static void ggml_compute_forward_tanh( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_tanh_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_elu + +static void ggml_compute_forward_elu_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert(dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_elu_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +static void ggml_compute_forward_elu( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_elu_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_relu + +static void ggml_compute_forward_relu_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert(dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_relu_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +static void ggml_compute_forward_relu( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_relu_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_gelu + +static void ggml_compute_forward_gelu_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0)); + GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst)); + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int ith = params->ith; + const int nth = params->nth; + + const int nc = src0->ne[0]; + const int nr = ggml_nrows(src0); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int i1 = ir0; i1 < ir1; i1++) { + ggml_vec_gelu_f32(nc, + (float *) ((char *) dst->data + i1*( dst->nb[1])), + (float *) ((char *) src0->data + i1*(src0->nb[1]))); + +#ifndef NDEBUG + for (int k = 0; k < nc; k++) { + const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k]; + UNUSED(x); + assert(!isnan(x)); + assert(!isinf(x)); + } +#endif + } +} + +static void ggml_compute_forward_gelu( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_gelu_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_gelu_quick + +static void ggml_compute_forward_gelu_quick_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0)); + GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst)); + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int ith = params->ith; + const int nth = params->nth; + + const int nc = src0->ne[0]; + const int nr = ggml_nrows(src0); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int i1 = ir0; i1 < ir1; i1++) { + ggml_vec_gelu_quick_f32(nc, + (float *) ((char *) dst->data + i1*( dst->nb[1])), + (float *) ((char *) src0->data + i1*(src0->nb[1]))); + +#ifndef NDEBUG + for (int k = 0; k < nc; k++) { + const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k]; + UNUSED(x); + assert(!isnan(x)); + assert(!isinf(x)); + } +#endif + } +} + +static void ggml_compute_forward_gelu_quick( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_gelu_quick_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_silu + +static void ggml_compute_forward_silu_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0)); + GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst)); + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int ith = params->ith; + const int nth = params->nth; + + const int nc = src0->ne[0]; + const int nr = ggml_nrows(src0); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int i1 = ir0; i1 < ir1; i1++) { + ggml_vec_silu_f32(nc, + (float *) ((char *) dst->data + i1*( dst->nb[1])), + (float *) ((char *) src0->data + i1*(src0->nb[1]))); + +#ifndef NDEBUG + for (int k = 0; k < nc; k++) { + const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k]; + UNUSED(x); + assert(!isnan(x)); + assert(!isinf(x)); + } +#endif + } +} + +static void ggml_compute_forward_silu( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_silu_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} +// ggml_compute_forward_leaky_relu + +static void ggml_compute_forward_leaky_relu_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + float negative_slope; + memcpy(&negative_slope, dst->op_params, sizeof(float)); + + assert(dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_leaky_relu_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope); + } +} + +static void ggml_compute_forward_leaky_relu( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_leaky_relu_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_silu_back + +static void ggml_compute_forward_silu_back_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * grad = dst->src[1]; + + GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad)); + GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0)); + GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst)); + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + GGML_ASSERT(ggml_are_same_shape(src0, grad)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int ith = params->ith; + const int nth = params->nth; + + const int nc = src0->ne[0]; + const int nr = ggml_nrows(src0); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int i1 = ir0; i1 < ir1; i1++) { + ggml_vec_silu_backward_f32(nc, + (float *) ((char *) dst->data + i1*( dst->nb[1])), + (float *) ((char *) src0->data + i1*(src0->nb[1])), + (float *) ((char *) grad->data + i1*(grad->nb[1]))); + +#ifndef NDEBUG + for (int k = 0; k < nc; k++) { + const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k]; + UNUSED(x); + assert(!isnan(x)); + assert(!isinf(x)); + } +#endif + } +} + +static void ggml_compute_forward_silu_back( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_silu_back_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + + +static void ggml_compute_forward_hardswish_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert(dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_hardswish_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} +static void ggml_compute_forward_hardswish( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_hardswish_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +static void ggml_compute_forward_hardsigmoid_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert(dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_hardsigmoid_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +static void ggml_compute_forward_hardsigmoid( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_hardsigmoid_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + + +// ggml_compute_forward_norm + +static void ggml_compute_forward_norm_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + GGML_ASSERT(src0->nb[0] == sizeof(float)); + + const int ith = params->ith; + const int nth = params->nth; + + GGML_TENSOR_UNARY_OP_LOCALS + + float eps; + memcpy(&eps, dst->op_params, sizeof(float)); + + GGML_ASSERT(eps > 0.0f); + + // TODO: optimize + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = ith; i01 < ne01; i01 += nth) { + const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); + + ggml_float sum = 0.0; + for (int64_t i00 = 0; i00 < ne00; i00++) { + sum += (ggml_float)x[i00]; + } + + float mean = sum/ne00; + + float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3); + + ggml_float sum2 = 0.0; + for (int64_t i00 = 0; i00 < ne00; i00++) { + float v = x[i00] - mean; + y[i00] = v; + sum2 += (ggml_float)(v*v); + } + + float variance = sum2/ne00; + const float scale = 1.0f/sqrtf(variance + eps); + + ggml_vec_scale_f32(ne00, y, scale); + } + } + } +} + +static void ggml_compute_forward_norm( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_norm_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_group_rms_norm + +static void ggml_compute_forward_rms_norm_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + GGML_ASSERT(src0->nb[0] == sizeof(float)); + + const int ith = params->ith; + const int nth = params->nth; + + GGML_TENSOR_UNARY_OP_LOCALS + + float eps; + memcpy(&eps, dst->op_params, sizeof(float)); + + GGML_ASSERT(eps > 0.0f); + + // TODO: optimize + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = ith; i01 < ne01; i01 += nth) { + const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); + + ggml_float sum = 0.0; + for (int64_t i00 = 0; i00 < ne00; i00++) { + sum += (ggml_float)(x[i00] * x[i00]); + } + + const float mean = sum/ne00; + + float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3); + + memcpy(y, x, ne00 * sizeof(float)); + // for (int i00 = 0; i00 < ne00; i00++) { + // y[i00] = x[i00]; + // } + + const float scale = 1.0f/sqrtf(mean + eps); + + ggml_vec_scale_f32(ne00, y, scale); + } + } + } +} + +static void ggml_compute_forward_rms_norm( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_rms_norm_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +static void ggml_compute_forward_rms_norm_back_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + GGML_ASSERT(src0->nb[0] == sizeof(float)); + + const int ith = params->ith; + const int nth = params->nth; + + GGML_TENSOR_BINARY_OP_LOCALS + + float eps; + memcpy(&eps, dst->op_params, sizeof(float)); + + // TODO: optimize + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = ith; i01 < ne01; i01 += nth) { + // src1 is same shape as src0 => same indices + const int64_t i11 = i01; + const int64_t i12 = i02; + const int64_t i13 = i03; + + const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03); + const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13); + + ggml_float sum_xx = 0.0; + ggml_float sum_xdz = 0.0; + + for (int64_t i00 = 0; i00 < ne00; i00++) { + sum_xx += (ggml_float)(x[i00] * x[i00]); + sum_xdz += (ggml_float)(x[i00] * dz[i00]); + } + + //const float mean = (float)(sum_xx)/ne00; + const float mean_eps = (float)(sum_xx)/ne00 + eps; + const float sum_eps = (float)(sum_xx) + eps*ne00; + //const float mean_xdz = (float)(sum_xdz)/ne00; + // we could cache rms from forward pass to improve performance. + // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms. + //const float rms = sqrtf(mean_eps); + const float rrms = 1.0f / sqrtf(mean_eps); + //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3) + + { + // z = rms_norm(x) + // + // rms_norm(src0) = + // scale( + // src0, + // div( + // 1, + // sqrt( + // add( + // scale( + // sum( + // sqr( + // src0)), + // (1.0/N)), + // eps)))); + + // postorder: + // ## op args grad + // 00 param src0 grad[#00] + // 01 const 1 + // 02 sqr (#00) grad[#02] + // 03 sum (#02) grad[#03] + // 04 const 1/N + // 05 scale (#03, #04) grad[#05] + // 06 const eps + // 07 add (#05, #06) grad[#07] + // 08 sqrt (#07) grad[#08] + // 09 div (#01,#08) grad[#09] + // 10 scale (#00,#09) grad[#10] + // + // backward pass, given grad[#10] + // #10: scale + // grad[#00] += scale(grad[#10],#09) + // grad[#09] += sum(mul(grad[#10],#00)) + // #09: div + // grad[#08] += neg(mul(grad[#09], div(#09,#08))) + // #08: sqrt + // grad[#07] += mul(grad[#08], div(0.5, #08)) + // #07: add + // grad[#05] += grad[#07] + // #05: scale + // grad[#03] += scale(grad[#05],#04) + // #03: sum + // grad[#02] += repeat(grad[#03], #02) + // #02: + // grad[#00] += scale(mul(#00, grad[#02]), 2.0) + // + // substitute and simplify: + // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0) + // grad[#02] = repeat(grad[#03], #02) + // grad[#02] = repeat(scale(grad[#05],#04), #02) + // grad[#02] = repeat(scale(grad[#07],#04), #02) + // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02) + // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02) + // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02) + // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02) + // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02) + // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02) + // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02) + // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0) + // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0) + // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0) + // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N))) + // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N)) + // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N)) + // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N)) + // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps)) + // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps))) + // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps)) + // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps)) + // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps)) + // a = b*c + d*e + // a = b*c*f/f + d*e*f/f + // a = (b*c*f + d*e*f)*(1/f) + // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c)) + // a = (b + d*e/c)*c + // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps) + // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms + // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms + // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms + // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms + // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms + // a = (dz + x*div(-mean_xdz,mean_eps))*rrms + // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms) + // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms) + // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms) + } + // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms) + // post-order: + // dx := x + // dx := scale(dx,-mean_xdz/mean_eps) + // dx := add(dx, dz) + // dx := scale(dx, rrms) + float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3); + + ggml_vec_cpy_f32 (ne00, dx, x); + // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps); + ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps); + ggml_vec_acc_f32 (ne00, dx, dz); + ggml_vec_scale_f32(ne00, dx, rrms); + } + } + } +} + +static void ggml_compute_forward_rms_norm_back( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_rms_norm_back_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_group_norm + +static void ggml_compute_forward_group_norm_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + GGML_ASSERT(src0->nb[0] == sizeof(float)); + + const int ith = params->ith; + const int nth = params->nth; + + GGML_TENSOR_UNARY_OP_LOCALS + + const float eps = 1e-6f; // TODO: make this a parameter + + // TODO: optimize + + int n_channels = src0->ne[2]; + int n_groups = dst->op_params[0]; + int n_channels_per_group = (n_channels + n_groups - 1) / n_groups; + for (int i = ith; i < n_groups; i += nth) { + int start = i * n_channels_per_group; + int end = start + n_channels_per_group; + if (end > n_channels) { + end = n_channels; + } + int step = end - start; + + for (int64_t i03 = 0; i03 < ne03; i03++) { + ggml_float sum = 0.0; + for (int64_t i02 = start; i02 < end; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03); + + ggml_float sumr = 0.0; + for (int64_t i00 = 0; i00 < ne00; i00++) { + sumr += (ggml_float)x[i00]; + } + sum += sumr; + } + } + const float mean = sum / (ne00 * ne01 * step); + + ggml_float sum2 = 0.0; + for (int64_t i02 = start; i02 < end; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03); + + float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3); + + ggml_float sumr = 0.0; + for (int64_t i00 = 0; i00 < ne00; i00++) { + float v = x[i00] - mean; + y[i00] = v; + sumr += (ggml_float)(v * v); + } + sum2 += sumr; + } + } + const float variance = sum2 / (ne00 * ne01 * step); + const float scale = 1.0f / sqrtf(variance + eps); + + for (int64_t i02 = start; i02 < end; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3); + ggml_vec_scale_f32(ne00, y, scale); + } + } + } + } +} + +static void ggml_compute_forward_group_norm( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_group_norm_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_mul_mat + +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) +// helper function to determine if it is better to use BLAS or not +// for large matrices, BLAS is faster +static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) { + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + //const int64_t ne00 = src0->ne[0]; + //const int64_t ne01 = src0->ne[1]; + + const int64_t ne10 = src1->ne[0]; + + const int64_t ne0 = dst->ne[0]; + const int64_t ne1 = dst->ne[1]; + + // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float) + // all the experts for each batch element and the processing would become incredibly slow + // TODO: find the optimal values for these + if (dst->op != GGML_OP_MUL_MAT_ID && + ggml_is_contiguous(src0) && + ggml_is_contiguous(src1) && + //src0->type == GGML_TYPE_F32 && + src1->type == GGML_TYPE_F32 && + (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) { + + /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/ + return true; + } + + return false; +} +#endif + +static void ggml_compute_forward_mul_mat( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + GGML_TENSOR_BINARY_OP_LOCALS + + const int ith = params->ith; + const int nth = params->nth; + + const enum ggml_type type = src0->type; + + const bool src1_cont = ggml_is_contiguous(src1); + + ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot; + enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type; + ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float; + int64_t const vec_dot_num_rows = type_traits[type].nrows; + + GGML_ASSERT(ne0 == ne01); + GGML_ASSERT(ne1 == ne11); + GGML_ASSERT(ne2 == ne12); + GGML_ASSERT(ne3 == ne13); + + // we don't support permuted src0 or src1 + GGML_ASSERT(nb00 == ggml_type_size(type)); + GGML_ASSERT(nb10 == ggml_type_size(src1->type)); + + // dst cannot be transposed or permuted + GGML_ASSERT(nb0 == sizeof(float)); + GGML_ASSERT(nb0 <= nb1); + GGML_ASSERT(nb1 <= nb2); + GGML_ASSERT(nb2 <= nb3); + + // broadcast factors + const int64_t r2 = ne12/ne02; + const int64_t r3 = ne13/ne03; + + // nb01 >= nb00 - src0 is not transposed + // compute by src0 rows + +#if defined(GGML_USE_CLBLAST) + if (ggml_cl_can_mul_mat(src0, src1, dst)) { + if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) { + ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize); + } + return; + } +#endif + +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) + if (ggml_compute_forward_mul_mat_use_blas(dst)) { + const int64_t ne_plane = ne01*ne00; + const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float); + UNUSED(desired_wsize); + + if (params->type == GGML_TASK_TYPE_INIT) { + if (type != GGML_TYPE_F32) { + assert(params->wsize >= desired_wsize); + // parallelize by src0 rows + for (int64_t i13 = 0; i13 < ne13; i13++) { + for (int64_t i12 = 0; i12 < ne12; i12++) { + // broadcast src0 into src1 across 2nd,3rd dimension + const int64_t i03 = i13/r3; + const int64_t i02 = i12/r2; + + const void * x = (char *) src0->data + i02*nb02 + i03*nb03; + float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane; + ggml_to_float_t const to_float = type_traits[type].to_float; + + for (int64_t i01 = ith; i01 < ne01; i01 += nth) { + to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00); + } + } + } + } + return; + } + + if (params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + // perform sgemm, parallelization controlled by blas lib + if (ith != 0) { + return; + } + + //const int64_t tgemm0 = ggml_perf_time_us(); + for (int64_t i13 = 0; i13 < ne13; i13++) { + for (int64_t i12 = 0; i12 < ne12; i12++) { + const int64_t i03 = i13/r3; + const int64_t i02 = i12/r2; + + const void * x = (char *) src0->data + i02*nb02 + i03*nb03; + const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13); + float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3); + + if (type != GGML_TYPE_F32) { + x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane; + } + + cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, + ne1, ne01, ne10, + 1.0f, y, ne10, + x, ne00, + 0.0f, d, ne01); + } + } + //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2); + + //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3); + + return; + } +#endif + +#if GGML_USE_LLAMAFILE + if (nb10 == ggml_type_size(src1->type)) { + for (int64_t i13 = 0; i13 < ne13; i13++) + for (int64_t i12 = 0; i12 < ne12; i12++) + if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type), + (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03, + nb01/ggml_type_size(src0->type), + (const char *)src1->data + i12*nb12 + i13*nb13, + nb11/ggml_type_size(src1->type), + (char *)dst->data + i12*nb2 + i13*nb3, + nb1/ggml_type_size(dst->type), + ith, nth, + params->type, + src0->type, + src1->type, + dst->type)) + goto UseGgmlGemm1; + return; + } +UseGgmlGemm1:; +#endif + + if (params->type == GGML_TASK_TYPE_INIT) { + if (ith != 0) { + return; + } + if (src1->type != vec_dot_type) { + char * wdata = params->wdata; + const size_t row_size = ggml_row_size(vec_dot_type, ne10); + + assert(params->wsize >= ne11*ne12*ne13*row_size); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + + for (int64_t i13 = 0; i13 < ne13; ++i13) { + for (int64_t i12 = 0; i12 < ne12; ++i12) { + for (int64_t i11 = 0; i11 < ne11; ++i11) { + from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10); + wdata += row_size; + } + } + } + } + + return; + } + + if (params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata; + const size_t row_size = ggml_row_size(vec_dot_type, ne10); + +#if GGML_USE_LLAMAFILE + if (nb10 == ggml_type_size(src1->type) || src1->type != vec_dot_type) { + for (int64_t i13 = 0; i13 < ne13; i13++) + for (int64_t i12 = 0; i12 < ne12; i12++) + if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type), + (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03, + nb01/ggml_type_size(src0->type), + (const char *)wdata + ggml_row_size(vec_dot_type, + nb12/ggml_type_size(src1->type)*i12 + + nb13/ggml_type_size(src1->type)*i13), + row_size/ggml_type_size(vec_dot_type), + (char *)dst->data + i12*nb2 + i13*nb3, + nb1/ggml_type_size(dst->type), + ith, nth, + params->type, + src0->type, + vec_dot_type, + dst->type)) + goto UseGgmlGemm2; + return; + } +UseGgmlGemm2:; +#endif + + const int64_t nr0 = ne01; // src0 rows + const int64_t nr1 = ne1*ne12*ne13; // src1 rows + + //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1); + + // distribute the thread work across the inner or outer loop based on which one is larger + + const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows + const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows + + const int64_t ith0 = ith % nth0; + const int64_t ith1 = ith / nth0; + + const int64_t dr0 = (nr0 + nth0 - 1)/nth0; + const int64_t dr1 = (nr1 + nth1 - 1)/nth1; + + const int64_t ir010 = dr0*ith0; + const int64_t ir011 = MIN(ir010 + dr0, nr0); + + const int64_t ir110 = dr1*ith1; + const int64_t ir111 = MIN(ir110 + dr1, nr1); + + //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111); + + // threads with no work simply yield (not sure if it helps) + if (ir010 >= ir011 || ir110 >= ir111) { + sched_yield(); + return; + } + + assert(ne12 % ne02 == 0); + assert(ne13 % ne03 == 0); + + // block-tiling attempt + const int64_t blck_0 = 16; + const int64_t blck_1 = 16; + + // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols + int64_t nrc = vec_dot_num_rows; + // TODO: currently the mmla kernels support only even numbered rows/cols. + // this check can be removed once they are extended to support odd numbered rows/cols too + if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) { + nrc = 1; + } + + const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11; + + // attempt to reduce false-sharing (does not seem to make a difference) + // 16 * 2, accounting for mmla kernels + float tmp[32]; + + for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) { + for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) { + for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) { + const int64_t i13 = (ir1/(ne12*ne1)); + const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1; + const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1); + + // broadcast src0 into src1 + const int64_t i03 = i13/r3; + const int64_t i02 = i12/r2; + + const int64_t i1 = i11; + const int64_t i2 = i12; + const int64_t i3 = i13; + + const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03); + + // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides + // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using + // the original src1 data pointer, so we should index using the indices directly + // TODO: this is a bit of a hack, we should probably have a better way to handle this + const char * src1_col = (const char *) wdata + + (src1_cont || src1->type != vec_dot_type + ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size + : (i11*nb11 + i12*nb12 + i13*nb13)); + float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)); + + //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) { + // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col); + //} + + for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) { + vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc); + } + + for (int cn = 0; cn < nrc; ++cn) { + memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float)); + } + } + } + } +} + +// ggml_compute_forward_mul_mat_id + +static void ggml_compute_forward_mul_mat_id( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + const struct ggml_tensor * ids = dst->src[2]; + + GGML_TENSOR_BINARY_OP_LOCALS + + const int ith = params->ith; + const int nth = params->nth; + + const enum ggml_type type = src0->type; + + const bool src1_cont = ggml_is_contiguous(src1); + + ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot; + enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type; + ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float; + + // we don't support permuted src0 or src1 + GGML_ASSERT(nb00 == ggml_type_size(type)); + GGML_ASSERT(nb10 == ggml_type_size(src1->type)); + + // dst cannot be transposed or permuted + GGML_ASSERT(nb0 == sizeof(float)); + GGML_ASSERT(nb0 <= nb1); + GGML_ASSERT(nb1 <= nb2); + GGML_ASSERT(nb2 <= nb3); + + // row groups + const int n_ids = ids->ne[0]; // n_expert_used + const int n_as = ne02; // n_expert + + char * wdata_src1_end = (src1->type == vec_dot_type) ? + (char *) params->wdata : + (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t)); + + struct mmid_row_mapping { + int32_t i1; + int32_t i2; + }; + + int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as] + struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11] + + if (params->type == GGML_TASK_TYPE_INIT) { + if (ith != 0) { + return; + } + char * wdata = params->wdata; + if (src1->type != vec_dot_type) { + const size_t row_size = ggml_row_size(vec_dot_type, ne10); + + assert(params->wsize >= ne11*ne12*ne13*row_size); + assert(src1->type == GGML_TYPE_F32); + + for (int64_t i13 = 0; i13 < ne13; ++i13) { + for (int64_t i12 = 0; i12 < ne12; ++i12) { + for (int64_t i11 = 0; i11 < ne11; ++i11) { + from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10); + wdata += row_size; + } + } + } + } + + // initialize matrix_row_counts + memset(matrix_row_counts, 0, n_as*sizeof(int64_t)); + +#define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)] + + // group rows by src0 matrix + for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) { + for (int id = 0; id < n_ids; ++id) { + const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]); + + assert(i02 >= 0 && i02 < n_as); + + MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1}; + matrix_row_counts[i02] += 1; + } + } + + return; + } + + if (params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + // compute each matrix multiplication in sequence + for (int cur_a = 0; cur_a < n_as; ++cur_a) { + const int64_t cne1 = matrix_row_counts[cur_a]; + + if (cne1 == 0) { + continue; + } + + const char * src0_cur = (const char *) src0->data + cur_a*nb02; + + const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata; + const size_t row_size = ggml_row_size(vec_dot_type, ne10); + + const int64_t nr0 = ne01; // src0 rows + const int64_t nr1 = cne1; // src1 rows + + // distribute the thread work across the inner or outer loop based on which one is larger + + const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows + const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows + + const int64_t ith0 = ith % nth0; + const int64_t ith1 = ith / nth0; + + const int64_t dr0 = (nr0 + nth0 - 1)/nth0; + const int64_t dr1 = (nr1 + nth1 - 1)/nth1; + + const int64_t ir010 = dr0*ith0; + const int64_t ir011 = MIN(ir010 + dr0, nr0); + + const int64_t ir110 = dr1*ith1; + const int64_t ir111 = MIN(ir110 + dr1, nr1); + + // threads with no work simply yield (not sure if it helps) + //if (ir010 >= ir011 || ir110 >= ir111) { + // sched_yield(); + // continue; + //} + + // block-tiling attempt + const int64_t blck_0 = 16; + const int64_t blck_1 = 16; + + // attempt to reduce false-sharing (does not seem to make a difference) + float tmp[16]; + + for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) { + for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) { + for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) { + const int64_t _i12 = ir1; // logical row index for this expert + + struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12); + const int id = row_mapping.i1; // selected expert index + + const int64_t i11 = id % ne11; + const int64_t i12 = row_mapping.i2; // row index in src1 + + const int64_t i1 = id; // selected expert index + const int64_t i2 = i12; // row + + // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides + // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using + // the original src1 data pointer, so we should index using the indices directly + // TODO: this is a bit of a hack, we should probably have a better way to handle this + const char * src1_col = (const char *) wdata + + (src1_cont || src1->type != vec_dot_type + ? (i11 + i12*ne11)*row_size + : (i11*nb11 + i12*nb12)); + + float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2)); + + //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) { + // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col); + //} + + for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) { + vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1); + } + + memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float)); + } + } + } + } + +#undef MMID_MATRIX_ROW +} + +// ggml_compute_forward_out_prod + +static void ggml_compute_forward_out_prod_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + // int64_t t0 = ggml_perf_time_us(); + // UNUSED(t0); + + GGML_TENSOR_BINARY_OP_LOCALS + + const int ith = params->ith; + const int nth = params->nth; + + GGML_ASSERT(ne0 == ne00); + GGML_ASSERT(ne1 == ne10); + GGML_ASSERT(ne2 == ne02); + GGML_ASSERT(ne02 == ne12); + GGML_ASSERT(ne3 == ne13); + GGML_ASSERT(ne03 == ne13); + + // we don't support permuted src0 or src1 + GGML_ASSERT(nb00 == sizeof(float)); + + // dst cannot be transposed or permuted + GGML_ASSERT(nb0 == sizeof(float)); + // GGML_ASSERT(nb0 <= nb1); + // GGML_ASSERT(nb1 <= nb2); + // GGML_ASSERT(nb2 <= nb3); + + // nb01 >= nb00 - src0 is not transposed + // compute by src0 rows + + // TODO: #if defined(GGML_USE_CLBLAST) + +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) + bool use_blas = ggml_is_matrix(src0) && + ggml_is_matrix(src1) && + ggml_is_contiguous(src0) && + (ggml_is_contiguous(src1) || ggml_is_transposed(src1)); +#endif + + if (params->type == GGML_TASK_TYPE_INIT) { +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst + if (use_blas) { + return; + } +#endif + if (ith != 0) { + return; + } + ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0); + return; + } + + if (params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) + if (use_blas) { + if (params->ith != 0) { // All threads other than the first do no work. + return; + } + // Arguments to ggml_compute_forward_out_prod (expressed as major,minor) + // src0: (k,n) + // src1: (k,m) + // dst: (m,n) + // + // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f) + // Also expressed as (major,minor) + // a: (m,k): so src1 transposed + // b: (k,n): so src0 + // c: (m,n) + // + // However, if ggml_is_transposed(src1) is true, then + // src1->data already contains a transposed version, so sgemm mustn't + // transpose it further. + + int n = src0->ne[0]; + int k = src0->ne[1]; + int m = src1->ne[0]; + + int transposeA, lda; + + if (!ggml_is_transposed(src1)) { + transposeA = CblasTrans; + lda = m; + } else { + transposeA = CblasNoTrans; + lda = k; + } + + float * a = (float *) ((char *) src1->data); + float * b = (float *) ((char *) src0->data); + float * c = (float *) ((char *) dst->data); + + cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n); + + return; + } +#endif + + // dst[:,:,:,:] = 0 + // for i2,i3: + // for i1: + // for i01: + // for i0: + // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3] + + // parallelize by last three dimensions + + // total rows in dst + const int64_t nr = ne1*ne2*ne3; + + // rows per thread + const int64_t dr = (nr + nth - 1)/nth; + + // row range for this thread + const int64_t ir0 = dr*ith; + const int64_t ir1 = MIN(ir0 + dr, nr); + + // block-tiling attempt + const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32); + const int64_t blck_1 = 16; + + for (int64_t bir = ir0; bir < ir1; bir += blck_1) { + const int64_t bir1 = MIN(bir + blck_1, ir1); + for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) { + const int64_t bne01 = MIN(bi01 + blck_0, ne01); + for (int64_t ir = bir; ir < bir1; ++ir) { + // dst indices + const int64_t i3 = ir/(ne2*ne1); + const int64_t i2 = (ir - i3*ne2*ne1)/ne1; + const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1); + + const int64_t i02 = i2; + const int64_t i03 = i3; + + //const int64_t i10 = i1; + const int64_t i12 = i2; + const int64_t i13 = i3; + +#if GGML_VEC_MAD_UNROLL > 2 + const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL); + for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) { + const int64_t i11 = i01; + + float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03)); + float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13)); + float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3)); + + ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1); + } + for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) { + const int64_t i11 = i01; + + float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03)); + float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13)); + float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3)); + + ggml_vec_mad_f32(ne0, d, s0, *s1); + } +#else + for (int64_t i01 = bi01; i01 < bne01; ++i01) { + const int64_t i11 = i01; + + float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03)); + float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13)); + float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3)); + + ggml_vec_mad_f32(ne0, d, s0, *s1); + } +#endif + } + } + } + + //int64_t t1 = ggml_perf_time_us(); + //static int64_t acc = 0; + //acc += t1 - t0; + //if (t1 - t0 > 10) { + // printf("\n"); + // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03); + // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03); + // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13); + // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13); + + // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc); + //} +} + +static void ggml_compute_forward_out_prod_q_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + // int64_t t0 = ggml_perf_time_us(); + // UNUSED(t0); + + GGML_TENSOR_BINARY_OP_LOCALS; + + const int ith = params->ith; + const int nth = params->nth; + + const enum ggml_type type = src0->type; + ggml_to_float_t const dequantize_row_q = type_traits[type].to_float; + + GGML_ASSERT(ne02 == ne12); + GGML_ASSERT(ne03 == ne13); + GGML_ASSERT(ne2 == ne12); + GGML_ASSERT(ne3 == ne13); + + // we don't support permuted src0 dim0 + GGML_ASSERT(nb00 == ggml_type_size(type)); + + // dst dim0 cannot be transposed or permuted + GGML_ASSERT(nb0 == sizeof(float)); + // GGML_ASSERT(nb0 <= nb1); + // GGML_ASSERT(nb1 <= nb2); + // GGML_ASSERT(nb2 <= nb3); + + GGML_ASSERT(ne0 == ne00); + GGML_ASSERT(ne1 == ne10); + GGML_ASSERT(ne2 == ne02); + GGML_ASSERT(ne3 == ne03); + + // nb01 >= nb00 - src0 is not transposed + // compute by src0 rows + + // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) + + if (params->type == GGML_TASK_TYPE_INIT) { + if (ith != 0) { + return; + } + ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0); + return; + } + + if (params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + // parallelize by last three dimensions + + // total rows in dst + const int64_t nr = ne1*ne2*ne3; + + // rows per thread + const int64_t dr = (nr + nth - 1)/nth; + + // row range for this thread + const int64_t ir0 = dr*ith; + const int64_t ir1 = MIN(ir0 + dr, nr); + + // dst[:,:,:,:] = 0 + // for i2,i3: + // for i1: + // for i01: + // for i0: + // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3] + + float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith; + + for (int64_t ir = ir0; ir < ir1; ++ir) { + // dst indices + const int64_t i3 = ir/(ne2*ne1); + const int64_t i2 = (ir - i3*ne2*ne1)/ne1; + const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1); + + const int64_t i02 = i2; + const int64_t i03 = i3; + + //const int64_t i10 = i1; + const int64_t i12 = i2; + const int64_t i13 = i3; + + for (int64_t i01 = 0; i01 < ne01; ++i01) { + const int64_t i11 = i01; + + float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03)); + float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13)); + float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3)); + + dequantize_row_q(s0, wdata, ne0); + ggml_vec_mad_f32(ne0, d, wdata, *s1); + } + } + + //int64_t t1 = ggml_perf_time_us(); + //static int64_t acc = 0; + //acc += t1 - t0; + //if (t1 - t0 > 10) { + // printf("\n"); + // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03); + // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03); + // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13); + // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13); + + // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc); + //} +} + +static void ggml_compute_forward_out_prod( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: + case GGML_TYPE_IQ2_XXS: + case GGML_TYPE_IQ2_XS: + case GGML_TYPE_IQ3_XXS: + case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ1_M: + case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_XS: + case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ2_S: + { + ggml_compute_forward_out_prod_q_f32(params, dst); + } break; + case GGML_TYPE_F16: + { + GGML_ASSERT(false); // todo + // ggml_compute_forward_out_prod_f16_f32(params, dst); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_out_prod_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_scale + +static void ggml_compute_forward_scale_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(ggml_is_contiguous(dst)); + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + // scale factor + float v; + memcpy(&v, dst->op_params, sizeof(float)); + + const int ith = params->ith; + const int nth = params->nth; + + const int nc = src0->ne[0]; + const int nr = ggml_nrows(src0); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + const size_t nb01 = src0->nb[1]; + + const size_t nb1 = dst->nb[1]; + + for (int i1 = ir0; i1 < ir1; i1++) { + if (dst->data != src0->data) { + // src0 is same shape as dst => same indices + memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float)); + } + ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v); + } +} + +static void ggml_compute_forward_scale( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_scale_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_set + +static void ggml_compute_forward_set_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0)); + + // view src0 and dst with these strides and data offset inbytes during set + // nb0 is implicitly element_size because src0 and dst are contiguous + size_t nb1 = ((int32_t *) dst->op_params)[0]; + size_t nb2 = ((int32_t *) dst->op_params)[1]; + size_t nb3 = ((int32_t *) dst->op_params)[2]; + size_t offset = ((int32_t *) dst->op_params)[3]; + bool inplace = (bool) ((int32_t *) dst->op_params)[4]; + + if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) { + if (params->ith != 0) { + return; + } + // memcpy needs to be synchronized across threads to avoid race conditions. + // => do it in INIT phase + memcpy( + ((char *) dst->data), + ((char *) src0->data), + ggml_nbytes(dst)); + } + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(src1); + const int nc = src1->ne[0]; + + GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) + GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) + + // src0 and dst as viewed during set + const size_t nb0 = ggml_element_size(src0); + + const int im0 = (ne10 == 0 ? 0 : ne10-1); + const int im1 = (ne11 == 0 ? 0 : ne11-1); + const int im2 = (ne12 == 0 ? 0 : ne12-1); + const int im3 = (ne13 == 0 ? 0 : ne13-1); + + GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst)); + + GGML_ASSERT(nb10 == sizeof(float)); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int ir = ir0; ir < ir1; ++ir) { + // src0 and dst are viewed with shape of src1 and offset + // => same indices + const int i3 = ir/(ne12*ne11); + const int i2 = (ir - i3*ne12*ne11)/ne11; + const int i1 = (ir - i3*ne12*ne11 - i2*ne11); + + ggml_vec_cpy_f32(nc, + (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), + (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11)); + } +} + +static void ggml_compute_forward_set( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_set_f32(params, dst); + } break; + case GGML_TYPE_F16: + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + case GGML_TYPE_Q8_1: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: + case GGML_TYPE_IQ2_XXS: + case GGML_TYPE_IQ2_XS: + case GGML_TYPE_IQ3_XXS: + case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ1_M: + case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_XS: + case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ2_S: + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_cpy + +static void ggml_compute_forward_cpy( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + ggml_compute_forward_dup(params, dst); +} + +// ggml_compute_forward_cont + +static void ggml_compute_forward_cont( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + ggml_compute_forward_dup(params, dst); +} + +// ggml_compute_forward_reshape + +static void ggml_compute_forward_reshape( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + // NOP + UNUSED(params); + UNUSED(dst); +} + +// ggml_compute_forward_view + +static void ggml_compute_forward_view( + const struct ggml_compute_params * params, + const struct ggml_tensor * dst) { + // NOP + UNUSED(params); + UNUSED(dst); +} + +// ggml_compute_forward_permute + +static void ggml_compute_forward_permute( + const struct ggml_compute_params * params, + const struct ggml_tensor * dst) { + // NOP + UNUSED(params); + UNUSED(dst); +} + +// ggml_compute_forward_transpose + +static void ggml_compute_forward_transpose( + const struct ggml_compute_params * params, + const struct ggml_tensor * dst) { + // NOP + UNUSED(params); + UNUSED(dst); +} + +// ggml_compute_forward_get_rows + +static void ggml_compute_forward_get_rows_q( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + GGML_TENSOR_BINARY_OP_LOCALS + + const int64_t nc = ne00; + const int64_t nr = ggml_nelements(src1); + + const enum ggml_type type = src0->type; + ggml_to_float_t const dequantize_row_q = type_traits[type].to_float; + + assert(ne0 == nc); + assert(ne02 == ne11); + assert(nb00 == ggml_type_size(type)); + assert(ggml_nrows(dst) == nr); + + const int ith = params->ith; + const int nth = params->nth; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int64_t i = ir0; i < ir1; ++i) { + const int64_t i12 = i/(ne11*ne10); + const int64_t i11 = (i - i12*ne11*ne10)/ne10; + const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10); + const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12); + + dequantize_row_q( + (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03), + (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc); + } +} + +static void ggml_compute_forward_get_rows_f16( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + GGML_TENSOR_BINARY_OP_LOCALS + + const int64_t nc = ne00; + const int64_t nr = ggml_nelements(src1); + + assert(ne0 == nc); + assert(ne02 == ne11); + assert(nb00 == sizeof(ggml_fp16_t)); + assert(ggml_nrows(dst) == nr); + + const int ith = params->ith; + const int nth = params->nth; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int64_t i = ir0; i < ir1; ++i) { + const int64_t i12 = i/(ne11*ne10); + const int64_t i11 = (i - i12*ne11*ne10)/ne10; + const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10); + const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12); + + ggml_fp16_to_fp32_row( + (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03), + (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc); + } +} + +static void ggml_compute_forward_get_rows_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + GGML_TENSOR_BINARY_OP_LOCALS + + const int64_t nc = ne00; + const int64_t nr = ggml_nelements(src1); + + assert(ne0 == nc); + assert(ne02 == ne11); + assert(nb00 == sizeof(float)); + assert(ggml_nrows(dst) == nr); + + const int ith = params->ith; + const int nth = params->nth; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int64_t i = ir0; i < ir1; ++i) { + const int64_t i12 = i/(ne11*ne10); + const int64_t i11 = (i - i12*ne11*ne10)/ne10; + const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10); + const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12); + + ggml_vec_cpy_f32(nc, + (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), + (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03)); + } +} + +static void ggml_compute_forward_get_rows( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + case GGML_TYPE_Q8_1: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: + case GGML_TYPE_IQ2_XXS: + case GGML_TYPE_IQ2_XS: + case GGML_TYPE_IQ3_XXS: + case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ1_M: + case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_XS: + case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ2_S: + { + ggml_compute_forward_get_rows_q(params, dst); + } break; + case GGML_TYPE_F16: + { + ggml_compute_forward_get_rows_f16(params, dst); + } break; + case GGML_TYPE_F32: + case GGML_TYPE_I32: + { + ggml_compute_forward_get_rows_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } + + //static bool first = true; + //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]); + //if (first) { + // first = false; + //} else { + // for (int k = 0; k < dst->ne[1]; ++k) { + // for (int j = 0; j < dst->ne[0]/16; ++j) { + // for (int i = 0; i < 16; ++i) { + // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]); + // } + // printf("\n"); + // } + // printf("\n"); + // } + // printf("\n"); + // exit(0); + //} +} + +// ggml_compute_forward_get_rows_back + +static void ggml_compute_forward_get_rows_back_f32_f16( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(params->ith == 0); + GGML_ASSERT(ggml_is_contiguous(dst)); + + // ggml_compute_forward_dup_same_cont(params, opt0, dst); + + if (params->type == GGML_TASK_TYPE_INIT) { + if (params->ith != 0) { + return; + } + memset(dst->data, 0, ggml_nbytes(dst)); + } + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int nc = src0->ne[0]; + const int nr = ggml_nelements(src1); + + GGML_ASSERT( dst->ne[0] == nc); + GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t)); + + for (int i = 0; i < nr; ++i) { + const int r = ((int32_t *) src1->data)[i]; + + for (int j = 0; j < nc; ++j) { + ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j]; + ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v); + } + } +} + +static void ggml_compute_forward_get_rows_back_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(params->ith == 0); + GGML_ASSERT(ggml_is_contiguous(dst)); + + // ggml_compute_forward_dup_same_cont(params, opt0, dst); + + if (params->type == GGML_TASK_TYPE_INIT) { + if (params->ith != 0) { + return; + } + memset(dst->data, 0, ggml_nbytes(dst)); + } + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int nc = src0->ne[0]; + const int nr = ggml_nelements(src1); + + GGML_ASSERT( dst->ne[0] == nc); + GGML_ASSERT(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < nr; ++i) { + const int r = ((int32_t *) src1->data)[i]; + + ggml_vec_add_f32(nc, + (float *) ((char *) dst->data + r*dst->nb[1]), + (float *) ((char *) dst->data + r*dst->nb[1]), + (float *) ((char *) src0->data + i*src0->nb[1])); + } +} + +static void ggml_compute_forward_get_rows_back( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_get_rows_back_f32_f16(params, dst); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_get_rows_back_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } + + //static bool first = true; + //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]); + //if (first) { + // first = false; + //} else { + // for (int k = 0; k < dst->ne[1]; ++k) { + // for (int j = 0; j < dst->ne[0]/16; ++j) { + // for (int i = 0; i < 16; ++i) { + // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]); + // } + // printf("\n"); + // } + // printf("\n"); + // } + // printf("\n"); + // exit(0); + //} +} + +// ggml_compute_forward_diag + +static void ggml_compute_forward_diag_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + GGML_ASSERT(params->ith == 0); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + // TODO: handle transposed/permuted matrices + + GGML_TENSOR_UNARY_OP_LOCALS + + GGML_ASSERT(ne00 == ne0); + GGML_ASSERT(ne00 == ne1); + GGML_ASSERT(ne01 == 1); + GGML_ASSERT(ne02 == ne2); + GGML_ASSERT(ne03 == ne3); + + GGML_ASSERT(nb00 == sizeof(float)); + GGML_ASSERT(nb0 == sizeof(float)); + + for (int i3 = 0; i3 < ne3; i3++) { + for (int i2 = 0; i2 < ne2; i2++) { + for (int i1 = 0; i1 < ne1; i1++) { + float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1); + float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02); + for (int i0 = 0; i0 < i1; i0++) { + d[i0] = 0; + } + d[i1] = s[i1]; + for (int i0 = i1+1; i0 < ne0; i0++) { + d[i0] = 0; + } + } + } + } +} + +static void ggml_compute_forward_diag( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_diag_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_diag_mask_inf + +static void ggml_compute_forward_diag_mask_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst, + const float value) { + + const struct ggml_tensor * src0 = dst->src[0]; + + const int ith = params->ith; + const int nth = params->nth; + + const int n_past = ((int32_t *) dst->op_params)[0]; + const bool inplace = src0->data == dst->data; + + GGML_ASSERT(n_past >= 0); + + if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) { + if (ith != 0) { + return; + } + // memcpy needs to be synchronized across threads to avoid race conditions. + // => do it in INIT phase + GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); + GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0)); + memcpy( + ((char *) dst->data), + ((char *) src0->data), + ggml_nbytes(dst)); + } + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + // TODO: handle transposed/permuted matrices + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + const int nr = src0->ne[1]; + const int nz = n/nr; + + GGML_ASSERT( dst->nb[0] == sizeof(float)); + GGML_ASSERT(src0->nb[0] == sizeof(float)); + + for (int k = 0; k < nz; k++) { + for (int j = ith; j < nr; j += nth) { + for (int i = n_past; i < nc; i++) { + if (i > n_past + j) { + *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value; + } + } + } + } +} + +static void ggml_compute_forward_diag_mask_inf( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +static void ggml_compute_forward_diag_mask_zero( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_diag_mask_f32(params, dst, 0); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_soft_max + +static void ggml_compute_forward_soft_max_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + const struct ggml_tensor * src2 = dst->src[2]; + + assert(ggml_is_contiguous(dst)); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + float scale = 1.0f; + float max_bias = 0.0f; + + memcpy(&scale, (float *) dst->op_params + 0, sizeof(float)); + memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float)); + + // TODO: handle transposed/permuted matrices + + const int ith = params->ith; + const int nth = params->nth; + + GGML_TENSOR_UNARY_OP_LOCALS + + const int64_t ne11 = src1 ? src1->ne[1] : 1; + + // TODO: is this supposed to be ceil instead of floor? + // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370 + const uint32_t n_head_kv = ne02; + const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv)); + + const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); + const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); + + const int nc = src0->ne[0]; + const int nr = ggml_nrows(src0); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith; + + // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching + float * pos = src2 ? (float *) src2->data : src0->data; + + for (int i1 = ir0; i1 < ir1; i1++) { + float * sp = (float *)((char *) src0->data + i1*src0->nb[1]); + float * dp = (float *)((char *) dst->data + i1*dst->nb[1]); + + // broadcast the mask across rows + float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL; + + ggml_vec_cpy_f32 (nc, wp, sp); + ggml_vec_scale_f32(nc, wp, scale); + if (mp) { + ggml_vec_acc_f32(nc, wp, mp); + } + + // ALiBi bias + if (max_bias > 0.0f) { + const uint32_t h = (i1/ne01)%ne02; // head + const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1); + + for (int i = 0; i < nc; i++) { + wp[i] = wp[i] + slope*pos[i]; + } + } + +#ifndef NDEBUG + for (int i = 0; i < nc; ++i) { + //printf("p[%d] = %f\n", i, p[i]); + assert(!isnan(wp[i])); + } +#endif + + float max = -INFINITY; + ggml_vec_max_f32(nc, &max, wp); + + ggml_float sum = 0.0; + + uint16_t scvt; + for (int i = 0; i < nc; i++) { + if (wp[i] == -INFINITY) { + dp[i] = 0.0f; + } else { + // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max); + ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max); + memcpy(&scvt, &s, sizeof(scvt)); + const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]); + sum += (ggml_float)val; + dp[i] = val; + } + } + + assert(sum > 0.0); + + sum = 1.0/sum; + ggml_vec_scale_f32(nc, dp, sum); + +#ifndef NDEBUG + for (int i = 0; i < nc; ++i) { + assert(!isnan(dp[i])); + assert(!isinf(dp[i])); + } +#endif + } +} + +static void ggml_compute_forward_soft_max( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_soft_max_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_soft_max_back + +static void ggml_compute_forward_soft_max_back_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(ggml_is_contiguous(src1)); + GGML_ASSERT(ggml_is_contiguous(dst)); + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + GGML_ASSERT(ggml_are_same_shape(src1, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + // TODO: handle transposed/permuted matrices + + const int ith = params->ith; + const int nth = params->nth; + + const int nc = src0->ne[0]; + const int nr = ggml_nrows(src0); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int i1 = ir0; i1 < ir1; i1++) { + float *dy = (float *)((char *) src0->data + i1*src0->nb[1]); + float *y = (float *)((char *) src1->data + i1*src1->nb[1]); + float *dx = (float *)((char *) dst->data + i1*dst->nb[1]); + +#ifndef NDEBUG + for (int i = 0; i < nc; ++i) { + //printf("p[%d] = %f\n", i, p[i]); + assert(!isnan(dy[i])); + assert(!isnan(y[i])); + } +#endif + // Jii = yi - yi*yi + // Jij = -yi*yj + // J = diag(y)-y.T*y + // dx = J * dy + // dxk = sum_i(Jki * dyi) + // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk + // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk + // dxk = sum_i(-yk*yi * dyi) + yk*dyk + // dxk = -yk * sum_i(yi * dyi) + yk*dyk + // dxk = -yk * dot(y, dy) + yk*dyk + // dxk = yk * (- dot(y, dy) + dyk) + // dxk = yk * (dyk - dot(y, dy)) + // + // post-order: + // dot_y_dy := dot(y, dy) + // dx := dy + // dx := dx - dot_y_dy + // dx := dx * y + + // linear runtime, no additional memory + float dot_y_dy = 0; + ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1); + ggml_vec_cpy_f32 (nc, dx, dy); + ggml_vec_acc1_f32(nc, dx, -dot_y_dy); + ggml_vec_mul_f32 (nc, dx, dx, y); + +#ifndef NDEBUG + for (int i = 0; i < nc; ++i) { + assert(!isnan(dx[i])); + assert(!isinf(dx[i])); + } +#endif + } +} + +static void ggml_compute_forward_soft_max_back( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_soft_max_back_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_alibi + +static void ggml_compute_forward_alibi_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + assert(params->ith == 0); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + //const int n_past = ((int32_t *) dst->op_params)[0]; + const int n_head = ((int32_t *) dst->op_params)[1]; + float max_bias; + memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); + + const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1 + const int64_t ne1 = src0->ne[1]; // seq_len_without_past + const int64_t ne2 = src0->ne[2]; // n_head -> this is k + //const int64_t ne3 = src0->ne[3]; // 1 -> bsz + + const int64_t n = ggml_nrows(src0); + const int64_t ne2_ne3 = n/ne1; // ne2*ne3 + + const size_t nb0 = src0->nb[0]; + const size_t nb1 = src0->nb[1]; + const size_t nb2 = src0->nb[2]; + //const int nb3 = src0->nb[3]; + + GGML_ASSERT(nb0 == sizeof(float)); + GGML_ASSERT(n_head == ne2); + + // add alibi to src0 (KQ_scaled) + const int n_heads_log2_floor = 1 << (int) floor(log2(n_head)); + + const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); + const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor); + + for (int64_t k = 0; k < ne2_ne3; k++) { + // TODO: k*nb2 or k*nb3 + float m_k; + + if (k < n_heads_log2_floor) { + m_k = powf(m0, k + 1); + } else { + m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1); + } + + for (int64_t i = 0; i < ne0; i++) { + for (int64_t j = 0; j < ne1; j++) { + float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2); + float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2); + pdst[0] = i * m_k + src[0]; + } + } + } +} + +static void ggml_compute_forward_alibi_f16( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + assert(params->ith == 0); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + //const int n_past = ((int32_t *) dst->op_params)[0]; + const int n_head = ((int32_t *) dst->op_params)[1]; + float max_bias; + memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float)); + + const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1 + const int ne1 = src0->ne[1]; // seq_len_without_past + const int ne2 = src0->ne[2]; // n_head -> this is k + //const int ne3 = src0->ne[3]; // 1 -> bsz + + const int n = ggml_nrows(src0); + const int ne2_ne3 = n/ne1; // ne2*ne3 + + const int nb0 = src0->nb[0]; + const int nb1 = src0->nb[1]; + const int nb2 = src0->nb[2]; + //const int nb3 = src0->nb[3]; + + GGML_ASSERT(nb0 == sizeof(ggml_fp16_t)); + //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past; + GGML_ASSERT(n_head == ne2); + + // add alibi to src0 (KQ_scaled) + const int n_heads_log2_floor = 1 << (int) floor(log2(n_head)); + + const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor); + const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor); + + for (int k = 0; k < ne2_ne3; k++) { + // TODO: k*nb2 or k*nb3 + float m_k; + + if (k < n_heads_log2_floor) { + m_k = powf(m0, k + 1); + } else { + m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1); + } + + for (int i = 0; i < ne0; i++) { + for (int j = 0; j < ne1; j++) { + ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2); + float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2); + + // we return F32 + pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]); + } + } + } +} + +static void ggml_compute_forward_alibi( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_alibi_f16(params, dst); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_alibi_f32(params, dst); + } break; + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + case GGML_TYPE_Q8_1: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: + case GGML_TYPE_IQ2_XXS: + case GGML_TYPE_IQ2_XS: + case GGML_TYPE_IQ3_XXS: + case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ1_M: + case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_XS: + case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ2_S: + case GGML_TYPE_Q8_K: + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_I64: + case GGML_TYPE_F64: + case GGML_TYPE_COUNT: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_clamp + +static void ggml_compute_forward_clamp_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + assert(params->ith == 0); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + float min; + float max; + memcpy(&min, (float *) dst->op_params + 0, sizeof(float)); + memcpy(&max, (float *) dst->op_params + 1, sizeof(float)); + + const int ith = params->ith; + const int nth = params->nth; + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + const size_t nb00 = src0->nb[0]; + const size_t nb01 = src0->nb[1]; + + const size_t nb0 = dst->nb[0]; + const size_t nb1 = dst->nb[1]; + + GGML_ASSERT( nb0 == sizeof(float)); + GGML_ASSERT(nb00 == sizeof(float)); + + for (int j = ith; j < n; j += nth) { + float * dst_ptr = (float *) ((char *) dst->data + j*nb1); + float * src0_ptr = (float *) ((char *) src0->data + j*nb01); + + for (int i = 0; i < nc; i++) { + dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min); + } + } +} + +static void ggml_compute_forward_clamp( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_clamp_f32(params, dst); + } break; + case GGML_TYPE_F16: + case GGML_TYPE_Q4_0: + case GGML_TYPE_Q4_1: + case GGML_TYPE_Q5_0: + case GGML_TYPE_Q5_1: + case GGML_TYPE_Q8_0: + case GGML_TYPE_Q8_1: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_Q4_K: + case GGML_TYPE_Q5_K: + case GGML_TYPE_Q6_K: + case GGML_TYPE_IQ2_XXS: + case GGML_TYPE_IQ2_XS: + case GGML_TYPE_IQ3_XXS: + case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ1_M: + case GGML_TYPE_IQ4_NL: + case GGML_TYPE_IQ4_XS: + case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ2_S: + case GGML_TYPE_Q8_K: + case GGML_TYPE_I8: + case GGML_TYPE_I16: + case GGML_TYPE_I32: + case GGML_TYPE_I64: + case GGML_TYPE_F64: + case GGML_TYPE_COUNT: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_rope + +static float rope_yarn_ramp(const float low, const float high, const int i0) { + const float y = (i0 / 2 - low) / MAX(0.001f, high - low); + return 1 - MIN(1, MAX(0, y)); +} + +// YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn +// MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng. +static void rope_yarn( + float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale, + float * cos_theta, float * sin_theta +) { + // Get n-d rotational scaling corrected for extrapolation + float theta_interp = freq_scale * theta_extrap; + float theta = theta_interp; + if (ext_factor != 0.0f) { + float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor; + theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix; + + // Get n-d magnitude scaling corrected for interpolation + mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale); + } + *cos_theta = cosf(theta) * mscale; + *sin_theta = sinf(theta) * mscale; +} + +// Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get +// `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))` +static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) { + return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base)); +} + +static void ggml_rope_cache_init( + float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale, + float * cache, float sin_sign, float theta_scale +) { + float theta = theta_base; + for (int64_t i0 = 0; i0 < ne0; i0 += 2) { + rope_yarn( + theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1] + ); + cache[i0 + 1] *= sin_sign; + + theta *= theta_scale; + } +} + +GGML_CALL void ggml_rope_yarn_corr_dims( + int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2] +) { + // start and end correction dims + float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base)); + float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base)); + dims[0] = MAX(0, start); + dims[1] = MIN(n_dims - 1, end); +} + +static void ggml_compute_forward_rope_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst, + const bool forward) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; + + // these two only relevant for xPos RoPE: + float xpos_base; + bool xpos_down; + + //const int n_past = ((int32_t *) dst->op_params)[0]; + const int n_dims = ((int32_t *) dst->op_params)[1]; + const int mode = ((int32_t *) dst->op_params)[2]; + const int n_ctx = ((int32_t *) dst->op_params)[3]; + const int n_orig_ctx = ((int32_t *) dst->op_params)[4]; + + memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); + memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); + memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); + memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); + memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); + memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); + memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float)); + memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool)); + + GGML_TENSOR_UNARY_OP_LOCALS + + //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3); + //printf("n_past = %d, ne2 = %d\n", n_past, ne2); + + GGML_ASSERT(nb00 == sizeof(float)); + + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(dst); + + GGML_ASSERT(n_dims <= ne0); + GGML_ASSERT(n_dims % 2 == 0); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + // row index used to determine which thread to use + int ir = 0; + + const float theta_scale = powf(freq_base, -2.0f/n_dims); + const float inv_ndims = -1.f/n_dims; + float corr_dims[2]; + ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims); + + const bool is_neox = mode & 2; + const bool is_glm = mode & 4; + + // backward process uses inverse rotation by cos and sin. + // cos and sin build a rotation matrix, where the inverse is the transpose. + // this essentially just switches the sign of sin. + const float sin_sign = forward ? 1.0f : -1.0f; + + const int32_t * pos = (const int32_t *) src1->data; + + for (int64_t i3 = 0; i3 < ne3; i3++) { + for (int64_t i2 = 0; i2 < ne2; i2++) { + const int64_t p = pos[i2]; + + float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith; + if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox + ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale); + } + + for (int64_t i1 = 0; i1 < ne1; i1++) { + if (ir++ < ir0) continue; + if (ir > ir1) break; + + float theta_base = (float)p; + + if (is_glm) { + theta_base = MIN(p, n_ctx - 2); + float block_theta = MAX(p - (n_ctx - 2), 0); + for (int64_t i0 = 0; i0 < ne0 / 4; i0++) { + const float cos_theta = cosf(theta_base); + const float sin_theta = sinf(theta_base) * sin_sign; + const float cos_block_theta = cosf(block_theta); + const float sin_block_theta = sinf(block_theta) * sin_sign; + + theta_base *= theta_scale; + block_theta *= theta_scale; + + const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + const float x0 = src[0]; + const float x1 = src[n_dims/2]; + const float x2 = src[n_dims]; + const float x3 = src[n_dims/2*3]; + + dst_data[0] = x0*cos_theta - x1*sin_theta; + dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta; + dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta; + dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta; + } + } else if (!is_neox) { + for (int64_t i0 = 0; i0 < ne0; i0 += 2) { + const float cos_theta = cache[i0 + 0]; + const float sin_theta = cache[i0 + 1]; + + // zeta scaling for xPos only: + float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f; + if (xpos_down) zeta = 1.0f / zeta; + + const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + const float x0 = src[0]; + const float x1 = src[1]; + + dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta; + dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta; + } + } else { + // TODO: this might be wrong for ne0 != n_dims - need double check + // it seems we have to rope just the first n_dims elements and do nothing with the rest + // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26 + theta_base *= freq_scale; + for (int64_t ic = 0; ic < ne0; ic += 2) { + if (ic < n_dims) { + const int64_t ib = 0; + + // simplified from `(ib * n_dims + ic) * inv_ndims` + float cur_rot = inv_ndims * ic - ib; + + float cos_theta, sin_theta; + rope_yarn( + theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, + &cos_theta, &sin_theta + ); + sin_theta *= sin_sign; + + theta_base *= theta_scale; + + const int64_t i0 = ib*n_dims + ic/2; + + const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + const float x0 = src[0]; + const float x1 = src[n_dims/2]; + + dst_data[0] = x0*cos_theta - x1*sin_theta; + dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta; + } else { + const int64_t i0 = ic; + + const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + dst_data[0] = src[0]; + dst_data[1] = src[1]; + } + } + } + } + } + } +} + +static void ggml_compute_forward_rope_f16( + const struct ggml_compute_params * params, + struct ggml_tensor * dst, + const bool forward) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow; + + //const int n_past = ((int32_t *) dst->op_params)[0]; + const int n_dims = ((int32_t *) dst->op_params)[1]; + const int mode = ((int32_t *) dst->op_params)[2]; + const int n_ctx = ((int32_t *) dst->op_params)[3]; + const int n_orig_ctx = ((int32_t *) dst->op_params)[4]; + memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float)); + memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float)); + memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float)); + memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float)); + memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float)); + memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float)); + + GGML_TENSOR_UNARY_OP_LOCALS + + //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3); + //printf("n_past = %d, ne2 = %d\n", n_past, ne2); + + GGML_ASSERT(nb0 == sizeof(ggml_fp16_t)); + + const int ith = params->ith; + const int nth = params->nth; + + const int nr = ggml_nrows(dst); + + GGML_ASSERT(n_dims <= ne0); + GGML_ASSERT(n_dims % 2 == 0); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + // row index used to determine which thread to use + int ir = 0; + + const float theta_scale = powf(freq_base, -2.0f/n_dims); + const float inv_ndims = -1.f/n_dims; + float corr_dims[2]; + ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims); + + const bool is_neox = mode & 2; + const bool is_glm = mode & 4; + + // backward process uses inverse rotation by cos and sin. + // cos and sin build a rotation matrix, where the inverse is the transpose. + // this essentially just switches the sign of sin. + const float sin_sign = forward ? 1.0f : -1.0f; + + const int32_t * pos = (const int32_t *) src1->data; + + for (int64_t i3 = 0; i3 < ne3; i3++) { + for (int64_t i2 = 0; i2 < ne2; i2++) { + const int64_t p = pos[i2]; + + float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith; + if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox + ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale); + } + + for (int64_t i1 = 0; i1 < ne1; i1++) { + if (ir++ < ir0) continue; + if (ir > ir1) break; + + float theta_base = (float)p; + + if (is_glm) { + theta_base = MIN(p, n_ctx - 2); + float block_theta = MAX(p - (n_ctx - 2), 0); + for (int64_t i0 = 0; i0 < ne0 / 4; i0++) { + const float cos_theta = cosf(theta_base); + const float sin_theta = sinf(theta_base) * sin_sign; + const float cos_block_theta = cosf(block_theta); + const float sin_block_theta = sinf(block_theta) * sin_sign; + + theta_base *= theta_scale; + block_theta *= theta_scale; + + const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + const float x0 = GGML_FP16_TO_FP32(src[0]); + const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]); + const float x2 = GGML_FP16_TO_FP32(src[n_dims]); + const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]); + + dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta); + dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta); + dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta); + dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta); + } + } else if (!is_neox) { + for (int64_t i0 = 0; i0 < ne0; i0 += 2) { + const float cos_theta = cache[i0 + 0]; + const float sin_theta = cache[i0 + 1]; + + const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + const float x0 = GGML_FP16_TO_FP32(src[0]); + const float x1 = GGML_FP16_TO_FP32(src[1]); + + dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta); + dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta); + } + } else { + // TODO: this might be wrong for ne0 != n_dims - need double check + // it seems we have to rope just the first n_dims elements and do nothing with the rest + // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26 + theta_base *= freq_scale; + for (int64_t ic = 0; ic < ne0; ic += 2) { + if (ic < n_dims) { + const int64_t ib = 0; + + // simplified from `(ib * n_dims + ic) * inv_ndims` + float cur_rot = inv_ndims * ic - ib; + + float cos_theta, sin_theta; + rope_yarn( + theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, + &cos_theta, &sin_theta + ); + sin_theta *= sin_sign; + + theta_base *= theta_scale; + + const int64_t i0 = ib*n_dims + ic/2; + + const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + const float x0 = GGML_FP16_TO_FP32(src[0]); + const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]); + + dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta); + dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta); + } else { + const int64_t i0 = ic; + + const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0); + + dst_data[0] = src[0]; + dst_data[1] = src[1]; + } + } + } + } + } + } +} + +static void ggml_compute_forward_rope( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_rope_f16(params, dst, true); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_rope_f32(params, dst, true); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_rope_back + +static void ggml_compute_forward_rope_back( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_rope_f16(params, dst, false); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_rope_f32(params, dst, false); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_conv_transpose_1d + +static void ggml_compute_forward_conv_transpose_1d_f16_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + GGML_TENSOR_BINARY_OP_LOCALS + + const int ith = params->ith; + const int nth = params->nth; + + const int nk = ne00*ne01*ne02; + + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nb10 == sizeof(float)); + + if (params->type == GGML_TASK_TYPE_INIT) { + if (ith != 0) { + return; + } + memset(params->wdata, 0, params->wsize); + + // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout) + { + ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; + + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01); + ggml_fp16_t * dst_data = wdata + i01*ne00*ne02; + for (int64_t i00 = 0; i00 < ne00; i00++) { + dst_data[i00*ne02 + i02] = src[i00]; + } + } + } + } + + // permute source data (src1) from (L x Cin) to (Cin x L) + { + ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk; + ggml_fp16_t * dst_data = wdata; + + for (int64_t i11 = 0; i11 < ne11; i11++) { + const float * const src = (float *)((char *) src1->data + i11*nb11); + for (int64_t i10 = 0; i10 < ne10; i10++) { + dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]); + } + } + } + + // need to zero dst since we are accumulating into it + memset(dst->data, 0, ggml_nbytes(dst)); + + return; + } + + if (params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int32_t s0 = ((const int32_t*)(dst->op_params))[0]; + + // total rows in dst + const int nr = ne1; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; + ggml_fp16_t * const wdata_src = wdata + nk; + + for (int i1 = ir0; i1 < ir1; i1++) { + float * dst_data = (float *)((char *) dst->data + i1*nb1); + ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00; + for (int i10 = 0; i10 < ne10; i10++) { + const int i1n = i10*ne11; + for (int i00 = 0; i00 < ne00; i00++) { + float v = 0; + ggml_vec_dot_f16(ne02, &v, 0, + (ggml_fp16_t *) wdata_src + i1n, 0, + (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1); + dst_data[i10*s0 + i00] += v; + } + } + } +} + +static void ggml_compute_forward_conv_transpose_1d_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(src0->type == GGML_TYPE_F32); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + GGML_TENSOR_BINARY_OP_LOCALS + + const int ith = params->ith; + const int nth = params->nth; + + const int nk = ne00*ne01*ne02; + + GGML_ASSERT(nb00 == sizeof(float)); + GGML_ASSERT(nb10 == sizeof(float)); + + if (params->type == GGML_TASK_TYPE_INIT) { + if (ith != 0) { + return; + } + memset(params->wdata, 0, params->wsize); + + // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout) + { + float * const wdata = (float *) params->wdata + 0; + + for (int64_t i02 = 0; i02 < ne02; i02++) { + for (int64_t i01 = 0; i01 < ne01; i01++) { + const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01); + float * dst_data = wdata + i01*ne00*ne02; + for (int64_t i00 = 0; i00 < ne00; i00++) { + dst_data[i00*ne02 + i02] = src[i00]; + } + } + } + } + + // prepare source data (src1) + { + float * const wdata = (float *) params->wdata + nk; + float * dst_data = wdata; + + for (int64_t i11 = 0; i11 < ne11; i11++) { + const float * const src = (float *)((char *) src1->data + i11*nb11); + for (int64_t i10 = 0; i10 < ne10; i10++) { + dst_data[i10*ne11 + i11] = src[i10]; + } + } + } + + // need to zero dst since we are accumulating into it + memset(dst->data, 0, ggml_nbytes(dst)); + + return; + } + + if (params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int32_t s0 = ((const int32_t*)(dst->op_params))[0]; + + // total rows in dst + const int nr = ne1; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + float * const wdata = (float *) params->wdata + 0; + float * const wdata_src = wdata + nk; + + for (int i1 = ir0; i1 < ir1; i1++) { + float * dst_data = (float *)((char *) dst->data + i1*nb1); + float * wdata_kernel = wdata + i1*ne02*ne00; + for (int i10 = 0; i10 < ne10; i10++) { + const int i1n = i10*ne11; + for (int i00 = 0; i00 < ne00; i00++) { + float v = 0; + ggml_vec_dot_f32(ne02, &v, 0, + wdata_src + i1n, 0, + wdata_kernel + i00*ne02, 0, 1); + dst_data[i10*s0 + i00] += v; + } + } + } +} + +static void ggml_compute_forward_conv_transpose_1d( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_conv_transpose_1d_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// src0: kernel [OC, IC, KH, KW] +// src1: image [N, IC, IH, IW] +// dst: result [N, OH, OW, IC*KH*KW] +static void ggml_compute_forward_im2col_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + GGML_TENSOR_BINARY_OP_LOCALS; + + const int32_t s0 = ((const int32_t *)(dst->op_params))[0]; + const int32_t s1 = ((const int32_t *)(dst->op_params))[1]; + const int32_t p0 = ((const int32_t *)(dst->op_params))[2]; + const int32_t p1 = ((const int32_t *)(dst->op_params))[3]; + const int32_t d0 = ((const int32_t *)(dst->op_params))[4]; + const int32_t d1 = ((const int32_t *)(dst->op_params))[5]; + const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1; + + const int ith = params->ith; + const int nth = params->nth; + + const int64_t N = is_2D ? ne13 : ne12; + const int64_t IC = is_2D ? ne12 : ne11; + const int64_t IH = is_2D ? ne11 : 1; + const int64_t IW = ne10; + + const int64_t KH = is_2D ? ne01 : 1; + const int64_t KW = ne00; + + const int64_t OH = is_2D ? ne2 : 1; + const int64_t OW = ne1; + + int ofs0 = is_2D ? nb13 : nb12; + int ofs1 = is_2D ? nb12 : nb11; + + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nb10 == sizeof(float)); + + if (params->type == GGML_TASK_TYPE_INIT) { + return; + } + + if (params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW] + { + float * const wdata = (float *) dst->data; + + for (int64_t in = 0; in < N; in++) { + for (int64_t ioh = 0; ioh < OH; ioh++) { // 1 + for (int64_t iow = 0; iow < OW; iow++) { + for (int64_t iic = ith; iic < IC; iic += nth) { + + // micro kernel + float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW] + const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW] + + for (int64_t ikh = 0; ikh < KH; ikh++) { // 1 + for (int64_t ikw = 0; ikw < KW; ikw++) { + const int64_t iiw = iow*s0 + ikw*d0 - p0; + const int64_t iih = ioh*s1 + ikh*d1 - p1; + + if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) { + dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0; + } else { + dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]); + } + } + } + } + } + } + } + } +} + + +// src0: kernel [OC, IC, KH, KW] +// src1: image [N, IC, IH, IW] +// dst: result [N, OH, OW, IC*KH*KW] +static void ggml_compute_forward_im2col_f16( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F16); + + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + GGML_TENSOR_BINARY_OP_LOCALS; + + const int32_t s0 = ((const int32_t *)(dst->op_params))[0]; + const int32_t s1 = ((const int32_t *)(dst->op_params))[1]; + const int32_t p0 = ((const int32_t *)(dst->op_params))[2]; + const int32_t p1 = ((const int32_t *)(dst->op_params))[3]; + const int32_t d0 = ((const int32_t *)(dst->op_params))[4]; + const int32_t d1 = ((const int32_t *)(dst->op_params))[5]; + const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1; + + const int ith = params->ith; + const int nth = params->nth; + + const int64_t N = is_2D ? ne13 : ne12; + const int64_t IC = is_2D ? ne12 : ne11; + const int64_t IH = is_2D ? ne11 : 1; + const int64_t IW = ne10; + + const int64_t KH = is_2D ? ne01 : 1; + const int64_t KW = ne00; + + const int64_t OH = is_2D ? ne2 : 1; + const int64_t OW = ne1; + + int ofs0 = is_2D ? nb13 : nb12; + int ofs1 = is_2D ? nb12 : nb11; + + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nb10 == sizeof(float)); + + if (params->type == GGML_TASK_TYPE_INIT) { + return; + } + + if (params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW] + { + ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data; + + for (int64_t in = 0; in < N; in++) { + for (int64_t ioh = 0; ioh < OH; ioh++) { // 1 + for (int64_t iow = 0; iow < OW; iow++) { + for (int64_t iic = ith; iic < IC; iic += nth) { + + // micro kernel + ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW] + const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW] + + for (int64_t ikh = 0; ikh < KH; ikh++) { // 1 + for (int64_t ikw = 0; ikw < KW; ikw++) { + const int64_t iiw = iow*s0 + ikw*d0 - p0; + const int64_t iih = ioh*s1 + ikh*d1 - p1; + + if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) { + dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0; + } else { + dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]); + } + } + } + } + } + } + } + } +} + +static void ggml_compute_forward_im2col( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + switch (dst->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_im2col_f16(params, dst); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_im2col_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + + +// ggml_compute_forward_conv_transpose_2d + +static void ggml_compute_forward_conv_transpose_2d( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(src0->type == GGML_TYPE_F16); + GGML_ASSERT(src1->type == GGML_TYPE_F32); + GGML_ASSERT( dst->type == GGML_TYPE_F32); + + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + GGML_TENSOR_BINARY_OP_LOCALS + + const int ith = params->ith; + const int nth = params->nth; + + const int nk = ne00*ne01*ne02*ne03; + + GGML_ASSERT(nb00 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nb10 == sizeof(float)); + + if (params->type == GGML_TASK_TYPE_INIT) { + if (ith != 0) { + return; + } + memset(params->wdata, 0, params->wsize); + + // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout) + { + ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; + + for (int64_t i03 = 0; i03 < ne03; i03++) { + for (int64_t i02 = 0; i02 < ne02; i02++) { + const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02); + ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03; + for (int64_t i01 = 0; i01 < ne01; i01++) { + for (int64_t i00 = 0; i00 < ne00; i00++) { + dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00]; + } + } + } + } + } + + // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh) + { + ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk; + for (int i12 = 0; i12 < ne12; i12++) { + for (int i11 = 0; i11 < ne11; i11++) { + const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11); + ggml_fp16_t * dst_data = wdata + i11*ne10*ne12; + for (int i10 = 0; i10 < ne10; i10++) { + dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]); + } + } + } + } + + memset(dst->data, 0, ggml_nbytes(dst)); + + return; + } + + if (params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int32_t stride = ggml_get_op_params_i32(dst, 0); + + // total patches in dst + const int np = ne2; + + // patches per thread + const int dp = (np + nth - 1)/nth; + + // patch range for this thread + const int ip0 = dp*ith; + const int ip1 = MIN(ip0 + dp, np); + + ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0; + ggml_fp16_t * const wdata_src = wdata + nk; + + for (int i2 = ip0; i2 < ip1; i2++) { // Cout + float * dst_data = (float *)((char *) dst->data + i2*nb2); + ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03; + for (int i11 = 0; i11 < ne11; i11++) { + for (int i10 = 0; i10 < ne10; i10++) { + const int i1n = i11*ne10*ne12 + i10*ne12; + for (int i01 = 0; i01 < ne01; i01++) { + for (int i00 = 0; i00 < ne00; i00++) { + float v = 0; + ggml_vec_dot_f16(ne03, &v, 0, + wdata_src + i1n, 0, + wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1); + dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v; + } + } + } + } + } +} + +// ggml_compute_forward_pool_1d_sk_p0 + +static void ggml_compute_forward_pool_1d_sk_p0( + const struct ggml_compute_params * params, + const enum ggml_op_pool op, + const int k, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src = dst->src[0]; + + assert(src->type == GGML_TYPE_F32); + assert(params->ith == 0); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const char * cdata = (const char *)src->data; + const char * const data_end = cdata + ggml_nbytes(src); + float * drow = (float *)dst->data; + + const int64_t rs = dst->ne[0]; + + while (cdata < data_end) { + const float * const srow = (const float *)cdata; + + int j = 0; + + for (int64_t i = 0; i < rs; ++i) { + switch (op) { + case GGML_OP_POOL_AVG: drow[i] = 0; break; + case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break; + case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break; + } + for (int ki = 0; ki < k; ++ki) { + switch (op) { + case GGML_OP_POOL_AVG: drow[i] += srow[j]; break; + case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break; + case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break; + } + ++j; + } + switch (op) { + case GGML_OP_POOL_AVG: drow[i] /= k; break; + case GGML_OP_POOL_MAX: break; + case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break; + } + } + + cdata += src->nb[1]; + drow += rs; + } +} + +// ggml_compute_forward_pool_1d + +static void ggml_compute_forward_pool_1d( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const int32_t * opts = (const int32_t *)dst->op_params; + enum ggml_op_pool op = opts[0]; + const int k0 = opts[1]; + const int s0 = opts[2]; + const int p0 = opts[3]; + GGML_ASSERT(p0 == 0); // padding not supported + GGML_ASSERT(k0 == s0); // only s = k supported + + ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst); +} + +// ggml_compute_forward_pool_2d + +static void ggml_compute_forward_pool_2d( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src = dst->src[0]; + + GGML_ASSERT(src->type == GGML_TYPE_F32); + GGML_ASSERT(params->ith == 0); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int32_t * opts = (const int32_t *)dst->op_params; + enum ggml_op_pool op = opts[0]; + const int k0 = opts[1]; + const int k1 = opts[2]; + const int s0 = opts[3]; + const int s1 = opts[4]; + const int p0 = opts[5]; + const int p1 = opts[6]; + const char * cdata = (const char*)src->data; + const char * const data_end = cdata + ggml_nbytes(src); + + const int64_t px = dst->ne[0]; + const int64_t py = dst->ne[1]; + const int64_t pa = px * py; + + float * dplane = (float *)dst->data; + + const int ka = k0 * k1; + const int offset0 = -p0; + const int offset1 = -p1; + + while (cdata < data_end) { + for (int oy = 0; oy < py; ++oy) { + float * const drow = dplane + oy * px; + for (int ox = 0; ox < px; ++ox) { + float * const out = drow + ox; + switch (op) { + case GGML_OP_POOL_AVG: *out = 0; break; + case GGML_OP_POOL_MAX: *out = -FLT_MAX; break; + case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break; + } + + const int ix = offset0 + ox * s0; + const int iy = offset1 + oy * s1; + + for (int ky = 0; ky < k1; ++ky) { + if (iy + ky < 0 || iy + ky >= src->ne[1]) continue; + const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky)); + for (int kx = 0; kx < k0; ++kx) { + int j = ix + kx; + if (j < 0 || j >= src->ne[0]) continue; + switch (op) { + case GGML_OP_POOL_AVG: *out += srow[j]; break; + case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break; + case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break; + } + } + } + switch (op) { + case GGML_OP_POOL_AVG: *out /= ka; break; + case GGML_OP_POOL_MAX: break; + case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break; + } + } + } + + cdata += src->nb[2]; + dplane += pa; + } +} + +// ggml_compute_forward_upscale + +static void ggml_compute_forward_upscale_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + GGML_ASSERT(src0->nb[0] == sizeof(float)); + + const int ith = params->ith; + const int nth = params->nth; + + GGML_TENSOR_UNARY_OP_LOCALS + + const int scale_factor = dst->op_params[0]; + + // TODO: optimize + + for (int64_t i3 = 0; i3 < ne3; i3++) { + const int64_t i03 = i3; + for (int64_t i2 = ith; i2 < ne2; i2 += nth) { + const int64_t i02 = i2; + for (int64_t i1 = 0; i1 < ne1; i1++) { + const int64_t i01 = i1 / scale_factor; + for (int64_t i0 = 0; i0 < ne0; i0++) { + const int64_t i00 = i0 / scale_factor; + + const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03); + float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3); + + *y = *x; + } + } + } + } +} + +static void ggml_compute_forward_upscale( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_upscale_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_pad + +static void ggml_compute_forward_pad_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + GGML_ASSERT(src0->nb[0] == sizeof(float)); + GGML_ASSERT( dst->nb[0] == sizeof(float)); + + const int ith = params->ith; + const int nth = params->nth; + + GGML_TENSOR_UNARY_OP_LOCALS + + float * dst_ptr = (float *) dst->data; + + // TODO: optimize + + for (int64_t i2 = 0; i2 < ne2; ++i2) { + for (int64_t i1 = ith; i1 < ne1; i1 += nth) { + for (int64_t i0 = 0; i0 < ne0; ++i0) { + for (int64_t i3 = 0; i3 < ne3; ++i3) { + const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0; + + const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00); + + if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) { + dst_ptr[dst_idx] = *src_ptr; + } else { + dst_ptr[dst_idx] = 0; + } + } + } + } + } +} + +static void ggml_compute_forward_pad( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_pad_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + + +// ggml_compute_forward_arange + +static void ggml_compute_forward_arange_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + GGML_ASSERT(dst->nb[0] == sizeof(float)); + + const int ith = params->ith; + const int nth = params->nth; + + const float start = ggml_get_op_params_f32(dst, 0); + const float stop = ggml_get_op_params_f32(dst, 1); + const float step = ggml_get_op_params_f32(dst, 2); + + const int64_t steps = (int64_t) ceilf((stop - start) / step); + + GGML_ASSERT(ggml_nelements(dst) == steps); + + for (int64_t i = ith; i < steps; i+= nth) { + float value = start + step * i; + ((float *)dst->data)[i] = value; + } +} + +static void ggml_compute_forward_arange( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + switch (dst->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_arange_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +static void ggml_compute_forward_timestep_embedding_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const struct ggml_tensor * src0 = dst->src[0]; + + GGML_ASSERT(src0->nb[0] == sizeof(float)); + + const int ith = params->ith; + const int nth = params->nth; + + GGML_TENSOR_UNARY_OP_LOCALS + + const int dim = ggml_get_op_params_i32(dst, 0); + const int max_period = ggml_get_op_params_i32(dst, 1); + + int half = dim / 2; + + for (int64_t i = 0; i < ne00; i++) { + float * embed_data = (float *)((char *) dst->data + i*nb1); + for (int64_t j = ith; j < half; j += nth) { + float timestep = ((float *)src0->data)[i]; + float freq = (float)expf(-logf(max_period) * j / half); + float arg = timestep * freq; + embed_data[j] = cosf(arg); + embed_data[j + half] = sinf(arg); + } + if (dim % 2 != 0 && ith == 0) { + embed_data[dim] = 0.f; + } + } +} + +static void ggml_compute_forward_timestep_embedding( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_timestep_embedding_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_argsort + +static void ggml_compute_forward_argsort_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + GGML_TENSOR_UNARY_OP_LOCALS + + GGML_ASSERT(nb0 == sizeof(float)); + + const int ith = params->ith; + const int nth = params->nth; + + const int64_t nr = ggml_nrows(src0); + + enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0); + + for (int64_t i = ith; i < nr; i += nth) { + int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1); + const float * src_data = (float *)((char *) src0->data + i*nb01); + + for (int64_t j = 0; j < ne0; j++) { + dst_data[j] = j; + } + + // C doesn't have a functional sort, so we do a bubble sort instead + for (int64_t j = 0; j < ne0; j++) { + for (int64_t k = j + 1; k < ne0; k++) { + if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) || + (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) { + int32_t tmp = dst_data[j]; + dst_data[j] = dst_data[k]; + dst_data[k] = tmp; + } + } + } + } +} + +static void ggml_compute_forward_argsort( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_argsort_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_flash_attn + +static void ggml_compute_forward_flash_attn_f32( + const struct ggml_compute_params * params, + const bool masked, + struct ggml_tensor * dst) { + + const struct ggml_tensor * q = dst->src[0]; + const struct ggml_tensor * k = dst->src[1]; + const struct ggml_tensor * v = dst->src[2]; + + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + GGML_TENSOR_LOCALS(int64_t, neq, q, ne) + GGML_TENSOR_LOCALS(size_t, nbq, q, nb) + GGML_TENSOR_LOCALS(int64_t, nek, k, ne) + GGML_TENSOR_LOCALS(size_t, nbk, k, nb) + GGML_TENSOR_LOCALS(int64_t, nev, v, ne) + GGML_TENSOR_LOCALS(size_t, nbv, v, nb) + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) + GGML_TENSOR_LOCALS(size_t, nb, dst, nb) + + const int ith = params->ith; + const int nth = params->nth; + + const int64_t D = neq0; + const int64_t N = neq1; + const int64_t P = nek1 - N; + const int64_t M = P + N; + + const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL); + + GGML_ASSERT(ne0 == D); + GGML_ASSERT(ne1 == N); + GGML_ASSERT(P >= 0); + + GGML_ASSERT(nbq0 == sizeof(float)); + GGML_ASSERT(nbk0 == sizeof(float)); + GGML_ASSERT(nbv0 == sizeof(float)); + + GGML_ASSERT(neq0 == D); + GGML_ASSERT(nek0 == D); + GGML_ASSERT(nev1 == D); + + GGML_ASSERT(neq1 == N); + GGML_ASSERT(nek1 == N + P); + GGML_ASSERT(nev1 == D); + + // dst cannot be transposed or permuted + GGML_ASSERT(nb0 == sizeof(float)); + GGML_ASSERT(nb0 <= nb1); + GGML_ASSERT(nb1 <= nb2); + GGML_ASSERT(nb2 <= nb3); + + if (params->type == GGML_TASK_TYPE_INIT) { + return; + } + + if (params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + // parallelize by q rows using ggml_vec_dot_f32 + + // total rows in q + const int nr = neq1*neq2*neq3; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + const float scale = 1.0f/sqrtf(D); + + //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale); + + for (int ir = ir0; ir < ir1; ++ir) { + // q indices + const int iq3 = ir/(neq2*neq1); + const int iq2 = (ir - iq3*neq2*neq1)/neq1; + const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1); + + float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32); + + for (int i = M; i < Mup; ++i) { + S[i] = -INFINITY; + } + + const int64_t masked_begin = masked ? (P + iq1 + 1) : M; + for (int64_t ic = 0; ic < masked_begin; ++ic) { + // k indices + const int ik3 = iq3; + const int ik2 = iq2 % nek2; + const int ik1 = ic; + + // S indices + const int i1 = ik1; + + ggml_vec_dot_f32(neq0, + S + i1, 0, + (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0, + (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1); + } + + // scale + ggml_vec_scale_f32(masked_begin, S, scale); + + for (int64_t i = masked_begin; i < M; i++) { + S[i] = -INFINITY; + } + + // softmax + // exclude known -INF S[..] values from max and loop + // dont forget to set their SW values to zero + { + float max = -INFINITY; + ggml_vec_max_f32(masked_begin, &max, S); + + ggml_float sum = 0.0; + { +#ifdef GGML_SOFT_MAX_ACCELERATE + max = -max; + vDSP_vsadd(S, 1, &max, S, 1, Mup); + vvexpf(S, S, &Mup); + ggml_vec_sum_f32(Mup, &sum, S); +#else + uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt); + ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 }; + + for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) { + if (i >= masked_begin) { + break; + } + float * SS = S + i; + + for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) { + if (i + j >= masked_begin) { + break; + } else if (SS[j] == -INFINITY) { + SS[j] = 0.0f; + } else { +#ifndef GGML_FLASH_ATTN_EXP_FP16 + const float val = expf(SS[j] - max); +#else + ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max); + memcpy(&scvt[j], &s, sizeof(uint16_t)); + const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]); +#endif + sump[j] += (ggml_float)val; + SS[j] = val; + } + } + } + + for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) { + sum += sump[i]; + } +#endif + } + + assert(sum > 0.0); + + sum = 1.0/sum; + ggml_vec_scale_f32(masked_begin, S, sum); + +#ifndef NDEBUG + for (int i = 0; i < masked_begin; ++i) { + assert(!isnan(S[i])); + assert(!isinf(S[i])); + } +#endif + } + + for (int64_t ic = 0; ic < nev1; ++ic) { + // dst indices + const int i1 = iq1; + const int i2 = iq2; + const int i3 = iq3; + + // v indices + const int iv2 = iq2 % nev2; + const int iv3 = iq3; + + ggml_vec_dot_f32(masked_begin, + (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0, + (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0, + S, 0, 1); + } + } +} + +static void ggml_compute_forward_flash_attn_f16( + const struct ggml_compute_params * params, + const bool masked, + struct ggml_tensor * dst) { + + const struct ggml_tensor * q = dst->src[0]; + const struct ggml_tensor * k = dst->src[1]; + const struct ggml_tensor * v = dst->src[2]; + + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + GGML_TENSOR_LOCALS(int64_t, neq, q, ne) + GGML_TENSOR_LOCALS(size_t, nbq, q, nb) + GGML_TENSOR_LOCALS(int64_t, nek, k, ne) + GGML_TENSOR_LOCALS(size_t, nbk, k, nb) + GGML_TENSOR_LOCALS(int64_t, nev, v, ne) + GGML_TENSOR_LOCALS(size_t, nbv, v, nb) + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) + GGML_TENSOR_LOCALS(size_t, nb, dst, nb) + + const int ith = params->ith; + const int nth = params->nth; + + const int64_t D = neq0; + const int64_t N = neq1; + const int64_t P = nek1 - N; + const int64_t M = P + N; + + const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL); + + GGML_ASSERT(ne0 == D); + GGML_ASSERT(ne1 == N); + GGML_ASSERT(P >= 0); + + GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t)); + + GGML_ASSERT(neq0 == D); + GGML_ASSERT(nek0 == D); + GGML_ASSERT(nev1 == D); + + GGML_ASSERT(neq1 == N); + GGML_ASSERT(nek1 == N + P); + GGML_ASSERT(nev1 == D); + + // dst cannot be transposed or permuted + GGML_ASSERT(nb0 == sizeof(float)); + GGML_ASSERT(nb0 <= nb1); + GGML_ASSERT(nb1 <= nb2); + GGML_ASSERT(nb2 <= nb3); + + if (params->type == GGML_TASK_TYPE_INIT) { + return; + } + + if (params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + // parallelize by q rows using ggml_vec_dot_f32 + + // total rows in q + const int nr = neq1*neq2*neq3; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + const float scale = 1.0f/sqrtf(D); + + //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale); + + for (int ir = ir0; ir < ir1; ++ir) { + // q indices + const int iq3 = ir/(neq2*neq1); + const int iq2 = (ir - iq3*neq2*neq1)/neq1; + const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1); + + float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32); + + for (int i = M; i < Mup; ++i) { + S[i] = -INFINITY; + } + + if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) { + for (int64_t ic = 0; ic < nek1; ++ic) { + // k indices + const int ik3 = iq3; + const int ik2 = iq2 % nek2; + const int ik1 = ic; + + // S indices + const int i1 = ik1; + + ggml_vec_dot_f16(neq0, + S + i1, 0, + (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0, + (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1); + } + } else { + for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) { + // k indices + const int ik3 = iq3; + const int ik2 = iq2 % nek2; + const int ik1 = ic; + + // S indices + const int i1 = ik1; + + ggml_vec_dot_f16_unroll(neq0, nbk1, + S + i1, + ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), + (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3))); + } + } + + // scale + ggml_vec_scale_f32(nek1, S, scale); + + if (masked) { + for (int64_t i = P; i < M; i++) { + if (i > P + iq1) { + S[i] = -INFINITY; + } + } + } + + // softmax + // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero. + // dont forget to set their S values to zero + { + float max = -INFINITY; + ggml_vec_max_f32(M, &max, S); + + ggml_float sum = 0.0; + { +#ifdef GGML_SOFT_MAX_ACCELERATE + max = -max; + vDSP_vsadd(S, 1, &max, S, 1, Mup); + vvexpf(S, S, &Mup); + ggml_vec_sum_f32(Mup, &sum, S); +#else + uint16_t scvt[GGML_SOFT_MAX_UNROLL]; + ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 }; + + for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) { + float * SS = S + i; + + for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) { + if (SS[j] == -INFINITY) { + SS[j] = 0.0f; + } else { + ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max); + memcpy(&scvt[j], &s, sizeof(uint16_t)); + const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]); + sump[j] += (ggml_float)val; + SS[j] = val; + } + } + } + + for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) { + sum += sump[i]; + } +#endif + } + + assert(sum > 0.0); + + sum = 1.0/sum; + ggml_vec_scale_f32(M, S, sum); + +#ifndef NDEBUG + for (int i = 0; i < M; ++i) { + assert(!isnan(S[i])); + assert(!isinf(S[i])); + } +#endif + } + + ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup); + + for (int64_t i = 0; i < M; i++) { + S16[i] = GGML_FP32_TO_FP16(S[i]); + } + + // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16). + if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) { + for (int64_t ic = 0; ic < nev1; ++ic) { + // dst indices + const int i1 = iq1; + const int i2 = iq2; + const int i3 = iq3; + + // v indices + const int iv2 = iq2 % nev2; + const int iv3 = iq3; + + ggml_vec_dot_f16(nev0, + (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0, + (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0, + S16, 0, 1); + } + } else { + for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) { + // dst indices + const int i1 = iq1; + const int i2 = iq2; + const int i3 = iq3; + + // v indices + const int iv2 = iq2 % nev2; + const int iv3 = iq3; + + ggml_vec_dot_f16_unroll(nev0, nbv1, + (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), + ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), + S16); + } + } + } +} + +static void ggml_compute_forward_flash_attn( + const struct ggml_compute_params * params, + const bool masked, + struct ggml_tensor * dst) { + + const struct ggml_tensor * q = dst->src[0]; + + switch (q->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_flash_attn_f16(params, masked, dst); + } break; + case GGML_TYPE_F32: + { + ggml_compute_forward_flash_attn_f32(params, masked, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_flash_ff + +static void ggml_compute_forward_flash_ff_f16( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * a = dst->src[0]; // F16 + const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w + const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b + const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w + const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b + + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + GGML_TENSOR_LOCALS(int64_t, nea, a, ne) + GGML_TENSOR_LOCALS(size_t, nba, a, nb) + GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne) + GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb) + GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne) + GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb) + GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne) + GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb) + GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne) + GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb) + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) + GGML_TENSOR_LOCALS(size_t, nb, dst, nb) + + const int ith = params->ith; + const int nth = params->nth; + + const int64_t D = nea0; + //const int64_t N = nea1; + const int64_t M = neb01; + + GGML_ASSERT(ne0 == nea0); + GGML_ASSERT(ne1 == nea1); + GGML_ASSERT(ne2 == nea2); + + GGML_ASSERT(nba0 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nbb10 == sizeof(float)); + GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t)); + GGML_ASSERT(nbc10 == sizeof(float)); + + GGML_ASSERT(neb00 == D); + GGML_ASSERT(neb01 == M); + GGML_ASSERT(neb10 == M); + GGML_ASSERT(neb11 == 1); + + GGML_ASSERT(nec00 == M); + GGML_ASSERT(nec01 == D); + GGML_ASSERT(nec10 == D); + GGML_ASSERT(nec11 == 1); + + // dst cannot be transposed or permuted + GGML_ASSERT(nb0 == sizeof(float)); + GGML_ASSERT(nb0 <= nb1); + GGML_ASSERT(nb1 <= nb2); + GGML_ASSERT(nb2 <= nb3); + + if (params->type == GGML_TASK_TYPE_INIT) { + return; + } + + if (params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + // parallelize by a rows using ggml_vec_dot_f32 + + // total rows in a + const int nr = nea1*nea2*nea3; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int ir = ir0; ir < ir1; ++ir) { + // a indices + const int ia3 = ir/(nea2*nea1); + const int ia2 = (ir - ia3*nea2*nea1)/nea1; + const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1); + + float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32); + + for (int64_t ic = 0; ic < neb01; ++ic) { + // b0 indices + const int ib03 = ia3; + const int ib02 = ia2; + const int ib01 = ic; + + // S indices + const int i1 = ib01; + + ggml_vec_dot_f16(nea0, + S + i1, 0, + (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0, + (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1); + } + + ggml_vec_add_f32(neb01, S, S, (float *) b1->data); + //ggml_vec_gelu_f32(neb01, S, S); + + ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M); + + for (int64_t i = 0; i < M; i++) { + S16[i] = GGML_FP32_TO_FP16(S[i]); + } + + ggml_vec_gelu_f16(neb01, S16, S16); + + { + // dst indices + const int i1 = ia1; + const int i2 = ia2; + const int i3 = ia3; + + for (int64_t ic = 0; ic < nec01; ++ic) { + + ggml_vec_dot_f16(neb01, + (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0, + (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0, + S16, 0, 1); + } + + ggml_vec_add_f32(nec01, + (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)), + (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)), + (float *) c1->data); + } + } +} + +static void ggml_compute_forward_flash_ff( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * b0 = dst->src[1]; + + switch (b0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_flash_ff_f16(params, dst); + } break; + case GGML_TYPE_F32: + { + GGML_ASSERT(false); // TODO + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_flash_attn_back + +static void ggml_compute_forward_flash_attn_back_f32( + const struct ggml_compute_params * params, + const bool masked, + struct ggml_tensor * dst) { + + const struct ggml_tensor * q = dst->src[0]; + const struct ggml_tensor * k = dst->src[1]; + const struct ggml_tensor * v = dst->src[2]; + const struct ggml_tensor * d = dst->src[3]; + + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + GGML_TENSOR_LOCALS(int64_t, neq, q, ne) + GGML_TENSOR_LOCALS(size_t, nbq, q, nb) + GGML_TENSOR_LOCALS(int64_t, nek, k, ne) + GGML_TENSOR_LOCALS(size_t, nbk, k, nb) + GGML_TENSOR_LOCALS(int64_t, nev, v, ne) + GGML_TENSOR_LOCALS(size_t, nbv, v, nb) + GGML_TENSOR_LOCALS(int64_t, ned, d, ne) + GGML_TENSOR_LOCALS(size_t, nbd, d, nb) + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) + GGML_TENSOR_LOCALS(size_t, nb, dst, nb) + + const int ith = params->ith; + const int nth = params->nth; + + const int64_t D = neq0; + const int64_t N = neq1; + const int64_t P = nek1 - N; + const int64_t M = P + N; + + const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL); + const int mxDM = MAX(D, Mup); + + // GGML_ASSERT(ne0 == D); + // GGML_ASSERT(ne1 == N); + GGML_ASSERT(P >= 0); + + GGML_ASSERT(nbq0 == sizeof(float)); + GGML_ASSERT(nbk0 == sizeof(float)); + GGML_ASSERT(nbv0 == sizeof(float)); + + GGML_ASSERT(neq0 == D); + GGML_ASSERT(nek0 == D); + GGML_ASSERT(nev1 == D); + GGML_ASSERT(ned0 == D); + + GGML_ASSERT(neq1 == N); + GGML_ASSERT(nek1 == N + P); + GGML_ASSERT(nev1 == D); + GGML_ASSERT(ned1 == N); + + // dst cannot be transposed or permuted + GGML_ASSERT(nb0 == sizeof(float)); + GGML_ASSERT(nb0 <= nb1); + GGML_ASSERT(nb1 <= nb2); + GGML_ASSERT(nb2 <= nb3); + + if (params->type == GGML_TASK_TYPE_INIT) { + if (ith == 0) { + memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3); + } + return; + } + + if (params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int64_t elem_q = ggml_nelements(q); + const int64_t elem_k = ggml_nelements(k); + + enum ggml_type result_type = dst->type; + GGML_ASSERT(ggml_blck_size(result_type) == 1); + const size_t tsize = ggml_type_size(result_type); + + const size_t offs_q = 0; + const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN); + const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN); + + void * grad_q = (char *) dst->data; + void * grad_k = (char *) dst->data + offs_k; + void * grad_v = (char *) dst->data + offs_v; + + const size_t nbgq1 = nb0*neq0; + const size_t nbgq2 = nb0*neq0*neq1; + const size_t nbgq3 = nb0*neq0*neq1*neq2; + + const size_t nbgk1 = nb0*nek0; + const size_t nbgk2 = nb0*nek0*nek1; + const size_t nbgk3 = nb0*nek0*nek1*neq2; + + const size_t nbgv1 = nb0*nev0; + const size_t nbgv2 = nb0*nev0*nev1; + const size_t nbgv3 = nb0*nev0*nev1*neq2; + + // parallelize by k rows using ggml_vec_dot_f32 + + // total rows in k + const int nr = nek2*nek3; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + const float scale = 1.0f/sqrtf(D); + + //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale); + + // how often k2 (and v2) is repeated in q2 + int nrep = neq2/nek2; + + for (int ir = ir0; ir < ir1; ++ir) { + // q indices + const int ik3 = ir/(nek2); + const int ik2 = ir - ik3*nek2; + + const int iq3 = ik3; + const int id3 = ik3; + const int iv3 = ik3; + const int iv2 = ik2; + + for (int irep = 0; irep < nrep; ++irep) { + const int iq2 = ik2 + irep*nek2; + const int id2 = iq2; + + // (ik2 + irep*nek2) % nek2 == ik2 + for (int iq1 = 0; iq1 < neq1; ++iq1) { + const int id1 = iq1; + + // not sure about CACHE_LINE_SIZE_F32.. + // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset? + float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32); + float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32); + + for (int i = M; i < Mup; ++i) { + S[i] = -INFINITY; + } + + const int64_t masked_begin = masked ? (P + iq1 + 1) : M; + for (int64_t ic = 0; ic < masked_begin; ++ic) { + // k indices + const int ik1 = ic; + + // S indices + const int i1 = ik1; + + ggml_vec_dot_f32(neq0, + S + i1, 0, + (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0, + (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1); + } + + // scale + ggml_vec_scale_f32(masked_begin, S, scale); + + for (int64_t i = masked_begin; i < M; i++) { + S[i] = -INFINITY; + } + + // softmax + // exclude known -INF S[..] values from max and loop + // dont forget to set their SM values to zero + { + float max = -INFINITY; + ggml_vec_max_f32(masked_begin, &max, S); + + ggml_float sum = 0.0; + { +#ifdef GGML_SOFT_MAX_ACCELERATE + max = -max; + vDSP_vsadd(SM, 1, &max, SM, 1, Mup); + vvexpf(SM, SM, &Mup); + ggml_vec_sum_f32(Mup, &sum, SM); +#else + uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt); + ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 }; + + for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) { + if (i >= masked_begin) { + break; + } + float * SR = S + i; + float * SW = SM + i; + + for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) { + if (i + j >= masked_begin) { + break; + } else if (SR[j] == -INFINITY) { + SW[j] = 0.0f; + } else { +#ifndef GGML_FLASH_ATTN_EXP_FP16 + const float val = expf(SR[j] - max); +#else + ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max); + memcpy(&scvt[j], &s, sizeof(uint16_t)); + const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]); +#endif + sump[j] += (ggml_float)val; + SW[j] = val; + } + } + } + + for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) { + sum += sump[i]; + } +#endif + } + + assert(sum > 0.0); + + sum = 1.0/sum; + ggml_vec_scale_f32(masked_begin, SM, sum); + + } + + // step-by-step explanation + { + // forward-process shape grads from backward process + // parallel_for ik2,ik3: + // for irep: + // iq2 = ik2 + irep*nek2 + // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur] + // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur] + // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur] + // for iq1: + // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur + // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur + // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4 + // S0 = -Inf [D,1,1,1] + // ~S1[i] = dot(kcur[:D,i], qcur) + // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale + // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P) + // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4])) + // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur + // ~S5[i] = dot(vcur[:,i], S4) + // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3] + // ~dst[i,iq1,iq2,iq3] = S5[i] ^ + // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3] + // dst backward-/ grad[dst] = d + // + // output gradients with their dependencies: + // + // grad[kcur] = grad[S1].T @ qcur + // grad[S1] = diag_mask_zero(grad[S3], P) * scale + // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4])) + // grad[S4] = grad[S5] @ vcur + // grad[S4] = d[:D,id1,id2,id3] @ vcur + // grad[qcur] = grad[S1] @ kcur + // grad[vcur] = grad[S5].T @ S4 + // grad[vcur] = d[:D,id1,id2,id3].T @ S4 + // + // in post-order: + // + // S1 = qcur @ kcur.T + // S2 = S1 * scale + // S3 = diag_mask_inf(S2, P) + // S4 = softmax(S3) + // grad[S4] = d[:D,id1,id2,id3] @ vcur + // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4])) + // grad[S1] = diag_mask_zero(grad[S3], P) * scale + // grad[qcur] = grad[S1] @ kcur + // grad[kcur] = grad[S1].T @ qcur + // grad[vcur] = d[:D,id1,id2,id3].T @ S4 + // + // using less variables (SM=S4): + // + // S = diag_mask_inf(qcur @ kcur.T * scale, P) + // SM = softmax(S) + // S = d[:D,iq1,iq2,iq3] @ vcur + // dot_SM_gradSM = dot(SM, S) + // S = SM * (S - dot(SM, S)) + // S = diag_mask_zero(S, P) * scale + // + // grad[q][:D,iq1,iq2,iq3] += S @ kcur + // grad[k][:D,:M,ik2,ik3] += S.T @ qcur + // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM + } + + // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3] + // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3] + // for ic: + // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3] + // exclude known future zero S[..] values from operation + ggml_vec_set_f32(masked_begin, S, 0); + for (int64_t ic = 0; ic < D; ++ic) { + ggml_vec_mad_f32(masked_begin, + S, + (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), + *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3))); + } + + // S = SM * (S - dot(SM, S)) + float dot_SM_gradSM = 0; + ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1); + ggml_vec_acc1_f32(M, S, -dot_SM_gradSM); + ggml_vec_mul_f32 (masked_begin, S, S, SM); + + // S = diag_mask_zero(S, P) * scale + // already done by above ggml_vec_set_f32 + + // exclude known zero S[..] values from operation + ggml_vec_scale_f32(masked_begin, S, scale); + + // S shape [M,1] + // SM shape [M,1] + // kcur shape [D,M] + // qcur shape [D,1] + // vcur shape [M,D] + + // grad[q][:D,iq1,iq2,iq3] += S @ kcur + // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M] + // for ic: + // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3] + // exclude known zero S[..] values from loop + for (int64_t ic = 0; ic < masked_begin; ++ic) { + ggml_vec_mad_f32(D, + (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)), + (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)), + S[ic]); + } + + // grad[k][:D,:M,iq2,iq3] += S.T @ qcur + // for ic: + // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0] + // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0] + // exclude known zero S[..] values from loop + for (int64_t ic = 0; ic < masked_begin; ++ic) { + ggml_vec_mad_f32(D, + (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)), + (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), + S[ic]); + } + + // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM + // for ic: + // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M] + // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M] + // exclude known zero SM[..] values from mad + for (int64_t ic = 0; ic < D; ++ic) { + ggml_vec_mad_f32(masked_begin, + (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)), + SM, + *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3))); + } + } + } + } +} + +static void ggml_compute_forward_flash_attn_back( + const struct ggml_compute_params * params, + const bool masked, + struct ggml_tensor * dst) { + + const struct ggml_tensor * q = dst->src[0]; + + switch (q->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_flash_attn_back_f32(params, masked, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_ssm_conv + +static void ggml_compute_forward_ssm_conv_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const struct ggml_tensor * src0 = dst->src[0]; // conv_state + const struct ggml_tensor * src1 = dst->src[1]; // x + const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight + const struct ggml_tensor * src3 = dst->src[3]; // state_seq + + const int ith = params->ith; + const int nth = params->nth; + + const int nc = src2->ne[0]; // d_conv + const int nr = src0->ne[1]; // d_inner + const int n_t = src1->ne[1]; // n_tokens + const int n_kv = src0->ne[2]; // max number of sequences in the batch + + GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst)); + GGML_ASSERT(src0->nb[0] == sizeof(float)); + GGML_ASSERT(src1->nb[0] == sizeof(float)); + GGML_ASSERT(src2->nb[0] == sizeof(float)); + GGML_ASSERT(src3->nb[0] == sizeof(int32_t)); + GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float)); + // for use with the destination state offset between sequences + GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float)); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + const int ir = ir1 - ir0; + + if (n_kv > 1) { + // multiple sequences means it's hard to know when it's the first time a state is read, + // so copy them all over to the destination, just to be sure. + for (int i3 = 0; i3 < n_kv; ++i3) { + float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); + float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float)); + // can't use memcpy because of d_conv vs d_conv - 1 + for (int i1 = 0; i1 < ir; ++i1) { + for (int i0 = 0; i0 < nc - 1; ++i0) { + // copy s0 to last (d_conv - 1) columns of s + s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)]; + } + } + } + } + + for (int i2 = 0; i2 < n_t; ++i2) { + int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens} + float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens} + float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv} + float * s0; // {d_conv - 1, d_inner, n_kv} + float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens} + float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner} + int ne0s0; + + GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv); + + // avoid needing to copy the state for the first token + if (i2 == 0) { + s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv} + ne0s0 = src0->ne[0]; + } else { + // the source is the last (d_conv - 1) columns of the destination + s0 = s + 1; + ne0s0 = nc; + } + + // d_inner + for (int i1 = 0; i1 < ir; ++i1) { + // shift state left + for (int i0 = 0; i0 < nc - 1; ++i0) { + s[i0 + i1*nc] = s0[i0 + i1*ne0s0]; + } + // insert x on the last column + s[(nc - 1) + i1*nc] = x0[i1]; + } + + // handle copies when there are multiple output states + for (int i3 = 1; i3 < n_kv; ++i3) { + int32_t seq = sq[i3]; + if (0 <= seq && seq < n_kv) { + float * s1 = s + (seq - sq[0])*nc*nr; + memcpy(s1, s, nc*ir*sizeof(float)); + } else { + // stop at negative or too big seq_ids + break; + } + } + + // it seems a little faster when this is separate from the state shift + for (int i1 = 0; i1 < ir; ++i1) { + // rowwise dot product + float sumf = 0.0f; + for (int i0 = 0; i0 < nc; ++i0) { + int i = i0 + i1*nc; + sumf += s[i] * c[i]; + } + x[i1] = sumf; + } + } +} + +static void ggml_compute_forward_ssm_conv( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + switch (dst->src[0]->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_ssm_conv_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_ssm_scan + +static void ggml_compute_forward_ssm_scan_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const struct ggml_tensor * src0 = dst->src[0]; // s + const struct ggml_tensor * src1 = dst->src[1]; // x + const struct ggml_tensor * src2 = dst->src[2]; // dt + const struct ggml_tensor * src3 = dst->src[3]; // A + const struct ggml_tensor * src4 = dst->src[4]; // B + const struct ggml_tensor * src5 = dst->src[5]; // C + const struct ggml_tensor * src6 = dst->src[6]; // sq + + const int ith = params->ith; + const int nth = params->nth; + + const int64_t nc = src0->ne[0]; // d_state + const int64_t nr = src0->ne[1]; // d_inner + const int64_t n_t = src1->ne[1]; // number of tokens in the batch + const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch + + GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst)); + GGML_ASSERT(src0->nb[0] == sizeof(float)); + GGML_ASSERT(src1->nb[0] == sizeof(float)); + GGML_ASSERT(src2->nb[0] == sizeof(float)); + GGML_ASSERT(src3->nb[0] == sizeof(float)); + GGML_ASSERT(src4->nb[0] == sizeof(float)); + GGML_ASSERT(src5->nb[0] == sizeof(float)); + // required for the dot product between s and C, and when copying the states + GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float)); + // required for per-sequence offsets for states + GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float)); + // required to get correct offset for state destination (i.e. src1->nb[2]) + GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float)); + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + const int ir = ir1 - ir0; + + if (n_kv > 1) { + // it's hard to know if the source states have already been copied + // when there are multiple, so copy them already. + for (int i3 = 0; i3 < n_kv; ++i3) { + float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2])); + float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]); + memcpy(s, s0, nc*ir*sizeof(float)); + } + } + + for (int i2 = 0; i2 < n_t; ++i2) { + int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens} + float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens} + float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv} + float * s0; + float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens} + float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens} + float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner} + float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens} + float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens} + + GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv); + + // avoid needing to copy the state for the first token + if (i2 == 0) { + s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv} + } else { + // otherwise the source is the same as the destination + s0 = s; + } + + // d_inner + for (int i1 = 0; i1 < ir; ++i1) { + // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78 + float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1]; + float x_dt = x[i1] * dt_soft_plus; + float sumf = 0.0f; + // d_state + for (int i0 = 0; i0 < nc; ++i0) { + int i = i0 + i1*nc; + // state = prev_state * dA + dB * x + float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt); + // y = rowwise_dotprod(state, C) + sumf += state * C[i0]; + s[i] = state; + } + y[i1] = sumf; + } + + // handle copies when there are multiple output states + for (int i3 = 1; i3 < n_kv; ++i3) { + int32_t seq = sq[i3]; + if (0 <= seq && seq < n_kv) { + float * s1 = s + (seq - sq[0])*nc*nr; + memcpy(s1, s, nc*ir*sizeof(float)); + } else { + // stop at negative or too big seq_ids + break; + } + } + } +} + +static void ggml_compute_forward_ssm_scan( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + switch (dst->src[0]->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_ssm_scan_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_win_part + +static void ggml_compute_forward_win_part_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) + + const int32_t nep0 = ((const int32_t *)(dst->op_params))[0]; + const int32_t nep1 = ((const int32_t *)(dst->op_params))[1]; + const int32_t w = ((const int32_t *)(dst->op_params))[2]; + + assert(ne00 == ne0); + assert(ne3 == nep0*nep1); + + // TODO: optimize / multi-thread + for (int py = 0; py < nep1; ++py) { + for (int px = 0; px < nep0; ++px) { + const int64_t i3 = py*nep0 + px; + for (int64_t i2 = 0; i2 < ne2; ++i2) { + for (int64_t i1 = 0; i1 < ne1; ++i1) { + for (int64_t i0 = 0; i0 < ne0; ++i0) { + const int64_t i02 = py*w + i2; + const int64_t i01 = px*w + i1; + const int64_t i00 = i0; + + const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0; + const int64_t j = i02*ne01*ne00 + i01*ne00 + i00; + + if (py*w + i2 >= ne02 || px*w + i1 >= ne01) { + ((float *) dst->data)[i] = 0.0f; + } else { + ((float *) dst->data)[i] = ((float *) src0->data)[j]; + } + } + } + } + } + } +} + +static void ggml_compute_forward_win_part( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_win_part_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_win_unpart + +static void ggml_compute_forward_win_unpart_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) + + const int32_t w = ((const int32_t *)(dst->op_params))[0]; + + // padding + const int px = (w - ne1%w)%w; + //const int py = (w - ne2%w)%w; + + const int npx = (px + ne1)/w; + //const int npy = (py + ne2)/w; + + assert(ne0 == ne00); + + // TODO: optimize / multi-thread + for (int64_t i2 = 0; i2 < ne2; ++i2) { + for (int64_t i1 = 0; i1 < ne1; ++i1) { + for (int64_t i0 = 0; i0 < ne0; ++i0) { + const int ip2 = i2/w; + const int ip1 = i1/w; + + const int64_t i02 = i2%w; + const int64_t i01 = i1%w; + const int64_t i00 = i0; + + const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00; + const int64_t j = i2*ne1*ne0 + i1*ne0 + i0; + + ((float *) dst->data)[j] = ((float *) src0->data)[i]; + } + } + } +} + +static void ggml_compute_forward_win_unpart( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_win_unpart_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +//gmml_compute_forward_unary + +static void ggml_compute_forward_unary( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const enum ggml_unary_op op = ggml_get_unary_op(dst); + + switch (op) { + case GGML_UNARY_OP_ABS: + { + ggml_compute_forward_abs(params, dst); + } break; + case GGML_UNARY_OP_SGN: + { + ggml_compute_forward_sgn(params, dst); + } break; + case GGML_UNARY_OP_NEG: + { + ggml_compute_forward_neg(params, dst); + } break; + case GGML_UNARY_OP_STEP: + { + ggml_compute_forward_step(params, dst); + } break; + case GGML_UNARY_OP_TANH: + { + ggml_compute_forward_tanh(params, dst); + } break; + case GGML_UNARY_OP_ELU: + { + ggml_compute_forward_elu(params, dst); + } break; + case GGML_UNARY_OP_RELU: + { + ggml_compute_forward_relu(params, dst); + } break; + case GGML_UNARY_OP_GELU: + { + ggml_compute_forward_gelu(params, dst); + } break; + case GGML_UNARY_OP_GELU_QUICK: + { + ggml_compute_forward_gelu_quick(params, dst); + } break; + case GGML_UNARY_OP_SILU: + { + ggml_compute_forward_silu(params, dst); + } break; + case GGML_UNARY_OP_HARDSWISH: + { + ggml_compute_forward_hardswish(params, dst); + } break; + case GGML_UNARY_OP_HARDSIGMOID: + { + ggml_compute_forward_hardsigmoid(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_get_rel_pos + +static void ggml_compute_forward_get_rel_pos_f16( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322 + + GGML_TENSOR_UNARY_OP_LOCALS + + const int64_t w = ne1; + + ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data; + ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data; + + for (int64_t i2 = 0; i2 < ne2; ++i2) { + for (int64_t i1 = 0; i1 < ne1; ++i1) { + const int64_t pos = (w - i1 - 1) + i2; + for (int64_t i0 = 0; i0 < ne0; ++i0) { + dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0]; + } + } + } +} + +static void ggml_compute_forward_get_rel_pos( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F16: + { + ggml_compute_forward_get_rel_pos_f16(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_add_rel_pos + +static void ggml_compute_forward_add_rel_pos_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + const struct ggml_tensor * src2 = dst->src[2]; + + const bool inplace = (bool) ((int32_t *) dst->op_params)[0]; + if (!inplace && params->type == GGML_TASK_TYPE_INIT) { + if (params->ith != 0) { + return; + } + memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst)); + return; + } + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + int64_t t0 = ggml_perf_time_us(); + UNUSED(t0); + + // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359 + + float * src1_data = (float *) src1->data; + float * src2_data = (float *) src2->data; + float * dst_data = (float *) dst->data; + + const int64_t ne10 = src1->ne[0]; + const int64_t ne11 = src1->ne[1]; + const int64_t ne12 = src1->ne[2]; + const int64_t ne13 = src1->ne[3]; + + const int ith = params->ith; + const int nth = params->nth; + + // total patches in dst + const int np = ne13; + + // patches per thread + const int dp = (np + nth - 1)/nth; + + // patch range for this thread + const int ip0 = dp*ith; + const int ip1 = MIN(ip0 + dp, np); + + for (int64_t i13 = ip0; i13 < ip1; ++i13) { + for (int64_t i12 = 0; i12 < ne12; ++i12) { + for (int64_t i11 = 0; i11 < ne11; ++i11) { + const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10; + for (int64_t i10 = 0; i10 < ne10; ++i10) { + const int64_t jp0 = jp1 + i10; + const float src1_e = src1_data[jp0]; + const float src2_e = src2_data[jp0]; + + const int64_t jdh = jp0 * ne10; + const int64_t jdw = jdh - (ne10 - 1) * i10; + + for (int64_t j = 0; j < ne10; ++j) { + dst_data[jdh + j ] += src2_e; + dst_data[jdw + j*ne10] += src1_e; + } + } + } + } + } +} + +static void ggml_compute_forward_add_rel_pos( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_add_rel_pos_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_map_unary + +static void ggml_compute_forward_map_unary_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst, + const ggml_unary_op_f32_t fun) { + + const struct ggml_tensor * src0 = dst->src[0]; + + GGML_ASSERT(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert( dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + fun(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +static void ggml_compute_forward_map_unary( + const struct ggml_compute_params * params, + struct ggml_tensor * dst, + const ggml_unary_op_f32_t fun) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_map_unary_f32(params, dst, fun); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_map_binary + +static void ggml_compute_forward_map_binary_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst, + const ggml_binary_op_f32_t fun) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert( dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + assert(src1->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + fun(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1])), + (float *) ((char *) src1->data + i*(src1->nb[1]))); + } +} + +static void ggml_compute_forward_map_binary( + const struct ggml_compute_params * params, + struct ggml_tensor * dst, + const ggml_binary_op_f32_t fun) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_map_binary_f32(params, dst, fun); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_map_custom1 + +static void ggml_compute_forward_map_custom1_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst, + const ggml_custom1_op_f32_t fun) { + + const struct ggml_tensor * a = dst->src[0]; + + assert(params->ith == 0); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + fun(dst, a); +} + +// ggml_compute_forward_map_custom2 + +static void ggml_compute_forward_map_custom2_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst, + const ggml_custom2_op_f32_t fun) { + + const struct ggml_tensor * a = dst->src[0]; + const struct ggml_tensor * b = dst->src[1]; + + assert(params->ith == 0); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + fun(dst, a, b); +} + +// ggml_compute_forward_map_custom3 + +static void ggml_compute_forward_map_custom3_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst, + const ggml_custom3_op_f32_t fun) { + + const struct ggml_tensor * a = dst->src[0]; + const struct ggml_tensor * b = dst->src[1]; + const struct ggml_tensor * c = dst->src[1]; + + assert(params->ith == 0); + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + fun(dst, a, b, c); +} + +// ggml_compute_forward_map_custom1 + +static void ggml_compute_forward_map_custom1( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * a = dst->src[0]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + struct ggml_map_custom1_op_params p; + memcpy(&p, dst->op_params, sizeof(p)); + + p.fun(dst, a, params->ith, params->nth, p.userdata); +} + +// ggml_compute_forward_map_custom2 + +static void ggml_compute_forward_map_custom2( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * a = dst->src[0]; + const struct ggml_tensor * b = dst->src[1]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + struct ggml_map_custom2_op_params p; + memcpy(&p, dst->op_params, sizeof(p)); + + p.fun(dst, a, b, params->ith, params->nth, p.userdata); +} + +// ggml_compute_forward_map_custom3 + +static void ggml_compute_forward_map_custom3( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * a = dst->src[0]; + const struct ggml_tensor * b = dst->src[1]; + const struct ggml_tensor * c = dst->src[2]; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + struct ggml_map_custom3_op_params p; + memcpy(&p, dst->op_params, sizeof(p)); + + p.fun(dst, a, b, c, params->ith, params->nth, p.userdata); +} + +// ggml_compute_forward_cross_entropy_loss + +static void ggml_compute_forward_cross_entropy_loss_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + + GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(ggml_is_contiguous(src1)); + GGML_ASSERT(ggml_is_scalar(dst)); + GGML_ASSERT(ggml_are_same_shape(src0, src1)); + + const int ith = params->ith; + const int nth = params->nth; + + float * sums = (float *) params->wdata; + + // TODO: handle transposed/permuted matrices + const int nc = src0->ne[0]; + const int nr = ggml_nrows(src0); + + GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc)); + + if (params->type == GGML_TASK_TYPE_INIT) { + if (ith == 0) { + memset(sums, 0, sizeof(float) * (nth + nth * nc)); + } + return; + } + + if (params->type == GGML_TASK_TYPE_FINALIZE) { + if (ith == 0) { + float * dp = (float *) dst->data; + ggml_vec_sum_f32(nth, dp, sums); + dp[0] *= -1.0f / (float) nr; + } + return; + } + + const double eps = 1e-9; + + // rows per thread + const int dr = (nr + nth - 1)/nth; + + // row range for this thread + const int ir0 = dr*ith; + const int ir1 = MIN(ir0 + dr, nr); + + for (int i1 = ir0; i1 < ir1; i1++) { + float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]); + float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]); + float * st = ((float *) params->wdata) + nth + ith*nc; + +#ifndef NDEBUG + for (int i = 0; i < nc; ++i) { + //printf("p[%d] = %f\n", i, p[i]); + assert(!isnan(s0[i])); + assert(!isnan(s1[i])); + } +#endif + // soft_max + ggml_float sum = 0.0; + { + float max = -INFINITY; + ggml_vec_max_f32(nc, &max, s0); + + uint16_t scvt; UNUSED(scvt); + for (int i = 0; i < nc; i++) { + if (s0[i] == -INFINITY) { + st[i] = 0.0f; + } else { +#ifndef GGML_CROSS_ENTROPY_EXP_FP16 + const float s = s0[i] - max; + const float val = expf(s); +#else + ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max); + memcpy(&scvt, &s, sizeof(scvt)); + const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]); +#endif + sum += (ggml_float)val; + st[i] = val; + } + } + + assert(sum > 0.0); + // sum = 1.0/sum; + } + // avoid log(0) by rescaling from [0..1] to [eps..1] + sum = (1.0 - eps) / sum; + ggml_vec_scale_f32(nc, st, sum); + ggml_vec_add1_f32(nc, st, st, eps); + ggml_vec_log_f32(nc, st, st); + ggml_vec_mul_f32(nc, st, st, s1); + + float st_sum = 0; + ggml_vec_sum_f32(nc, &st_sum, st); + sums[ith] += st_sum; + +#ifndef NDEBUG + for (int i = 0; i < nc; ++i) { + assert(!isnan(st[i])); + assert(!isinf(st[i])); + } +#endif + } + +} + +static void ggml_compute_forward_cross_entropy_loss( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_cross_entropy_loss_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +// ggml_compute_forward_cross_entropy_loss_back + +static void ggml_compute_forward_cross_entropy_loss_back_f32( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + const struct ggml_tensor * src1 = dst->src[1]; + const struct ggml_tensor * opt0 = dst->src[2]; + + GGML_ASSERT(ggml_is_contiguous(dst)); + GGML_ASSERT(ggml_is_contiguous(src0)); + GGML_ASSERT(ggml_is_contiguous(src1)); + GGML_ASSERT(ggml_is_contiguous(opt0)); + GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst)); + + const int64_t ith = params->ith; + const int64_t nth = params->nth; + + if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) { + return; + } + + const double eps = 1e-9; + + // TODO: handle transposed/permuted matrices + const int64_t nc = src0->ne[0]; + const int64_t nr = ggml_nrows(src0); + + // rows per thread + const int64_t dr = (nr + nth - 1)/nth; + + // row range for this thread + const int64_t ir0 = dr*ith; + const int64_t ir1 = MIN(ir0 + dr, nr); + + float * d = (float *) opt0->data; + + for (int64_t i1 = ir0; i1 < ir1; i1++) { + float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]); + float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]); + float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]); + +#ifndef NDEBUG + for (int i = 0; i < nc; ++i) { + //printf("p[%d] = %f\n", i, p[i]); + assert(!isnan(s0[i])); + assert(!isnan(s1[i])); + } +#endif + + // soft_max + ggml_float sum = 0.0; + { + float max = -INFINITY; + ggml_vec_max_f32(nc, &max, s0); + + uint16_t scvt; UNUSED(scvt); + for (int i = 0; i < nc; i++) { + if (s0[i] == -INFINITY) { + ds0[i] = 0.0f; + } else { +#ifndef GGML_CROSS_ENTROPY_EXP_FP16 + const float s = s0[i] - max; + const float val = expf(s); +#else + ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max); + memcpy(&scvt, &s, sizeof(scvt)); + const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]); +#endif + sum += (ggml_float)val; + ds0[i] = val; + } + } + + assert(sum > 0.0); + sum = (1.0 - eps)/sum; + } + + // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr + ggml_vec_scale_f32(nc, ds0, sum); + ggml_vec_add1_f32(nc, ds0, ds0, eps); + ggml_vec_sub_f32(nc, ds0, ds0, s1); + ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr); + +#ifndef NDEBUG + for (int i = 0; i < nc; ++i) { + assert(!isnan(ds0[i])); + assert(!isinf(ds0[i])); + } +#endif + } +} + +static void ggml_compute_forward_cross_entropy_loss_back( + const struct ggml_compute_params * params, + struct ggml_tensor * dst) { + + const struct ggml_tensor * src0 = dst->src[0]; + + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_cross_entropy_loss_back_f32(params, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +///////////////////////////////// + +static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) { + GGML_ASSERT(params); + + if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) { + return; + } + + switch (tensor->op) { + case GGML_OP_DUP: + { + ggml_compute_forward_dup(params, tensor); + } break; + case GGML_OP_ADD: + { + ggml_compute_forward_add(params, tensor); + } break; + case GGML_OP_ADD1: + { + ggml_compute_forward_add1(params, tensor); + } break; + case GGML_OP_ACC: + { + ggml_compute_forward_acc(params, tensor); + } break; + case GGML_OP_SUB: + { + ggml_compute_forward_sub(params, tensor); + } break; + case GGML_OP_MUL: + { + ggml_compute_forward_mul(params, tensor); + } break; + case GGML_OP_DIV: + { + ggml_compute_forward_div(params, tensor); + } break; + case GGML_OP_SQR: + { + ggml_compute_forward_sqr(params, tensor); + } break; + case GGML_OP_SQRT: + { + ggml_compute_forward_sqrt(params, tensor); + } break; + case GGML_OP_LOG: + { + ggml_compute_forward_log(params, tensor); + } break; + case GGML_OP_SUM: + { + ggml_compute_forward_sum(params, tensor); + } break; + case GGML_OP_SUM_ROWS: + { + ggml_compute_forward_sum_rows(params, tensor); + } break; + case GGML_OP_MEAN: + { + ggml_compute_forward_mean(params, tensor); + } break; + case GGML_OP_ARGMAX: + { + ggml_compute_forward_argmax(params, tensor); + } break; + case GGML_OP_REPEAT: + { + ggml_compute_forward_repeat(params, tensor); + } break; + case GGML_OP_REPEAT_BACK: + { + ggml_compute_forward_repeat_back(params, tensor); + } break; + case GGML_OP_CONCAT: + { + ggml_compute_forward_concat(params, tensor); + } break; + case GGML_OP_SILU_BACK: + { + ggml_compute_forward_silu_back(params, tensor); + } break; + case GGML_OP_NORM: + { + ggml_compute_forward_norm(params, tensor); + } break; + case GGML_OP_RMS_NORM: + { + ggml_compute_forward_rms_norm(params, tensor); + } break; + case GGML_OP_RMS_NORM_BACK: + { + ggml_compute_forward_rms_norm_back(params, tensor); + } break; + case GGML_OP_GROUP_NORM: + { + ggml_compute_forward_group_norm(params, tensor); + } break; + case GGML_OP_MUL_MAT: + { + ggml_compute_forward_mul_mat(params, tensor); + } break; + case GGML_OP_MUL_MAT_ID: + { + ggml_compute_forward_mul_mat_id(params, tensor); + } break; + case GGML_OP_OUT_PROD: + { + ggml_compute_forward_out_prod(params, tensor); + } break; + case GGML_OP_SCALE: + { + ggml_compute_forward_scale(params, tensor); + } break; + case GGML_OP_SET: + { + ggml_compute_forward_set(params, tensor); + } break; + case GGML_OP_CPY: + { + ggml_compute_forward_cpy(params, tensor); + } break; + case GGML_OP_CONT: + { + ggml_compute_forward_cont(params, tensor); + } break; + case GGML_OP_RESHAPE: + { + ggml_compute_forward_reshape(params, tensor); + } break; + case GGML_OP_VIEW: + { + ggml_compute_forward_view(params, tensor); + } break; + case GGML_OP_PERMUTE: + { + ggml_compute_forward_permute(params, tensor); + } break; + case GGML_OP_TRANSPOSE: + { + ggml_compute_forward_transpose(params, tensor); + } break; + case GGML_OP_GET_ROWS: + { + ggml_compute_forward_get_rows(params, tensor); + } break; + case GGML_OP_GET_ROWS_BACK: + { + ggml_compute_forward_get_rows_back(params, tensor); + } break; + case GGML_OP_DIAG: + { + ggml_compute_forward_diag(params, tensor); + } break; + case GGML_OP_DIAG_MASK_INF: + { + ggml_compute_forward_diag_mask_inf(params, tensor); + } break; + case GGML_OP_DIAG_MASK_ZERO: + { + ggml_compute_forward_diag_mask_zero(params, tensor); + } break; + case GGML_OP_SOFT_MAX: + { + ggml_compute_forward_soft_max(params, tensor); + } break; + case GGML_OP_SOFT_MAX_BACK: + { + ggml_compute_forward_soft_max_back(params, tensor); + } break; + case GGML_OP_ROPE: + { + ggml_compute_forward_rope(params, tensor); + } break; + case GGML_OP_ROPE_BACK: + { + ggml_compute_forward_rope_back(params, tensor); + } break; + case GGML_OP_ALIBI: + { + ggml_compute_forward_alibi(params, tensor); + } break; + case GGML_OP_CLAMP: + { + ggml_compute_forward_clamp(params, tensor); + } break; + case GGML_OP_CONV_TRANSPOSE_1D: + { + ggml_compute_forward_conv_transpose_1d(params, tensor); + } break; + case GGML_OP_IM2COL: + { + ggml_compute_forward_im2col(params, tensor); + } break; + case GGML_OP_CONV_TRANSPOSE_2D: + { + ggml_compute_forward_conv_transpose_2d(params, tensor); + } break; + case GGML_OP_POOL_1D: + { + ggml_compute_forward_pool_1d(params, tensor); + } break; + case GGML_OP_POOL_2D: + { + ggml_compute_forward_pool_2d(params, tensor); + } break; + case GGML_OP_UPSCALE: + { + ggml_compute_forward_upscale(params, tensor); + } break; + case GGML_OP_PAD: + { + ggml_compute_forward_pad(params, tensor); + } break; + case GGML_OP_ARANGE: + { + ggml_compute_forward_arange(params, tensor); + } break; + case GGML_OP_TIMESTEP_EMBEDDING: + { + ggml_compute_forward_timestep_embedding(params, tensor); + } break; + case GGML_OP_ARGSORT: + { + ggml_compute_forward_argsort(params, tensor); + } break; + case GGML_OP_LEAKY_RELU: + { + ggml_compute_forward_leaky_relu(params, tensor); + } break; + case GGML_OP_FLASH_ATTN: + { + const int32_t t = ggml_get_op_params_i32(tensor, 0); + GGML_ASSERT(t == 0 || t == 1); + const bool masked = t != 0; + ggml_compute_forward_flash_attn(params, masked, tensor); + } break; + case GGML_OP_FLASH_FF: + { + ggml_compute_forward_flash_ff(params, tensor); + } break; + case GGML_OP_FLASH_ATTN_BACK: + { + int32_t t = ggml_get_op_params_i32(tensor, 0); + GGML_ASSERT(t == 0 || t == 1); + bool masked = t != 0; + ggml_compute_forward_flash_attn_back(params, masked, tensor); + } break; + case GGML_OP_SSM_CONV: + { + ggml_compute_forward_ssm_conv(params, tensor); + } break; + case GGML_OP_SSM_SCAN: + { + ggml_compute_forward_ssm_scan(params, tensor); + } break; + case GGML_OP_WIN_PART: + { + ggml_compute_forward_win_part(params, tensor); + } break; + case GGML_OP_WIN_UNPART: + { + ggml_compute_forward_win_unpart(params, tensor); + } break; + case GGML_OP_UNARY: + { + ggml_compute_forward_unary(params, tensor); + } break; + case GGML_OP_GET_REL_POS: + { + ggml_compute_forward_get_rel_pos(params, tensor); + } break; + case GGML_OP_ADD_REL_POS: + { + ggml_compute_forward_add_rel_pos(params, tensor); + } break; + case GGML_OP_MAP_UNARY: + { + ggml_unary_op_f32_t fun; + memcpy(&fun, tensor->op_params, sizeof(fun)); + ggml_compute_forward_map_unary(params, tensor, fun); + } + break; + case GGML_OP_MAP_BINARY: + { + ggml_binary_op_f32_t fun; + memcpy(&fun, tensor->op_params, sizeof(fun)); + ggml_compute_forward_map_binary(params, tensor, fun); + } + break; + case GGML_OP_MAP_CUSTOM1_F32: + { + ggml_custom1_op_f32_t fun; + memcpy(&fun, tensor->op_params, sizeof(fun)); + ggml_compute_forward_map_custom1_f32(params, tensor, fun); + } + break; + case GGML_OP_MAP_CUSTOM2_F32: + { + ggml_custom2_op_f32_t fun; + memcpy(&fun, tensor->op_params, sizeof(fun)); + ggml_compute_forward_map_custom2_f32(params, tensor, fun); + } + break; + case GGML_OP_MAP_CUSTOM3_F32: + { + ggml_custom3_op_f32_t fun; + memcpy(&fun, tensor->op_params, sizeof(fun)); + ggml_compute_forward_map_custom3_f32(params, tensor, fun); + } + break; + case GGML_OP_MAP_CUSTOM1: + { + ggml_compute_forward_map_custom1(params, tensor); + } + break; + case GGML_OP_MAP_CUSTOM2: + { + ggml_compute_forward_map_custom2(params, tensor); + } + break; + case GGML_OP_MAP_CUSTOM3: + { + ggml_compute_forward_map_custom3(params, tensor); + } + break; + case GGML_OP_CROSS_ENTROPY_LOSS: + { + ggml_compute_forward_cross_entropy_loss(params, tensor); + } + break; + case GGML_OP_CROSS_ENTROPY_LOSS_BACK: + { + ggml_compute_forward_cross_entropy_loss_back(params, tensor); + } + break; + case GGML_OP_NONE: + { + // nop + } break; + case GGML_OP_COUNT: + { + GGML_ASSERT(false); + } break; + } +} + +//////////////////////////////////////////////////////////////////////////////// + +static size_t ggml_hash_size(size_t min_sz) { + // next primes after powers of two + static const size_t primes[] = { + 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031, + 2053, 4099, 8209, 16411, 32771, 65537, 131101, + 262147, 524309, 1048583, 2097169, 4194319, 8388617, + 16777259, 33554467, 67108879, 134217757, 268435459, + 536870923, 1073741827, 2147483659 + }; + static const size_t n_primes = sizeof(primes)/sizeof(primes[0]); + + // find the smallest prime that is larger or equal to min_sz + size_t l = 0; + size_t r = n_primes; + while (l < r) { + size_t m = (l + r)/2; + if (primes[m] < min_sz) { + l = m + 1; + } else { + r = m; + } + } + size_t sz = l < n_primes ? primes[l] : min_sz | 1; + return sz; +} + +static size_t ggml_hash(const void * p) { + return (size_t)p; +} + +size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) { + size_t h = ggml_hash(key) % hash_set.size; + + // linear probing + size_t i = h; + while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) { + i = (i + 1) % hash_set.size; + if (i == h) { + // visited all hash table entries -> not found + return GGML_HASHTABLE_FULL; + } + } + return i; +} + +bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) { + size_t i = ggml_hash_find(hash_set, key); + return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key; +} + +size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) { + size_t i = ggml_hash_find(hash_set, key); + + GGML_ASSERT(i != GGML_HASHTABLE_FULL); + + if (hash_set.keys[i] == key) { + return GGML_HASHTABLE_ALREADY_EXISTS; + } + + // insert + GGML_ASSERT(hash_set.keys[i] == NULL); + hash_set.keys[i] = key; + return i; +} + +size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) { + size_t i = ggml_hash_find(hash_set, key); + + GGML_ASSERT(i != GGML_HASHTABLE_FULL); + + hash_set.keys[i] = key; + return i; +} + +struct ggml_hash_set ggml_hash_set_new(size_t size) { + size = ggml_hash_size(size); + struct ggml_hash_set result; + result.size = size; + result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size); + memset(result.keys, 0, sizeof(struct ggml_tensor *) * size); + return result; +} + +static void ggml_hash_set_free(struct ggml_hash_set hash_set) { + GGML_FREE(hash_set.keys); +} + +struct hash_map { + struct ggml_hash_set set; + struct ggml_tensor ** vals; +}; + +static struct hash_map * ggml_new_hash_map(size_t size) { + struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map)); + result->set = ggml_hash_set_new(size); + result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size); + memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size); + return result; +} + +static void ggml_hash_map_free(struct hash_map * map) { + ggml_hash_set_free(map->set); + GGML_FREE(map->vals); + GGML_FREE(map); +} + +// gradient checkpointing + +static struct ggml_tensor * ggml_recompute_graph_node( + struct ggml_context * ctx, + struct ggml_cgraph * graph, + struct hash_map * replacements, + struct ggml_tensor * node) { + + if (node == NULL) { + return NULL; + } + + if (node->flags & GGML_TENSOR_FLAG_PARAM) { + return node; + } + + if (!ggml_hash_contains(graph->visited_hash_table, node)) { + return node; + } + + int count_children = 0; + for (int k = 0; k < GGML_MAX_SRC; ++k) { + if (node->src[k]) { + ++count_children; + } + } + + if (count_children == 0) { + return node; + } + + size_t i = ggml_hash_find(replacements->set, node); + GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full + if (replacements->set.keys[i] == node) { + return replacements->vals[i]; + } + + struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne); + + // insert clone into replacements + GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite + replacements->set.keys[i] = node; + replacements->vals[i] = clone; + + clone->op = node->op; + clone->grad = node->grad; + clone->flags = node->flags; + clone->extra = node->extra; + for (int k = 0; k < GGML_MAX_DIMS; ++k) { + clone->nb[k] = node->nb[k]; + } + for (int k = 0; k < GGML_MAX_SRC; ++k) { + clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]); + } + if (node->view_src != NULL) { + clone->data = (node->view_src->data == NULL) + ? NULL // view_src not yet allocated + : (char *) node->view_src->data // view_src already allocated + + node->view_offs; + clone->view_src = node->view_src; + clone->view_offs = node->view_offs; + } + + GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t))); + GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME); + memcpy(clone->op_params, node->op_params, sizeof(node->op_params)); + ggml_format_name(clone, "%s (clone)", ggml_get_name(node)); + + return clone; +} + +void ggml_build_backward_gradient_checkpointing( + struct ggml_context * ctx, + struct ggml_cgraph * gf, + struct ggml_cgraph * gb, + struct ggml_cgraph * gb_tmp, + struct ggml_tensor * * checkpoints, + int n_checkpoints) { + ggml_graph_cpy(gf, gb_tmp); + ggml_build_backward_expand(ctx, gf, gb_tmp, true); + + if (n_checkpoints <= 0) { + ggml_graph_cpy(gb_tmp, gb); + return; + } + + struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints); + + // insert checkpoints in replacements + for (int i = 0; i < n_checkpoints; ++i) { + size_t k = ggml_hash_find(replacements->set, checkpoints[i]); + GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full + GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite + replacements->set.keys[k] = checkpoints[i]; + replacements->vals[k] = checkpoints[i]; + } + + ggml_graph_cpy(gf, gb); + // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes], + // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]), + // by recomputing them from checkpoints + for (int i = gf->n_nodes; in_nodes; ++i) { + struct ggml_tensor * node = gb_tmp->nodes[i]; + for (int k = 0; k < GGML_MAX_SRC; ++k) { + // insert new tensors recomputing src, reusing already made replacements, + // remember replacements: remember new tensors with mapping from corresponding gf nodes + // recurse for input tensors, + // unless (i.e. terminating when) input tensors are replacements (like checkpoints) + node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]); + } + // insert rewritten backward node with replacements made into resulting backward graph gb + ggml_build_forward_expand(gb, node); + } + + ggml_hash_map_free(replacements); +} + +// functions to change gradients considering the case that input a might be initial gradient with zero value + +static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) { + if (ggml_hash_contains(zero_table, a)) { + return b; + } else { + return ggml_add_impl(ctx, a, b, false); + } +} + +static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) { + if (ggml_hash_contains(zero_table, a)) { + struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f); + return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false); + } else { + return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false); + } +} + +static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) { + if (ggml_hash_contains(zero_table, a)) { + return ggml_repeat(ctx, b, a); + } else { + return ggml_add1_impl(ctx, a, b, false); + } +} + +static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) { + if (ggml_hash_contains(zero_table, a)) { + return ggml_neg(ctx, b); + } else { + return ggml_sub_impl(ctx, a, b, false); + } +} + +static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) { + struct ggml_tensor * src0 = tensor->src[0]; + struct ggml_tensor * src1 = tensor->src[1]; + + switch (tensor->op) { + case GGML_OP_DUP: + { + if (src0->grad) { + src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table); + } + } break; + case GGML_OP_ADD: + { + if (src0->grad) { + src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table); + } + if (src1->grad) { + src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table); + } + } break; + case GGML_OP_ADD1: + { + if (src0->grad) { + src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table); + } + if (src1->grad) { + src1->grad = ggml_add_or_set(ctx, + src1->grad, + ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean + zero_table); + } + } break; + case GGML_OP_ACC: + { + if (src0->grad) { + src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table); + } + if (src1->grad) { + const size_t nb1 = ((int32_t *) tensor->op_params)[0]; + const size_t nb2 = ((int32_t *) tensor->op_params)[1]; + const size_t nb3 = ((int32_t *) tensor->op_params)[2]; + const size_t offset = ((int32_t *) tensor->op_params)[3]; + + struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx, + tensor->grad, + src1->grad->ne[0], + src1->grad->ne[1], + src1->grad->ne[2], + src1->grad->ne[3], + nb1, nb2, nb3, offset); + + src1->grad = + ggml_add_or_set(ctx, + src1->grad, + ggml_reshape(ctx, + ggml_cont(ctx, tensor_grad_view), + src1->grad), + zero_table); + } + } break; + case GGML_OP_SUB: + { + if (src0->grad) { + src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table); + } + if (src1->grad) { + src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table); + } + } break; + case GGML_OP_MUL: + { + if (src0->grad) { + src0->grad = + ggml_add_or_set(ctx, + src0->grad, + ggml_mul(ctx, src1, tensor->grad), + zero_table); + } + if (src1->grad) { + src1->grad = + ggml_add_or_set(ctx, + src1->grad, + ggml_mul(ctx, src0, tensor->grad), + zero_table); + } + } break; + case GGML_OP_DIV: + { + if (src0->grad) { + src0->grad = + ggml_add_or_set(ctx, + src0->grad, + ggml_div(ctx, tensor->grad, src1), + zero_table); + } + if (src1->grad) { + src1->grad = + ggml_sub_or_set(ctx, + src1->grad, + ggml_mul(ctx, + tensor->grad, + ggml_div(ctx, tensor, src1)), + zero_table); + } + } break; + case GGML_OP_SQR: + { + if (src0->grad) { + src0->grad = + ggml_add_or_set(ctx, + src0->grad, + ggml_scale(ctx, + ggml_mul(ctx, src0, tensor->grad), + 2.0f), + zero_table); + } + } break; + case GGML_OP_SQRT: + { + if (src0->grad) { + src0->grad = + ggml_add_or_set(ctx, + src0->grad, + ggml_scale(ctx, + ggml_div(ctx, + tensor->grad, + tensor), + 0.5f), + zero_table); + } + } break; + case GGML_OP_LOG: + { + if (src0->grad) { + src0->grad = + ggml_add_or_set(ctx, + src0->grad, + ggml_div(ctx, + tensor->grad, + src0), + zero_table); + } + } break; + case GGML_OP_SUM: + { + if (src0->grad) { + src0->grad = + ggml_add1_or_set(ctx, + src0->grad, + tensor->grad, + zero_table); + } + } break; + case GGML_OP_SUM_ROWS: + { + if (src0->grad) { + src0->grad = + ggml_add_or_set(ctx, + src0->grad, + ggml_repeat(ctx, + tensor->grad, + src0->grad), + zero_table); + } + } break; + case GGML_OP_MEAN: + case GGML_OP_ARGMAX: + { + GGML_ASSERT(false); // TODO: implement + } break; + case GGML_OP_REPEAT: + { + // necessary for llama + if (src0->grad) { + src0->grad = ggml_add_or_set(ctx, + src0->grad, + ggml_repeat_back(ctx, tensor->grad, src0->grad), + zero_table); + } + } break; + case GGML_OP_REPEAT_BACK: + { + if (src0->grad) { + // TODO: test this + src0->grad = ggml_add_or_set(ctx, + src0->grad, + ggml_repeat(ctx, tensor->grad, src0->grad), + zero_table); + } + } break; + case GGML_OP_CONCAT: + { + GGML_ASSERT(false); // TODO: implement + } break; + case GGML_OP_SILU_BACK: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_NORM: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_RMS_NORM: + { + // necessary for llama + if (src0->grad) { + float eps; + memcpy(&eps, tensor->op_params, sizeof(float)); + + src0->grad = ggml_add_or_set(ctx, + src0->grad, + ggml_rms_norm_back(ctx, src0, tensor->grad, eps), + zero_table); + } + } break; + case GGML_OP_RMS_NORM_BACK: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_GROUP_NORM: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_MUL_MAT: + { + // https://cs231n.github.io/optimization-2/#staged + // # forward pass + // s0 = np.random.randn(5, 10) + // s1 = np.random.randn(10, 3) + // t = s0.dot(s1) + + // # now suppose we had the gradient on t from above in the circuit + // dt = np.random.randn(*t.shape) # same shape as t + // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix + // ds1 = t.T.dot(dt) + + // tensor.shape [m,p,qq,rr] + // src0.shape [n,m,q1,r1] + // src1.shape [n,p,qq,rr] + + // necessary for llama + if (src0->grad) { + struct ggml_tensor * s1_tg = + ggml_out_prod(ctx, // [n,m,qq,rr] + src1, // [n,p,qq,rr] + tensor->grad); // [m,p,qq,rr] + const int64_t qq = s1_tg->ne[2]; + const int64_t rr = s1_tg->ne[3]; + const int64_t q1 = src0->ne[2]; + const int64_t r1 = src0->ne[3]; + const bool ne2_broadcasted = qq > q1; + const bool ne3_broadcasted = rr > r1; + if (ne2_broadcasted || ne3_broadcasted) { + // sum broadcast repetitions of s1_tg into shape of src0 + s1_tg = ggml_repeat_back(ctx, s1_tg, src0); + } + src0->grad = + ggml_add_or_set(ctx, + src0->grad, // [n,m,q1,r1] + s1_tg, // [n,m,q1,r1] + zero_table); + } + if (src1->grad) { + src1->grad = + ggml_add_or_set(ctx, + src1->grad, // [n,p,qq,rr] + // ggml_mul_mat(ctx, // [n,p,qq,rr] + // ggml_cont(ctx, // [m,n,q1,r1] + // ggml_transpose(ctx, src0)), // [m,n,q1,r1] + // tensor->grad), // [m,p,qq,rr] + + // // when src0 is bigger than tensor->grad (this is mostly the case in llama), + // // avoid transpose of src0, rather transpose smaller tensor->grad + // // and then use ggml_out_prod + ggml_out_prod(ctx, // [n,p,qq,rr] + src0, // [n,m,q1,r1] + ggml_transpose(ctx, // [p,m,qq,rr] + tensor->grad)), // [m,p,qq,rr] + zero_table); + } + } break; + case GGML_OP_MUL_MAT_ID: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_OUT_PROD: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_SCALE: + { + // necessary for llama + if (src0->grad) { + float s; + memcpy(&s, tensor->op_params, sizeof(float)); + + src0->grad = + ggml_add_or_set(ctx, + src0->grad, + ggml_scale_impl(ctx, tensor->grad, s, false), + zero_table); + } + } break; + case GGML_OP_SET: + { + const size_t nb1 = ((int32_t *) tensor->op_params)[0]; + const size_t nb2 = ((int32_t *) tensor->op_params)[1]; + const size_t nb3 = ((int32_t *) tensor->op_params)[2]; + const size_t offset = ((int32_t *) tensor->op_params)[3]; + + struct ggml_tensor * tensor_grad_view = NULL; + + if (src0->grad || src1->grad) { + GGML_ASSERT(src0->type == tensor->type); + GGML_ASSERT(tensor->grad->type == tensor->type); + GGML_ASSERT(tensor->grad->type == src1->grad->type); + + tensor_grad_view = ggml_view_4d(ctx, + tensor->grad, + src1->grad->ne[0], + src1->grad->ne[1], + src1->grad->ne[2], + src1->grad->ne[3], + nb1, nb2, nb3, offset); + } + + if (src0->grad) { + src0->grad = ggml_add_or_set(ctx, + src0->grad, + ggml_acc_impl(ctx, + tensor->grad, + ggml_neg(ctx, tensor_grad_view), + nb1, nb2, nb3, offset, false), + zero_table); + } + + if (src1->grad) { + src1->grad = + ggml_add_or_set(ctx, + src1->grad, + ggml_reshape(ctx, + ggml_cont(ctx, tensor_grad_view), + src1->grad), + zero_table); + } + } break; + case GGML_OP_CPY: + { + // necessary for llama + // cpy overwrites value of src1 by src0 and returns view(src1) + // the overwriting is mathematically equivalent to: + // tensor = src0 * 1 + src1 * 0 + if (src0->grad) { + // dsrc0 = dtensor * 1 + src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table); + } + if (src1->grad) { + // dsrc1 = dtensor * 0 -> noop + } + } break; + case GGML_OP_CONT: + { + // same as cpy + if (src0->grad) { + GGML_ASSERT(ggml_is_contiguous(src0->grad)); + GGML_ASSERT(ggml_is_contiguous(tensor->grad)); + src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table); + } + } break; + case GGML_OP_RESHAPE: + { + // necessary for llama + if (src0->grad) { + src0->grad = + ggml_add_or_set(ctx, src0->grad, + ggml_reshape(ctx, + ggml_is_contiguous(tensor->grad) + ? tensor->grad + : ggml_cont(ctx, tensor->grad), + src0->grad), + zero_table); + } + } break; + case GGML_OP_VIEW: + { + // necessary for llama + if (src0->grad) { + size_t offset; + + memcpy(&offset, tensor->op_params, sizeof(offset)); + + size_t nb1 = tensor->nb[1]; + size_t nb2 = tensor->nb[2]; + size_t nb3 = tensor->nb[3]; + + if (src0->type != src0->grad->type) { + // gradient is typically F32, but src0 could be other type + size_t ng = ggml_element_size(src0->grad); + size_t n0 = ggml_element_size(src0); + GGML_ASSERT(offset % n0 == 0); + GGML_ASSERT(nb1 % n0 == 0); + GGML_ASSERT(nb2 % n0 == 0); + GGML_ASSERT(nb3 % n0 == 0); + offset = (offset / n0) * ng; + nb1 = (nb1 / n0) * ng; + nb2 = (nb2 / n0) * ng; + nb3 = (nb3 / n0) * ng; + } + + src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table); + } + } break; + case GGML_OP_PERMUTE: + { + // necessary for llama + if (src0->grad) { + int32_t * axes = (int32_t *) tensor->op_params; + int axis0 = axes[0] & 0x3; + int axis1 = axes[1] & 0x3; + int axis2 = axes[2] & 0x3; + int axis3 = axes[3] & 0x3; + int axes_backward[4] = {0,0,0,0}; + axes_backward[axis0] = 0; + axes_backward[axis1] = 1; + axes_backward[axis2] = 2; + axes_backward[axis3] = 3; + src0->grad = + ggml_add_or_set(ctx, src0->grad, + ggml_permute(ctx, + tensor->grad, + axes_backward[0], + axes_backward[1], + axes_backward[2], + axes_backward[3]), + zero_table); + } + } break; + case GGML_OP_TRANSPOSE: + { + // necessary for llama + if (src0->grad) { + src0->grad = + ggml_add_or_set(ctx, src0->grad, + ggml_transpose(ctx, tensor->grad), + zero_table); + } + } break; + case GGML_OP_GET_ROWS: + { + // necessary for llama (only for tokenizer) + if (src0->grad) { + src0->grad = + ggml_add_or_set(ctx, src0->grad, + // last ggml_get_rows_back argument src0->grad is only + // necessary to setup correct output shape + ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad), + zero_table); + } + if (src1->grad) { + // noop + } + } break; + case GGML_OP_GET_ROWS_BACK: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_DIAG: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_DIAG_MASK_INF: + { + // necessary for llama + if (src0->grad) { + const int n_past = ((int32_t *) tensor->op_params)[0]; + src0->grad = + ggml_add_or_set(ctx, src0->grad, + /* ggml_diag_mask_inf_impl() shouldn't be here */ + /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */ + ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false), + zero_table); + } + } break; + case GGML_OP_DIAG_MASK_ZERO: + { + // necessary for llama + if (src0->grad) { + const int n_past = ((int32_t *) tensor->op_params)[0]; + src0->grad = + ggml_add_or_set(ctx, src0->grad, + ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false), + zero_table); + } + } break; + case GGML_OP_SOFT_MAX: + { + // necessary for llama + if (src0->grad) { + src0->grad = + ggml_add_or_set(ctx, src0->grad, + ggml_soft_max_back(ctx, tensor->grad, tensor), + zero_table); + } + + } break; + case GGML_OP_SOFT_MAX_BACK: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_ROPE: + { + // necessary for llama + if (src0->grad) { + //const int n_past = ((int32_t *) tensor->op_params)[0]; + const int n_dims = ((int32_t *) tensor->op_params)[1]; + const int mode = ((int32_t *) tensor->op_params)[2]; + const int n_ctx = ((int32_t *) tensor->op_params)[3]; + const int n_orig_ctx = ((int32_t *) tensor->op_params)[4]; + float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down; + + memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float)); + memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float)); + memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float)); + memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float)); + memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float)); + memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float)); + memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float)); + memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool)); + + src0->grad = ggml_add_or_set(ctx, + src0->grad, + ggml_rope_back(ctx, + tensor->grad, + src1, + n_dims, + mode, + n_ctx, + n_orig_ctx, + freq_base, + freq_scale, + ext_factor, + attn_factor, + beta_fast, + beta_slow, + xpos_base, + xpos_down), + zero_table); + } + } break; + case GGML_OP_ROPE_BACK: + { + if (src0->grad) { + //const int n_past = ((int32_t *) tensor->op_params)[0]; + const int n_dims = ((int32_t *) tensor->op_params)[1]; + const int mode = ((int32_t *) tensor->op_params)[2]; + const int n_ctx = ((int32_t *) tensor->op_params)[3]; + const int n_orig_ctx = ((int32_t *) tensor->op_params)[4]; + float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down; + + memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float)); + memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float)); + memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float)); + memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float)); + memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float)); + memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float)); + memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float)); + memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool)); + + src0->grad = ggml_add_or_set(ctx, + src0->grad, + ggml_rope_impl(ctx, + tensor->grad, + src1, + n_dims, + mode, + n_ctx, + n_orig_ctx, + freq_base, + freq_scale, + ext_factor, + attn_factor, + beta_fast, + beta_slow, + xpos_base, + xpos_down, + false), + zero_table); + } + } break; + case GGML_OP_ALIBI: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_CLAMP: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_CONV_TRANSPOSE_1D: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_IM2COL: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_CONV_TRANSPOSE_2D: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_POOL_1D: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_POOL_2D: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_UPSCALE: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_PAD: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_ARANGE: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_TIMESTEP_EMBEDDING: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_ARGSORT: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_LEAKY_RELU: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_FLASH_ATTN: + { + struct ggml_tensor * flash_grad = NULL; + if (src0->grad || src1->grad || tensor->src[2]->grad) { + int32_t t = ggml_get_op_params_i32(tensor, 0); + GGML_ASSERT(t == 0 || t == 1); + bool masked = t != 0; + flash_grad = + ggml_flash_attn_back(ctx, + src0, + src1, + tensor->src[2], + tensor->grad, + masked); + } + + struct ggml_tensor * src2 = tensor->src[2]; + const int64_t elem_q = ggml_nelements(src0); + const int64_t elem_k = ggml_nelements(src1); + const int64_t elem_v = ggml_nelements(src2); + + enum ggml_type result_type = flash_grad->type; + GGML_ASSERT(ggml_blck_size(result_type) == 1); + const size_t tsize = ggml_type_size(result_type); + + const size_t offs_q = 0; + const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN); + const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN); + + if (src0->grad) { + struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q); + struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0); + src0->grad = ggml_add_or_set(ctx, + src0->grad, + grad_q, + zero_table); + } + if (src1->grad) { + struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k); + struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1); + src1->grad = ggml_add_or_set(ctx, + src1->grad, + grad_k, + zero_table); + } + if (src2->grad) { + struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v); + struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2); + src2->grad = ggml_add_or_set(ctx, + src2->grad, + grad_v, + zero_table); + } + } break; + case GGML_OP_FLASH_FF: + { + GGML_ASSERT(false); // not supported + } break; + case GGML_OP_FLASH_ATTN_BACK: + { + GGML_ASSERT(false); // not supported + } break; + case GGML_OP_SSM_CONV: + case GGML_OP_SSM_SCAN: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_OP_WIN_PART: + case GGML_OP_WIN_UNPART: + case GGML_OP_UNARY: + { + switch (ggml_get_unary_op(tensor)) { + case GGML_UNARY_OP_ABS: + { + if (src0->grad) { + src0->grad = + ggml_add_or_set(ctx, + src0->grad, + ggml_mul(ctx, + ggml_sgn(ctx, src0), + tensor->grad), + zero_table); + } + } break; + case GGML_UNARY_OP_SGN: + { + if (src0->grad) { + // noop + } + } break; + case GGML_UNARY_OP_NEG: + { + if (src0->grad) { + src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table); + } + } break; + case GGML_UNARY_OP_STEP: + { + if (src0->grad) { + // noop + } + } break; + case GGML_UNARY_OP_TANH: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_UNARY_OP_ELU: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_UNARY_OP_RELU: + { + if (src0->grad) { + src0->grad = ggml_add_or_set(ctx, + src0->grad, + ggml_mul(ctx, + ggml_step(ctx, src0), + tensor->grad), + zero_table); + } + } break; + case GGML_UNARY_OP_GELU: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_UNARY_OP_GELU_QUICK: + { + GGML_ASSERT(false); // TODO: not implemented + } break; + case GGML_UNARY_OP_SILU: + { + // necessary for llama + if (src0->grad) { + src0->grad = ggml_add_or_set(ctx, + src0->grad, + ggml_silu_back(ctx, src0, tensor->grad), + zero_table); + } + } break; + default: + GGML_ASSERT(false); + } + } break; + case GGML_OP_GET_REL_POS: + case GGML_OP_ADD_REL_POS: + case GGML_OP_MAP_UNARY: + case GGML_OP_MAP_BINARY: + case GGML_OP_MAP_CUSTOM1_F32: + case GGML_OP_MAP_CUSTOM2_F32: + case GGML_OP_MAP_CUSTOM3_F32: + case GGML_OP_MAP_CUSTOM1: + case GGML_OP_MAP_CUSTOM2: + case GGML_OP_MAP_CUSTOM3: + { + GGML_ASSERT(false); // not supported + } break; + case GGML_OP_CROSS_ENTROPY_LOSS: + { + if (src0->grad) { + src0->grad = ggml_add_or_set(ctx, + src0->grad, + ggml_cross_entropy_loss_back(ctx, + src0, + src1, + tensor->grad), + zero_table); + } + } break; + case GGML_OP_CROSS_ENTROPY_LOSS_BACK: + { + GGML_ASSERT(false); // not supported + } break; + case GGML_OP_NONE: + { + // nop + } break; + case GGML_OP_COUNT: + { + GGML_ASSERT(false); + } break; + } + + for (int i = 0; i < GGML_MAX_SRC; ++i) { + if (tensor->src[i] && tensor->src[i]->grad) { + GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad)); + } + } +} + +static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) { + if (node->grad == NULL) { + // this usually happens when we generate intermediate nodes from constants in the backward pass + // it can also happen during forward pass, if the user performs computations with constants + if (node->op != GGML_OP_NONE) { + //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op); + } + } + + // check if already visited + if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) { + return; + } + + for (int i = 0; i < GGML_MAX_SRC; ++i) { + const int k = + (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i : + (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) : + /* unknown order, just fall back to using i*/ i; + if (node->src[k]) { + ggml_visit_parents(cgraph, node->src[k]); + } + } + + if (node->op == GGML_OP_NONE && node->grad == NULL) { + // reached a leaf node, not part of the gradient graph (e.g. a constant) + GGML_ASSERT(cgraph->n_leafs < cgraph->size); + + if (strlen(node->name) == 0) { + ggml_format_name(node, "leaf_%d", cgraph->n_leafs); + } + + cgraph->leafs[cgraph->n_leafs] = node; + cgraph->n_leafs++; + } else { + GGML_ASSERT(cgraph->n_nodes < cgraph->size); + + if (strlen(node->name) == 0) { + ggml_format_name(node, "node_%d", cgraph->n_nodes); + } + + cgraph->nodes[cgraph->n_nodes] = node; + if (cgraph->grads) { + cgraph->grads[cgraph->n_nodes] = node->grad; + } + cgraph->n_nodes++; + } +} + +static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) { + if (!expand) { + // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand + ggml_graph_clear(cgraph); + } + + const int n0 = cgraph->n_nodes; + UNUSED(n0); + + ggml_visit_parents(cgraph, tensor); + + const int n_new = cgraph->n_nodes - n0; + GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new); + + if (n_new > 0) { + // the last added node should always be starting point + GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor); + } +} + +void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) { + ggml_build_forward_impl(cgraph, tensor, true); +} + +void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) { + GGML_ASSERT(gf->n_nodes > 0); + + // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph + if (keep) { + for (int i = 0; i < gf->n_nodes; i++) { + struct ggml_tensor * node = gf->nodes[i]; + + if (node->grad) { + node->grad = ggml_dup_tensor(ctx, node); + gf->grads[i] = node->grad; + } + } + } + + // remember original gradients which start with zero values + struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size); + for (int i = 0; i < gf->n_nodes; i++) { + if (gf->grads[i]) { + ggml_hash_insert(zero_table, gf->grads[i]); + } + } + + for (int i = gf->n_nodes - 1; i >= 0; i--) { + struct ggml_tensor * node = gf->nodes[i]; + + // inplace operations to add gradients are not created by ggml_compute_backward + // use allocator to automatically make inplace operations + if (node->grad) { + ggml_compute_backward(ctx, node, zero_table); + } + } + + for (int i = 0; i < gf->n_nodes; i++) { + struct ggml_tensor * node = gf->nodes[i]; + + if (node->flags & GGML_TENSOR_FLAG_PARAM) { + GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node); + ggml_build_forward_expand(gb, node->grad); + } + } + + ggml_hash_set_free(zero_table); +} + +static size_t ggml_graph_nbytes(size_t size, bool grads) { + size_t nbytes = sizeof(struct ggml_cgraph); + nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes + if (grads) { + nbytes += size * sizeof(struct ggml_tensor *); // grads + } + nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set + return nbytes; +} + +size_t ggml_graph_overhead_custom(size_t size, bool grads) { + return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN); +} + +size_t ggml_graph_overhead(void) { + return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false); +} + +struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) { + const size_t obj_size = ggml_graph_nbytes(size, grads); + struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size); + struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs); + + struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1); + + size_t hash_size = ggml_hash_size(size * 2); + struct ggml_tensor ** nodes_ptr = data_start; + struct ggml_tensor ** leafs_ptr = nodes_ptr + size; + struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size; + struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL; + + // check that we allocated the correct amount of memory + assert(obj_size == (size_t) ( + (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph)); + + memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *)); + + *cgraph = (struct ggml_cgraph) { + /*.size =*/ size, + /*.n_nodes =*/ 0, + /*.n_leafs =*/ 0, + /*.nodes =*/ nodes_ptr, + /*.grads =*/ grads_ptr, + /*.leafs =*/ leafs_ptr, + /*.hash_table =*/ { hash_size, hash_keys_ptr }, + /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT, + /*.perf_runs =*/ 0, + /*.perf_cycles =*/ 0, + /*.perf_time_us =*/ 0, + }; + + return cgraph; +} + +struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) { + return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false); +} + +struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) { + struct ggml_cgraph cgraph = { + /*.size =*/ 0, + /*.n_nodes =*/ i1 - i0, + /*.n_leafs =*/ 0, + /*.nodes =*/ cgraph0->nodes + i0, + /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL, + /*.leafs =*/ NULL, + /*.hash_table =*/ { 0, NULL }, + /*.order =*/ cgraph0->order, + /*.perf_runs =*/ 0, + /*.perf_cycles =*/ 0, + /*.perf_time_us =*/ 0, + }; + + return cgraph; +} + +void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) { + GGML_ASSERT(dst->size >= src->n_leafs); + GGML_ASSERT(dst->size >= src->n_nodes); + GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size); + + dst->n_leafs = src->n_leafs; + dst->n_nodes = src->n_nodes; + dst->order = src->order; + + for (int i = 0; i < src->n_leafs; ++i) { + dst->leafs[i] = src->leafs[i]; + } + + for (int i = 0; i < src->n_nodes; ++i) { + dst->nodes[i] = src->nodes[i]; + } + + if (src->grads) { + GGML_ASSERT(dst->grads != NULL); + for (int i = 0; i < src->n_nodes; ++i) { + dst->grads[i] = src->grads[i]; + } + } + + for (size_t i = 0; i < src->visited_hash_table.size; ++i) { + if (src->visited_hash_table.keys[i]) { + ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]); + } + } +} + +struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) { + struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL); + ggml_graph_cpy(cgraph, result); + return result; +} + +void ggml_graph_reset(struct ggml_cgraph * cgraph) { + GGML_ASSERT(cgraph->grads != NULL); + + for (int i = 0; i < cgraph->n_nodes; i++) { + struct ggml_tensor * grad = cgraph->grads[i]; + + if (grad) { + ggml_set_zero(grad); + } + } +} + +void ggml_graph_clear(struct ggml_cgraph * cgraph) { + cgraph->n_leafs = 0; + cgraph->n_nodes = 0; + memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *)); +} + +// +// thread data +// +// synchronization is done via busy loops +// I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops +// + +#ifdef __APPLE__ + +//#include +// +//typedef os_unfair_lock ggml_lock_t; +// +//#define ggml_lock_init(x) UNUSED(x) +//#define ggml_lock_destroy(x) UNUSED(x) +//#define ggml_lock_lock os_unfair_lock_lock +//#define ggml_lock_unlock os_unfair_lock_unlock +// +//#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT + +typedef int ggml_lock_t; + +#define ggml_lock_init(x) UNUSED(x) +#define ggml_lock_destroy(x) UNUSED(x) +#define ggml_lock_lock(x) UNUSED(x) +#define ggml_lock_unlock(x) UNUSED(x) + +#define GGML_LOCK_INITIALIZER 0 + +typedef pthread_t ggml_thread_t; + +#define ggml_thread_create pthread_create +#define ggml_thread_join pthread_join + +#else + +//typedef pthread_spinlock_t ggml_lock_t; + +//#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE) +//#define ggml_lock_destroy pthread_spin_destroy +//#define ggml_lock_lock pthread_spin_lock +//#define ggml_lock_unlock pthread_spin_unlock + +typedef int ggml_lock_t; + +#define ggml_lock_init(x) UNUSED(x) +#define ggml_lock_destroy(x) UNUSED(x) +#if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64)) +#define ggml_lock_lock(x) _mm_pause() +#else +#define ggml_lock_lock(x) UNUSED(x) +#endif +#define ggml_lock_unlock(x) UNUSED(x) + +#define GGML_LOCK_INITIALIZER 0 + +typedef pthread_t ggml_thread_t; + +#define ggml_thread_create pthread_create +#define ggml_thread_join pthread_join + +#endif + +// Android's libc implementation "bionic" does not support setting affinity +#if defined(__gnu_linux__) +static void set_numa_thread_affinity(int thread_n) { + if (!ggml_is_numa()) { + return; + } + + int node_num; + int rv; + size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus); + + switch(g_state.numa.numa_strategy) { + case GGML_NUMA_STRATEGY_DISTRIBUTE: + // run thread on node_num thread_n / (threads per node) + node_num = thread_n % g_state.numa.n_nodes; + break; + case GGML_NUMA_STRATEGY_ISOLATE: + // run thread on current_node + node_num = g_state.numa.current_node; + break; + case GGML_NUMA_STRATEGY_NUMACTL: + // use the cpuset that numactl gave us + rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset); + if (rv) { + fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv)); + } + return; + default: + return; + } + + struct ggml_numa_node * node = &g_state.numa.nodes[node_num]; + + cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus); + CPU_ZERO_S(setsize, cpus); + for (size_t i = 0; i < node->n_cpus; ++i) { + CPU_SET_S(node->cpus[i], setsize, cpus); + } + + rv = pthread_setaffinity_np(pthread_self(), setsize, cpus); + if (rv) { + fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv)); + } + + CPU_FREE(cpus); +} + +static void clear_numa_thread_affinity(void) { + if (!ggml_is_numa()) { + return; + } + + size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus); + + cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus); + CPU_ZERO_S(setsize, cpus); + for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) { + CPU_SET_S(i, setsize, cpus); + } + + int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus); + if (rv) { + fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv)); + } + + CPU_FREE(cpus); +} +#else +// TODO: Windows etc. +// (the linux implementation may also work on BSD, someone should test) +static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); } +static void clear_numa_thread_affinity(void) {} +#endif + +struct ggml_compute_state_shared { + const struct ggml_cgraph * cgraph; + const struct ggml_cplan * cplan; + + int64_t perf_node_start_cycles; + int64_t perf_node_start_time_us; + + const int n_threads; + + // synchronization primitives + atomic_int n_active; // num active threads + atomic_int node_n; // active graph node + atomic_int node_task; // active graph node task phase + + ggml_abort_callback abort_callback; // abort ggml_graph_compute when true + void * abort_callback_data; +}; + +struct ggml_compute_state { + ggml_thread_t thrd; + int ith; + struct ggml_compute_state_shared * shared; + enum ggml_status ec; +}; + +static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) { + int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles; + int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us; + + node->perf_runs++; + node->perf_cycles += cycles_cur; + node->perf_time_us += time_us_cur; +} + +static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) { + int n_tasks = 0; + + if (ggml_is_empty(node)) { + // no need to multi-thread a no-op + n_tasks = 1; + return n_tasks; + } + + switch (node->op) { + case GGML_OP_CPY: + case GGML_OP_DUP: + case GGML_OP_ADD: + case GGML_OP_ADD1: + case GGML_OP_ACC: + { + n_tasks = n_threads; + } break; + case GGML_OP_SUB: + case GGML_OP_SQR: + case GGML_OP_SQRT: + case GGML_OP_LOG: + case GGML_OP_SUM: + case GGML_OP_SUM_ROWS: + case GGML_OP_MEAN: + case GGML_OP_ARGMAX: + case GGML_OP_REPEAT: + case GGML_OP_REPEAT_BACK: + case GGML_OP_LEAKY_RELU: + { + n_tasks = 1; + } break; + case GGML_OP_UNARY: + switch (ggml_get_unary_op(node)) { + case GGML_UNARY_OP_ABS: + case GGML_UNARY_OP_SGN: + case GGML_UNARY_OP_NEG: + case GGML_UNARY_OP_STEP: + case GGML_UNARY_OP_TANH: + case GGML_UNARY_OP_ELU: + case GGML_UNARY_OP_RELU: + case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads + case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads + { + n_tasks = 1; + } break; + + case GGML_UNARY_OP_GELU: + case GGML_UNARY_OP_GELU_QUICK: + case GGML_UNARY_OP_SILU: + { + n_tasks = n_threads; + } break; + default: + GGML_ASSERT(false); + } + break; + case GGML_OP_SILU_BACK: + case GGML_OP_MUL: + case GGML_OP_DIV: + case GGML_OP_NORM: + case GGML_OP_RMS_NORM: + case GGML_OP_RMS_NORM_BACK: + case GGML_OP_GROUP_NORM: + case GGML_OP_CONCAT: + { + n_tasks = n_threads; + } break; + case GGML_OP_MUL_MAT: + { + n_tasks = n_threads; + + // TODO: use different scheduling for different matrix sizes + //const int nr0 = ggml_nrows(node->src[0]); + //const int nr1 = ggml_nrows(node->src[1]); + + //n_tasks = MIN(n_threads, MAX(1, nr0/128)); + //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks); + } break; + case GGML_OP_MUL_MAT_ID: + { + n_tasks = n_threads; + } break; + case GGML_OP_OUT_PROD: + { + n_tasks = n_threads; + } break; + case GGML_OP_GET_ROWS: + { + // FIXME: the cost of launching additional threads decreases performance with GPU offloading + //n_tasks = MIN(n_threads, ggml_nelements(node->src[1])); + n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1])); + } break; + case GGML_OP_SCALE: + case GGML_OP_SET: + case GGML_OP_CONT: + case GGML_OP_RESHAPE: + case GGML_OP_VIEW: + case GGML_OP_PERMUTE: + case GGML_OP_TRANSPOSE: + case GGML_OP_GET_ROWS_BACK: + case GGML_OP_DIAG: + { + n_tasks = 1; + } break; + case GGML_OP_DIAG_MASK_ZERO: + case GGML_OP_DIAG_MASK_INF: + case GGML_OP_SOFT_MAX_BACK: + case GGML_OP_ROPE: + case GGML_OP_ROPE_BACK: + case GGML_OP_ADD_REL_POS: + { + n_tasks = n_threads; + } break; + case GGML_OP_ALIBI: + { + n_tasks = 1; //TODO + } break; + case GGML_OP_CLAMP: + { + n_tasks = 1; //TODO + } break; + case GGML_OP_SOFT_MAX: + { + n_tasks = MIN(n_threads, ggml_nrows(node->src[0])); + } break; + case GGML_OP_CONV_TRANSPOSE_1D: + { + n_tasks = n_threads; + } break; + case GGML_OP_IM2COL: + { + n_tasks = n_threads; + } break; + case GGML_OP_CONV_TRANSPOSE_2D: + { + n_tasks = n_threads; + } break; + case GGML_OP_POOL_1D: + case GGML_OP_POOL_2D: + { + n_tasks = 1; + } break; + case GGML_OP_UPSCALE: + { + n_tasks = n_threads; + } break; + case GGML_OP_PAD: + { + n_tasks = n_threads; + } break; + case GGML_OP_ARANGE: + { + n_tasks = n_threads; + } break; + case GGML_OP_TIMESTEP_EMBEDDING: + { + n_tasks = n_threads; + } break; + case GGML_OP_ARGSORT: + { + n_tasks = n_threads; + } break; + case GGML_OP_FLASH_ATTN: + { + n_tasks = n_threads; + } break; + case GGML_OP_FLASH_FF: + { + n_tasks = n_threads; + } break; + case GGML_OP_FLASH_ATTN_BACK: + { + n_tasks = n_threads; + } break; + case GGML_OP_SSM_CONV: + case GGML_OP_SSM_SCAN: + { + n_tasks = n_threads; + } break; + case GGML_OP_WIN_PART: + case GGML_OP_WIN_UNPART: + case GGML_OP_GET_REL_POS: + case GGML_OP_MAP_UNARY: + case GGML_OP_MAP_BINARY: + case GGML_OP_MAP_CUSTOM1_F32: + case GGML_OP_MAP_CUSTOM2_F32: + case GGML_OP_MAP_CUSTOM3_F32: + { + n_tasks = 1; + } break; + case GGML_OP_MAP_CUSTOM1: + { + struct ggml_map_custom1_op_params p; + memcpy(&p, node->op_params, sizeof(p)); + if (p.n_tasks == GGML_N_TASKS_MAX) { + n_tasks = n_threads; + } else { + n_tasks = MIN(p.n_tasks, n_threads); + } + } break; + case GGML_OP_MAP_CUSTOM2: + { + struct ggml_map_custom2_op_params p; + memcpy(&p, node->op_params, sizeof(p)); + if (p.n_tasks == GGML_N_TASKS_MAX) { + n_tasks = n_threads; + } else { + n_tasks = MIN(p.n_tasks, n_threads); + } + } break; + case GGML_OP_MAP_CUSTOM3: + { + struct ggml_map_custom3_op_params p; + memcpy(&p, node->op_params, sizeof(p)); + if (p.n_tasks == GGML_N_TASKS_MAX) { + n_tasks = n_threads; + } else { + n_tasks = MIN(p.n_tasks, n_threads); + } + } break; + case GGML_OP_CROSS_ENTROPY_LOSS: + { + n_tasks = n_threads; + } break; + case GGML_OP_CROSS_ENTROPY_LOSS_BACK: + { + n_tasks = n_threads; + } break; + case GGML_OP_NONE: + { + n_tasks = 1; + } break; + case GGML_OP_COUNT: + { + GGML_ASSERT(false); + } break; + default: + { + fprintf(stderr, "%s: op not implemented: ", __func__); + if (node->op < GGML_OP_COUNT) { + fprintf(stderr, "%s\n", ggml_op_name(node->op)); + } else { + fprintf(stderr, "%d\n", node->op); + } + GGML_ASSERT(false); + } break; + } + + assert(n_tasks > 0); + + return n_tasks; +} + +static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) { + // wait for other threads to finish + const int last_node_n = * node_n; + + while (true) { + if (do_yield) { + sched_yield(); + } + + * node_n = atomic_load(&state->shared->node_n); + if (* node_n != last_node_n) break; + } +} + +static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) { + // wait for other threads to finish + const int last_task_phase = * task_phase; + + while (true) { + if (do_yield) { + sched_yield(); + } + + * task_phase = atomic_load(&state->shared->node_task); + if (* task_phase != last_task_phase) break; + } +} + +static thread_ret_t ggml_graph_compute_thread(void * data) { + struct ggml_compute_state * state = (struct ggml_compute_state *) data; + + const struct ggml_cgraph * cgraph = state->shared->cgraph; + const struct ggml_cplan * cplan = state->shared->cplan; + + const int n_threads = state->shared->n_threads; + + set_numa_thread_affinity(state->ith); + + int node_n = -1; + int task_phase = GGML_TASK_TYPE_FINALIZE; + + while (true) { + if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) { + state->shared->node_n += 1; + state->ec = GGML_STATUS_ABORTED; + return 0; + } + + if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) { + // all other threads are finished and spinning + // do finalize and init here so we don't have synchronize again + struct ggml_compute_params params = { + /*.type =*/ GGML_TASK_TYPE_FINALIZE, + /*.ith =*/ 0, + /*.nth =*/ 0, + /*.wsize =*/ cplan->work_size, + /*.wdata =*/ cplan->work_data, + }; + + if (node_n != -1) { + /* FINALIZE */ + struct ggml_tensor * node = cgraph->nodes[node_n]; + if (GGML_OP_HAS_FINALIZE[node->op]) { + params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads); + ggml_compute_forward(¶ms, node); + } + ggml_graph_compute_perf_stats_node(node, state->shared); + } + + // distribute new work or execute it direct if 1T + while (++node_n < cgraph->n_nodes) { + GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes); + struct ggml_tensor * node = cgraph->nodes[node_n]; + const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads); + + state->shared->perf_node_start_cycles = ggml_perf_cycles(); + state->shared->perf_node_start_time_us = ggml_perf_time_us(); + + params.nth = n_tasks; + + if (n_tasks == 1) { + /* INIT */ + if (GGML_OP_HAS_INIT[node->op]) { + params.type = GGML_TASK_TYPE_INIT; + ggml_compute_forward(¶ms, node); + } + + // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1, + // they do something more efficient than spinning (?) + params.type = GGML_TASK_TYPE_COMPUTE; + ggml_compute_forward(¶ms, node); + + if (GGML_OP_HAS_FINALIZE[node->op]) { + params.type = GGML_TASK_TYPE_FINALIZE; + ggml_compute_forward(¶ms, node); + } + + ggml_graph_compute_perf_stats_node(node, state->shared); + } else { + break; + } + + if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) { + break; + } + } + + task_phase = GGML_TASK_TYPE_INIT; + atomic_store(&state->shared->n_active, n_threads); + atomic_store(&state->shared->node_n, node_n); + atomic_store(&state->shared->node_task, task_phase); + } else { + ggml_graph_compute_thread_sync_node(&node_n, state, false); + ggml_graph_compute_thread_sync_task(&task_phase, state, false); + } + + // check if we should stop + if (node_n >= cgraph->n_nodes) break; + + /* INIT & COMPUTE */ + struct ggml_tensor * node = cgraph->nodes[node_n]; + const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads); + + struct ggml_compute_params params = { + /*.type =*/ GGML_TASK_TYPE_INIT, + /*.ith =*/ state->ith, + /*.nth =*/ n_tasks, + /*.wsize =*/ cplan->work_size, + /*.wdata =*/ cplan->work_data, + }; + + if (state->ith < n_tasks) { + if (GGML_OP_HAS_INIT[node->op]) { + ggml_compute_forward(¶ms, node); + } + } + + if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) { + task_phase = GGML_TASK_TYPE_COMPUTE; + atomic_store(&state->shared->n_active, n_threads); + atomic_store(&state->shared->node_task, task_phase); + } + else { + // TODO: this sched_yield can have significant impact on the performance - either positive or negative + // depending on the workload and the operating system. + // since it is not clear what is the best approach, it should potentially become user-configurable + // ref: https://github.com/ggerganov/ggml/issues/291 + // UPD: adding the do_yield flag seems to resolve the issue universally + const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT; + ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield); + } + + if (state->ith < n_tasks) { + params.type = GGML_TASK_TYPE_COMPUTE; + ggml_compute_forward(¶ms, node); + } + + if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) { + task_phase = GGML_TASK_TYPE_FINALIZE; + atomic_store(&state->shared->n_active, n_threads); + atomic_store(&state->shared->node_task, task_phase); + } + else { + ggml_graph_compute_thread_sync_task(&task_phase, state, false); + } + } + + return 0; +} + +struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) { + if (n_threads <= 0) { + n_threads = GGML_DEFAULT_N_THREADS; + } + + size_t work_size = 0; + + struct ggml_cplan cplan; + memset(&cplan, 0, sizeof(struct ggml_cplan)); + + int max_tasks = 1; + + // thread scheduling for the different operations + work buffer size estimation + for (int i = 0; i < cgraph->n_nodes; i++) { + struct ggml_tensor * node = cgraph->nodes[i]; + + const int n_tasks = ggml_get_n_tasks(node, n_threads, 1); + + max_tasks = MAX(max_tasks, n_tasks); + + size_t cur = 0; + + switch (node->op) { + case GGML_OP_CPY: + case GGML_OP_DUP: + { + if (ggml_is_quantized(node->type)) { + cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks; + } + } break; + case GGML_OP_ADD: + case GGML_OP_ADD1: + { + if (ggml_is_quantized(node->src[0]->type)) { + cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks; + } + } break; + case GGML_OP_ACC: + { + if (ggml_is_quantized(node->src[0]->type)) { + cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks; + } + } break; + case GGML_OP_MUL_MAT: + { + const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type; + +#if defined(GGML_USE_CLBLAST) + if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) { + cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node); + } else +#endif +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) + if (ggml_compute_forward_mul_mat_use_blas(node)) { + if (node->src[0]->type != GGML_TYPE_F32) { + // here we need memory for fully dequantized matrix from src0 + // take into account that src0 can be broadcasted into src1[2,3] + cur = ggml_type_size(GGML_TYPE_F32) + * node->src[0]->ne[0]*node->src[0]->ne[1] + * node->src[1]->ne[2]*node->src[1]->ne[3]; + } + } else +#endif + if (node->src[1]->type != vec_dot_type) { + cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1])); + } + } break; + case GGML_OP_MUL_MAT_ID: + { + cur = 0; + const struct ggml_tensor * src0 = node->src[0]; + const struct ggml_tensor * src1 = node->src[1]; + const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type; + if (src1->type != vec_dot_type) { + cur += ggml_row_size(vec_dot_type, ggml_nelements(src1)); + } + const int n_as = src0->ne[2]; + cur += GGML_PAD(cur, sizeof(int64_t)); // align + cur += n_as * sizeof(int64_t); // matrix_row_counts + cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows + } break; + case GGML_OP_OUT_PROD: + { + if (ggml_is_quantized(node->src[0]->type)) { + cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks; + } + } break; + case GGML_OP_SOFT_MAX: + case GGML_OP_ROPE: + { + cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks; + } break; + case GGML_OP_CONV_TRANSPOSE_1D: + { + GGML_ASSERT(node->src[0]->ne[3] == 1); + GGML_ASSERT(node->src[1]->ne[2] == 1); + GGML_ASSERT(node->src[1]->ne[3] == 1); + + const int64_t ne00 = node->src[0]->ne[0]; // K + const int64_t ne01 = node->src[0]->ne[1]; // Cout + const int64_t ne02 = node->src[0]->ne[2]; // Cin + + const int64_t ne10 = node->src[1]->ne[0]; // L + const int64_t ne11 = node->src[1]->ne[1]; // Cin + + if (node->src[0]->type == GGML_TYPE_F16 && + node->src[1]->type == GGML_TYPE_F32) { + cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02; + cur += sizeof(ggml_fp16_t)*ne10*ne11; + } else if (node->src[0]->type == GGML_TYPE_F32 && + node->src[1]->type == GGML_TYPE_F32) { + cur += sizeof(float)*ne00*ne01*ne02; + cur += sizeof(float)*ne10*ne11; + } else { + GGML_ASSERT(false); + } + } break; + case GGML_OP_CONV_TRANSPOSE_2D: + { + const int64_t ne00 = node->src[0]->ne[0]; // W + const int64_t ne01 = node->src[0]->ne[1]; // H + const int64_t ne02 = node->src[0]->ne[2]; // Channels Out + const int64_t ne03 = node->src[0]->ne[3]; // Channels In + + const int64_t ne10 = node->src[1]->ne[0]; // W + const int64_t ne11 = node->src[1]->ne[1]; // H + const int64_t ne12 = node->src[1]->ne[2]; // Channels In + + cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03; + cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12; + } break; + case GGML_OP_FLASH_ATTN: + { + const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL); + + if (node->src[1]->type == GGML_TYPE_F32) { + cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1) + cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2 + } else if (node->src[1]->type == GGML_TYPE_F16) { + cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1) + cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2 + } + } break; + case GGML_OP_FLASH_FF: + { + if (node->src[1]->type == GGML_TYPE_F32) { + cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1) + cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2 + } else if (node->src[1]->type == GGML_TYPE_F16) { + cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1) + cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2 + } + } break; + case GGML_OP_FLASH_ATTN_BACK: + { + const int64_t D = node->src[0]->ne[0]; + const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL); + const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back + if (node->src[1]->type == GGML_TYPE_F32) { + cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1) + cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2 + } else if (node->src[1]->type == GGML_TYPE_F16) { + cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1) + cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2 + } + } break; + + case GGML_OP_CROSS_ENTROPY_LOSS: + { + cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks); + } break; + case GGML_OP_COUNT: + { + GGML_ASSERT(false); + } break; + default: + break; + } + + work_size = MAX(work_size, cur); + } + + if (work_size > 0) { + work_size += CACHE_LINE_SIZE*(n_threads - 1); + } + + cplan.n_threads = MIN(max_tasks, n_threads); + cplan.work_size = work_size; + cplan.work_data = NULL; + + return cplan; +} + +enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) { + { + GGML_ASSERT(cplan); + GGML_ASSERT(cplan->n_threads > 0); + + if (cplan->work_size > 0) { + GGML_ASSERT(cplan->work_data); + } + } + + const int n_threads = cplan->n_threads; + + struct ggml_compute_state_shared state_shared = { + /*.cgraph =*/ cgraph, + /*.cgraph_plan =*/ cplan, + /*.perf_node_start_cycles =*/ 0, + /*.perf_node_start_time_us =*/ 0, + /*.n_threads =*/ n_threads, + /*.n_active =*/ n_threads, + /*.node_n =*/ -1, + /*.node_task =*/ GGML_TASK_TYPE_FINALIZE, + /*.abort_callback =*/ NULL, + /*.abort_callback_data =*/ NULL, + }; + struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads); + + // create thread pool + if (n_threads > 1) { + for (int j = 1; j < n_threads; ++j) { + workers[j] = (struct ggml_compute_state) { + .thrd = 0, + .ith = j, + .shared = &state_shared, + .ec = GGML_STATUS_SUCCESS, + }; + + const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]); + GGML_ASSERT(rc == 0); + UNUSED(rc); + } + } + + workers[0].ith = 0; + workers[0].shared = &state_shared; + workers[0].ec = GGML_STATUS_SUCCESS; + + const int64_t perf_start_cycles = ggml_perf_cycles(); + const int64_t perf_start_time_us = ggml_perf_time_us(); + + // this is a work thread too + ggml_graph_compute_thread(&workers[0]); + enum ggml_status compute_status = workers[0].ec; + + // don't leave affinity set on the main thread + clear_numa_thread_affinity(); + + // join or kill thread pool + if (n_threads > 1) { + for (int j = 1; j < n_threads; j++) { + const int rc = ggml_thread_join(workers[j].thrd, NULL); + GGML_ASSERT(rc == 0); + if (workers[j].ec != GGML_STATUS_SUCCESS) + compute_status = workers[j].ec; + } + } + + // performance stats (graph) + { + int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles; + int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us; + + cgraph->perf_runs++; + cgraph->perf_cycles += perf_cycles_cur; + cgraph->perf_time_us += perf_time_us_cur; + + GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n", + __func__, cgraph->perf_runs, + (double) perf_cycles_cur / (double) ggml_cycles_per_ms(), + (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs, + (double) perf_time_us_cur / 1000.0, + (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs); + } + + return compute_status; +} + +enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) { + struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads); + + struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size); + + cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs; + + return ggml_graph_compute(cgraph, &cplan); +} + +struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) { + for (int i = 0; i < cgraph->n_leafs; i++) { + struct ggml_tensor * leaf = cgraph->leafs[i]; + + if (strcmp(leaf->name, name) == 0) { + return leaf; + } + } + + for (int i = 0; i < cgraph->n_nodes; i++) { + struct ggml_tensor * node = cgraph->nodes[i]; + + if (strcmp(node->name, name) == 0) { + return node; + } + } + + return NULL; +} + +static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) { + const int64_t * ne = tensor->ne; + const size_t * nb = tensor->nb; + + fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n", + ggml_type_name(tensor->type), + ggml_op_name (tensor->op), + ggml_n_dims(tensor), + ne[0], ne[1], ne[2], ne[3], + nb[0], nb[1], nb[2], nb[3], + tensor->data, + tensor->name); +} + +static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) { + const int64_t * ne = tensor->ne; + const size_t * nb = tensor->nb; + + fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n", + arg, + ggml_type_name(tensor->type), + ggml_op_name (tensor->op), + ggml_n_dims(tensor), + ne[0], ne[1], ne[2], ne[3], + nb[0], nb[1], nb[2], nb[3], + tensor->data, + tensor->name); +} + +void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) { + uint64_t size_eval = 0; + + // compute size of intermediate results + // TODO: does not take into account scratch buffers !!!! + for (int i = 0; i < cgraph->n_nodes; ++i) { + size_eval += ggml_nbytes_pad(cgraph->nodes[i]); + } + + // print + { + FILE * fout = stdout; + + fprintf(fout, "\n"); + fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC); + fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION); + fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs); + fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes); + fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval); + + // header + fprintf(fout, "\n"); + fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n", + "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME"); + + for (int i = 0; i < cgraph->n_leafs; ++i) { + ggml_graph_export_leaf(cgraph->leafs[i], fout); + + GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE); + GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL); + GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL); + } + + // header + fprintf(fout, "\n"); + fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n", + "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME"); + + for (int i = 0; i < cgraph->n_nodes; ++i) { + ggml_graph_export_node(cgraph->nodes[i], "DST", fout); + + for (int j = 0; j < GGML_MAX_SRC; ++j) { + if (cgraph->nodes[i]->src[j]) { + ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout); + } + } + + fprintf(fout, "\n"); + } + + fprintf(fout, "\n"); + } + + // write binary data + { + FILE * fout = ggml_fopen(fname, "wb"); + + if (!fout) { + fprintf(stderr, "%s: failed to open %s\n", __func__, fname); + return; + } + + // header + { + const uint32_t magic = GGML_FILE_MAGIC; + const uint32_t version = GGML_FILE_VERSION; + const uint32_t n_leafs = cgraph->n_leafs; + const uint32_t n_nodes = cgraph->n_nodes; + + fwrite(&magic, sizeof(uint32_t), 1, fout); + fwrite(&version, sizeof(uint32_t), 1, fout); + fwrite(&n_leafs, sizeof(uint32_t), 1, fout); + fwrite(&n_nodes, sizeof(uint32_t), 1, fout); + fwrite(&size_eval, sizeof(uint64_t), 1, fout); + } + + // leafs + { + for (int i = 0; i < cgraph->n_leafs; ++i) { + const struct ggml_tensor * tensor = cgraph->leafs[i]; + + const uint32_t type = tensor->type; + const uint32_t op = tensor->op; + + fwrite(&type, sizeof(uint32_t), 1, fout); + fwrite(&op, sizeof(uint32_t), 1, fout); + + for (int j = 0; j < GGML_MAX_DIMS; ++j) { + const uint64_t ne = tensor->ne[j]; + const uint64_t nb = tensor->nb[j]; + + fwrite(&ne, sizeof(uint64_t), 1, fout); + fwrite(&nb, sizeof(uint64_t), 1, fout); + } + + fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout); + fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout); + + // dump the data + // TODO: pad this to 32 byte boundary + { + const size_t size = ggml_nbytes(tensor); + + fwrite(tensor->data, sizeof(char), size, fout); + } + } + } + + // nodes + { + for (int i = 0; i < cgraph->n_nodes; ++i) { + const struct ggml_tensor * tensor = cgraph->nodes[i]; + + const uint32_t type = tensor->type; + const uint32_t op = tensor->op; + + fwrite(&type, sizeof(uint32_t), 1, fout); + fwrite(&op, sizeof(uint32_t), 1, fout); + + for (int j = 0; j < GGML_MAX_DIMS; ++j) { + const uint64_t ne = tensor->ne[j]; + const uint64_t nb = tensor->nb[j]; + + fwrite(&ne, sizeof(uint64_t), 1, fout); + fwrite(&nb, sizeof(uint64_t), 1, fout); + } + + fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout); + fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout); + + // output the op arguments + { + struct ggml_tensor * args[GGML_MAX_SRC] = { NULL }; + + for (int j = 0; j < GGML_MAX_SRC; ++j) { + args[j] = tensor->src[j]; + } + + for (int j = 0; j < GGML_MAX_SRC; ++j) { + if (args[j]) { + int32_t idx = -1; + + // check if leaf + { + for (int k = 0; k < cgraph->n_leafs; ++k) { + if (args[j] == cgraph->leafs[k]) { + idx = k; + break; + } + } + } + + // check if node + if (idx == -1) { + for (int k = 0; k < cgraph->n_nodes; ++k) { + if (args[j] == cgraph->nodes[k]) { + idx = cgraph->n_leafs + k; + break; + } + } + } + + if (idx == -1) { + fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i); + fclose(fout); + return; + } + + fwrite(&idx, sizeof(int32_t), 1, fout); + } else { + const int32_t nul = -1; + + fwrite(&nul, sizeof(int32_t), 1, fout); + } + } + } + } + } + + fclose(fout); + } +} + +struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) { + assert(*ctx_data == NULL); + assert(*ctx_eval == NULL); + + struct ggml_cgraph * result = NULL; + + struct ggml_tensor * data = NULL; + + // read file into data + { + FILE * fin = ggml_fopen(fname, "rb"); + if (!fin) { + fprintf(stderr, "%s: failed to open %s\n", __func__, fname); + return result; + } + + size_t fsize = 0; + + fseek(fin, 0, SEEK_END); + fsize = ftell(fin); + fseek(fin, 0, SEEK_SET); + + // create the data context + { + const size_t overhead = 1*ggml_tensor_overhead(); + + struct ggml_init_params params = { + .mem_size = fsize + overhead, + .mem_buffer = NULL, + .no_alloc = false, + }; + + *ctx_data = ggml_init(params); + + if (!*ctx_data) { + fprintf(stderr, "%s: failed to create ggml context\n", __func__); + fclose(fin); + return result; + } + } + + data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize); + + { + const size_t ret = fread(data->data, sizeof(char), fsize, fin); + if (ret != fsize) { + fprintf(stderr, "%s: failed to read %s\n", __func__, fname); + fclose(fin); + return result; + } + } + + fclose(fin); + } + + // populate result + { + char * ptr = (char *) data->data; + + const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic); + + if (magic != GGML_FILE_MAGIC) { + fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic); + return result; + } + + const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version); + + if (version != GGML_FILE_VERSION) { + fprintf(stderr, "%s: invalid version number\n", __func__); + return result; + } + + const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs); + const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes); + const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval); + const int graph_size = MAX(n_leafs, n_nodes); + + // create the data context + { + const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false); + + struct ggml_init_params params = { + .mem_size = size_eval + overhead, + .mem_buffer = NULL, + .no_alloc = true, + }; + + *ctx_eval = ggml_init(params); + + if (!*ctx_eval) { + fprintf(stderr, "%s: failed to create ggml context\n", __func__); + return result; + } + } + + result = ggml_new_graph_custom(*ctx_eval, graph_size, false); + + result->n_leafs = n_leafs; + result->n_nodes = n_nodes; + + + // leafs + { + uint32_t type; + uint32_t op; + + for (uint32_t i = 0; i < n_leafs; ++i) { + type = *(const uint32_t *) ptr; ptr += sizeof(type); + op = *(const uint32_t *) ptr; ptr += sizeof(op); + + int64_t ne[GGML_MAX_DIMS]; + size_t nb[GGML_MAX_DIMS]; + + for (int j = 0; j < GGML_MAX_DIMS; ++j) { + uint64_t ne_cur; + uint64_t nb_cur; + + ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur); + nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur); + + ne[j] = ne_cur; + nb[j] = nb_cur; + } + + struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne); + + tensor->op = (enum ggml_op) op; + + memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME; + memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS; + + tensor->data = (void *) ptr; + + for (int j = 0; j < GGML_MAX_DIMS; ++j) { + tensor->nb[j] = nb[j]; + } + + result->leafs[i] = tensor; + + ptr += ggml_nbytes(tensor); + + fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor)); + } + } + + ggml_set_no_alloc(*ctx_eval, false); + + // nodes + { + uint32_t type; + uint32_t op; + + for (uint32_t i = 0; i < n_nodes; ++i) { + type = *(const uint32_t *) ptr; ptr += sizeof(type); + op = *(const uint32_t *) ptr; ptr += sizeof(op); + + enum ggml_op eop = (enum ggml_op) op; + + int64_t ne[GGML_MAX_DIMS]; + size_t nb[GGML_MAX_DIMS]; + + for (int j = 0; j < GGML_MAX_DIMS; ++j) { + uint64_t ne_cur; + uint64_t nb_cur; + + ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur); + nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur); + + ne[j] = ne_cur; + nb[j] = nb_cur; + } + + const char * ptr_name = ptr; ptr += GGML_MAX_NAME; + const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS; + + const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t); + + struct ggml_tensor * args[GGML_MAX_SRC] = { NULL }; + + // parse args + for (int j = 0; j < GGML_MAX_SRC; ++j) { + const int32_t arg_idx = ptr_arg_idx[j]; + + if (arg_idx == -1) { + continue; + } + + if (arg_idx < result->n_leafs) { + args[j] = result->leafs[arg_idx]; + } else { + args[j] = result->nodes[arg_idx - result->n_leafs]; + } + } + + // create the tensor + // "view" operations are handled differently + // TODO: handle inplace ops - currently a copy is always made + + struct ggml_tensor * tensor = NULL; + + switch (eop) { + // TODO: implement other view ops + case GGML_OP_RESHAPE: + { + tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]); + } break; + case GGML_OP_VIEW: + { + tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0); + + size_t offs; + memcpy(&offs, ptr_op_params, sizeof(offs)); + + tensor->data = ((char *) tensor->data) + offs; + } break; + case GGML_OP_TRANSPOSE: + { + tensor = ggml_transpose(*ctx_eval, args[0]); + } break; + case GGML_OP_PERMUTE: + { + tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0); + } break; + default: + { + tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne); + + tensor->op = eop; + } break; + } + + memcpy(tensor->name, ptr_name, GGML_MAX_NAME); + memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS); + + for (int j = 0; j < GGML_MAX_DIMS; ++j) { + tensor->nb[j] = nb[j]; + } + + for (int j = 0; j < GGML_MAX_SRC; ++j) { + tensor->src[j] = args[j]; + } + + result->nodes[i] = tensor; + + fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor)); + } + } + } + + return result; +} + +void ggml_graph_print(const struct ggml_cgraph * cgraph) { + int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0}; + + GGML_PRINT("=== GRAPH ===\n"); + + GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes); + for (int i = 0; i < cgraph->n_nodes; i++) { + struct ggml_tensor * node = cgraph->nodes[i]; + + perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us); + + GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n", + i, + node->ne[0], node->ne[1], node->ne[2], + ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs, + (double) node->perf_cycles / (double) ggml_cycles_per_ms(), + (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs, + (double) node->perf_time_us / 1000.0, + (double) node->perf_time_us / 1000.0 / node->perf_runs); + } + + GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs); + for (int i = 0; i < cgraph->n_leafs; i++) { + struct ggml_tensor * node = cgraph->leafs[i]; + + GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n", + i, + node->ne[0], node->ne[1], + ggml_op_name(node->op), + ggml_get_name(node)); + } + + for (int i = 0; i < GGML_OP_COUNT; i++) { + if (perf_total_per_op_us[i] == 0) { + continue; + } + + GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0); + } + + GGML_PRINT("========================================\n"); +} + +// check if node is part of the graph +static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) { + if (cgraph == NULL) { + return true; + } + + for (int i = 0; i < cgraph->n_nodes; i++) { + if (cgraph->nodes[i] == node) { + return true; + } + } + + return false; +} + +static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) { + for (int i = 0; i < cgraph->n_nodes; i++) { + struct ggml_tensor * parent = cgraph->nodes[i]; + + if (parent->grad == node) { + return parent; + } + } + + return NULL; +} + +static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) { + struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node); + struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent); + fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n", + gparent0 ? (void *) gparent0 : (void *) parent, + gparent0 ? "g" : "x", + gparent ? (void *) gparent : (void *) node, + gparent ? "g" : "x", + gparent ? "empty" : "vee", + gparent ? "dashed" : "solid", + label); +} + +static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) { + fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n", + (void *) parent, "x", + (void *) node, "x", + label); +} + +void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) { + char color[16]; + + FILE * fp = ggml_fopen(filename, "w"); + GGML_ASSERT(fp); + + fprintf(fp, "digraph G {\n"); + fprintf(fp, " newrank = true;\n"); + fprintf(fp, " rankdir = LR;\n"); + + for (int i = 0; i < gb->n_nodes; i++) { + struct ggml_tensor * node = gb->nodes[i]; + + if (ggml_graph_get_parent(gb, node) != NULL) { + continue; + } + + if (node->flags & GGML_TENSOR_FLAG_PARAM) { + snprintf(color, sizeof(color), "yellow"); + } else if (node->grad) { + if (ggml_graph_find(gf, node)) { + snprintf(color, sizeof(color), "green"); + } else { + snprintf(color, sizeof(color), "lightblue"); + } + } else { + snprintf(color, sizeof(color), "white"); + } + + fprintf(fp, " \"%p\" [ " + "style = filled; fillcolor = %s; shape = record; " + "label=\"", + (void *) node, color); + + if (strlen(node->name) > 0) { + fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type)); + } else { + fprintf(fp, "(%s)|", ggml_type_name(node->type)); + } + + if (ggml_is_matrix(node)) { + fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | %s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op)); + } else { + fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | %s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op)); + } + + if (node->grad) { + fprintf(fp, " | %s\"; ]\n", ggml_op_symbol(node->grad->op)); + } else { + fprintf(fp, "\"; ]\n"); + } + } + + for (int i = 0; i < gb->n_leafs; i++) { + struct ggml_tensor * node = gb->leafs[i]; + + snprintf(color, sizeof(color), "pink"); + + fprintf(fp, " \"%p\" [ " + "style = filled; fillcolor = %s; shape = record; " + "label=\"", + (void *) node, color); + + if (strlen(node->name) > 0) { + fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type)); + } else { + fprintf(fp, "(%s)|", ggml_type_name(node->type)); + } + + fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]); + if (ggml_nelements(node) < 5) { + fprintf(fp, " | ("); + for (int j = 0; j < ggml_nelements(node); j++) { + if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) { + fprintf(fp, "%d", ggml_get_i32_1d(node, j)); + } + else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) { + fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j)); + } + else { + fprintf(fp, "#"); + } + if (j < ggml_nelements(node) - 1) { + fprintf(fp, ", "); + } + } + fprintf(fp, ")"); + } + fprintf(fp, "\"; ]\n"); + } + + for (int i = 0; i < gb->n_nodes; i++) { + struct ggml_tensor * node = gb->nodes[i]; + + for (int j = 0; j < GGML_MAX_SRC; j++) { + if (node->src[j]) { + char label[16]; + snprintf(label, sizeof(label), "src %d", j); + ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label); + } + } + } + + for (int i = 0; i < gb->n_leafs; i++) { + struct ggml_tensor * node = gb->leafs[i]; + + for (int j = 0; j < GGML_MAX_SRC; j++) { + if (node->src[j]) { + char label[16]; + snprintf(label, sizeof(label), "src %d", j); + ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label); + } + } + } + + fprintf(fp, "}\n"); + + fclose(fp); + + GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename); +} + +//////////////////////////////////////////////////////////////////////////////// + +static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) { + int i = 0; + for (int p = 0; p < np; ++p) { + const int64_t ne = ggml_nelements(ps[p]) ; + // TODO: add function to set tensor from array + for (int64_t j = 0; j < ne; ++j) { + ggml_set_f32_1d(ps[p], j, x[i++]); + } + } +} + +static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) { + int i = 0; + for (int p = 0; p < np; ++p) { + const int64_t ne = ggml_nelements(ps[p]) ; + // TODO: add function to get all elements at once + for (int64_t j = 0; j < ne; ++j) { + x[i++] = ggml_get_f32_1d(ps[p], j); + } + } +} + +static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) { + int64_t i = 0; + for (int p = 0; p < np; ++p) { + const int64_t ne = ggml_nelements(ps[p]) ; + // TODO: add function to get all elements at once + for (int64_t j = 0; j < ne; ++j) { + g[i++] = ggml_get_f32_1d(ps[p]->grad, j); + } + } +} + +static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) { + int64_t i = 0; + for (int p = 0; p < np; ++p) { + const int64_t ne = ggml_nelements(ps[p]) ; + // TODO: add function to get all elements at once + for (int64_t j = 0; j < ne; ++j) { + g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale; + } + } +} + +// +// Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf +// +// (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf) +// + +static enum ggml_opt_result ggml_opt_adam( + struct ggml_context * ctx, + struct ggml_opt_context * opt, + struct ggml_opt_params params, + struct ggml_tensor * f, + struct ggml_cgraph * gf, + struct ggml_cgraph * gb, + ggml_opt_callback callback, + void * callback_data) { + GGML_ASSERT(ggml_is_scalar(f)); + + // these will store the parameters we want to optimize + struct ggml_tensor * ps[GGML_MAX_PARAMS]; + + int np = 0; + int64_t nx = 0; + for (int i = 0; i < gf->n_nodes; ++i) { + if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) { + GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op); + + GGML_ASSERT(np < GGML_MAX_PARAMS); + + ps[np++] = gf->nodes[i]; + nx += ggml_nelements(gf->nodes[i]); + } + } + + if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) { + int iter = opt->iter; + ggml_opt_init(opt->ctx, opt, params, nx); + opt->iter = iter; + } + + // constants + float sched = params.adam.sched; + const float alpha = params.adam.alpha; + const float decay = params.adam.decay * alpha; + const float beta1 = params.adam.beta1; + const float beta2 = params.adam.beta2; + const float eps = params.adam.eps; + const float gclip = params.adam.gclip; + const int decay_min_ndim = params.adam.decay_min_ndim; + const int n_accum = MAX(1, params.n_gradient_accumulation); + const float accum_norm = 1.0f / (float) n_accum; + + float * g = opt->adam.g->data; // gradients + float * m = opt->adam.m->data; // first moment + float * v = opt->adam.v->data; // second moment + + float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values + + struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads); + struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size); + cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs; + + bool cancel = false; + + // compute the function value + float fx = 0; + ggml_set_zero(opt->adam.g); + for (int accum_step = 0; accum_step < n_accum; ++accum_step) { + if (callback) { + callback(callback_data, accum_step, &sched, &cancel); + if (cancel) { + return GGML_OPT_RESULT_CANCEL; + } + } + // ggml_graph_reset (gf); + ggml_set_f32 (f->grad, 1.0f); + ggml_graph_compute(gb, &cplan); + ggml_opt_acc_grad(np, ps, g, accum_norm); + fx += ggml_get_f32_1d(f, 0); + } + fx *= accum_norm; + + opt->adam.fx_prev = fx; + opt->adam.fx_best = opt->adam.fx_prev; + if (pf) { + pf[opt->iter % params.past] = opt->adam.fx_prev; + } + + opt->loss_before = opt->adam.fx_prev; + opt->loss_after = opt->adam.fx_prev; + + // initialize + if (opt->just_initialized) { + opt->adam.n_no_improvement = 0; + opt->just_initialized = false; + } + + float * fx_best = &opt->adam.fx_best; + float * fx_prev = &opt->adam.fx_prev; + int * n_no_improvement = &opt->adam.n_no_improvement; + + int iter0 = opt->iter; + + // run the optimizer + for (int t = 0; t < params.adam.n_iter; ++t) { + opt->iter = iter0 + t + 1; + GGML_PRINT_DEBUG ("=== iter %d ===\n", t); + + GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0)); + GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0)); + GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0)); + + for (int i = 0; i < np; ++i) { + GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i, + ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0)); + } + + const int64_t t_start_wall = ggml_time_us(); + const int64_t t_start_cpu = ggml_cycles(); + UNUSED(t_start_wall); + UNUSED(t_start_cpu); + + { + float gnorm = 1.0f; + if (gclip > 0.0f) { + // gradient clipping + ggml_float sum = 0.0; + for (int64_t i = 0; i < nx; ++i) { + sum += (ggml_float)(g[i]*g[i]); + } + ggml_float norm = sqrt(sum); + if (norm > (ggml_float) gclip) { + gnorm = (float) ((ggml_float) gclip / norm); + } + } + const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter)); + const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter)); + int64_t i = 0; + for (int p = 0; p < np; ++p) { + const int64_t ne = ggml_nelements(ps[p]); + const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched; + for (int64_t j = 0; j < ne; ++j) { + float x = ggml_get_f32_1d(ps[p], j); + float g_ = g[i]*gnorm; + m[i] = m[i]*beta1 + g_*(1.0f - beta1); + v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2); + float mh = m[i]*beta1h; + float vh = v[i]*beta2h; + vh = sqrtf(vh) + eps; + x = x*(1.0f - p_decay) - mh/vh; + ggml_set_f32_1d(ps[p], j, x); + ++i; + } + } + } + + fx = 0; + ggml_set_zero(opt->adam.g); + for (int accum_step = 0; accum_step < n_accum; ++accum_step) { + if (callback) { + callback(callback_data, accum_step, &sched, &cancel); + if (cancel) { + return GGML_OPT_RESULT_CANCEL;; + } + } + // ggml_graph_reset (gf); + ggml_set_f32 (f->grad, 1.0f); + ggml_graph_compute(gb, &cplan); + ggml_opt_acc_grad(np, ps, g, accum_norm); + fx += ggml_get_f32_1d(f, 0); + } + fx *= accum_norm; + + opt->loss_after = fx; + + // check convergence + if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) { + GGML_PRINT_DEBUG("converged\n"); + + return GGML_OPT_RESULT_OK; + } + + // delta-based convergence test + if (pf != NULL) { + // need at least params.past iterations to start checking for convergence + if (params.past <= iter0 + t) { + const float rate = (pf[(iter0 + t)%params.past] - fx)/fx; + + if (fabsf(rate) < params.delta) { + return GGML_OPT_RESULT_OK; + } + } + + pf[(iter0 + t)%params.past] = fx; + } + + // check for improvement + if (params.max_no_improvement > 0) { + if (fx_best[0] > fx) { + fx_best[0] = fx; + n_no_improvement[0] = 0; + } else { + ++n_no_improvement[0]; + + if (n_no_improvement[0] >= params.max_no_improvement) { + return GGML_OPT_RESULT_OK; + } + } + } + + fx_prev[0] = fx; + + { + const int64_t t_end_cpu = ggml_cycles(); + GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC); + UNUSED(t_end_cpu); + + const int64_t t_end_wall = ggml_time_us(); + GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6); + UNUSED(t_end_wall); + } + } + + return GGML_OPT_RESULT_DID_NOT_CONVERGE; +} + +// +// L-BFGS +// +// the L-BFGS implementation below is based on the following implementation: +// +// https://github.com/chokkan/liblbfgs +// + +struct ggml_lbfgs_iteration_data { + float alpha; + float ys; + float * s; + float * y; +}; + +static enum ggml_opt_result linesearch_backtracking( + const struct ggml_opt_params * params, + int nx, + float * x, + float * fx, + float * g, + float * d, + float * step, + const float * xp, + struct ggml_tensor * f, + struct ggml_cgraph * gb, + struct ggml_cplan * cplan, + const int np, + struct ggml_tensor * ps[], + bool * cancel, + ggml_opt_callback callback, + void * callback_data) { + int count = 0; + + float width = 0.0f; + float dg = 0.0f; + float finit = 0.0f; + float dginit = 0.0f; + float dgtest = 0.0f; + + const float dec = 0.5f; + const float inc = 2.1f; + + const int n_accum = MAX(1, params->n_gradient_accumulation); + const float accum_norm = 1.0f / (float) n_accum; + + if (*step <= 0.f) { + return GGML_LINESEARCH_INVALID_PARAMETERS; + } + + // compute the initial gradient in the search direction + ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1); + + // make sure that d points to a descent direction + if (0 < dginit) { + return GGML_LINESEARCH_FAIL; + } + + // initialize local variables + finit = *fx; + dgtest = params->lbfgs.ftol*dginit; + + while (true) { + ggml_vec_cpy_f32(nx, x, xp); + ggml_vec_mad_f32(nx, x, d, *step); + + // evaluate the function and gradient values + { + ggml_opt_set_params(np, ps, x); + + *fx = 0; + memset(g, 0, sizeof(float)*nx); + for (int accum_step = 0; accum_step < n_accum; ++accum_step) { + if (callback) { + // LBFG-S does not support learning rate -> ignore learning schedule + float sched = 0; + callback(callback_data, accum_step, &sched, cancel); + if (*cancel) { + return GGML_OPT_RESULT_CANCEL; + } + } + // ggml_graph_reset (gf); + ggml_set_f32 (f->grad, 1.0f); + ggml_graph_compute(gb, cplan); + ggml_opt_acc_grad(np, ps, g, accum_norm); + *fx += ggml_get_f32_1d(f, 0); + } + *fx *= accum_norm; + + } + + ++count; + + if (*fx > finit + (*step)*dgtest) { + width = dec; + } else { + // Armijo condition is satisfied + if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) { + return count; + } + + ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1); + + // check the Wolfe condition + if (dg < params->lbfgs.wolfe * dginit) { + width = inc; + } else { + if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) { + // regular Wolfe conditions + return count; + } + + if(dg > -params->lbfgs.wolfe*dginit) { + width = dec; + } else { + // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) + return count; + } + } + } + + if (*step < params->lbfgs.min_step) { + return GGML_LINESEARCH_MINIMUM_STEP; + } + if (*step > params->lbfgs.max_step) { + return GGML_LINESEARCH_MAXIMUM_STEP; + } + if (params->lbfgs.max_linesearch <= count) { + return GGML_LINESEARCH_MAXIMUM_ITERATIONS; + } + + (*step) *= width; + } + + GGML_ASSERT(false && "line search failed"); + + return GGML_LINESEARCH_FAIL; +} + +static enum ggml_opt_result ggml_opt_lbfgs( + struct ggml_context * ctx, + struct ggml_opt_context * opt, + struct ggml_opt_params params, + struct ggml_tensor * f, + struct ggml_cgraph * gf, + struct ggml_cgraph * gb, + ggml_opt_callback callback, + void * callback_data) { + if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE || + params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) { + if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) { + return GGML_OPT_RESULT_INVALID_WOLFE; + } + } + + const int m = params.lbfgs.m; + + // these will store the parameters we want to optimize + struct ggml_tensor * ps[GGML_MAX_PARAMS]; + + int np = 0; + int nx = 0; + for (int i = 0; i < gf->n_nodes; ++i) { + if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) { + GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op); + + GGML_ASSERT(np < GGML_MAX_PARAMS); + + ps[np++] = gf->nodes[i]; + nx += ggml_nelements(gf->nodes[i]); + } + } + + if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) { + int iter = opt->iter; + ggml_opt_init(ctx, opt, params, nx); + opt->iter = iter; + } + + struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads); + struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size); + cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs; + + float * x = opt->lbfgs.x->data; // current parameters + float * xp = opt->lbfgs.xp->data; // previous parameters + float * g = opt->lbfgs.g->data; // current gradient + float * gp = opt->lbfgs.gp->data; // previous gradient + float * d = opt->lbfgs.d->data; // search direction + + float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values + + const int n_accum = MAX(1, params.n_gradient_accumulation); + const float accum_norm = 1.0f / (float) n_accum; + + float fx = 0.0f; // cost function value + float xnorm = 0.0f; // ||x|| + float gnorm = 0.0f; // ||g|| + + // initialize x from the graph nodes + ggml_opt_get_params(np, ps, x); + + // the L-BFGS memory + float * lm_alpha = opt->lbfgs.lmal->data; + float * lm_ys = opt->lbfgs.lmys->data; + float * lm_s = opt->lbfgs.lms->data; + float * lm_y = opt->lbfgs.lmy->data; + + bool cancel = false; + + // evaluate the function value and its gradient + { + ggml_opt_set_params(np, ps, x); + + fx = 0; + memset(g, 0, sizeof(float)*nx); + for (int accum_step = 0; accum_step < n_accum; ++accum_step) { + if (callback) { + // LBFG-S does not support learning rate -> ignore learning schedule + float sched = 0; + callback(callback_data, accum_step, &sched, &cancel); + if (cancel) { + return GGML_OPT_RESULT_CANCEL; + } + } + // ggml_graph_reset (gf); + ggml_set_f32 (f->grad, 1.0f); + ggml_graph_compute(gb, &cplan); + ggml_opt_acc_grad(np, ps, g, accum_norm); + fx += ggml_get_f32_1d(f, 0); + } + fx *= accum_norm; + + opt->loss_before = fx; + opt->loss_after = fx; + } + + // search direction = -gradient + ggml_vec_neg_f32(nx, d, g); + + // ||x||, ||g|| + ggml_vec_norm_f32(nx, &xnorm, x); + ggml_vec_norm_f32(nx, &gnorm, g); + + if (xnorm < 1.0f) { + xnorm = 1.0f; + } + + // already optimized + if (gnorm/xnorm <= params.lbfgs.eps) { + return GGML_OPT_RESULT_OK; + } + + if (opt->just_initialized) { + if (pf) { + pf[0] = fx; + } + opt->lbfgs.fx_best = fx; + + // initial step + ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d); + opt->lbfgs.j = 0; + opt->lbfgs.k = 1; + opt->lbfgs.end = 0; + opt->lbfgs.n_no_improvement = 0; + opt->just_initialized = false; + } + + float * fx_best = &opt->lbfgs.fx_best; + float * step = &opt->lbfgs.step; + int * j = &opt->lbfgs.j; + int * k = &opt->lbfgs.k; + int * end = &opt->lbfgs.end; + int * n_no_improvement = &opt->lbfgs.n_no_improvement; + + int ls = 0; + int bound = 0; + + float ys = 0.0f; + float yy = 0.0f; + float beta = 0.0f; + + int it = 0; + + while (true) { + // store the current position and gradient vectors + ggml_vec_cpy_f32(nx, xp, x); + ggml_vec_cpy_f32(nx, gp, g); + + // TODO: instead of passing &cancel here, use the return code of the linesearch + // to determine if the optimization should be cancelled + // this is a simple change, but not doing this atm, since I don't have a nice + // way to test and don't want to break something with so many changes lined up + ls = linesearch_backtracking(¶ms, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data); + if (cancel) { + return GGML_OPT_RESULT_CANCEL; + } + + if (ls < 0) { + // linesearch failed - go back to the previous point and return + ggml_vec_cpy_f32(nx, x, xp); + ggml_vec_cpy_f32(nx, g, gp); + + return ls; + } + + opt->loss_after = fx; + + ggml_vec_norm_f32(nx, &xnorm, x); + ggml_vec_norm_f32(nx, &gnorm, g); + + GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0)); + + if (xnorm < 1.0f) { + xnorm = 1.0f; + } + if (gnorm/xnorm <= params.lbfgs.eps) { + // converged + return GGML_OPT_RESULT_OK; + } + + // delta-based convergence test + if (pf != NULL) { + // need at least params.past iterations to start checking for convergence + if (params.past <= k[0]) { + const float rate = (pf[k[0]%params.past] - fx)/fx; + + if (fabsf(rate) < params.delta) { + return GGML_OPT_RESULT_OK; + } + } + + pf[k[0]%params.past] = fx; + } + + // check for improvement + if (params.max_no_improvement > 0) { + if (fx < fx_best[0]) { + fx_best[0] = fx; + n_no_improvement[0] = 0; + } else { + n_no_improvement[0]++; + + if (n_no_improvement[0] >= params.max_no_improvement) { + return GGML_OPT_RESULT_OK; + } + } + } + + if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) { + // reached the maximum number of iterations + return GGML_OPT_RESULT_DID_NOT_CONVERGE; + } + + // update vectors s and y: + // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}. + // y_{k+1} = g_{k+1} - g_{k}. + // + ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp); + ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp); + + // compute scalars ys and yy: + // ys = y^t \cdot s -> 1 / \rho. + // yy = y^t \cdot y. + // + ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1); + ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1); + + lm_ys[end[0]] = ys; + + // find new search direction + // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS + + bound = (m <= k[0]) ? m : k[0]; + k[0]++; + it++; + end[0] = (end[0] + 1)%m; + + // initialize search direction with -g + ggml_vec_neg_f32(nx, d, g); + + j[0] = end[0]; + for (int i = 0; i < bound; ++i) { + j[0] = (j[0] + m - 1) % m; + // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1} + ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1); + lm_alpha[j[0]] /= lm_ys[j[0]]; + // q_{i} = q_{i+1} - \alpha_{i} y_{i} + ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]); + } + + ggml_vec_scale_f32(nx, d, ys/yy); + + for (int i = 0; i < bound; ++i) { + // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i} + ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1); + beta /= lm_ys[j[0]]; + // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j} + ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta); + j[0] = (j[0] + 1)%m; + } + + step[0] = 1.0; + } + + GGML_ASSERT(false && "lbfgs failed"); + + return GGML_OPT_RESULT_DID_NOT_CONVERGE; +} + +struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) { + struct ggml_opt_params result; + + switch (type) { + case GGML_OPT_TYPE_ADAM: + { + result = (struct ggml_opt_params) { + .type = GGML_OPT_TYPE_ADAM, + .graph_size = GGML_DEFAULT_GRAPH_SIZE, + .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ? + .past = 0, + .delta = 1e-5f, + + .max_no_improvement = 100, + + .print_forward_graph = true, + .print_backward_graph = true, + + .n_gradient_accumulation = 1, + + .adam = { + .n_iter = 10000, + .sched = 1.000f, + .decay = 0.0f, + .decay_min_ndim = 2, + .alpha = 0.001f, + .beta1 = 0.9f, + .beta2 = 0.999f, + .eps = 1e-8f, + .eps_f = 1e-5f, + .eps_g = 1e-3f, + .gclip = 0.0f, + }, + }; + } break; + case GGML_OPT_TYPE_LBFGS: + { + result = (struct ggml_opt_params) { + .type = GGML_OPT_TYPE_LBFGS, + .graph_size = GGML_DEFAULT_GRAPH_SIZE, + .n_threads = 1, + .past = 0, + .delta = 1e-5f, + + .max_no_improvement = 0, + + .print_forward_graph = true, + .print_backward_graph = true, + + .n_gradient_accumulation = 1, + + .lbfgs = { + .m = 6, + .n_iter = 100, + .max_linesearch = 20, + + .eps = 1e-5f, + .ftol = 1e-4f, + .wolfe = 0.9f, + .min_step = 1e-20f, + .max_step = 1e+20f, + + .linesearch = GGML_LINESEARCH_DEFAULT, + }, + }; + } break; + } + + return result; +} + +GGML_API void ggml_opt_init( + struct ggml_context * ctx, + struct ggml_opt_context * opt, + struct ggml_opt_params params, + int64_t nx) { + opt->ctx = ctx; + opt->params = params; + opt->iter = 0; + opt->nx = nx; + opt->just_initialized = true; + if (opt->ctx == NULL) { + struct ggml_init_params ctx_opt_params; + if (opt->params.type == GGML_OPT_TYPE_ADAM) { + ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3; + if (opt->params.past > 0) { + ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past; + } + } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) { + ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2); + if (opt->params.past > 0) { + ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past; + } + } + ctx_opt_params.mem_buffer = NULL; + ctx_opt_params.no_alloc = false; + + opt->ctx = ggml_init(ctx_opt_params); + } + switch (opt->params.type) { + case GGML_OPT_TYPE_ADAM: + { + opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); + opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); + opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); + opt->adam.pf = params.past > 0 + ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past) + : NULL; + ggml_set_zero(opt->adam.m); + ggml_set_zero(opt->adam.v); + if (opt->adam.pf) { + ggml_set_zero(opt->adam.pf); + } + } break; + case GGML_OPT_TYPE_LBFGS: + { + opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); + opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); + opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); + opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); + opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx); + opt->lbfgs.pf = params.past > 0 + ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past) + : NULL; + opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m); + opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m); + opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m); + opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m); + ggml_set_zero(opt->lbfgs.x); + ggml_set_zero(opt->lbfgs.xp); + ggml_set_zero(opt->lbfgs.g); + ggml_set_zero(opt->lbfgs.gp); + ggml_set_zero(opt->lbfgs.d); + if (opt->lbfgs.pf) { + ggml_set_zero(opt->lbfgs.pf); + } + ggml_set_zero(opt->lbfgs.lmal); + ggml_set_zero(opt->lbfgs.lmys); + ggml_set_zero(opt->lbfgs.lms); + ggml_set_zero(opt->lbfgs.lmy); + } break; + } +} + +enum ggml_opt_result ggml_opt( + struct ggml_context * ctx, + struct ggml_opt_params params, + struct ggml_tensor * f) { + bool free_ctx = false; + if (ctx == NULL) { + struct ggml_init_params params_ctx = { + .mem_size = 16*1024*1024, + .mem_buffer = NULL, + .no_alloc = false, + }; + + ctx = ggml_init(params_ctx); + if (ctx == NULL) { + return GGML_OPT_RESULT_NO_CONTEXT; + } + + free_ctx = true; + } + + enum ggml_opt_result result = GGML_OPT_RESULT_OK; + + struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context)); + + ggml_opt_init(ctx, opt, params, 0); + result = ggml_opt_resume(ctx, opt, f); + + if (free_ctx) { + ggml_free(ctx); + } + + return result; +} + +enum ggml_opt_result ggml_opt_resume( + struct ggml_context * ctx, + struct ggml_opt_context * opt, + struct ggml_tensor * f) { + + // build forward + backward compute graphs + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true); + ggml_build_forward_expand(gf, f); + + struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf); + ggml_build_backward_expand(ctx, gf, gb, true); + + return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL); +} + +enum ggml_opt_result ggml_opt_resume_g( + struct ggml_context * ctx, + struct ggml_opt_context * opt, + struct ggml_tensor * f, + struct ggml_cgraph * gf, + struct ggml_cgraph * gb, + ggml_opt_callback callback, + void * callback_data) { + + // build forward + backward compute graphs + enum ggml_opt_result result = GGML_OPT_RESULT_OK; + + switch (opt->params.type) { + case GGML_OPT_TYPE_ADAM: + { + result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data); + } break; + case GGML_OPT_TYPE_LBFGS: + { + result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data); + } break; + } + + if (opt->params.print_forward_graph) { + ggml_graph_print (gf); + ggml_graph_dump_dot(gf, NULL, "opt-forward.dot"); + } + + if (opt->params.print_backward_graph) { + ggml_graph_print (gb); + ggml_graph_dump_dot(gb, gf, "opt-backward.dot"); + } + + return result; +} + +//////////////////////////////////////////////////////////////////////////////// + +void ggml_set_input(struct ggml_tensor * tensor) { + tensor->flags |= GGML_TENSOR_FLAG_INPUT; +} + +void ggml_set_output(struct ggml_tensor * tensor) { + tensor->flags |= GGML_TENSOR_FLAG_OUTPUT; +} + +//////////////////////////////////////////////////////////////////////////////// + +void ggml_quantize_init(enum ggml_type type) { + ggml_critical_section_start(); + + switch (type) { + case GGML_TYPE_IQ2_XXS: + case GGML_TYPE_IQ2_XS: + case GGML_TYPE_IQ2_S: + case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break; + case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break; + case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break; + default: // nothing + break; + } + + ggml_critical_section_end(); +} + +void ggml_quantize_free(void) { + ggml_critical_section_start(); + + iq2xs_free_impl(GGML_TYPE_IQ2_XXS); + iq2xs_free_impl(GGML_TYPE_IQ2_XS); + iq2xs_free_impl(GGML_TYPE_IQ1_S); + iq3xs_free_impl(256); + + ggml_critical_section_end(); +} + +bool ggml_quantize_requires_imatrix(enum ggml_type type) { + return + type == GGML_TYPE_IQ2_XXS || + type == GGML_TYPE_IQ2_XS || + type == GGML_TYPE_IQ1_S;// || + //type == GGML_TYPE_IQ1_M; +} + +size_t ggml_quantize_chunk( + enum ggml_type type, + const float * src, + void * dst, + int64_t start, + int64_t nrows, + int64_t n_per_row, + const float * imatrix) { + const int64_t n = (int64_t) nrows * n_per_row; + + if (ggml_quantize_requires_imatrix(type)) { + GGML_ASSERT(imatrix != NULL); + } + + GGML_ASSERT(start % type_traits[type].blck_size == 0); + GGML_ASSERT(start % n_per_row == 0); + + ggml_quantize_init(type); // this is noop if already initialized + + const size_t start_row = start / n_per_row; + const size_t row_size = ggml_row_size(type, n_per_row); + + size_t result = 0; + + switch (type) { + case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; + case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; +#if QK_K == 64 + case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; +#else + case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break; +#endif + case GGML_TYPE_F16: + { + size_t elemsize = sizeof(ggml_fp16_t); + ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n); + result = n * elemsize; + } break; + case GGML_TYPE_F32: + { + size_t elemsize = sizeof(float); + result = n * elemsize; + memcpy((uint8_t *)dst + start * elemsize, src + start, result); + } break; + default: + assert(false); + } + + GGML_ASSERT(result == nrows * row_size); + + return result; +} + +//////////////////////////////////////////////////////////////////////////////// + +struct gguf_str { + uint64_t n; // GGUFv2 + char * data; +}; + +static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = { + [GGUF_TYPE_UINT8] = sizeof(uint8_t), + [GGUF_TYPE_INT8] = sizeof(int8_t), + [GGUF_TYPE_UINT16] = sizeof(uint16_t), + [GGUF_TYPE_INT16] = sizeof(int16_t), + [GGUF_TYPE_UINT32] = sizeof(uint32_t), + [GGUF_TYPE_INT32] = sizeof(int32_t), + [GGUF_TYPE_FLOAT32] = sizeof(float), + [GGUF_TYPE_BOOL] = sizeof(bool), + [GGUF_TYPE_STRING] = sizeof(struct gguf_str), + [GGUF_TYPE_UINT64] = sizeof(uint64_t), + [GGUF_TYPE_INT64] = sizeof(int64_t), + [GGUF_TYPE_FLOAT64] = sizeof(double), + [GGUF_TYPE_ARRAY] = 0, // undefined +}; +static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13"); + +static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = { + [GGUF_TYPE_UINT8] = "u8", + [GGUF_TYPE_INT8] = "i8", + [GGUF_TYPE_UINT16] = "u16", + [GGUF_TYPE_INT16] = "i16", + [GGUF_TYPE_UINT32] = "u32", + [GGUF_TYPE_INT32] = "i32", + [GGUF_TYPE_FLOAT32] = "f32", + [GGUF_TYPE_BOOL] = "bool", + [GGUF_TYPE_STRING] = "str", + [GGUF_TYPE_ARRAY] = "arr", + [GGUF_TYPE_UINT64] = "u64", + [GGUF_TYPE_INT64] = "i64", + [GGUF_TYPE_FLOAT64] = "f64", +}; +static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13"); + +union gguf_value { + uint8_t uint8; + int8_t int8; + uint16_t uint16; + int16_t int16; + uint32_t uint32; + int32_t int32; + float float32; + uint64_t uint64; + int64_t int64; + double float64; + bool bool_; + + struct gguf_str str; + + struct { + enum gguf_type type; + + uint64_t n; // GGUFv2 + void * data; + } arr; +}; + +struct gguf_kv { + struct gguf_str key; + + enum gguf_type type; + union gguf_value value; +}; + +struct gguf_header { + char magic[4]; + + uint32_t version; + uint64_t n_tensors; // GGUFv2 + uint64_t n_kv; // GGUFv2 +}; + +struct gguf_tensor_info { + struct gguf_str name; + + uint32_t n_dims; + uint64_t ne[GGML_MAX_DIMS]; + + enum ggml_type type; + + uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT` + + // for writing API + const void * data; + size_t size; +}; + +struct gguf_context { + struct gguf_header header; + + struct gguf_kv * kv; + struct gguf_tensor_info * infos; + + size_t alignment; + size_t offset; // offset of `data` from beginning of file + size_t size; // size of `data` in bytes + + //uint8_t * padding; + void * data; +}; + +static size_t gguf_type_size(enum gguf_type type) { + GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT); + return GGUF_TYPE_SIZE[type]; +} + +static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) { + GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS); + GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT); + + for (uint32_t i = 0; i < info->n_dims; ++i) { + GGML_ASSERT(info->ne[i] > 0); + } + + // prevent overflow for total number of elements + GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]); + GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]); + GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]); +} + +static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) { + const size_t n = fread(dst, 1, size, file); + *offset += n; + return n == size; +} + +static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) { + p->n = 0; + p->data = NULL; + + bool ok = true; + + ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); + + // early exit if string length is invalid, prevents from integer overflow + if (p->n == SIZE_MAX) { + fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n); + return false; + } + + p->data = GGML_CALLOC(p->n + 1, 1); + + ok = ok && gguf_fread_el(file, p->data, p->n, offset); + + return ok; +} + +static void gguf_free_kv(struct gguf_kv * kv) { + if (kv->key.data) { + GGML_FREE(kv->key.data); + } + + if (kv->type == GGUF_TYPE_STRING) { + if (kv->value.str.data) { + GGML_FREE(kv->value.str.data); + } + } + + if (kv->type == GGUF_TYPE_ARRAY) { + if (kv->value.arr.data) { + if (kv->value.arr.type == GGUF_TYPE_STRING) { + for (uint64_t j = 0; j < kv->value.arr.n; ++j) { + struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j]; + if (str->data) { + GGML_FREE(str->data); + } + } + } + GGML_FREE(kv->value.arr.data); + } + } +} + +struct gguf_context * gguf_init_empty(void) { + struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context)); + + memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic)); + ctx->header.version = GGUF_VERSION; + ctx->header.n_tensors = 0; + ctx->header.n_kv = 0; + + ctx->kv = NULL; + ctx->infos = NULL; + + ctx->alignment = GGUF_DEFAULT_ALIGNMENT; + ctx->offset = 0; + ctx->size = 0; + + ctx->data = NULL; + + return ctx; +} + +struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) { + FILE * file = ggml_fopen(fname, "rb"); + if (!file) { + return NULL; + } + + // offset from start of file + size_t offset = 0; + + char magic[4]; + + // check the magic before making allocations + { + gguf_fread_el(file, &magic, sizeof(magic), &offset); + + for (uint32_t i = 0; i < sizeof(magic); i++) { + if (magic[i] != GGUF_MAGIC[i]) { + fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]); + fclose(file); + return NULL; + } + } + } + + bool ok = true; + + struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context)); + + // read the header + { + strncpy(ctx->header.magic, magic, 4); + + ctx->kv = NULL; + ctx->infos = NULL; + ctx->data = NULL; + + ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset); + ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset); + ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset); + + if (ctx->header.version == 1) { + fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__); + fclose(file); + gguf_free(ctx); + return NULL; + } + + // sanity-checks to prevent from integer/buffer overflows + + ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info)); + ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead()); + ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv)); + + if (!ok) { + fprintf(stderr, "%s: failed to read header\n", __func__); + fclose(file); + gguf_free(ctx); + return NULL; + } + } + + // read the kv pairs + { + ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv)); + + for (uint64_t i = 0; i < ctx->header.n_kv; ++i) { + struct gguf_kv * kv = &ctx->kv[i]; + + //fprintf(stderr, "%s: reading kv %d\n", __func__, i); + + ok = ok && gguf_fread_str(file, &kv->key, &offset); + ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset); + + //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data); + + switch (kv->type) { + case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break; + case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break; + case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break; + case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break; + case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break; + case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break; + case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break; + case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break; + case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break; + case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break; + case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break; + case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break; + case GGUF_TYPE_ARRAY: + { + ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset); + ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset); + + switch (kv->value.arr.type) { + case GGUF_TYPE_UINT8: + case GGUF_TYPE_INT8: + case GGUF_TYPE_UINT16: + case GGUF_TYPE_INT16: + case GGUF_TYPE_UINT32: + case GGUF_TYPE_INT32: + case GGUF_TYPE_FLOAT32: + case GGUF_TYPE_UINT64: + case GGUF_TYPE_INT64: + case GGUF_TYPE_FLOAT64: + case GGUF_TYPE_BOOL: + { + // prevent from integer overflow in the malloc below + if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) { + fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n); + fclose(file); + gguf_free(ctx); + return NULL; + } + + kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type)); + + ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset); + } break; + case GGUF_TYPE_STRING: + { + // prevent from integer overflow in the malloc below + if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) { + fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n); + fclose(file); + gguf_free(ctx); + return NULL; + } + + kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str)); + + for (uint64_t j = 0; j < kv->value.arr.n; ++j) { + ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset); + } + } break; + case GGUF_TYPE_ARRAY: + default: GGML_ASSERT(false && "invalid type"); break; + } + } break; + default: GGML_ASSERT(false && "invalid type"); + } + + if (!ok) { + break; + } + } + + if (!ok) { + fprintf(stderr, "%s: failed to read key-value pairs\n", __func__); + fclose(file); + gguf_free(ctx); + return NULL; + } + } + + // read the tensor infos + { + ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info)); + + for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) { + struct gguf_tensor_info * info = &ctx->infos[i]; + + for (int j = 0; j < GGML_MAX_DIMS; ++j) { + info->ne[j] = 1; + } + + ok = ok && gguf_fread_str(file, &info->name, &offset); + ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset); + + ok = ok && (info->n_dims <= GGML_MAX_DIMS); + + for (uint32_t j = 0; j < info->n_dims; ++j) { + ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset); + } + + ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset); + ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset); + + gguf_tensor_info_sanitize(info); + + if (!ok) { + fprintf(stderr, "%s: failed to read tensor info\n", __func__); + fclose(file); + gguf_free(ctx); + return NULL; + } + } + } + + ctx->alignment = GGUF_DEFAULT_ALIGNMENT; + + int alignment_idx = gguf_find_key(ctx, "general.alignment"); + if (alignment_idx != -1) { + ctx->alignment = gguf_get_val_u32(ctx, alignment_idx); + } + + // we require the data section to be aligned, so take into account any padding + { + const size_t offset_pad = offset % ctx->alignment; + + if (offset_pad != 0) { + offset += ctx->alignment - offset_pad; + fseek(file, offset, SEEK_SET); + } + } + + // store the current file offset - this is where the data section starts + ctx->offset = offset; + + // compute the total size of the data section, taking into account the alignment + { + ctx->size = 0; + for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) { + struct gguf_tensor_info * info = &ctx->infos[i]; + + const int64_t ne = + (int64_t) info->ne[0] * + (int64_t) info->ne[1] * + (int64_t) info->ne[2] * + (int64_t) info->ne[3]; + + if (ne % ggml_blck_size(info->type) != 0) { + fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n", + __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type)); + fclose(file); + gguf_free(ctx); + return NULL; + } + + const size_t size_cur = ggml_row_size(info->type, ne); + + ctx->size += GGML_PAD(size_cur, ctx->alignment); + } + } + + // load the tensor data only if requested + if (params.ctx != NULL) { + // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob + // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of + // the ggml_tensor structs to the appropriate locations in the binary blob + + // compute the exact size needed for the new ggml_context + const size_t mem_size = + params.no_alloc ? + (ctx->header.n_tensors )*ggml_tensor_overhead() : + (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size; + + struct ggml_init_params pdata = { + .mem_size = mem_size, + .mem_buffer = NULL, + .no_alloc = params.no_alloc, + }; + + *params.ctx = ggml_init(pdata); + + struct ggml_context * ctx_data = *params.ctx; + + struct ggml_tensor * data = NULL; + + if (!params.no_alloc) { + data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size); + + ok = ok && data != NULL; + + // read the binary blob with the tensor data + ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset); + + if (!ok) { + fprintf(stderr, "%s: failed to read tensor data\n", __func__); + fclose(file); + ggml_free(ctx_data); + gguf_free(ctx); + return NULL; + } + + ctx->data = data->data; + } + + ggml_set_no_alloc(ctx_data, true); + + // create the tensors + for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) { + const int64_t ne[GGML_MAX_DIMS] = { + ctx->infos[i].ne[0], + ctx->infos[i].ne[1], + ctx->infos[i].ne[2], + ctx->infos[i].ne[3], + }; + + struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne); + + ok = ok && cur != NULL; + + if (!ok) { + break; + } + + ggml_set_name(cur, ctx->infos[i].name.data); + + // point the data member to the appropriate location in the binary blob using the tensor infos + if (!params.no_alloc) { + //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file + cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data + } + } + + if (!ok) { + fprintf(stderr, "%s: failed to read the tensor data\n", __func__); + fclose(file); + ggml_free(ctx_data); + gguf_free(ctx); + return NULL; + } + + ggml_set_no_alloc(ctx_data, params.no_alloc); + } + + fclose(file); + + return ctx; +} + +void gguf_free(struct gguf_context * ctx) { + if (ctx == NULL) { + return; + } + + if (ctx->kv) { + // free string memory - not great.. + for (uint64_t i = 0; i < ctx->header.n_kv; ++i) { + gguf_free_kv(&ctx->kv[i]); + } + + GGML_FREE(ctx->kv); + } + + if (ctx->infos) { + for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) { + struct gguf_tensor_info * info = &ctx->infos[i]; + + if (info->name.data) { + GGML_FREE(info->name.data); + } + } + + GGML_FREE(ctx->infos); + } + + GGML_ALIGNED_FREE(ctx); +} + +const char * gguf_type_name(enum gguf_type type) { + return GGUF_TYPE_NAME[type]; +} + +int gguf_get_version(const struct gguf_context * ctx) { + return ctx->header.version; +} + +size_t gguf_get_alignment(const struct gguf_context * ctx) { + return ctx->alignment; +} + +size_t gguf_get_data_offset(const struct gguf_context * ctx) { + return ctx->offset; +} + +void * gguf_get_data(const struct gguf_context * ctx) { + return ctx->data; +} + +int gguf_get_n_kv(const struct gguf_context * ctx) { + return ctx->header.n_kv; +} + +int gguf_find_key(const struct gguf_context * ctx, const char * key) { + // return -1 if key not found + int keyfound = -1; + + const int n_kv = gguf_get_n_kv(ctx); + + for (int i = 0; i < n_kv; ++i) { + if (strcmp(key, gguf_get_key(ctx, i)) == 0) { + keyfound = i; + break; + } + } + + return keyfound; +} + +const char * gguf_get_key(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + return ctx->kv[key_id].key.data; +} + +enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + return ctx->kv[key_id].type; +} + +enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY); + return ctx->kv[key_id].value.arr.type; +} + +const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY); + return ctx->kv[key_id].value.arr.data; +} + +const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY); + struct gguf_kv * kv = &ctx->kv[key_id]; + struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i]; + return str->data; +} + +int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY); + return ctx->kv[key_id].value.arr.n; +} + +uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8); + return ctx->kv[key_id].value.uint8; +} + +int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8); + return ctx->kv[key_id].value.int8; +} + +uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16); + return ctx->kv[key_id].value.uint16; +} + +int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16); + return ctx->kv[key_id].value.int16; +} + +uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32); + return ctx->kv[key_id].value.uint32; +} + +int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32); + return ctx->kv[key_id].value.int32; +} + +float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32); + return ctx->kv[key_id].value.float32; +} + +uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64); + return ctx->kv[key_id].value.uint64; +} + +int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64); + return ctx->kv[key_id].value.int64; +} + +double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64); + return ctx->kv[key_id].value.float64; +} + +bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL); + return ctx->kv[key_id].value.bool_; +} + +const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING); + return ctx->kv[key_id].value.str.data; +} + +const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) { + GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx)); + GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY); + GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING); + return &ctx->kv[key_id].value; +} + +int gguf_get_n_tensors(const struct gguf_context * ctx) { + return ctx->header.n_tensors; +} + +int gguf_find_tensor(const struct gguf_context * ctx, const char * name) { + // return -1 if tensor not found + int tensorfound = -1; + + const int n_tensors = gguf_get_n_tensors(ctx); + + for (int i = 0; i < n_tensors; ++i) { + if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) { + tensorfound = i; + break; + } + } + + return tensorfound; +} + +size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) { + return ctx->infos[i].offset; +} + +char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) { + return ctx->infos[i].name.data; +} + +enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) { + return ctx->infos[i].type; +} + +// returns the index +static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) { + const int idx = gguf_find_key(ctx, key); + if (idx >= 0) { + return idx; + } + + const int n_kv = gguf_get_n_kv(ctx); + + ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv)); + ctx->kv[n_kv].key.n = strlen(key); + ctx->kv[n_kv].key.data = strdup(key); + ctx->header.n_kv++; + + return n_kv; +} + +void gguf_remove_key(struct gguf_context * ctx, const char * key) { + const int idx = gguf_find_key(ctx, key); + if (idx >= 0) { + const int n_kv = gguf_get_n_kv(ctx); + gguf_free_kv(&ctx->kv[idx]); + for (int i = idx; i < n_kv-1; ++i) { + ctx->kv[i] = ctx->kv[i+1]; + } + ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv)); + ctx->header.n_kv--; + } +} + +void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) { + const int idx = gguf_get_or_add_key(ctx, key); + + ctx->kv[idx].type = GGUF_TYPE_UINT8; + ctx->kv[idx].value.uint8 = val; +} + +void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) { + const int idx = gguf_get_or_add_key(ctx, key); + + ctx->kv[idx].type = GGUF_TYPE_INT8; + ctx->kv[idx].value.int8 = val; +} + +void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) { + const int idx = gguf_get_or_add_key(ctx, key); + + ctx->kv[idx].type = GGUF_TYPE_UINT16; + ctx->kv[idx].value.uint16 = val; +} + +void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) { + const int idx = gguf_get_or_add_key(ctx, key); + + ctx->kv[idx].type = GGUF_TYPE_INT16; + ctx->kv[idx].value.int16 = val; +} + +void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) { + const int idx = gguf_get_or_add_key(ctx, key); + + ctx->kv[idx].type = GGUF_TYPE_UINT32; + ctx->kv[idx].value.uint32 = val; +} + +void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) { + const int idx = gguf_get_or_add_key(ctx, key); + + ctx->kv[idx].type = GGUF_TYPE_INT32; + ctx->kv[idx].value.int32 = val; +} + +void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) { + const int idx = gguf_get_or_add_key(ctx, key); + + ctx->kv[idx].type = GGUF_TYPE_FLOAT32; + ctx->kv[idx].value.float32 = val; +} + +void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) { + const int idx = gguf_get_or_add_key(ctx, key); + + ctx->kv[idx].type = GGUF_TYPE_UINT64; + ctx->kv[idx].value.uint64 = val; +} + +void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) { + const int idx = gguf_get_or_add_key(ctx, key); + + ctx->kv[idx].type = GGUF_TYPE_INT64; + ctx->kv[idx].value.int64 = val; +} + +void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) { + const int idx = gguf_get_or_add_key(ctx, key); + + ctx->kv[idx].type = GGUF_TYPE_FLOAT64; + ctx->kv[idx].value.float64 = val; +} + +void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) { + const int idx = gguf_get_or_add_key(ctx, key); + + ctx->kv[idx].type = GGUF_TYPE_BOOL; + ctx->kv[idx].value.bool_ = val; +} + +void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) { + const int idx = gguf_get_or_add_key(ctx, key); + + ctx->kv[idx].type = GGUF_TYPE_STRING; + ctx->kv[idx].value.str.n = strlen(val); + ctx->kv[idx].value.str.data = strdup(val); +} + +void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) { + const int idx = gguf_get_or_add_key(ctx, key); + + ctx->kv[idx].type = GGUF_TYPE_ARRAY; + ctx->kv[idx].value.arr.type = type; + ctx->kv[idx].value.arr.n = n; + ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type)); + memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type)); +} + +void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) { + const int idx = gguf_get_or_add_key(ctx, key); + + ctx->kv[idx].type = GGUF_TYPE_ARRAY; + ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING; + ctx->kv[idx].value.arr.n = n; + ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str)); + for (int i = 0; i < n; i++) { + struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i]; + str->n = strlen(data[i]); + str->data = strdup(data[i]); + } +} + +// set or add KV pairs from another context +void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) { + for (uint32_t i = 0; i < src->header.n_kv; i++) { + switch (src->kv[i].type) { + case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break; + case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break; + case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break; + case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break; + case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break; + case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break; + case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break; + case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break; + case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break; + case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break; + case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break; + case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break; + case GGUF_TYPE_ARRAY: + { + if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) { + const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *)); + for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) { + data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data; + } + gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n); + GGML_FREE((void *)data); + } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) { + GGML_ASSERT(false && "nested arrays not supported"); + } else { + gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n); + } + } break; + default: GGML_ASSERT(false && "invalid type"); break; + } + } +} + +void gguf_add_tensor( + struct gguf_context * ctx, + const struct ggml_tensor * tensor) { + const int idx = ctx->header.n_tensors; + ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info)); + + ctx->infos[idx].name.n = strlen(tensor->name); + ctx->infos[idx].name.data = strdup(tensor->name); + + for (int i = 0; i < GGML_MAX_DIMS; ++i) { + ctx->infos[idx].ne[i] = 1; + } + + ctx->infos[idx].n_dims = ggml_n_dims(tensor); + for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) { + ctx->infos[idx].ne[i] = tensor->ne[i]; + } + + ctx->infos[idx].type = tensor->type; + ctx->infos[idx].offset = 0; + ctx->infos[idx].data = tensor->data; + ctx->infos[idx].size = ggml_nbytes(tensor); + + if (ctx->header.n_tensors > 0) { + ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment); + } + + ctx->header.n_tensors++; +} + +void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) { + const int idx = gguf_find_tensor(ctx, name); + if (idx < 0) { + GGML_ASSERT(false && "tensor not found"); + } + + ctx->infos[idx].type = type; +} + +void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) { + const int idx = gguf_find_tensor(ctx, name); + if (idx < 0) { + GGML_ASSERT(false && "tensor not found"); + } + + ctx->infos[idx].data = data; + ctx->infos[idx].size = size; + + // update offsets + for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) { + ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment); + } +} + +//static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) { +// fwrite(&val->n, sizeof(val->n), 1, file); +// fwrite(val->data, sizeof(char), val->n, file); +//} +// +//static void gguf_fwrite_el(FILE * file, const void * val, size_t size) { +// fwrite(val, sizeof(char), size, file); +//} + +struct gguf_buf { + void * data; + size_t size; + size_t offset; +}; + +static struct gguf_buf gguf_buf_init(size_t size) { + struct gguf_buf buf = { + /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size), + /*buf.size =*/ size, + /*buf.offset =*/ 0, + }; + + return buf; +} + +static void gguf_buf_free(struct gguf_buf buf) { + if (buf.data) { + GGML_FREE(buf.data); + } +} + +static void gguf_buf_grow(struct gguf_buf * buf, size_t size) { + if (buf->offset + size > buf->size) { + buf->size = 1.5*(buf->offset + size); + if (buf->data) { + buf->data = realloc(buf->data, buf->size); + } + } +} + +static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) { + gguf_buf_grow(buf, sizeof(val->n) + val->n); + + if (buf->data) { + memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n)); + } + buf->offset += sizeof(val->n); + + if (buf->data) { + memcpy((char *) buf->data + buf->offset, val->data, val->n); + } + buf->offset += val->n; +} + +static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) { + gguf_buf_grow(buf, el_size); + + if (buf->data) { + memcpy((char *) buf->data + buf->offset, val, el_size); + } + buf->offset += el_size; +} + +static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) { + // write header + gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic)); + gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version)); + gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors)); + gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv)); + + // write key-value pairs + for (uint32_t i = 0; i < ctx->header.n_kv; ++i) { + struct gguf_kv * kv = &ctx->kv[i]; + + gguf_bwrite_str(buf, &kv->key); + gguf_bwrite_el (buf, &kv->type, sizeof(kv->type)); + + switch (kv->type) { + case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break; + case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break; + case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break; + case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break; + case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break; + case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break; + case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break; + case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break; + case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break; + case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break; + case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break; + case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break; + case GGUF_TYPE_ARRAY: + { + gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type)); + gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) ); + + switch (kv->value.arr.type) { + case GGUF_TYPE_UINT8: + case GGUF_TYPE_INT8: + case GGUF_TYPE_UINT16: + case GGUF_TYPE_INT16: + case GGUF_TYPE_UINT32: + case GGUF_TYPE_INT32: + case GGUF_TYPE_FLOAT32: + case GGUF_TYPE_UINT64: + case GGUF_TYPE_INT64: + case GGUF_TYPE_FLOAT64: + case GGUF_TYPE_BOOL: + { + gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type)); + } break; + case GGUF_TYPE_STRING: + { + for (uint32_t j = 0; j < kv->value.arr.n; ++j) { + gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]); + } + } break; + case GGUF_TYPE_ARRAY: + default: GGML_ASSERT(false && "invalid type"); break; + } + } break; + default: GGML_ASSERT(false && "invalid type"); + } + } + + // write tensor infos + for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) { + struct gguf_tensor_info * info = &ctx->infos[i]; + + gguf_bwrite_str(buf, &info->name); + gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims)); + for (uint32_t j = 0; j < info->n_dims; ++j) { + gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j])); + } + gguf_bwrite_el(buf, &info->type, sizeof(info->type)); + gguf_bwrite_el(buf, &info->offset, sizeof(info->offset)); + } + + // we require the data section to be aligned, so take into account any padding + { + const size_t offset = buf->offset; + const size_t offset_pad = GGML_PAD(offset, ctx->alignment); + + if (offset_pad != offset) { + uint8_t pad = 0; + for (size_t i = 0; i < offset_pad - offset; ++i) { + gguf_bwrite_el(buf, &pad, sizeof(pad)); + } + } + } + + if (only_meta) { + return; + } + + size_t offset = 0; + + // write tensor data + for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) { + struct gguf_tensor_info * info = &ctx->infos[i]; + + const size_t size = info->size; + const size_t size_pad = GGML_PAD(size, ctx->alignment); + + gguf_bwrite_el(buf, info->data, size); + + if (size_pad != size) { + uint8_t pad = 0; + for (size_t j = 0; j < size_pad - size; ++j) { + gguf_bwrite_el(buf, &pad, sizeof(pad)); + } + } + + GGML_ASSERT(offset == info->offset); + + offset += size_pad; + } +} + +void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) { + FILE * file = ggml_fopen(fname, "wb"); + if (!file) { + GGML_ASSERT(false && "failed to open file for writing"); + } + + struct gguf_buf buf = gguf_buf_init(16*1024); + + gguf_write_to_buf(ctx, &buf, only_meta); + + fwrite(buf.data, 1, buf.offset, file); + + gguf_buf_free(buf); + + fclose(file); +} + +size_t gguf_get_meta_size(const struct gguf_context * ctx) { + // no allocs - only compute size + struct gguf_buf buf = gguf_buf_init(0); + + gguf_write_to_buf(ctx, &buf, true); + + return buf.offset; +} + +void gguf_get_meta_data(const struct gguf_context * ctx, void * data) { + struct gguf_buf buf = gguf_buf_init(16*1024); + + gguf_write_to_buf(ctx, &buf, true); + + memcpy(data, buf.data, buf.offset); + + gguf_buf_free(buf); +} + +//////////////////////////////////////////////////////////////////////////////// + +int ggml_cpu_has_avx(void) { +#if defined(__AVX__) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_avx_vnni(void) { +#if defined(__AVXVNNI__) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_avx2(void) { +#if defined(__AVX2__) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_avx512(void) { +#if defined(__AVX512F__) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_avx512_vbmi(void) { +#if defined(__AVX512VBMI__) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_avx512_vnni(void) { +#if defined(__AVX512VNNI__) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_fma(void) { +#if defined(__FMA__) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_neon(void) { +#if defined(__ARM_NEON) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_arm_fma(void) { +#if defined(__ARM_FEATURE_FMA) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_metal(void) { +#if defined(GGML_USE_METAL) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_f16c(void) { +#if defined(__F16C__) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_fp16_va(void) { +#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_wasm_simd(void) { +#if defined(__wasm_simd128__) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_blas(void) { +#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_cuda(void) { +#if defined(GGML_USE_CUDA) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_clblast(void) { +#if defined(GGML_USE_CLBLAST) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_vulkan(void) { +#if defined(GGML_USE_VULKAN) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_kompute(void) { +#if defined(GGML_USE_KOMPUTE) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_sycl(void) { +#if defined(GGML_USE_SYCL) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_gpublas(void) { + return ggml_cpu_has_cuda() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() || + ggml_cpu_has_sycl(); +} + +int ggml_cpu_has_sse3(void) { +#if defined(__SSE3__) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_ssse3(void) { +#if defined(__SSSE3__) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_vsx(void) { +#if defined(__POWER9_VECTOR__) + return 1; +#else + return 0; +#endif +} + +int ggml_cpu_has_matmul_int8(void) { +#if defined(__ARM_FEATURE_MATMUL_INT8) + return 1; +#else + return 0; +#endif +} + +//////////////////////////////////////////////////////////////////////////////// diff --git a/llama/ggml.h b/llama/ggml.h new file mode 100644 index 00000000..4d1d77fe --- /dev/null +++ b/llama/ggml.h @@ -0,0 +1,2403 @@ +#pragma once + +// +// GGML Tensor Library +// +// This documentation is still a work in progress. +// If you wish some specific topics to be covered, feel free to drop a comment: +// +// https://github.com/ggerganov/whisper.cpp/issues/40 +// +// ## Overview +// +// This library implements: +// +// - a set of tensor operations +// - automatic differentiation +// - basic optimization algorithms +// +// The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes, +// but is not limited to, the following: +// +// - linear regression +// - support vector machines +// - neural networks +// +// The library allows the user to define a certain function using the available tensor operations. This function +// definition is represented internally via a computation graph. Each tensor operation in the function definition +// corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the +// function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized +// using one of the available optimization algorithms. +// +// For example, here we define the function: f(x) = a*x^2 + b +// +// { +// struct ggml_init_params params = { +// .mem_size = 16*1024*1024, +// .mem_buffer = NULL, +// }; +// +// // memory allocation happens here +// struct ggml_context * ctx = ggml_init(params); +// +// struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1); +// +// ggml_set_param(ctx, x); // x is an input variable +// +// struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1); +// struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1); +// struct ggml_tensor * x2 = ggml_mul(ctx, x, x); +// struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b); +// +// ... +// } +// +// Notice that the function definition above does not involve any actual computation. The computation is performed only +// when the user explicitly requests it. For example, to compute the function's value at x = 2.0: +// +// { +// ... +// +// struct ggml_cgraph * gf = ggml_new_graph(ctx); +// ggml_build_forward_expand(gf, f); +// +// // set the input variable and parameter values +// ggml_set_f32(x, 2.0f); +// ggml_set_f32(a, 3.0f); +// ggml_set_f32(b, 4.0f); +// +// ggml_graph_compute_with_ctx(ctx, &gf, n_threads); +// +// printf("f = %f\n", ggml_get_f32_1d(f, 0)); +// +// ... +// } +// +// The actual computation is performed in the ggml_graph_compute() function. +// +// The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the +// ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know +// in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory +// and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was +// actually needed. +// +// The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic +// differentiation and optimization algorithms. +// +// The described approach allows to define the function graph once and then compute its forward or backward graphs +// multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way +// the user can avoid the memory allocation overhead at runtime. +// +// The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class +// citizens, but in theory the library can be extended to support FP8 and integer data types. +// +// Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary +// and binary operations. Most of the available operations fall into one of these two categories. With time, it became +// clear that the library needs to support more complex operations. The way to support these operations is not clear +// yet, but a few examples are demonstrated in the following operations: +// +// - ggml_permute() +// - ggml_conv_1d_1s() +// - ggml_conv_1d_2s() +// +// For each tensor operator, the library implements a forward and backward computation function. The forward function +// computes the output tensor value given the input tensor values. The backward function computes the adjoint of the +// input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a +// calculus class, or watch the following video: +// +// What is Automatic Differentiation? +// https://www.youtube.com/watch?v=wG_nF1awSSY +// +// +// ## Tensor data (struct ggml_tensor) +// +// The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of +// the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains +// pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example: +// +// { +// struct ggml_tensor * c = ggml_add(ctx, a, b); +// +// assert(c->src[0] == a); +// assert(c->src[1] == b); +// } +// +// The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the +// number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows +// to store tensors that are not contiguous in memory, which is useful for operations such as transposition and +// permutation. All tensor operations have to take the stride into account and not assume that the tensor is +// contiguous in memory. +// +// The data of the tensor is accessed via the "data" pointer. For example: +// +// { +// const int nx = 2; +// const int ny = 3; +// +// struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny); +// +// for (int y = 0; y < ny; y++) { +// for (int x = 0; x < nx; x++) { +// *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y; +// } +// } +// +// ... +// } +// +// Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used. +// +// ## The matrix multiplication operator (ggml_mul_mat) +// +// TODO +// +// +// ## Multi-threading +// +// TODO +// +// +// ## Overview of ggml.c +// +// TODO +// +// +// ## SIMD optimizations +// +// TODO +// +// +// ## Debugging ggml +// +// TODO +// +// + +#ifdef GGML_SHARED +# if defined(_WIN32) && !defined(__MINGW32__) +# ifdef GGML_BUILD +# define GGML_API __declspec(dllexport) +# else +# define GGML_API __declspec(dllimport) +# endif +# else +# define GGML_API __attribute__ ((visibility ("default"))) +# endif +#else +# define GGML_API +#endif + +#ifdef GGML_MULTIPLATFORM +# if defined(_WIN32) +# define GGML_CALL +# else +# define GGML_CALL __attribute__((__ms_abi__)) +# endif +#else +# define GGML_CALL +#endif + +// TODO: support for clang +#ifdef __GNUC__ +# define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint))) +#elif defined(_MSC_VER) +# define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func +#else +# define GGML_DEPRECATED(func, hint) func +#endif + +#ifndef __GNUC__ +# define GGML_ATTRIBUTE_FORMAT(...) +#elif defined(__MINGW32__) +# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__))) +#else +# define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__))) +#endif + +#include +#include +#include +#include + +#define GGML_FILE_MAGIC 0x67676d6c // "ggml" +#define GGML_FILE_VERSION 1 + +#define GGML_QNT_VERSION 2 // bump this on quantization format changes +#define GGML_QNT_VERSION_FACTOR 1000 // do not change this + +#define GGML_MAX_DIMS 4 +#define GGML_MAX_PARAMS 2048 +#define GGML_MAX_CONTEXTS 64 +#define GGML_MAX_SRC 10 +#ifndef GGML_MAX_NAME +#define GGML_MAX_NAME 64 +#endif +#define GGML_MAX_OP_PARAMS 64 +#define GGML_DEFAULT_N_THREADS 4 +#define GGML_DEFAULT_GRAPH_SIZE 2048 +#if UINTPTR_MAX == 0xFFFFFFFF + #define GGML_MEM_ALIGN 4 +#else + #define GGML_MEM_ALIGN 16 +#endif + +#define GGML_EXIT_SUCCESS 0 +#define GGML_EXIT_ABORTED 1 + +#define GGUF_MAGIC "GGUF" + +#define GGUF_VERSION 3 + +#define GGUF_DEFAULT_ALIGNMENT 32 + +#define GGML_UNUSED(x) (void)(x) + +#define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1)) + +#define GGML_ASSERT(x) \ + do { \ + if (!(x)) { \ + fflush(stdout); \ + fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \ + ggml_print_backtrace(); \ + abort(); \ + } \ + } while (0) + +#ifndef NDEBUG +#define GGML_UNREACHABLE() GGML_ASSERT(!"statement should not be reached") +#elif defined(__GNUC__) +#define GGML_UNREACHABLE() __builtin_unreachable() +#elif defined(_MSC_VER) +#define GGML_UNREACHABLE() __assume(0) +#else +#define GGML_UNREACHABLE() ((void) 0) +#endif + +// used to copy the number of elements and stride in bytes of tensors into local variables. +// main purpose is to reduce code duplication and improve readability. +// +// example: +// +// GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); +// GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); +// +#define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \ + const type prefix##0 = (pointer)->array[0]; \ + GGML_UNUSED(prefix##0); +#define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \ + GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \ + const type prefix##1 = (pointer)->array[1]; \ + GGML_UNUSED(prefix##1); +#define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \ + GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \ + const type prefix##2 = (pointer)->array[2]; \ + GGML_UNUSED(prefix##2); +#define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \ + GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \ + const type prefix##3 = (pointer)->array[3]; \ + GGML_UNUSED(prefix##3); + +#define GGML_TENSOR_UNARY_OP_LOCALS \ + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \ + GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \ + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \ + GGML_TENSOR_LOCALS(size_t, nb, dst, nb) + +#define GGML_TENSOR_BINARY_OP_LOCALS \ + GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \ + GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \ + GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \ + GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \ + GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \ + GGML_TENSOR_LOCALS(size_t, nb, dst, nb) + +#ifdef __cplusplus +extern "C" { +#endif + + enum ggml_status { + GGML_STATUS_ALLOC_FAILED = -2, + GGML_STATUS_FAILED = -1, + GGML_STATUS_SUCCESS = 0, + GGML_STATUS_ABORTED = 1, + }; + + // get ggml_status name string + GGML_API GGML_CALL const char * ggml_status_to_string(enum ggml_status status); + + typedef uint16_t ggml_fp16_t; + + // convert FP16 <-> FP32 + GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x); + GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x); + + GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n); + GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n); + + struct ggml_object; + struct ggml_context; + + // NOTE: always add types at the end of the enum to keep backward compatibility + enum ggml_type { + GGML_TYPE_F32 = 0, + GGML_TYPE_F16 = 1, + GGML_TYPE_Q4_0 = 2, + GGML_TYPE_Q4_1 = 3, + // GGML_TYPE_Q4_2 = 4, support has been removed + // GGML_TYPE_Q4_3 = 5, support has been removed + GGML_TYPE_Q5_0 = 6, + GGML_TYPE_Q5_1 = 7, + GGML_TYPE_Q8_0 = 8, + GGML_TYPE_Q8_1 = 9, + GGML_TYPE_Q2_K = 10, + GGML_TYPE_Q3_K = 11, + GGML_TYPE_Q4_K = 12, + GGML_TYPE_Q5_K = 13, + GGML_TYPE_Q6_K = 14, + GGML_TYPE_Q8_K = 15, + GGML_TYPE_IQ2_XXS = 16, + GGML_TYPE_IQ2_XS = 17, + GGML_TYPE_IQ3_XXS = 18, + GGML_TYPE_IQ1_S = 19, + GGML_TYPE_IQ4_NL = 20, + GGML_TYPE_IQ3_S = 21, + GGML_TYPE_IQ2_S = 22, + GGML_TYPE_IQ4_XS = 23, + GGML_TYPE_I8 = 24, + GGML_TYPE_I16 = 25, + GGML_TYPE_I32 = 26, + GGML_TYPE_I64 = 27, + GGML_TYPE_F64 = 28, + GGML_TYPE_IQ1_M = 29, + GGML_TYPE_COUNT, + }; + + // precision + enum ggml_prec { + GGML_PREC_DEFAULT, + GGML_PREC_F32, + }; + + enum ggml_backend_type { + GGML_BACKEND_TYPE_CPU = 0, + GGML_BACKEND_TYPE_GPU = 10, + GGML_BACKEND_TYPE_GPU_SPLIT = 20, + }; + + // model file types + enum ggml_ftype { + GGML_FTYPE_UNKNOWN = -1, + GGML_FTYPE_ALL_F32 = 0, + GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors + GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors + GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors + GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16 + GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors + GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors + GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors + GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors + GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors + GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors + GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors + GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors + GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors + GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors + GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors + GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors + GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors + GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors + GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors + GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors + GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors + }; + + // available tensor operations: + enum ggml_op { + GGML_OP_NONE = 0, + + GGML_OP_DUP, + GGML_OP_ADD, + GGML_OP_ADD1, + GGML_OP_ACC, + GGML_OP_SUB, + GGML_OP_MUL, + GGML_OP_DIV, + GGML_OP_SQR, + GGML_OP_SQRT, + GGML_OP_LOG, + GGML_OP_SUM, + GGML_OP_SUM_ROWS, + GGML_OP_MEAN, + GGML_OP_ARGMAX, + GGML_OP_REPEAT, + GGML_OP_REPEAT_BACK, + GGML_OP_CONCAT, + GGML_OP_SILU_BACK, + GGML_OP_NORM, // normalize + GGML_OP_RMS_NORM, + GGML_OP_RMS_NORM_BACK, + GGML_OP_GROUP_NORM, + + GGML_OP_MUL_MAT, + GGML_OP_MUL_MAT_ID, + GGML_OP_OUT_PROD, + + GGML_OP_SCALE, + GGML_OP_SET, + GGML_OP_CPY, + GGML_OP_CONT, + GGML_OP_RESHAPE, + GGML_OP_VIEW, + GGML_OP_PERMUTE, + GGML_OP_TRANSPOSE, + GGML_OP_GET_ROWS, + GGML_OP_GET_ROWS_BACK, + GGML_OP_DIAG, + GGML_OP_DIAG_MASK_INF, + GGML_OP_DIAG_MASK_ZERO, + GGML_OP_SOFT_MAX, + GGML_OP_SOFT_MAX_BACK, + GGML_OP_ROPE, + GGML_OP_ROPE_BACK, + GGML_OP_ALIBI, + GGML_OP_CLAMP, + GGML_OP_CONV_TRANSPOSE_1D, + GGML_OP_IM2COL, + GGML_OP_CONV_TRANSPOSE_2D, + GGML_OP_POOL_1D, + GGML_OP_POOL_2D, + GGML_OP_UPSCALE, // nearest interpolate + GGML_OP_PAD, + GGML_OP_ARANGE, + GGML_OP_TIMESTEP_EMBEDDING, + GGML_OP_ARGSORT, + GGML_OP_LEAKY_RELU, + + GGML_OP_FLASH_ATTN, + GGML_OP_FLASH_FF, + GGML_OP_FLASH_ATTN_BACK, + GGML_OP_SSM_CONV, + GGML_OP_SSM_SCAN, + GGML_OP_WIN_PART, + GGML_OP_WIN_UNPART, + GGML_OP_GET_REL_POS, + GGML_OP_ADD_REL_POS, + + GGML_OP_UNARY, + + GGML_OP_MAP_UNARY, + GGML_OP_MAP_BINARY, + + GGML_OP_MAP_CUSTOM1_F32, + GGML_OP_MAP_CUSTOM2_F32, + GGML_OP_MAP_CUSTOM3_F32, + + GGML_OP_MAP_CUSTOM1, + GGML_OP_MAP_CUSTOM2, + GGML_OP_MAP_CUSTOM3, + + GGML_OP_CROSS_ENTROPY_LOSS, + GGML_OP_CROSS_ENTROPY_LOSS_BACK, + + GGML_OP_COUNT, + }; + + enum ggml_unary_op { + GGML_UNARY_OP_ABS, + GGML_UNARY_OP_SGN, + GGML_UNARY_OP_NEG, + GGML_UNARY_OP_STEP, + GGML_UNARY_OP_TANH, + GGML_UNARY_OP_ELU, + GGML_UNARY_OP_RELU, + GGML_UNARY_OP_GELU, + GGML_UNARY_OP_GELU_QUICK, + GGML_UNARY_OP_SILU, + GGML_UNARY_OP_HARDSWISH, + GGML_UNARY_OP_HARDSIGMOID, + + GGML_UNARY_OP_COUNT, + }; + + enum ggml_object_type { + GGML_OBJECT_TYPE_TENSOR, + GGML_OBJECT_TYPE_GRAPH, + GGML_OBJECT_TYPE_WORK_BUFFER + }; + + enum ggml_log_level { + GGML_LOG_LEVEL_ERROR = 2, + GGML_LOG_LEVEL_WARN = 3, + GGML_LOG_LEVEL_INFO = 4, + GGML_LOG_LEVEL_DEBUG = 5 + }; + + enum ggml_tensor_flag { + GGML_TENSOR_FLAG_INPUT = 1, + GGML_TENSOR_FLAG_OUTPUT = 2, + GGML_TENSOR_FLAG_PARAM = 4, + }; + + // ggml object + struct ggml_object { + size_t offs; + size_t size; + + struct ggml_object * next; + + enum ggml_object_type type; + + char padding[4]; + }; + + static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object); + + // n-dimensional tensor + struct ggml_tensor { + enum ggml_type type; + enum ggml_backend_type backend; + + struct ggml_backend_buffer * buffer; + + int64_t ne[GGML_MAX_DIMS]; // number of elements + size_t nb[GGML_MAX_DIMS]; // stride in bytes: + // nb[0] = ggml_type_size(type) + // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding + // nb[i] = nb[i-1] * ne[i-1] + + // compute data + enum ggml_op op; + + // op params - allocated as int32_t for alignment + int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)]; + + int32_t flags; + + struct ggml_tensor * grad; + struct ggml_tensor * src[GGML_MAX_SRC]; + + // performance + int perf_runs; + int64_t perf_cycles; + int64_t perf_time_us; + + struct ggml_tensor * view_src; + size_t view_offs; + + void * data; + + char name[GGML_MAX_NAME]; + + void * extra; // extra things e.g. for ggml-cuda.cu + + char padding[8]; + }; + + static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor); + + // Abort callback + // If not NULL, called before ggml computation + // If it returns true, the computation is aborted + typedef bool (*ggml_abort_callback)(void * data); + + // the compute plan that needs to be prepared for ggml_graph_compute() + // since https://github.com/ggerganov/ggml/issues/287 + struct ggml_cplan { + size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()` + uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()` + + int n_threads; + + // abort ggml_graph_compute when true + ggml_abort_callback abort_callback; + void * abort_callback_data; + }; + + enum ggml_cgraph_eval_order { + GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0, + GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT, + GGML_CGRAPH_EVAL_ORDER_COUNT + }; + + struct ggml_hash_set { + size_t size; + struct ggml_tensor ** keys; + }; + + // computation graph + struct ggml_cgraph { + int size; + int n_nodes; + int n_leafs; + + struct ggml_tensor ** nodes; + struct ggml_tensor ** grads; + struct ggml_tensor ** leafs; + + struct ggml_hash_set visited_hash_table; + + enum ggml_cgraph_eval_order order; + + // performance + int perf_runs; + int64_t perf_cycles; + int64_t perf_time_us; + }; + + // scratch buffer + struct ggml_scratch { + size_t offs; + size_t size; + void * data; + }; + + struct ggml_init_params { + // memory pool + size_t mem_size; // bytes + void * mem_buffer; // if NULL, memory will be allocated internally + bool no_alloc; // don't allocate memory for the tensor data + }; + + + // compute types + + // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled. + // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995. + enum ggml_task_type { + GGML_TASK_TYPE_INIT = 0, + GGML_TASK_TYPE_COMPUTE, + GGML_TASK_TYPE_FINALIZE, + }; + + struct ggml_compute_params { + enum ggml_task_type type; + + // ith = thread index, nth = number of threads + int ith, nth; + + // work buffer for all threads + size_t wsize; + void * wdata; + }; + + // numa strategies + enum ggml_numa_strategy { + GGML_NUMA_STRATEGY_DISABLED = 0, + GGML_NUMA_STRATEGY_DISTRIBUTE = 1, + GGML_NUMA_STRATEGY_ISOLATE = 2, + GGML_NUMA_STRATEGY_NUMACTL = 3, + GGML_NUMA_STRATEGY_MIRROR = 4, + GGML_NUMA_STRATEGY_COUNT + }; + + // + // GUID + // + + // GUID types + typedef uint8_t ggml_guid[16]; + typedef ggml_guid * ggml_guid_t; + + GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b); + + // misc + + GGML_API void ggml_time_init(void); // call this once at the beginning of the program + GGML_API int64_t ggml_time_ms(void); + GGML_API int64_t ggml_time_us(void); + GGML_API int64_t ggml_cycles(void); + GGML_API int64_t ggml_cycles_per_ms(void); + + GGML_API void ggml_print_backtrace(void); + + // accepts a UTF-8 path, even on Windows + GGML_API FILE * ggml_fopen(const char * fname, const char * mode); + + GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems + GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node + + GGML_API void ggml_print_object (const struct ggml_object * obj); + GGML_API void ggml_print_objects(const struct ggml_context * ctx); + + GGML_API GGML_CALL int64_t ggml_nelements (const struct ggml_tensor * tensor); + GGML_API GGML_CALL int64_t ggml_nrows (const struct ggml_tensor * tensor); + GGML_API GGML_CALL size_t ggml_nbytes (const struct ggml_tensor * tensor); + GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN + + GGML_API GGML_CALL int ggml_blck_size(enum ggml_type type); + GGML_API GGML_CALL size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block + GGML_API GGML_CALL size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row + + GGML_DEPRECATED( + GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float + "use ggml_row_size() instead"); + + GGML_API GGML_CALL const char * ggml_type_name(enum ggml_type type); + GGML_API GGML_CALL const char * ggml_op_name (enum ggml_op op); + GGML_API const char * ggml_op_symbol(enum ggml_op op); + + GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op); + GGML_API GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name + + GGML_API GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor); + + GGML_API GGML_CALL bool ggml_is_quantized(enum ggml_type type); + + // TODO: temporary until model loading of ggml examples is refactored + GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype); + + GGML_API GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor); + GGML_API GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor); + GGML_API GGML_CALL bool ggml_is_permuted (const struct ggml_tensor * tensor); + GGML_API GGML_CALL bool ggml_is_empty (const struct ggml_tensor * tensor); + GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor); + GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor); + GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor); + GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor); + GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars + + GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1); + + // use this to compute the memory overhead of a tensor + GGML_API size_t ggml_tensor_overhead(void); + + // main + + GGML_API struct ggml_context * ggml_init(struct ggml_init_params params); + GGML_API void ggml_free(struct ggml_context * ctx); + + GGML_API size_t ggml_used_mem(const struct ggml_context * ctx); + + GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch); + GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx); + GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc); + + GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx); + GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx); + GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx); + + GGML_API struct ggml_tensor * ggml_new_tensor( + struct ggml_context * ctx, + enum ggml_type type, + int n_dims, + const int64_t *ne); + + GGML_API struct ggml_tensor * ggml_new_tensor_1d( + struct ggml_context * ctx, + enum ggml_type type, + int64_t ne0); + + GGML_API struct ggml_tensor * ggml_new_tensor_2d( + struct ggml_context * ctx, + enum ggml_type type, + int64_t ne0, + int64_t ne1); + + GGML_API struct ggml_tensor * ggml_new_tensor_3d( + struct ggml_context * ctx, + enum ggml_type type, + int64_t ne0, + int64_t ne1, + int64_t ne2); + + GGML_API struct ggml_tensor * ggml_new_tensor_4d( + struct ggml_context * ctx, + enum ggml_type type, + int64_t ne0, + int64_t ne1, + int64_t ne2, + int64_t ne3); + + GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value); + GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value); + + GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src); + GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src); + + // Context tensor enumeration and lookup + GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx); + GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor); + GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name); + + GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor); + GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value); + GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value); + + // Converts a flat index into coordinates + GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3); + + GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i); + GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value); + + GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3); + GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value); + + GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i); + GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value); + + GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3); + GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value); + + GGML_API void * ggml_get_data (const struct ggml_tensor * tensor); + GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor); + + GGML_API GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor); + + GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor); + GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name); + GGML_ATTRIBUTE_FORMAT(2, 3) + GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...); + + // + // operations on tensors with backpropagation + // + + GGML_API struct ggml_tensor * ggml_dup( + struct ggml_context * ctx, + struct ggml_tensor * a); + + // in-place, returns view(a) + GGML_API struct ggml_tensor * ggml_dup_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_add( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + GGML_API struct ggml_tensor * ggml_add_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + GGML_API struct ggml_tensor * ggml_add_cast( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + enum ggml_type type); + + GGML_API struct ggml_tensor * ggml_add1( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + GGML_API struct ggml_tensor * ggml_add1_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + // dst = a + // view(dst, nb1, nb2, nb3, offset) += b + // return dst + GGML_API struct ggml_tensor * ggml_acc( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t nb1, + size_t nb2, + size_t nb3, + size_t offset); + + GGML_API struct ggml_tensor * ggml_acc_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t nb1, + size_t nb2, + size_t nb3, + size_t offset); + + GGML_API struct ggml_tensor * ggml_sub( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + GGML_API struct ggml_tensor * ggml_sub_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + GGML_API struct ggml_tensor * ggml_mul( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + GGML_API struct ggml_tensor * ggml_mul_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + GGML_API struct ggml_tensor * ggml_div( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + GGML_API struct ggml_tensor * ggml_div_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + GGML_API struct ggml_tensor * ggml_sqr( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_sqr_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_sqrt( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_sqrt_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_log( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_log_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + + // return scalar + GGML_API struct ggml_tensor * ggml_sum( + struct ggml_context * ctx, + struct ggml_tensor * a); + + // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d] + GGML_API struct ggml_tensor * ggml_sum_rows( + struct ggml_context * ctx, + struct ggml_tensor * a); + + // mean along rows + GGML_API struct ggml_tensor * ggml_mean( + struct ggml_context * ctx, + struct ggml_tensor * a); + + // argmax along rows + GGML_API struct ggml_tensor * ggml_argmax( + struct ggml_context * ctx, + struct ggml_tensor * a); + + // if a is the same shape as b, and a is not parameter, return a + // otherwise, return a new tensor: repeat(a) to fit in b + GGML_API struct ggml_tensor * ggml_repeat( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + // sums repetitions in a into shape of b + GGML_API struct ggml_tensor * ggml_repeat_back( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + // concat a and b on dim 2 + // used in stable-diffusion + GGML_API struct ggml_tensor * ggml_concat( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + GGML_API struct ggml_tensor * ggml_abs( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_abs_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_sgn( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_sgn_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_neg( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_neg_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_step( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_step_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_tanh( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_tanh_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_elu( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_elu_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_relu( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_leaky_relu( + struct ggml_context * ctx, + struct ggml_tensor * a, float negative_slope, bool inplace); + + GGML_API struct ggml_tensor * ggml_relu_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_gelu( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_gelu_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_gelu_quick( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_gelu_quick_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_silu( + struct ggml_context * ctx, + struct ggml_tensor * a); + + GGML_API struct ggml_tensor * ggml_silu_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + + // a - x + // b - dy + GGML_API struct ggml_tensor * ggml_silu_back( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + // hardswish(x) = x * relu6(x + 3) / 6 + GGML_API struct ggml_tensor * ggml_hardswish( + struct ggml_context * ctx, + struct ggml_tensor * a); + + // hardsigmoid(x) = relu6(x + 3) / 6 + GGML_API struct ggml_tensor * ggml_hardsigmoid( + struct ggml_context * ctx, + struct ggml_tensor * a); + + // normalize along rows + GGML_API struct ggml_tensor * ggml_norm( + struct ggml_context * ctx, + struct ggml_tensor * a, + float eps); + + GGML_API struct ggml_tensor * ggml_norm_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + float eps); + + GGML_API struct ggml_tensor * ggml_rms_norm( + struct ggml_context * ctx, + struct ggml_tensor * a, + float eps); + + GGML_API struct ggml_tensor * ggml_rms_norm_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + float eps); + + // group normalize along ne0*ne1*n_groups + // used in stable-diffusion + // TODO: eps is hardcoded to 1e-6 for now + GGML_API struct ggml_tensor * ggml_group_norm( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_groups); + + GGML_API struct ggml_tensor * ggml_group_norm_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_groups); + + // a - x + // b - dy + GGML_API struct ggml_tensor * ggml_rms_norm_back( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + float eps); + + // A: k columns, n rows => [ne03, ne02, n, k] + // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k] + // result is n columns, m rows => [ne03 * x, ne02 * y, m, n] + GGML_API struct ggml_tensor * ggml_mul_mat( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + // change the precision of a matrix multiplication + // set to GGML_PREC_F32 for higher precision (useful for phi-2) + GGML_API void ggml_mul_mat_set_prec( + struct ggml_tensor * a, + enum ggml_prec prec); + + // indirect matrix multiplication + GGML_API struct ggml_tensor * ggml_mul_mat_id( + struct ggml_context * ctx, + struct ggml_tensor * as, + struct ggml_tensor * b, + struct ggml_tensor * ids); + + // A: m columns, n rows, + // B: p columns, n rows, + // result is m columns, p rows + GGML_API struct ggml_tensor * ggml_out_prod( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + // + // operations on tensors without backpropagation + // + + GGML_API struct ggml_tensor * ggml_scale( + struct ggml_context * ctx, + struct ggml_tensor * a, + float s); + + // in-place, returns view(a) + GGML_API struct ggml_tensor * ggml_scale_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + float s); + + // b -> view(a,offset,nb1,nb2,3), return modified a + GGML_API struct ggml_tensor * ggml_set( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t nb1, + size_t nb2, + size_t nb3, + size_t offset); + + // b -> view(a,offset,nb1,nb2,3), return view(a) + GGML_API struct ggml_tensor * ggml_set_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t nb1, + size_t nb2, + size_t nb3, + size_t offset); + + GGML_API struct ggml_tensor * ggml_set_1d( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t offset); + + GGML_API struct ggml_tensor * ggml_set_1d_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t offset); + + // b -> view(a,offset,nb1,nb2,3), return modified a + GGML_API struct ggml_tensor * ggml_set_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t nb1, + size_t offset); + + // b -> view(a,offset,nb1,nb2,3), return view(a) + GGML_API struct ggml_tensor * ggml_set_2d_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + size_t nb1, + size_t offset); + + // a -> b, return view(b) + GGML_API struct ggml_tensor * ggml_cpy( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + GGML_API struct ggml_tensor * ggml_cast( + struct ggml_context * ctx, + struct ggml_tensor * a, + enum ggml_type type); + + // make contiguous + GGML_API struct ggml_tensor * ggml_cont( + struct ggml_context * ctx, + struct ggml_tensor * a); + + // make contiguous, with new shape + GGML_API struct ggml_tensor * ggml_cont_1d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0); + + GGML_API struct ggml_tensor * ggml_cont_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1); + + GGML_API struct ggml_tensor * ggml_cont_3d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2); + + GGML_API struct ggml_tensor * ggml_cont_4d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2, + int64_t ne3); + + // return view(a), b specifies the new shape + // TODO: when we start computing gradient, make a copy instead of view + GGML_API struct ggml_tensor * ggml_reshape( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + // return view(a) + // TODO: when we start computing gradient, make a copy instead of view + GGML_API struct ggml_tensor * ggml_reshape_1d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0); + + GGML_API struct ggml_tensor * ggml_reshape_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1); + + // return view(a) + // TODO: when we start computing gradient, make a copy instead of view + GGML_API struct ggml_tensor * ggml_reshape_3d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2); + + GGML_API struct ggml_tensor * ggml_reshape_4d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2, + int64_t ne3); + + // offset in bytes + GGML_API struct ggml_tensor * ggml_view_1d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + size_t offset); + + GGML_API struct ggml_tensor * ggml_view_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + size_t nb1, // row stride in bytes + size_t offset); + + GGML_API struct ggml_tensor * ggml_view_3d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2, + size_t nb1, // row stride in bytes + size_t nb2, // slice stride in bytes + size_t offset); + + GGML_API struct ggml_tensor * ggml_view_4d( + struct ggml_context * ctx, + struct ggml_tensor * a, + int64_t ne0, + int64_t ne1, + int64_t ne2, + int64_t ne3, + size_t nb1, // row stride in bytes + size_t nb2, // slice stride in bytes + size_t nb3, + size_t offset); + + GGML_API struct ggml_tensor * ggml_permute( + struct ggml_context * ctx, + struct ggml_tensor * a, + int axis0, + int axis1, + int axis2, + int axis3); + + // alias for ggml_permute(ctx, a, 1, 0, 2, 3) + GGML_API struct ggml_tensor * ggml_transpose( + struct ggml_context * ctx, + struct ggml_tensor * a); + + // supports 3D: a->ne[2] == b->ne[1] + GGML_API struct ggml_tensor * ggml_get_rows( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + GGML_API struct ggml_tensor * ggml_get_rows_back( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c); + + GGML_API struct ggml_tensor * ggml_diag( + struct ggml_context * ctx, + struct ggml_tensor * a); + + // set elements above the diagonal to -INF + GGML_API struct ggml_tensor * ggml_diag_mask_inf( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past); + + // in-place, returns view(a) + GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past); + + // set elements above the diagonal to 0 + GGML_API struct ggml_tensor * ggml_diag_mask_zero( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past); + + // in-place, returns view(a) + GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past); + + GGML_API struct ggml_tensor * ggml_soft_max( + struct ggml_context * ctx, + struct ggml_tensor * a); + + // in-place, returns view(a) + GGML_API struct ggml_tensor * ggml_soft_max_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a); + + // fused soft_max(a*scale + mask + pos[i]*(ALiBi slope)) + // mask is optional + // pos is required when max_bias > 0.0f + // max_bias = 0.0f for no ALiBi + GGML_API struct ggml_tensor * ggml_soft_max_ext( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * mask, + struct ggml_tensor * pos, + float scale, + float max_bias); + + GGML_API struct ggml_tensor * ggml_soft_max_back( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + // in-place, returns view(a) + GGML_API struct ggml_tensor * ggml_soft_max_back_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + // rotary position embedding + // if mode & 1 == 1, skip n_past elements (DEPRECATED) + // if mode & 2 == 1, GPT-NeoX style + // if mode & 4 == 1, ChatGLM style + // + // b is an int32 vector with size a->ne[2], it contains the positions + GGML_API struct ggml_tensor * ggml_rope( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int n_dims, + int mode, + int n_ctx); + + // in-place, returns view(a) + GGML_API struct ggml_tensor * ggml_rope_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int n_dims, + int mode, + int n_ctx); + + // custom RoPE + GGML_API struct ggml_tensor * ggml_rope_custom( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int n_dims, + int mode, + int n_ctx, + int n_orig_ctx, + float freq_base, + float freq_scale, + float ext_factor, + float attn_factor, + float beta_fast, + float beta_slow); + + // in-place, returns view(a) + GGML_API struct ggml_tensor * ggml_rope_custom_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int n_dims, + int mode, + int n_ctx, + int n_orig_ctx, + float freq_base, + float freq_scale, + float ext_factor, + float attn_factor, + float beta_fast, + float beta_slow); + + // compute correction dims for YaRN RoPE scaling + GGML_CALL void ggml_rope_yarn_corr_dims( + int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]); + + // xPos RoPE, in-place, returns view(a) + GGML_API struct ggml_tensor * ggml_rope_xpos_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int n_dims, + float base, + bool down); + + // rotary position embedding backward, i.e compute dx from dy + // a - dy + GGML_API struct ggml_tensor * ggml_rope_back( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int n_dims, + int mode, + int n_ctx, + int n_orig_ctx, + float freq_base, + float freq_scale, + float ext_factor, + float attn_factor, + float beta_fast, + float beta_slow, + float xpos_base, + bool xpos_down); + + // alibi position embedding + // in-place, returns view(a) + GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_alibi( + struct ggml_context * ctx, + struct ggml_tensor * a, + int n_past, + int n_head, + float bias_max), + "use ggml_soft_max_ext instead (will be removed in Mar 2024)"); + + // clamp + // in-place, returns view(a) + GGML_API struct ggml_tensor * ggml_clamp( + struct ggml_context * ctx, + struct ggml_tensor * a, + float min, + float max); + + GGML_API struct ggml_tensor * ggml_im2col( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int s0, + int s1, + int p0, + int p1, + int d0, + int d1, + bool is_2D, + enum ggml_type dst_type); + + GGML_API struct ggml_tensor * ggml_conv_depthwise_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int s0, + int s1, + int p0, + int p1, + int d0, + int d1); + + GGML_API struct ggml_tensor * ggml_conv_1d( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int s0, // stride + int p0, // padding + int d0); // dilation + + // conv_1d with padding = half + // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d) + GGML_API struct ggml_tensor* ggml_conv_1d_ph( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int s, + int d); + + GGML_API struct ggml_tensor * ggml_conv_transpose_1d( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int s0, + int p0, + int d0); + + GGML_API struct ggml_tensor * ggml_conv_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int s0, + int s1, + int p0, + int p1, + int d0, + int d1); + + + // kernel size is a->ne[0] x a->ne[1] + // stride is equal to kernel size + // padding is zero + // example: + // a: 16 16 3 768 + // b: 1024 1024 3 1 + // res: 64 64 768 1 + // used in sam + GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + // kernel size is a->ne[0] x a->ne[1] + // stride is 1 + // padding is half + // example: + // a: 3 3 256 256 + // b: 64 64 256 1 + // res: 64 64 256 1 + // used in sam + GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + int stride); + + enum ggml_op_pool { + GGML_OP_POOL_MAX, + GGML_OP_POOL_AVG, + GGML_OP_POOL_COUNT, + }; + + GGML_API struct ggml_tensor * ggml_pool_1d( + struct ggml_context * ctx, + struct ggml_tensor * a, + enum ggml_op_pool op, + int k0, // kernel size + int s0, // stride + int p0); // padding + + // the result will have 2*p0 padding for the first dimension + // and 2*p1 padding for the second dimension + GGML_API struct ggml_tensor * ggml_pool_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + enum ggml_op_pool op, + int k0, + int k1, + int s0, + int s1, + float p0, + float p1); + + // nearest interpolate + // used in stable-diffusion + GGML_API struct ggml_tensor * ggml_upscale( + struct ggml_context * ctx, + struct ggml_tensor * a, + int scale_factor); + + // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0] + GGML_API struct ggml_tensor * ggml_pad( + struct ggml_context * ctx, + struct ggml_tensor * a, + int p0, + int p1, + int p2, + int p3); + + // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151 + // timesteps: [N,] + // return: [N, dim] + GGML_API struct ggml_tensor * ggml_timestep_embedding( + struct ggml_context * ctx, + struct ggml_tensor * timesteps, + int dim, + int max_period); + + // sort rows + enum ggml_sort_order { + GGML_SORT_ORDER_ASC, + GGML_SORT_ORDER_DESC, + }; + + GGML_API struct ggml_tensor * ggml_argsort( + struct ggml_context * ctx, + struct ggml_tensor * a, + enum ggml_sort_order order); + + GGML_API struct ggml_tensor * ggml_arange( + struct ggml_context * ctx, + float start, + float stop, + float step); + + // top k elements per row + GGML_API struct ggml_tensor * ggml_top_k( + struct ggml_context * ctx, + struct ggml_tensor * a, + int k); + + GGML_API struct ggml_tensor * ggml_flash_attn( + struct ggml_context * ctx, + struct ggml_tensor * q, + struct ggml_tensor * k, + struct ggml_tensor * v, + bool masked); + + GGML_API struct ggml_tensor * ggml_flash_attn_back( + struct ggml_context * ctx, + struct ggml_tensor * q, + struct ggml_tensor * k, + struct ggml_tensor * v, + struct ggml_tensor * d, + bool masked); + + GGML_API struct ggml_tensor * ggml_flash_ff( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b0, + struct ggml_tensor * b1, + struct ggml_tensor * c0, + struct ggml_tensor * c1); + + GGML_API struct ggml_tensor * ggml_ssm_conv( + struct ggml_context * ctx, + struct ggml_tensor * s, + struct ggml_tensor * x, + struct ggml_tensor * c, + struct ggml_tensor * sq); + + GGML_API struct ggml_tensor * ggml_ssm_scan( + struct ggml_context * ctx, + struct ggml_tensor * s, + struct ggml_tensor * x, + struct ggml_tensor * dt, + struct ggml_tensor * A, + struct ggml_tensor * B, + struct ggml_tensor * C, + struct ggml_tensor * sq); + + // partition into non-overlapping windows with padding if needed + // example: + // a: 768 64 64 1 + // w: 14 + // res: 768 14 14 25 + // used in sam + GGML_API struct ggml_tensor * ggml_win_part( + struct ggml_context * ctx, + struct ggml_tensor * a, + int w); + + // reverse of ggml_win_part + // used in sam + GGML_API struct ggml_tensor * ggml_win_unpart( + struct ggml_context * ctx, + struct ggml_tensor * a, + int w0, + int h0, + int w); + + GGML_API struct ggml_tensor * ggml_unary( + struct ggml_context * ctx, + struct ggml_tensor * a, + enum ggml_unary_op op); + + GGML_API struct ggml_tensor * ggml_unary_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + enum ggml_unary_op op); + + // used in sam + GGML_API struct ggml_tensor * ggml_get_rel_pos( + struct ggml_context * ctx, + struct ggml_tensor * a, + int qh, + int kh); + + // used in sam + GGML_API struct ggml_tensor * ggml_add_rel_pos( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * pw, + struct ggml_tensor * ph); + + GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * pw, + struct ggml_tensor * ph); + + // custom operators + + typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *); + typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *); + + typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *); + typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *); + typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *); + + GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + ggml_unary_op_f32_t fun), + "use ggml_map_custom1 instead"); + + GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + ggml_unary_op_f32_t fun), + "use ggml_map_custom1_inplace instead"); + + GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + ggml_binary_op_f32_t fun), + "use ggml_map_custom2 instead"); + + GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + ggml_binary_op_f32_t fun), + "use ggml_map_custom2_inplace instead"); + + GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + ggml_custom1_op_f32_t fun), + "use ggml_map_custom1 instead"); + + GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + ggml_custom1_op_f32_t fun), + "use ggml_map_custom1_inplace instead"); + + GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + ggml_custom2_op_f32_t fun), + "use ggml_map_custom2 instead"); + + GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + ggml_custom2_op_f32_t fun), + "use ggml_map_custom2_inplace instead"); + + GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c, + ggml_custom3_op_f32_t fun), + "use ggml_map_custom3 instead"); + + GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c, + ggml_custom3_op_f32_t fun), + "use ggml_map_custom3_inplace instead"); + + // custom operators v2 + + typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata); + typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata); + typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata); + + #define GGML_N_TASKS_MAX -1 + + GGML_API struct ggml_tensor * ggml_map_custom1( + struct ggml_context * ctx, + struct ggml_tensor * a, + ggml_custom1_op_t fun, + int n_tasks, + void * userdata); + + GGML_API struct ggml_tensor * ggml_map_custom1_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + ggml_custom1_op_t fun, + int n_tasks, + void * userdata); + + GGML_API struct ggml_tensor * ggml_map_custom2( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + ggml_custom2_op_t fun, + int n_tasks, + void * userdata); + + GGML_API struct ggml_tensor * ggml_map_custom2_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + ggml_custom2_op_t fun, + int n_tasks, + void * userdata); + + GGML_API struct ggml_tensor * ggml_map_custom3( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c, + ggml_custom3_op_t fun, + int n_tasks, + void * userdata); + + GGML_API struct ggml_tensor * ggml_map_custom3_inplace( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c, + ggml_custom3_op_t fun, + int n_tasks, + void * userdata); + + // loss function + + GGML_API struct ggml_tensor * ggml_cross_entropy_loss( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b); + + GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c); + + // + // automatic differentiation + // + + GGML_API void ggml_set_param( + struct ggml_context * ctx, + struct ggml_tensor * tensor); + + + GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor); + GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep); + + // graph allocation in a context + GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false + GGML_API struct ggml_cgraph * ggml_new_graph_custom (struct ggml_context * ctx, size_t size, bool grads); + GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph); + GGML_API struct ggml_cgraph ggml_graph_view (struct ggml_cgraph * cgraph, int i0, int i1); + GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst); + GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads + GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph); + + GGML_API size_t ggml_graph_overhead(void); + GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads); + + // ggml_graph_plan() has to be called before ggml_graph_compute() + // when plan.work_size > 0, caller must allocate memory for plan.work_data + GGML_API struct ggml_cplan ggml_graph_plan (const struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/); + GGML_API enum ggml_status ggml_graph_compute ( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan); + // same as ggml_graph_compute() but the work data is allocated as a part of the context + // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data + GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads); + + GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name); + + GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname); + GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval); + + // print info and performance information for the graph + GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph); + + // dump the graph into a file using the dot format + GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename); + + // build gradient checkpointing backward graph gb for gf using provided checkpoints + // gb_tmp will contain original backward graph with rewritten backward process nodes, + // but without the second forward pass nodes. + GGML_API void ggml_build_backward_gradient_checkpointing( + struct ggml_context * ctx, + struct ggml_cgraph * gf, + struct ggml_cgraph * gb, + struct ggml_cgraph * gb_tmp, + struct ggml_tensor * * checkpoints, + int n_checkpoints); + // + // optimization + // + + // optimization methods + enum ggml_opt_type { + GGML_OPT_TYPE_ADAM, + GGML_OPT_TYPE_LBFGS, + }; + + // linesearch methods + enum ggml_linesearch { + GGML_LINESEARCH_DEFAULT = 1, + + GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0, + GGML_LINESEARCH_BACKTRACKING_WOLFE = 1, + GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2, + }; + + // optimization return values + enum ggml_opt_result { + GGML_OPT_RESULT_OK = 0, + GGML_OPT_RESULT_DID_NOT_CONVERGE, + GGML_OPT_RESULT_NO_CONTEXT, + GGML_OPT_RESULT_INVALID_WOLFE, + GGML_OPT_RESULT_FAIL, + GGML_OPT_RESULT_CANCEL, + + GGML_LINESEARCH_FAIL = -128, + GGML_LINESEARCH_MINIMUM_STEP, + GGML_LINESEARCH_MAXIMUM_STEP, + GGML_LINESEARCH_MAXIMUM_ITERATIONS, + GGML_LINESEARCH_INVALID_PARAMETERS, + }; + + typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel); + typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data); + + // optimization parameters + // + // see ggml.c (ggml_opt_default_params) for default values + // + struct ggml_opt_params { + enum ggml_opt_type type; + + size_t graph_size; + + int n_threads; + + // delta-based convergence test + // + // if past == 0 - disabled + // if past > 0: + // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|) + // + int past; + float delta; + + // maximum number of iterations without improvement + // + // if 0 - disabled + // if > 0: + // assume convergence if no cost improvement in this number of iterations + // + int max_no_improvement; + + bool print_forward_graph; + bool print_backward_graph; + + int n_gradient_accumulation; + + // ADAM parameters + struct { + int n_iter; + + float sched; // schedule multiplier (fixed, decay or warmup) + float decay; // weight decay for AdamW, use 0.0f to disable + int decay_min_ndim; // minimum number of tensor dimension to apply weight decay + float alpha; // learning rate + float beta1; + float beta2; + float eps; // epsilon for numerical stability + float eps_f; // epsilon for convergence test + float eps_g; // epsilon for convergence test + float gclip; // gradient clipping + } adam; + + // LBFGS parameters + struct { + int m; // number of corrections to approximate the inv. Hessian + int n_iter; + int max_linesearch; + + float eps; // convergence tolerance + float ftol; // line search tolerance + float wolfe; + float min_step; + float max_step; + + enum ggml_linesearch linesearch; + } lbfgs; + }; + + struct ggml_opt_context { + struct ggml_context * ctx; + struct ggml_opt_params params; + + int iter; + int64_t nx; // number of parameter elements + + bool just_initialized; + + float loss_before; + float loss_after; + + struct { + struct ggml_tensor * g; // current gradient + struct ggml_tensor * m; // first moment + struct ggml_tensor * v; // second moment + struct ggml_tensor * pf; // past function values + float fx_best; + float fx_prev; + int n_no_improvement; + } adam; + + struct { + struct ggml_tensor * x; // current parameters + struct ggml_tensor * xp; // previous parameters + struct ggml_tensor * g; // current gradient + struct ggml_tensor * gp; // previous gradient + struct ggml_tensor * d; // search direction + struct ggml_tensor * pf; // past function values + struct ggml_tensor * lmal; // the L-BFGS memory alpha + struct ggml_tensor * lmys; // the L-BFGS memory ys + struct ggml_tensor * lms; // the L-BFGS memory s + struct ggml_tensor * lmy; // the L-BFGS memory y + float fx_best; + float step; + int j; + int k; + int end; + int n_no_improvement; + } lbfgs; + }; + + GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type); + + // optimize the function defined by the tensor f + GGML_API enum ggml_opt_result ggml_opt( + struct ggml_context * ctx, + struct ggml_opt_params params, + struct ggml_tensor * f); + + // initialize optimizer context + GGML_API void ggml_opt_init( + struct ggml_context * ctx, + struct ggml_opt_context * opt, + struct ggml_opt_params params, + int64_t nx); + + // continue optimizing the function defined by the tensor f + GGML_API enum ggml_opt_result ggml_opt_resume( + struct ggml_context * ctx, + struct ggml_opt_context * opt, + struct ggml_tensor * f); + + // continue optimizing the function defined by the tensor f + GGML_API enum ggml_opt_result ggml_opt_resume_g( + struct ggml_context * ctx, + struct ggml_opt_context * opt, + struct ggml_tensor * f, + struct ggml_cgraph * gf, + struct ggml_cgraph * gb, + ggml_opt_callback callback, + void * callback_data); + + // + // tensor flags + // + GGML_API void ggml_set_input(struct ggml_tensor * tensor); + GGML_API void ggml_set_output(struct ggml_tensor * tensor); + + // + // quantization + // + + // - ggml_quantize_init can be called multiple times with the same type + // it will only initialize the quantization tables for the first call or after ggml_quantize_free + // automatically called by ggml_quantize_chunk for convenience + // + // - ggml_quantize_free will free any memory allocated by ggml_quantize_init + // call this at the end of the program to avoid memory leaks + // + // note: these are thread-safe + // + GGML_API void ggml_quantize_init(enum ggml_type type); + GGML_API void ggml_quantize_free(void); + + // some quantization type cannot be used without an importance matrix + GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type); + + // calls ggml_quantize_init internally (i.e. can allocate memory) + GGML_API size_t ggml_quantize_chunk( + enum ggml_type type, + const float * src, + void * dst, + int64_t start, + int64_t nrows, + int64_t n_per_row, + const float * imatrix); + + // + // gguf + // + + enum gguf_type { + GGUF_TYPE_UINT8 = 0, + GGUF_TYPE_INT8 = 1, + GGUF_TYPE_UINT16 = 2, + GGUF_TYPE_INT16 = 3, + GGUF_TYPE_UINT32 = 4, + GGUF_TYPE_INT32 = 5, + GGUF_TYPE_FLOAT32 = 6, + GGUF_TYPE_BOOL = 7, + GGUF_TYPE_STRING = 8, + GGUF_TYPE_ARRAY = 9, + GGUF_TYPE_UINT64 = 10, + GGUF_TYPE_INT64 = 11, + GGUF_TYPE_FLOAT64 = 12, + GGUF_TYPE_COUNT, // marks the end of the enum + }; + + struct gguf_context; + + struct gguf_init_params { + bool no_alloc; + + // if not NULL, create a ggml_context and allocate the tensor data in it + struct ggml_context ** ctx; + }; + + GGML_API struct gguf_context * gguf_init_empty(void); + GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params); + //GGML_API struct gguf_context * gguf_init_from_buffer(..); + + GGML_API void gguf_free(struct gguf_context * ctx); + + GGML_API const char * gguf_type_name(enum gguf_type type); + + GGML_API int gguf_get_version (const struct gguf_context * ctx); + GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx); + GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx); + GGML_API void * gguf_get_data (const struct gguf_context * ctx); + + GGML_API int gguf_get_n_kv(const struct gguf_context * ctx); + GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key); + GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id); + + GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id); + GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id); + + // will abort if the wrong type is used for the key + GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id); + GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id); + GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id); + GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id); + GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id); + GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id); + GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id); + GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id); + GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id); + GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id); + GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id); + GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id); + GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id); + GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id); + GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id); + GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i); + + GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx); + GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name); + GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i); + GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i); + GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i); + + // removes key if it exists + GGML_API void gguf_remove_key(struct gguf_context * ctx, const char * key); + + // overrides existing values or adds a new one + GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val); + GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val); + GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val); + GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val); + GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val); + GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val); + GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val); + GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val); + GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val); + GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val); + GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val); + GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val); + GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n); + GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n); + + // set or add KV pairs from another context + GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src); + + // manage tensor info + GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor); + GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type); + GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size); + + // writing gguf files can be done in 2 ways: + // + // - write the entire gguf_context to a binary file in a single pass: + // + // gguf_write_to_file(ctx, fname); + // + // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data: + // + // FILE * f = fopen(fname, "wb"); + // fseek(f, gguf_get_meta_size(ctx), SEEK_SET); + // fwrite(f, ...); + // void * data = gguf_meta_get_meta_data(ctx); + // fseek(f, 0, SEEK_SET); + // fwrite(f, data, gguf_get_meta_size(ctx)); + // free(data); + // fclose(f); + // + + // write the entire context to a binary file + GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta); + + // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding + GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx); + GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data); + + // + // system info + // + + GGML_API int ggml_cpu_has_avx (void); + GGML_API int ggml_cpu_has_avx_vnni (void); + GGML_API int ggml_cpu_has_avx2 (void); + GGML_API int ggml_cpu_has_avx512 (void); + GGML_API int ggml_cpu_has_avx512_vbmi(void); + GGML_API int ggml_cpu_has_avx512_vnni(void); + GGML_API int ggml_cpu_has_fma (void); + GGML_API int ggml_cpu_has_neon (void); + GGML_API int ggml_cpu_has_arm_fma (void); + GGML_API int ggml_cpu_has_metal (void); + GGML_API int ggml_cpu_has_f16c (void); + GGML_API int ggml_cpu_has_fp16_va (void); + GGML_API int ggml_cpu_has_wasm_simd (void); + GGML_API int ggml_cpu_has_blas (void); + GGML_API int ggml_cpu_has_cuda (void); + GGML_API int ggml_cpu_has_clblast (void); + GGML_API int ggml_cpu_has_vulkan (void); + GGML_API int ggml_cpu_has_kompute (void); + GGML_API int ggml_cpu_has_gpublas (void); + GGML_API int ggml_cpu_has_sse3 (void); + GGML_API int ggml_cpu_has_ssse3 (void); + GGML_API int ggml_cpu_has_sycl (void); + GGML_API int ggml_cpu_has_vsx (void); + GGML_API int ggml_cpu_has_matmul_int8(void); + + // + // Internal types and functions exposed for tests and benchmarks + // + +#ifdef __cplusplus +// restrict not standard in C++ +#define GGML_RESTRICT +#else +#define GGML_RESTRICT restrict +#endif + typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k); + typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k); + typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx, + const void * GGML_RESTRICT y, size_t by, int nrc); + + typedef struct { + const char * type_name; + int blck_size; + size_t type_size; + bool is_quantized; + ggml_to_float_t to_float; + ggml_from_float_t from_float; + ggml_from_float_t from_float_reference; + ggml_vec_dot_t vec_dot; + enum ggml_type vec_dot_type; + int64_t nrows; // number of rows to process simultaneously; + } ggml_type_traits_t; + + GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type); + +#ifdef __cplusplus +} +#endif diff --git a/llama/llama.cpp b/llama/llama.cpp new file mode 100644 index 00000000..fa7c022f --- /dev/null +++ b/llama/llama.cpp @@ -0,0 +1,17424 @@ +#define LLAMA_API_INTERNAL +#include "llama.h" + +#include "unicode.h" + +#include "ggml.h" +#include "ggml-alloc.h" +#include "ggml-backend.h" + +#ifdef GGML_USE_CUDA +# include "ggml-cuda.h" +#elif defined(GGML_USE_CLBLAST) +# include "ggml-opencl.h" +#elif defined(GGML_USE_VULKAN) +# include "ggml-vulkan.h" +#elif defined(GGML_USE_SYCL) +# include "ggml-sycl.h" +#elif defined(GGML_USE_KOMPUTE) +# include "ggml-kompute.h" +#endif + +#ifdef GGML_USE_METAL +# include "ggml-metal.h" +#endif +#ifdef GGML_USE_MPI +# include "ggml-mpi.h" +#endif +#ifndef QK_K +# ifdef GGML_QKK_64 +# define QK_K 64 +# else +# define QK_K 256 +# endif +#endif + +#ifdef __has_include + #if __has_include() + #include + #if defined(_POSIX_MAPPED_FILES) + #include + #include + #endif + #if defined(_POSIX_MEMLOCK_RANGE) + #include + #endif + #endif +#endif + +#if defined(_WIN32) + #define WIN32_LEAN_AND_MEAN + #ifndef NOMINMAX + #define NOMINMAX + #endif + #include + #ifndef PATH_MAX + #define PATH_MAX MAX_PATH + #endif + #include +#endif + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +#if defined(_MSC_VER) +#pragma warning(disable: 4244 4267) // possible loss of data +#endif + +#ifdef __GNUC__ +#ifdef __MINGW32__ +#define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__))) +#else +#define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__))) +#endif +#else +#define LLAMA_ATTRIBUTE_FORMAT(...) +#endif + +#define LLAMA_MAX_NODES 8192 +#define LLAMA_MAX_EXPERTS 60 + + +// +// logging +// + +LLAMA_ATTRIBUTE_FORMAT(2, 3) +static void llama_log_internal (ggml_log_level level, const char* format, ...); +static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data); + +#define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__) +#define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__) +#define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__) + +// +// helpers +// + +static size_t utf8_len(char src) { + const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 }; + uint8_t highbits = static_cast(src) >> 4; + return lookup[highbits]; +} + +static void replace_all(std::string & s, const std::string & search, const std::string & replace) { + std::string result; + for (size_t pos = 0; ; pos += search.length()) { + auto new_pos = s.find(search, pos); + if (new_pos == std::string::npos) { + result += s.substr(pos, s.size() - pos); + break; + } + result += s.substr(pos, new_pos - pos) + replace; + pos = new_pos; + } + s = std::move(result); +} + +static bool is_float_close(float a, float b, float abs_tol) { + // Check for non-negative tolerance + if (abs_tol < 0.0) { + throw std::invalid_argument("Tolerance must be non-negative"); + } + + // Exact equality check + if (a == b) { + return true; + } + + // Check for infinities + if (std::isinf(a) || std::isinf(b)) { + return false; + } + + // Regular comparison using the provided absolute tolerance + return std::fabs(b - a) <= abs_tol; +} + +static void zeros(std::ofstream & file, size_t n) { + char zero = 0; + for (size_t i = 0; i < n; ++i) { + file.write(&zero, 1); + } +} + +LLAMA_ATTRIBUTE_FORMAT(1, 2) +static std::string format(const char * fmt, ...) { + va_list ap; + va_list ap2; + va_start(ap, fmt); + va_copy(ap2, ap); + int size = vsnprintf(NULL, 0, fmt, ap); + GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT + std::vector buf(size + 1); + int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); + GGML_ASSERT(size2 == size); + va_end(ap2); + va_end(ap); + return std::string(buf.data(), size); +} + +// +// gguf constants (sync with gguf.py) +// + +enum llm_arch { + LLM_ARCH_LLAMA, + LLM_ARCH_FALCON, + LLM_ARCH_BAICHUAN, + LLM_ARCH_GROK, + LLM_ARCH_GPT2, + LLM_ARCH_GPTJ, + LLM_ARCH_GPTNEOX, + LLM_ARCH_MPT, + LLM_ARCH_STARCODER, + LLM_ARCH_PERSIMMON, + LLM_ARCH_REFACT, + LLM_ARCH_BERT, + LLM_ARCH_NOMIC_BERT, + LLM_ARCH_BLOOM, + LLM_ARCH_STABLELM, + LLM_ARCH_QWEN, + LLM_ARCH_QWEN2, + LLM_ARCH_QWEN2MOE, + LLM_ARCH_PHI2, + LLM_ARCH_PLAMO, + LLM_ARCH_CODESHELL, + LLM_ARCH_ORION, + LLM_ARCH_INTERNLM2, + LLM_ARCH_MINICPM, + LLM_ARCH_GEMMA, + LLM_ARCH_STARCODER2, + LLM_ARCH_MAMBA, + LLM_ARCH_XVERSE, + LLM_ARCH_COMMAND_R, + LLM_ARCH_DBRX, + LLM_ARCH_OLMO, + LLM_ARCH_UNKNOWN, +}; + +static const std::map LLM_ARCH_NAMES = { + { LLM_ARCH_LLAMA, "llama" }, + { LLM_ARCH_FALCON, "falcon" }, + { LLM_ARCH_GROK, "grok" }, + { LLM_ARCH_GPT2, "gpt2" }, + { LLM_ARCH_GPTJ, "gptj" }, + { LLM_ARCH_GPTNEOX, "gptneox" }, + { LLM_ARCH_MPT, "mpt" }, + { LLM_ARCH_BAICHUAN, "baichuan" }, + { LLM_ARCH_STARCODER, "starcoder" }, + { LLM_ARCH_PERSIMMON, "persimmon" }, + { LLM_ARCH_REFACT, "refact" }, + { LLM_ARCH_BERT, "bert" }, + { LLM_ARCH_NOMIC_BERT, "nomic-bert" }, + { LLM_ARCH_BLOOM, "bloom" }, + { LLM_ARCH_STABLELM, "stablelm" }, + { LLM_ARCH_QWEN, "qwen" }, + { LLM_ARCH_QWEN2, "qwen2" }, + { LLM_ARCH_QWEN2MOE, "qwen2moe" }, + { LLM_ARCH_PHI2, "phi2" }, + { LLM_ARCH_PLAMO, "plamo" }, + { LLM_ARCH_CODESHELL, "codeshell" }, + { LLM_ARCH_ORION, "orion" }, + { LLM_ARCH_INTERNLM2, "internlm2" }, + { LLM_ARCH_MINICPM, "minicpm" }, + { LLM_ARCH_GEMMA, "gemma" }, + { LLM_ARCH_STARCODER2, "starcoder2" }, + { LLM_ARCH_MAMBA, "mamba" }, + { LLM_ARCH_XVERSE, "xverse" }, + { LLM_ARCH_COMMAND_R, "command-r" }, + { LLM_ARCH_DBRX, "dbrx" }, + { LLM_ARCH_OLMO, "olmo" }, + { LLM_ARCH_UNKNOWN, "(unknown)" }, +}; + +enum llm_kv { + LLM_KV_GENERAL_ARCHITECTURE, + LLM_KV_GENERAL_QUANTIZATION_VERSION, + LLM_KV_GENERAL_ALIGNMENT, + LLM_KV_GENERAL_NAME, + LLM_KV_GENERAL_AUTHOR, + LLM_KV_GENERAL_VERSION, + LLM_KV_GENERAL_URL, + LLM_KV_GENERAL_DESCRIPTION, + LLM_KV_GENERAL_LICENSE, + LLM_KV_GENERAL_SOURCE_URL, + LLM_KV_GENERAL_SOURCE_HF_REPO, + + LLM_KV_VOCAB_SIZE, + LLM_KV_CONTEXT_LENGTH, + LLM_KV_EMBEDDING_LENGTH, + LLM_KV_BLOCK_COUNT, + LLM_KV_FEED_FORWARD_LENGTH, + LLM_KV_USE_PARALLEL_RESIDUAL, + LLM_KV_TENSOR_DATA_LAYOUT, + LLM_KV_EXPERT_COUNT, + LLM_KV_EXPERT_USED_COUNT, + LLM_KV_POOLING_TYPE, + LLM_KV_LOGIT_SCALE, + + LLM_KV_ATTENTION_HEAD_COUNT, + LLM_KV_ATTENTION_HEAD_COUNT_KV, + LLM_KV_ATTENTION_MAX_ALIBI_BIAS, + LLM_KV_ATTENTION_CLAMP_KQV, + LLM_KV_ATTENTION_KEY_LENGTH, + LLM_KV_ATTENTION_VALUE_LENGTH, + LLM_KV_ATTENTION_LAYERNORM_EPS, + LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, + LLM_KV_ATTENTION_CAUSAL, + + LLM_KV_ROPE_DIMENSION_COUNT, + LLM_KV_ROPE_FREQ_BASE, + LLM_KV_ROPE_SCALE_LINEAR, + LLM_KV_ROPE_SCALING_TYPE, + LLM_KV_ROPE_SCALING_FACTOR, + LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, + LLM_KV_ROPE_SCALING_FINETUNED, + + LLM_KV_SPLIT_NO, + LLM_KV_SPLIT_COUNT, + LLM_KV_SPLIT_TENSORS_COUNT, + + LLM_KV_SSM_INNER_SIZE, + LLM_KV_SSM_CONV_KERNEL, + LLM_KV_SSM_STATE_SIZE, + LLM_KV_SSM_TIME_STEP_RANK, + + LLM_KV_TOKENIZER_MODEL, + LLM_KV_TOKENIZER_LIST, + LLM_KV_TOKENIZER_TOKEN_TYPE, + LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, + LLM_KV_TOKENIZER_SCORES, + LLM_KV_TOKENIZER_MERGES, + LLM_KV_TOKENIZER_BOS_ID, + LLM_KV_TOKENIZER_EOS_ID, + LLM_KV_TOKENIZER_UNK_ID, + LLM_KV_TOKENIZER_SEP_ID, + LLM_KV_TOKENIZER_PAD_ID, + LLM_KV_TOKENIZER_CLS_ID, + LLM_KV_TOKENIZER_MASK_ID, + LLM_KV_TOKENIZER_ADD_BOS, + LLM_KV_TOKENIZER_ADD_EOS, + LLM_KV_TOKENIZER_ADD_PREFIX, + LLM_KV_TOKENIZER_HF_JSON, + LLM_KV_TOKENIZER_RWKV, + LLM_KV_TOKENIZER_PREFIX_ID, + LLM_KV_TOKENIZER_SUFFIX_ID, + LLM_KV_TOKENIZER_MIDDLE_ID, + LLM_KV_TOKENIZER_EOT_ID, +}; + +static const std::map LLM_KV_NAMES = { + { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" }, + { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" }, + { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" }, + { LLM_KV_GENERAL_NAME, "general.name" }, + { LLM_KV_GENERAL_AUTHOR, "general.author" }, + { LLM_KV_GENERAL_VERSION, "general.version" }, + { LLM_KV_GENERAL_URL, "general.url" }, + { LLM_KV_GENERAL_DESCRIPTION, "general.description" }, + { LLM_KV_GENERAL_LICENSE, "general.license" }, + { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" }, + { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" }, + + { LLM_KV_VOCAB_SIZE, "%s.vocab_size" }, + { LLM_KV_CONTEXT_LENGTH, "%s.context_length" }, + { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" }, + { LLM_KV_BLOCK_COUNT, "%s.block_count" }, + { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" }, + { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" }, + { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" }, + { LLM_KV_EXPERT_COUNT, "%s.expert_count" }, + { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" }, + { LLM_KV_POOLING_TYPE , "%s.pooling_type" }, + { LLM_KV_LOGIT_SCALE, "%s.logit_scale" }, + + { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" }, + { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" }, + { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" }, + { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" }, + { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" }, + { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" }, + { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" }, + { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" }, + { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" }, + + { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" }, + { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" }, + { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" }, + { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" }, + { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" }, + { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" }, + { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" }, + + { LLM_KV_SPLIT_NO, "split.no" }, + { LLM_KV_SPLIT_COUNT, "split.count" }, + { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" }, + + { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" }, + { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" }, + { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" }, + { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" }, + + { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" }, + { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" }, + { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" }, + { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" }, + { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" }, + { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" }, + { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" }, + { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" }, + { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" }, + { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" }, + { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" }, + { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" }, + { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" }, + { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" }, + { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" }, + { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" }, + { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" }, + { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" }, + { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" }, + { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" }, + { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" }, + { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" }, +}; + +struct LLM_KV { + LLM_KV(llm_arch arch) : arch(arch) {} + + llm_arch arch; + + std::string operator()(llm_kv kv) const { + return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch)); + } +}; + +enum llm_tensor { + LLM_TENSOR_TOKEN_EMBD, + LLM_TENSOR_TOKEN_EMBD_NORM, + LLM_TENSOR_TOKEN_TYPES, + LLM_TENSOR_POS_EMBD, + LLM_TENSOR_OUTPUT, + LLM_TENSOR_OUTPUT_NORM, + LLM_TENSOR_ROPE_FREQS, + LLM_TENSOR_ATTN_Q, + LLM_TENSOR_ATTN_K, + LLM_TENSOR_ATTN_V, + LLM_TENSOR_ATTN_QKV, + LLM_TENSOR_ATTN_OUT, + LLM_TENSOR_ATTN_NORM, + LLM_TENSOR_ATTN_NORM_2, + LLM_TENSOR_ATTN_OUT_NORM, + LLM_TENSOR_ATTN_ROT_EMBD, + LLM_TENSOR_FFN_GATE_INP, + LLM_TENSOR_FFN_GATE_INP_SHEXP, + LLM_TENSOR_FFN_NORM, + LLM_TENSOR_FFN_GATE, + LLM_TENSOR_FFN_DOWN, + LLM_TENSOR_FFN_UP, + LLM_TENSOR_FFN_ACT, + LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility + LLM_TENSOR_FFN_GATE_EXP, + LLM_TENSOR_FFN_UP_EXP, + LLM_TENSOR_FFN_DOWN_EXPS, // merged experts + LLM_TENSOR_FFN_GATE_EXPS, + LLM_TENSOR_FFN_UP_EXPS, + LLM_TENSOR_FFN_DOWN_SHEXP, + LLM_TENSOR_FFN_GATE_SHEXP, + LLM_TENSOR_FFN_UP_SHEXP, + LLM_TENSOR_ATTN_Q_NORM, + LLM_TENSOR_ATTN_K_NORM, + LLM_TENSOR_LAYER_OUT_NORM, + LLM_TENSOR_SSM_IN, + LLM_TENSOR_SSM_CONV1D, + LLM_TENSOR_SSM_X, + LLM_TENSOR_SSM_DT, + LLM_TENSOR_SSM_A, + LLM_TENSOR_SSM_D, + LLM_TENSOR_SSM_OUT, +}; + +static const std::map> LLM_TENSOR_NAMES = { + { + LLM_ARCH_LLAMA, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" }, + { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" }, + { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, + }, + }, + { + LLM_ARCH_BAICHUAN, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_FALCON, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_GROK, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" }, + { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" }, + { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, + { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, + { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, + }, + }, + { + LLM_ARCH_GPT2, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_POS_EMBD, "position_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + }, + }, + { + LLM_ARCH_GPTJ, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + }, + }, + { + LLM_ARCH_GPTNEOX, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_PERSIMMON, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd"}, + { LLM_TENSOR_OUTPUT_NORM, "output_norm"}, + { LLM_TENSOR_OUTPUT, "output"}, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"}, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"}, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"}, + { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"}, + { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"}, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"}, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"}, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"}, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"}, + }, + }, + { + LLM_ARCH_MPT, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output"}, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" }, + { LLM_TENSOR_POS_EMBD, "position_embd" }, + { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"}, + { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"}, + }, + }, + { + LLM_ARCH_STARCODER, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_POS_EMBD, "position_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + }, + }, + { + LLM_ARCH_REFACT, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_BERT, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, + { LLM_TENSOR_TOKEN_TYPES, "token_types" }, + { LLM_TENSOR_POS_EMBD, "position_embd" }, + { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_NOMIC_BERT, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, + { LLM_TENSOR_TOKEN_TYPES, "token_types" }, + { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_BLOOM, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + }, + }, + { + LLM_ARCH_STABLELM, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" }, + { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" }, + }, + }, + { + LLM_ARCH_QWEN, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_QWEN2, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_QWEN2MOE, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, + { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" }, + { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" }, + { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" }, + { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" }, + }, + }, + { + LLM_ARCH_PHI2, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_PLAMO, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_CODESHELL, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_ORION, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_INTERNLM2, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_MINICPM, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" }, + { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" }, + { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" }, + }, + }, + { + LLM_ARCH_GEMMA, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_STARCODER2, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_MAMBA, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" }, + { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" }, + { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" }, + { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" }, + { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" }, + { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" }, + { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" }, + }, + }, + { + LLM_ARCH_XVERSE, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ROPE_FREQS, "rope_freqs" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" }, + { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_COMMAND_R, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" }, + { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" }, + }, + }, + { + LLM_ARCH_DBRX, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT_NORM, "output_norm" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" }, + { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" }, + { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" }, + { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" }, + { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" }, + { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" }, + }, + }, + { + LLM_ARCH_OLMO, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + { LLM_TENSOR_OUTPUT, "output" }, + { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" }, + { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" }, + { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" }, + { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, + { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" }, + { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, + { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, + }, + }, + { + LLM_ARCH_UNKNOWN, + { + { LLM_TENSOR_TOKEN_EMBD, "token_embd" }, + }, + }, +}; + +static llm_arch llm_arch_from_string(const std::string & name) { + for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT + if (kv.second == name) { + return kv.first; + } + } + + return LLM_ARCH_UNKNOWN; +} + +// helper to handle gguf constants +// usage: +// +// const auto tn = LLM_TN(LLM_ARCH_LLAMA); +// +// std::string name = tn(LLM_TENSOR_OUTPUT); -> "output" +// std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias" +// std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight" +// +struct LLM_TN { + LLM_TN(llm_arch arch) : arch(arch) {} + + llm_arch arch; + + std::string operator()(llm_tensor tensor) const { + if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { + return "__missing__"; + } + return LLM_TENSOR_NAMES.at(arch).at(tensor); + } + + std::string operator()(llm_tensor tensor, const std::string & suffix) const { + if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { + return "__missing__"; + } + return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix; + } + + std::string operator()(llm_tensor tensor, int bid) const { + if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { + return "__missing__"; + } + return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid); + } + + std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const { + if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { + return "__missing__"; + } + return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix; + } + + std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const { + if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) { + return "__missing__"; + } + return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix; + } +}; + +// +// gguf helpers +// + +static const std::map LLAMA_ROPE_SCALING_TYPES = { + { LLAMA_ROPE_SCALING_TYPE_NONE, "none" }, + { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" }, + { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" }, +}; + +static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) { + for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) { + if (kv.second == name) { + return (llama_rope_scaling_type) kv.first; + } + } + + return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED; +} + +static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) { + switch (type) { + case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]); + case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]); + case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]); + case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]); + case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]); + case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]); + case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]); + case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]); + case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]); + case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]); + case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false"; + default: return format("unknown type %d", type); + } +} + +static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) { + const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i); + + switch (type) { + case GGUF_TYPE_STRING: + return gguf_get_val_str(ctx_gguf, i); + case GGUF_TYPE_ARRAY: + { + const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i); + int arr_n = gguf_get_arr_n(ctx_gguf, i); + const void * data = gguf_get_arr_data(ctx_gguf, i); + std::stringstream ss; + ss << "["; + for (int j = 0; j < arr_n; j++) { + if (arr_type == GGUF_TYPE_STRING) { + std::string val = gguf_get_arr_str(ctx_gguf, i, j); + // escape quotes + replace_all(val, "\\", "\\\\"); + replace_all(val, "\"", "\\\""); + ss << '"' << val << '"'; + } else if (arr_type == GGUF_TYPE_ARRAY) { + ss << "???"; + } else { + ss << gguf_data_to_str(arr_type, data, j); + } + if (j < arr_n - 1) { + ss << ", "; + } + } + ss << "]"; + return ss.str(); + } + default: + return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0); + } +} + +// +// llama helpers +// + +#if defined(_WIN32) +static std::string llama_format_win_err(DWORD err) { + LPSTR buf; + size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, + NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL); + if (!size) { + return "FormatMessageA failed"; + } + std::string ret(buf, size); + LocalFree(buf); + return ret; +} +#endif + +template +struct no_init { + T value; + no_init() { /* do nothing */ } +}; + +struct llama_file { + // use FILE * so we don't have to re-open the file to mmap + FILE * fp; + size_t size; + + llama_file(const char * fname, const char * mode) { + fp = ggml_fopen(fname, mode); + if (fp == NULL) { + throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno))); + } + seek(0, SEEK_END); + size = tell(); + seek(0, SEEK_SET); + } + + size_t tell() const { +#ifdef _WIN32 + __int64 ret = _ftelli64(fp); +#else + long ret = std::ftell(fp); +#endif + GGML_ASSERT(ret != -1); // this really shouldn't fail + return (size_t) ret; + } + + void seek(size_t offset, int whence) const { +#ifdef _WIN32 + int ret = _fseeki64(fp, (__int64) offset, whence); +#else + int ret = std::fseek(fp, (long) offset, whence); +#endif + GGML_ASSERT(ret == 0); // same + } + + void read_raw(void * ptr, size_t len) const { + if (len == 0) { + return; + } + errno = 0; + std::size_t ret = std::fread(ptr, len, 1, fp); + if (ferror(fp)) { + throw std::runtime_error(format("read error: %s", strerror(errno))); + } + if (ret != 1) { + throw std::runtime_error("unexpectedly reached end of file"); + } + } + + uint32_t read_u32() const { + uint32_t ret; + read_raw(&ret, sizeof(ret)); + return ret; + } + + void write_raw(const void * ptr, size_t len) const { + if (len == 0) { + return; + } + errno = 0; + size_t ret = std::fwrite(ptr, len, 1, fp); + if (ret != 1) { + throw std::runtime_error(format("write error: %s", strerror(errno))); + } + } + + void write_u32(std::uint32_t val) const { + write_raw(&val, sizeof(val)); + } + + ~llama_file() { + if (fp) { + std::fclose(fp); + } + } +}; +using llama_files = std::vector>; + +struct llama_mmap { + void * addr; + size_t size; + + llama_mmap(const llama_mmap &) = delete; + +#ifdef _POSIX_MAPPED_FILES + static constexpr bool SUPPORTED = true; + + // list of mapped fragments (first_offset, last_offset) + std::vector> mapped_fragments; + + llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) { + size = file->size; + int fd = fileno(file->fp); + int flags = MAP_SHARED; + // prefetch/readahead impairs performance on NUMA systems + if (numa) { prefetch = 0; } +#ifdef __linux__ + // advise the kernel to read the file sequentially (increases readahead) + if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) { + LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n", + strerror(errno)); + } + if (prefetch) { flags |= MAP_POPULATE; } +#endif + addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0); + if (addr == MAP_FAILED) { // NOLINT + throw std::runtime_error(format("mmap failed: %s", strerror(errno))); + } + + if (prefetch > 0) { + // advise the kernel to preload the mapped memory + if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) { + LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n", + strerror(errno)); + } + } + if (numa) { + // advise the kernel not to use readahead + // (because the next page might not belong on the same node) + if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) { + LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n", + strerror(errno)); + } + } + + // initialize list of mapped_fragments + mapped_fragments.emplace_back(0, file->size); + } + + static void align_range(size_t * first, size_t * last, size_t page_size) { + // align first to the next page + size_t offset_in_page = *first & (page_size - 1); + size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page; + *first += offset_to_page; + + // align last to the previous page + *last = *last & ~(page_size - 1); + + if (*last <= *first) { + *last = *first; + } + } + + // partially unmap the file in the range [first, last) + void unmap_fragment(size_t first, size_t last) { + // note: this function must not be called multiple times with overlapping ranges + // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings + int page_size = sysconf(_SC_PAGESIZE); + align_range(&first, &last, page_size); + size_t len = last - first; + + if (len == 0) { + return; + } + + GGML_ASSERT(first % page_size == 0); + GGML_ASSERT(last % page_size == 0); + GGML_ASSERT(last > first); + + void * next_page_start = (uint8_t *) addr + first; + + // unmap the range + if (munmap(next_page_start, len)) { + LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno)); + } + + // update the list of mapped fragments to avoid unmapping the same range again in the destructor + std::vector> new_mapped_fragments; + for (const auto & frag : mapped_fragments) { + if (frag.first < first && frag.second > last) { + // the range is in the middle of the fragment, split it + new_mapped_fragments.emplace_back(frag.first, first); + new_mapped_fragments.emplace_back(last, frag.second); + } else if (frag.first < first && frag.second > first) { + // the range starts in the middle of the fragment + new_mapped_fragments.emplace_back(frag.first, first); + } else if (frag.first < last && frag.second > last) { + // the range ends in the middle of the fragment + new_mapped_fragments.emplace_back(last, frag.second); + } else if (frag.first >= first && frag.second <= last) { + // the range covers the entire fragment + } else { + // the range is outside the fragment + new_mapped_fragments.push_back(frag); + } + } + mapped_fragments = std::move(new_mapped_fragments); + } + + ~llama_mmap() { + for (const auto & frag : mapped_fragments) { + if (munmap((char *) addr + frag.first, frag.second - frag.first)) { + LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno)); + } + } + } +#elif defined(_WIN32) + static constexpr bool SUPPORTED = true; + + llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) { + GGML_UNUSED(numa); + + size = file->size; + + HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp)); + + HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL); + + if (hMapping == NULL) { + DWORD error = GetLastError(); + throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str())); + } + + addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0); + DWORD error = GetLastError(); + CloseHandle(hMapping); + + if (addr == NULL) { + throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str())); + } + + if (prefetch > 0) { +#if _WIN32_WINNT >= 0x602 + // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it + BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG); + HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll"); + + // may fail on pre-Windows 8 systems + pPrefetchVirtualMemory = reinterpret_cast (GetProcAddress(hKernel32, "PrefetchVirtualMemory")); + + if (pPrefetchVirtualMemory) { + // advise the kernel to preload the mapped memory + WIN32_MEMORY_RANGE_ENTRY range; + range.VirtualAddress = addr; + range.NumberOfBytes = (SIZE_T) std::min(size, prefetch); + if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) { + LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n", + llama_format_win_err(GetLastError()).c_str()); + } + } +#else + throw std::runtime_error("PrefetchVirtualMemory unavailable"); +#endif + } + } + + void unmap_fragment(size_t first, size_t last) { + // not supported + GGML_UNUSED(first); + GGML_UNUSED(last); + } + + ~llama_mmap() { + if (!UnmapViewOfFile(addr)) { + LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n", + llama_format_win_err(GetLastError()).c_str()); + } + } +#else + static constexpr bool SUPPORTED = false; + + llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) { + GGML_UNUSED(file); + GGML_UNUSED(prefetch); + GGML_UNUSED(numa); + + throw std::runtime_error("mmap not supported"); + } + + void unmap_fragment(size_t first, size_t last) { + GGML_UNUSED(first); + GGML_UNUSED(last); + + throw std::runtime_error("mmap not supported"); + } +#endif +}; +using llama_mmaps = std::vector>; + +// Represents some region of memory being locked using mlock or VirtualLock; +// will automatically unlock on destruction. +struct llama_mlock { + void * addr = NULL; + size_t size = 0; + + bool failed_already = false; + + llama_mlock() {} + llama_mlock(const llama_mlock &) = delete; + + ~llama_mlock() { + if (size) { + raw_unlock(addr, size); + } + } + + void init(void * ptr) { + GGML_ASSERT(addr == NULL && size == 0); // NOLINT + addr = ptr; + } + + void grow_to(size_t target_size) { + GGML_ASSERT(addr); + if (failed_already) { + return; + } + size_t granularity = lock_granularity(); + target_size = (target_size + granularity - 1) & ~(granularity - 1); + if (target_size > size) { + if (raw_lock((uint8_t *) addr + size, target_size - size)) { + size = target_size; + } else { + failed_already = true; + } + } + } + +#ifdef _POSIX_MEMLOCK_RANGE + static constexpr bool SUPPORTED = true; + + static size_t lock_granularity() { + return (size_t) sysconf(_SC_PAGESIZE); + } + + #ifdef __APPLE__ + #define MLOCK_SUGGESTION \ + "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \ + "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n" + #else + #define MLOCK_SUGGESTION \ + "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n" + #endif + + bool raw_lock(const void * addr, size_t size) const { + if (!mlock(addr, size)) { + return true; + } + + char* errmsg = std::strerror(errno); + bool suggest = (errno == ENOMEM); + + // Check if the resource limit is fine after all + struct rlimit lock_limit; + if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) { + suggest = false; + } + if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) { + suggest = false; + } + + LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s", + size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : ""); + return false; + } + + #undef MLOCK_SUGGESTION + + static void raw_unlock(void * addr, size_t size) { + if (munlock(addr, size)) { + LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno)); + } + } +#elif defined(_WIN32) + static constexpr bool SUPPORTED = true; + + static size_t lock_granularity() { + SYSTEM_INFO si; + GetSystemInfo(&si); + return (size_t) si.dwPageSize; + } + + bool raw_lock(void * ptr, size_t len) const { + for (int tries = 1; ; tries++) { + if (VirtualLock(ptr, len)) { + return true; + } + if (tries == 2) { + LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n", + len, size, llama_format_win_err(GetLastError()).c_str()); + return false; + } + + // It failed but this was only the first try; increase the working + // set size and try again. + SIZE_T min_ws_size, max_ws_size; + if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) { + LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n", + llama_format_win_err(GetLastError()).c_str()); + return false; + } + // Per MSDN: "The maximum number of pages that a process can lock + // is equal to the number of pages in its minimum working set minus + // a small overhead." + // Hopefully a megabyte is enough overhead: + size_t increment = len + 1048576; + // The minimum must be <= the maximum, so we need to increase both: + min_ws_size += increment; + max_ws_size += increment; + if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) { + LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n", + llama_format_win_err(GetLastError()).c_str()); + return false; + } + } + } + + static void raw_unlock(void * ptr, size_t len) { + if (!VirtualUnlock(ptr, len)) { + LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n", + llama_format_win_err(GetLastError()).c_str()); + } + } +#else + static constexpr bool SUPPORTED = false; + + static size_t lock_granularity() { + return (size_t) 65536; + } + + bool raw_lock(const void * addr, size_t len) const { + LLAMA_LOG_WARN("warning: mlock not supported on this system\n"); + return false; + } + + static void raw_unlock(const void * addr, size_t len) {} +#endif +}; +using llama_mlocks = std::vector>; + +static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) { + std::vector result(8, 0); + const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size()); + if (n_tokens < 0) { + result.resize(-n_tokens); + int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size()); + GGML_ASSERT(check == -n_tokens); + } + else { + result.resize(n_tokens); + } + + return std::string(result.data(), result.size()); +} + +static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) { + ggml_backend_buffer_type_t buft = nullptr; + +#if defined(GGML_USE_CUDA) + // host buffers should only be used when data is expected to be copied to/from the GPU + if (host_buffer) { + buft = ggml_backend_cuda_host_buffer_type(); + } +#elif defined(GGML_USE_SYCL) + if (host_buffer) { + buft = ggml_backend_sycl_host_buffer_type(); + } +#elif defined(GGML_USE_CPU_HBM) + buft = ggml_backend_cpu_hbm_buffer_type(); +#elif defined(GGML_USE_VULKAN) + if (host_buffer) { + buft = ggml_backend_vk_host_buffer_type(); + } +#endif + + if (buft == nullptr) { + buft = ggml_backend_cpu_buffer_type(); + } + return buft; + + GGML_UNUSED(host_buffer); +} + +static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) { + ggml_backend_buffer_type_t buft = nullptr; + +#ifdef GGML_USE_METAL + buft = ggml_backend_metal_buffer_type(); +#elif defined(GGML_USE_CUDA) + buft = ggml_backend_cuda_buffer_type(gpu); +#elif defined(GGML_USE_VULKAN) + buft = ggml_backend_vk_buffer_type(gpu); +#elif defined(GGML_USE_SYCL) + buft = ggml_backend_sycl_buffer_type(gpu); +#elif defined(GGML_USE_CLBLAST) + buft = ggml_backend_opencl_buffer_type(); +#elif defined(GGML_USE_KOMPUTE) + buft = ggml_backend_kompute_buffer_type(gpu); + if (buft == nullptr) { + LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu); + } +#endif + + if (buft == nullptr) { + buft = llama_default_buffer_type_cpu(true); + } + return buft; + + GGML_UNUSED(gpu); +} + +static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_gpu, const float * tensor_split) { + ggml_backend_buffer_type_t buft = nullptr; + +#ifdef GGML_USE_CUDA + if (ggml_backend_cuda_get_device_count() > 1) { + buft = ggml_backend_cuda_split_buffer_type(tensor_split); + } +#endif + +#ifdef GGML_USE_SYCL + if (ggml_backend_sycl_get_device_count() > 1) { + buft = ggml_backend_sycl_split_buffer_type(tensor_split); + } +#endif + + if (buft == nullptr) { + buft = llama_default_buffer_type_offload(fallback_gpu); + } + return buft; + + GGML_UNUSED(tensor_split); +} + +static size_t llama_get_device_count() { +#if defined(GGML_USE_CUDA) + return ggml_backend_cuda_get_device_count(); +#elif defined(GGML_USE_SYCL) + return ggml_backend_sycl_get_device_count(); +#elif defined(GGML_USE_VULKAN) + return ggml_backend_vk_get_device_count(); +#else + return 1; +#endif +} + +static size_t llama_get_device_memory(int device) { +#if defined(GGML_USE_CUDA) + size_t total; + size_t free; + ggml_backend_cuda_get_device_memory(device, &free, &total); + return free; +#elif defined(GGML_USE_SYCL) + size_t total; + size_t free; + ggml_backend_sycl_get_device_memory(device, &free, &total); + return free; +#elif defined(GGML_USE_VULKAN) + size_t total; + size_t free; + ggml_backend_vk_get_device_memory(device, &free, &total); + return free; +#else + return 1; + GGML_UNUSED(device); +#endif +} + +// +// globals +// + +struct llama_state { + llama_state() { +#ifdef GGML_USE_METAL + ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data); +#endif + } + + // We save the log callback globally + ggml_log_callback log_callback = llama_log_callback_default; + void * log_callback_user_data = nullptr; +}; + +static llama_state g_state; + +// available llama models +enum e_model { + MODEL_UNKNOWN, + MODEL_17M, + MODEL_22M, + MODEL_33M, + MODEL_109M, + MODEL_137M, + MODEL_335M, + MODEL_0_5B, + MODEL_1B, + MODEL_2B, + MODEL_3B, + MODEL_4B, + MODEL_7B, + MODEL_8B, + MODEL_12B, + MODEL_13B, + MODEL_14B, + MODEL_15B, + MODEL_20B, + MODEL_30B, + MODEL_34B, + MODEL_35B, + MODEL_40B, + MODEL_65B, + MODEL_70B, + MODEL_314B, + MODEL_SMALL, + MODEL_MEDIUM, + MODEL_LARGE, + MODEL_XL, + MODEL_A2_7B, + MODEL_8x7B, + MODEL_8x22B, + MODEL_16x12B, +}; + +static const size_t kiB = 1024; +static const size_t MiB = 1024*kiB; +static const size_t GiB = 1024*MiB; + +struct llama_hparams { + bool vocab_only; + bool rope_finetuned; + + uint32_t n_vocab; + uint32_t n_ctx_train; // context size the model was trained on + uint32_t n_embd; + uint32_t n_head; + uint32_t n_head_kv; + uint32_t n_layer; + uint32_t n_rot; + uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads + uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head + uint32_t n_ff; + uint32_t n_expert = 0; + uint32_t n_expert_used = 0; + uint32_t n_vocab_type = 0; // for BERT-style token types + + float f_norm_eps; + float f_norm_rms_eps; + + float rope_freq_base_train; + float rope_freq_scale_train; + uint32_t n_yarn_orig_ctx; + + // for State Space Models + uint32_t ssm_d_conv = 0; + uint32_t ssm_d_inner = 0; + uint32_t ssm_d_state = 0; + uint32_t ssm_dt_rank = 0; + + float f_clamp_kqv = 0.0f; + float f_max_alibi_bias = 0.0f; + float f_logit_scale = 0.0f; + + bool causal_attn = true; + bool need_kq_pos = false; + + enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE; + enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE; + enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE; + + bool operator!=(const llama_hparams & other) const { + if (this->vocab_only != other.vocab_only) return true; + if (this->n_vocab != other.n_vocab) return true; + if (this->n_ctx_train != other.n_ctx_train) return true; + if (this->n_embd != other.n_embd) return true; + if (this->n_head != other.n_head) return true; + if (this->n_head_kv != other.n_head_kv) return true; + if (this->n_layer != other.n_layer) return true; + if (this->n_rot != other.n_rot) return true; + if (this->n_embd_head_k != other.n_embd_head_k) return true; + if (this->n_embd_head_v != other.n_embd_head_v) return true; + if (this->n_ff != other.n_ff) return true; + if (this->n_expert != other.n_expert) return true; + if (this->n_expert_used != other.n_expert_used) return true; + + if (this->rope_finetuned != other.rope_finetuned) return true; + if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true; + + if (this->ssm_d_conv != other.ssm_d_conv) return true; + if (this->ssm_d_inner != other.ssm_d_inner) return true; + if (this->ssm_d_state != other.ssm_d_state) return true; + if (this->ssm_dt_rank != other.ssm_dt_rank) return true; + + const float EPSILON = 1e-9f; + + if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true; + if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true; + if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true; + if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true; + + return false; + } + + uint32_t n_gqa() const { + if (n_head_kv == 0) { + return 0; + } + return n_head/n_head_kv; + } + + uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads + return n_embd_head_k * n_head_kv; + } + + uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads + return n_embd_head_v * n_head_kv; + } + + uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings + // corresponds to Mamba's conv_states size + // TODO: maybe support other convolution strides than 1 + // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed + return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner; + } + + uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings + // corresponds to Mamba's ssm_states size + return ssm_d_state * ssm_d_inner; + } +}; + +struct llama_cparams { + uint32_t n_ctx; // context size used during inference + uint32_t n_batch; + uint32_t n_ubatch; + uint32_t n_seq_max; + uint32_t n_threads; // number of threads to use for generation + uint32_t n_threads_batch; // number of threads to use for batch processing + + float rope_freq_base; + float rope_freq_scale; + + uint32_t n_yarn_orig_ctx; + // These hyperparameters are not exposed in GGUF, because all + // existing YaRN models use the same values for them. + float yarn_ext_factor; + float yarn_attn_factor; + float yarn_beta_fast; + float yarn_beta_slow; + float defrag_thold; + + bool embeddings; + bool causal_attn; + bool offload_kqv; + + enum llama_pooling_type pooling_type; + + ggml_backend_sched_eval_callback cb_eval; + void * cb_eval_user_data; +}; + +struct llama_layer { + // normalization + struct ggml_tensor * attn_norm; + struct ggml_tensor * attn_norm_b; + struct ggml_tensor * attn_norm_2; + struct ggml_tensor * attn_norm_2_b; + struct ggml_tensor * attn_q_norm; + struct ggml_tensor * attn_q_norm_b; + struct ggml_tensor * attn_k_norm; + struct ggml_tensor * attn_k_norm_b; + struct ggml_tensor * attn_out_norm; + struct ggml_tensor * attn_out_norm_b; + + // attention + struct ggml_tensor * wq; + struct ggml_tensor * wk; + struct ggml_tensor * wv; + struct ggml_tensor * wo; + struct ggml_tensor * wqkv; + + // attention bias + struct ggml_tensor * bq; + struct ggml_tensor * bk; + struct ggml_tensor * bv; + struct ggml_tensor * bo; + struct ggml_tensor * bqkv; + + // normalization + struct ggml_tensor * ffn_norm; + struct ggml_tensor * ffn_norm_b; + struct ggml_tensor * layer_out_norm; + struct ggml_tensor * layer_out_norm_b; + + // ff + struct ggml_tensor * ffn_gate; // w1 + struct ggml_tensor * ffn_down; // w2 + struct ggml_tensor * ffn_up; // w3 + + // ff MoE + struct ggml_tensor * ffn_gate_inp; + struct ggml_tensor * ffn_gate_exps; + struct ggml_tensor * ffn_down_exps; + struct ggml_tensor * ffn_up_exps ; + + // ff shared expert (shexp) + struct ggml_tensor * ffn_gate_inp_shexp; + struct ggml_tensor * ffn_gate_shexp; + struct ggml_tensor * ffn_down_shexp; + struct ggml_tensor * ffn_up_shexp; + + // ff bias + struct ggml_tensor * ffn_down_b; // b2 + struct ggml_tensor * ffn_up_b; // b3 + struct ggml_tensor * ffn_act; + + // mamba proj + struct ggml_tensor * ssm_in; + struct ggml_tensor * ssm_x; + struct ggml_tensor * ssm_dt; + struct ggml_tensor * ssm_out; + + // mamba + struct ggml_tensor * ssm_conv1d; + struct ggml_tensor * ssm_a; + struct ggml_tensor * ssm_d; + + // mamba bias + struct ggml_tensor * ssm_conv1d_b; + struct ggml_tensor * ssm_dt_b; +}; + +struct llama_kv_cell { + llama_pos pos = -1; + llama_pos delta = 0; + int32_t src = 0; // used by recurrent state models to copy states + + std::set seq_id; + + bool has_seq_id(const llama_seq_id & id) const { + return seq_id.find(id) != seq_id.end(); + } + + bool is_empty() const { + return seq_id.empty(); + } + + bool is_same_seq(const llama_kv_cell & other) const { + return seq_id == other.seq_id; + } +}; + +// ring-buffer of cached KV data +struct llama_kv_cache { + bool has_shift = false; + bool do_defrag = false; + bool do_copy = false; + // with recurrent state models, a cell can hold the state for more than one past token + bool recurrent = false; + + // Note: The value of head isn't only used to optimize searching + // for a free KV slot. llama_decode_internal also uses it, so it + // cannot be freely changed after a slot has been allocated. + uint32_t head = 0; + uint32_t size = 0; + uint32_t used = 0; // used cells (i.e. at least one seq_id) + + // computed before each graph build + uint32_t n = 0; + + ggml_type type_k = GGML_TYPE_F16; + ggml_type type_v = GGML_TYPE_F16; + + std::vector cells; + + std::vector k_l; // per layer + std::vector v_l; + + std::vector ctxs; + std::vector bufs; + + size_t total_size() const { + size_t size = 0; + for (ggml_backend_buffer_t buf : bufs) { + size += ggml_backend_buffer_get_size(buf); + } + return size; + } + + ~llama_kv_cache() { + for (struct ggml_context * ctx : ctxs) { + ggml_free(ctx); + } + for (ggml_backend_buffer_t buf : bufs) { + ggml_backend_buffer_free(buf); + } + } +}; + +struct llama_control_vector { + std::vector tensors; // per layer + std::vector ctxs; + std::vector bufs; + + int32_t layer_start = -1; + int32_t layer_end = -1; + + ggml_tensor * tensor_for(int il) const { + if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) { + return nullptr; + } + return tensors[il]; + } + + ~llama_control_vector() { + for (struct ggml_context * ctx : ctxs) { + ggml_free(ctx); + } + for (ggml_backend_buffer_t buf : bufs) { + ggml_backend_buffer_free(buf); + } + } +}; + +struct llama_vocab { + using id = int32_t; + using token = std::string; + using ttype = llama_token_type; + + struct token_data { + token text; + float score; + ttype type; + }; + + enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM; + + std::unordered_map token_to_id; + std::vector id_to_token; + + std::unordered_map special_tokens_cache; + + std::map, int> bpe_ranks; + + // default LLaMA special tokens + id special_bos_id = 1; + id special_eos_id = 2; + id special_unk_id = 0; + id special_sep_id = -1; + id special_pad_id = -1; + id special_cls_id = -1; + id special_mask_id = -1; + + int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add. + int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add. + + id linefeed_id = 13; + id special_prefix_id = -1; + id special_suffix_id = -1; + id special_middle_id = -1; + id special_eot_id = -1; + + bool add_space_prefix = true; + + int find_bpe_rank(const std::string & token_left, const std::string & token_right) const { + GGML_ASSERT(token_left.find(' ') == std::string::npos); + GGML_ASSERT(token_left.find('\n') == std::string::npos); + GGML_ASSERT(token_right.find(' ') == std::string::npos); + GGML_ASSERT(token_right.find('\n') == std::string::npos); + + auto it = bpe_ranks.find(std::make_pair(token_left, token_right)); + if (it == bpe_ranks.end()) { + return -1; + } + + return it->second; + } +}; + +struct llama_model { + e_model type = MODEL_UNKNOWN; + llm_arch arch = LLM_ARCH_UNKNOWN; + llama_ftype ftype = LLAMA_FTYPE_ALL_F32; + + std::string name = "n/a"; + + llama_hparams hparams = {}; + llama_vocab vocab; + + struct ggml_tensor * tok_embd; + struct ggml_tensor * type_embd; + struct ggml_tensor * pos_embd; + struct ggml_tensor * tok_norm; + struct ggml_tensor * tok_norm_b; + + struct ggml_tensor * output_norm; + struct ggml_tensor * output_norm_b; + struct ggml_tensor * output; + struct ggml_tensor * output_b; + + std::vector layers; + + llama_split_mode split_mode; + int main_gpu; + int n_gpu_layers; + + // gguf metadata + std::unordered_map gguf_kv; + + // layer -> buffer type mapping + struct layer_buft { + layer_buft() : buft_matrix(nullptr), buft(nullptr) {} + layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {} + layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {} + + ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication + ggml_backend_buffer_type_t buft; // everything else + }; + + layer_buft buft_input; + layer_buft buft_output; + std::vector buft_layer; + + // contexts where the model tensors metadata is stored + std::vector ctxs; + + // the model memory buffers for the tensor data + std::vector bufs; + + // model memory mapped files + llama_mmaps mappings; + + // objects representing data potentially being locked in memory + llama_mlocks mlock_bufs; + llama_mlocks mlock_mmaps; + + // for quantize-stats only + std::vector> tensors_by_name; + + int64_t t_load_us = 0; + int64_t t_start_us = 0; + + ~llama_model() { + for (struct ggml_context * ctx : ctxs) { + ggml_free(ctx); + } + for (ggml_backend_buffer_t buf : bufs) { +#ifdef GGML_USE_CUDA + if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) { + ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf)); + } +#endif + ggml_backend_buffer_free(buf); + } + } +}; + +struct llama_context { + llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {} + ~llama_context() { + ggml_backend_sched_free(sched); + + for (ggml_backend_t backend : backends) { + ggml_backend_free(backend); + } + + ggml_backend_buffer_free(buf_output); + } + + llama_cparams cparams; + + std::vector backends; +#ifdef GGML_USE_METAL + ggml_backend_t backend_metal = nullptr; +#endif + ggml_backend_t backend_cpu = nullptr; + + const llama_model & model; + + // key + value cache for the self attention + struct llama_kv_cache kv_self; + + std::mt19937 rng; + + bool has_evaluated_once = false; + + int64_t t_start_us; + int64_t t_load_us; + int64_t t_sample_us = 0; + int64_t t_p_eval_us = 0; + int64_t t_eval_us = 0; + + int64_t t_compute_start_us = 0; + int64_t n_queued_tokens = 0; + + int32_t n_sample = 0; // number of tokens sampled + int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1) + int32_t n_eval = 0; // number of eval calls + + // host buffer for the model output (logits and embeddings) + ggml_backend_buffer_t buf_output = nullptr; + + // decode output (2-dimensional array: [n_outputs][n_vocab]) + size_t logits_size = 0; // capacity (of floats) for logits + float * logits = nullptr; + + std::vector output_ids; // map batch token positions to ids of the logits and embd buffers + size_t output_size = 0; // capacity (of tokens positions) for the output buffers + int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch + + bool logits_all = false; + + // embeddings output (2-dimensional array: [n_outputs][n_embd]) + // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE + size_t embd_size = 0; // capacity (of floats) for embeddings + float * embd = nullptr; + + // sequence embeddings output (map of [n_embd] vectors) + // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE + std::map> embd_seq; + + // memory buffers used to evaluate the model + std::vector buf_compute_meta; + ggml_backend_sched_t sched = nullptr; + + ggml_abort_callback abort_callback = nullptr; + void * abort_callback_data = nullptr; + + // input tensors + struct ggml_tensor * inp_tokens; // I32 [n_batch] + struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch] + struct ggml_tensor * inp_pos; // I32 [n_batch] + struct ggml_tensor * inp_out_ids; // I32 [n_outputs] + struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch] + struct ggml_tensor * inp_KQ_pos; // F32 [n_kv] + struct ggml_tensor * inp_K_shift; // I32 [kv_size] + struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch] + struct ggml_tensor * inp_cls; // I32 [n_batch] + struct ggml_tensor * inp_s_copy; // I32 [kv_size] + struct ggml_tensor * inp_s_mask; // F32 [1, n_kv] + struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch] + + // control vectors + struct llama_control_vector cvec; + +#ifdef GGML_USE_MPI + ggml_mpi_context * ctx_mpi = NULL; +#endif +}; + +// +// kv cache helpers +// + +static bool llama_kv_cache_init( + struct llama_kv_cache & cache, + const llama_model & model, + ggml_type type_k, + ggml_type type_v, + uint32_t kv_size, + bool offload) { + const struct llama_hparams & hparams = model.hparams; + + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s(); + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s(); + const int64_t n_layer = hparams.n_layer; + + cache.has_shift = false; + + // TODO: find a nicer way to add other recurrent model architectures + cache.recurrent = model.arch == LLM_ARCH_MAMBA; + + // TODO: support mixed reccurent Transformer architectues + // NOTE: (!a || b) is a logical implication (a -> b) + GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s()); + GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s()); + GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa()); + GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa()); + + cache.head = 0; + cache.size = kv_size; + cache.used = 0; + + cache.type_k = type_k; + cache.type_v = type_v; + + cache.cells.clear(); + cache.cells.resize(kv_size); + + if (cache.recurrent) { + // init state copy sources + for (uint32_t i = 0; i < cache.size; ++i) { + cache.cells[i].src = i; + } + } + +#ifdef GGML_USE_CLBLAST + offload = false; +#endif + + // count used buffer types + std::map buft_layer_count; + if (offload) { + for (int64_t i = 0; i < n_layer; ++i) { + buft_layer_count[model.buft_layer[i].buft]++; + } + } else { + buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer; + } + + // create a context for each buffer type + std::map ctx_map; + for (auto & it : buft_layer_count) { + int n_layers = it.second; + struct ggml_init_params params = { + /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(), + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ true, + }; + ggml_context * ctx = ggml_init(params); + if (!ctx) { + LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__); + return false; + } + ctx_map[it.first] = ctx; + cache.ctxs.push_back(ctx); + } + + cache.k_l.reserve(n_layer); + cache.v_l.reserve(n_layer); + + for (int i = 0; i < (int) n_layer; i++) { + struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front(); + ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size); + ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size); + ggml_format_name(k, "cache_k_l%d", i); + ggml_format_name(v, "cache_v_l%d", i); + cache.k_l.push_back(k); + cache.v_l.push_back(v); + } + + // allocate tensors and initialize the buffers to avoid NaNs in the padding + for (auto it : ctx_map) { + ggml_backend_buffer_type_t buft = it.first; + ggml_context * ctx = it.second; + ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); + if (!buf) { + LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__); + return false; + } + ggml_backend_buffer_clear(buf, 0); + LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0); + cache.bufs.push_back(buf); + } + + return true; +} + +// find an empty slot of size "n_tokens" in the cache +// updates the cache head +// Note: On success, it's important that cache.head points +// to the first cell of the slot. +static bool llama_kv_cache_find_slot( + struct llama_kv_cache & cache, + const struct llama_batch & batch) { + const uint32_t n_ctx = cache.size; + const uint32_t n_tokens = batch.n_tokens; + + if (cache.recurrent) { + // For recurrent state architectures (like Mamba), + // each KV cache cell can store the state for a whole sequence. + + llama_seq_id min = cache.size - 1; + llama_seq_id max = 0; + + for (uint32_t i = 0; i < n_tokens; ++i) { + for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) { + llama_seq_id seq_id = batch.seq_id[i][j]; + // make sure it's a valid seq_id + if ((uint32_t) seq_id < cache.size) { + if (seq_id > max) { + max = seq_id; + } + if (seq_id < min) { + min = seq_id; + } + // Assuming the tokens are in-order + if (batch.pos[i] != cache.cells[seq_id].pos + 1) { + // What should happen when the pos backtracks or skips a value? + // Clearing the state mid-batch would require special-casing which isn't done. + LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n", + __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id); + } + if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) { + cache.used += 1; + } + cache.cells[seq_id].pos = batch.pos[i]; + // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set + } else { + // too big seq_id + // TODO: would it be possible to resize the KV cache size instead? + LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size); + return false; + } + } + } + + // allow getting the range of used cells, from head to head + n + cache.head = min; + cache.n = max - min + 1; + + // sanity check + return max >= min; + } + // otherwise, one cell per token. + + if (n_tokens > n_ctx) { + LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx); + return false; + } + + uint32_t n_tested = 0; + + while (true) { + if (cache.head + n_tokens > n_ctx) { + n_tested += n_ctx - cache.head; + cache.head = 0; + continue; + } + + bool found = true; + for (uint32_t i = 0; i < n_tokens; i++) { + if (cache.cells[cache.head + i].pos >= 0) { + found = false; + cache.head += i + 1; + n_tested += i + 1; + break; + } + } + + if (found) { + break; + } + + if (n_tested >= n_ctx) { + //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens); + return false; + } + } + + for (uint32_t i = 0; i < n_tokens; i++) { + cache.cells[cache.head + i].pos = batch.pos[i]; + + for (int32_t j = 0; j < batch.n_seq_id[i]; j++) { + cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]); + } + } + + cache.used += n_tokens; + + return true; +} + +// find how many cells are currently in use +static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) { + for (uint32_t i = cache.size; i > 0; --i) { + const llama_kv_cell & cell = cache.cells[i - 1]; + + if (cell.pos >= 0 && !cell.is_empty()) { + return i; + } + } + + return 0; +} + +static void llama_kv_cache_clear(struct llama_kv_cache & cache) { + for (int32_t i = 0; i < (int32_t) cache.size; ++i) { + cache.cells[i].pos = -1; + cache.cells[i].seq_id.clear(); + } + cache.head = 0; + cache.used = 0; +} + +static bool llama_kv_cache_seq_rm( + struct llama_kv_cache & cache, + llama_seq_id seq_id, + llama_pos p0, + llama_pos p1) { + uint32_t new_head = cache.size; + + if (p0 < 0) p0 = 0; + if (p1 < 0) p1 = std::numeric_limits::max(); + + // models like Mamba can't have a state partially erased + if (cache.recurrent) { + if (seq_id >= (int64_t) cache.size) { + // could be fatal + return false; + } + if (0 <= seq_id) { + // partial intersection is invalid + if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) { + return false; + } + } else { + // seq_id is negative, then the range should include everything or nothing + if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits::max())) { + return false; + } + } + } + + for (uint32_t i = 0; i < cache.size; ++i) { + if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { + if (seq_id < 0) { + cache.cells[i].seq_id.clear(); + } else if (cache.cells[i].has_seq_id(seq_id)) { + cache.cells[i].seq_id.erase(seq_id); + } else { + continue; + } + if (cache.cells[i].is_empty()) { + // keep count of the number of used cells + if (cache.cells[i].pos >= 0) cache.used--; + + cache.cells[i].pos = -1; + if (new_head == cache.size) new_head = i; + } + } + } + + // If we freed up a slot, set head to it so searching can start there. + if (new_head != cache.size && new_head < cache.head) cache.head = new_head; + + return true; +} + +static void llama_kv_cache_seq_cp( + struct llama_kv_cache & cache, + llama_seq_id seq_id_src, + llama_seq_id seq_id_dst, + llama_pos p0, + llama_pos p1) { + if (p0 < 0) p0 = 0; + if (p1 < 0) p1 = std::numeric_limits::max(); + + if (cache.recurrent) { + if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) { + seq_id_src = cache.cells[seq_id_src].src; + GGML_ASSERT((uint32_t) seq_id_src < cache.size); + // intent to "copy from" + // supports copy chains thanks to taking the source of the source + cache.cells[seq_id_dst].src = seq_id_src; + + // preserve the "keep or clear" status of the copied sequence + if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) { + cache.cells[seq_id_dst].seq_id.insert(seq_id_dst); + } else { + cache.cells[seq_id_dst].seq_id.erase(seq_id_dst); + } + + cache.do_copy = true; + + cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos; + } + return; + } + // otherwise, this is the KV cache of a Transformer-like model + + cache.head = 0; + + for (uint32_t i = 0; i < cache.size; ++i) { + if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { + cache.cells[i].seq_id.insert(seq_id_dst); + } + } +} + +static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) { + uint32_t new_head = cache.size; + + for (uint32_t i = 0; i < cache.size; ++i) { + if (!cache.cells[i].has_seq_id(seq_id)) { + if (cache.cells[i].pos >= 0) cache.used--; + cache.cells[i].pos = -1; + cache.cells[i].seq_id.clear(); + if (new_head == cache.size) new_head = i; + } else { + cache.cells[i].seq_id.clear(); + cache.cells[i].seq_id.insert(seq_id); + } + } + + // If we freed up a slot, set head to it so searching can start there. + if (new_head != cache.size && new_head < cache.head) cache.head = new_head; +} + +static void llama_kv_cache_seq_add( + struct llama_kv_cache & cache, + llama_seq_id seq_id, + llama_pos p0, + llama_pos p1, + llama_pos delta) { + uint32_t new_head = cache.size; + + if (p0 < 0) p0 = 0; + if (p1 < 0) p1 = std::numeric_limits::max(); + + if (cache.recurrent) { + // for Mamba-like models, only the pos needs to be shifted + if (0 <= seq_id && seq_id < (int64_t) cache.size) { + llama_kv_cell & cell = cache.cells[seq_id]; + if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) { + cell.pos += delta; + } + } + return; + } + + for (uint32_t i = 0; i < cache.size; ++i) { + if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { + cache.has_shift = true; + cache.cells[i].pos += delta; + cache.cells[i].delta += delta; + + if (cache.cells[i].pos < 0) { + if (!cache.cells[i].is_empty()) { + cache.used--; + } + cache.cells[i].pos = -1; + cache.cells[i].seq_id.clear(); + if (new_head == cache.size) { + new_head = i; + } + } + } + } + + // If we freed up a slot, set head to it so searching can start there. + // Otherwise we just start the next search from the beginning. + cache.head = new_head != cache.size ? new_head : 0; +} + +static void llama_kv_cache_seq_div( + struct llama_kv_cache & cache, + llama_seq_id seq_id, + llama_pos p0, + llama_pos p1, + int d) { + if (p0 < 0) p0 = 0; + if (p1 < 0) p1 = std::numeric_limits::max(); + + if (cache.recurrent) { + // for Mamba-like models, only the pos needs to be changed + if (0 <= seq_id && seq_id < (int64_t) cache.size) { + llama_kv_cell & cell = cache.cells[seq_id]; + if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) { + cell.pos /= d; + } + } + return; + } + + for (uint32_t i = 0; i < cache.size; ++i) { + if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) { + cache.has_shift = true; + + { + llama_pos p_old = cache.cells[i].pos; + cache.cells[i].pos /= d; + cache.cells[i].delta += cache.cells[i].pos - p_old; + } + } + } +} + +static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) { + llama_pos result = 0; + + for (uint32_t i = 0; i < cache.size; ++i) { + if (cache.cells[i].has_seq_id(seq_id)) { + result = std::max(result, cache.cells[i].pos); + } + } + + return result; +} + +static void llama_kv_cache_defrag(struct llama_kv_cache & cache) { + cache.do_defrag = true; +} + +// +// model loading and saving +// + +enum llama_fver { + GGUF_FILE_VERSION_V1 = 1, + GGUF_FILE_VERSION_V2 = 2, + GGUF_FILE_VERSION_V3 = 3, +}; + +static const char * llama_file_version_name(llama_fver version) { + switch (version) { + case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)"; + case GGUF_FILE_VERSION_V2: return "GGUF V2"; + case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)"; + } + + return "unknown"; +} + +static std::string llama_format_tensor_shape(const std::vector & ne) { + char buf[256]; + snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0)); + for (size_t i = 1; i < ne.size(); i++) { + snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i)); + } + return buf; +} + +static std::string llama_format_tensor_shape(const struct ggml_tensor * t) { + char buf[256]; + snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]); + for (int i = 1; i < GGML_MAX_DIMS; i++) { + snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]); + } + return buf; +} + +namespace GGUFMeta { + template + struct GKV_Base_Type { + static constexpr gguf_type gt = gt_; + + static T getter(const gguf_context * ctx, const int kid) { + return gfun(ctx, kid); + } + }; + + template struct GKV_Base; + + template<> struct GKV_Base: GKV_Base_Type {}; + template<> struct GKV_Base: GKV_Base_Type {}; + template<> struct GKV_Base: GKV_Base_Type {}; + template<> struct GKV_Base: GKV_Base_Type {}; + template<> struct GKV_Base: GKV_Base_Type {}; + template<> struct GKV_Base: GKV_Base_Type {}; + template<> struct GKV_Base: GKV_Base_Type {}; + template<> struct GKV_Base: GKV_Base_Type {}; + template<> struct GKV_Base: GKV_Base_Type {}; + template<> struct GKV_Base: GKV_Base_Type {}; + template<> struct GKV_Base: GKV_Base_Type {}; + template<> struct GKV_Base: GKV_Base_Type {}; + + template<> struct GKV_Base { + static constexpr gguf_type gt = GGUF_TYPE_STRING; + + static std::string getter(const gguf_context * ctx, const int kid) { + return gguf_get_val_str(ctx, kid); + } + }; + + struct ArrayInfo { + const gguf_type gt; + const size_t length; + const void * data; + }; + + template<> struct GKV_Base { + public: + static constexpr gguf_type gt = GGUF_TYPE_ARRAY; + static ArrayInfo getter(const gguf_context *ctx, const int k) { + return ArrayInfo { + gguf_get_arr_type(ctx, k), + size_t(gguf_get_arr_n(ctx, k)), + gguf_get_arr_data(ctx, k), + }; + } + }; + + template + class GKV : public GKV_Base { + GKV() = delete; + + public: + static T get_kv(const gguf_context * ctx, const int k) { + const enum gguf_type kt = gguf_get_kv_type(ctx, k); + + if (kt != GKV::gt) { + throw std::runtime_error(format("key %s has wrong type %s but expected type %s", + gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt))); + } + return GKV::getter(ctx, k); + } + + static const char * override_type_to_str(const llama_model_kv_override_type ty) { + switch (ty) { + case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool"; + case LLAMA_KV_OVERRIDE_TYPE_INT: return "int"; + case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float"; + } + return "unknown"; + } + + static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) { + if (!ovrd) { return false; } + if (ovrd->tag == expected_type) { + LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ", + __func__, override_type_to_str(ovrd->tag), ovrd->key); + switch (ovrd->tag) { + case LLAMA_KV_OVERRIDE_TYPE_BOOL: { + LLAMA_LOG_INFO("%s\n", ovrd->bool_value ? "true" : "false"); + } break; + case LLAMA_KV_OVERRIDE_TYPE_INT: { + LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->int_value); + } break; + case LLAMA_KV_OVERRIDE_TYPE_FLOAT: { + LLAMA_LOG_INFO("%.6f\n", ovrd->float_value); + } break; + default: + // Shouldn't be possible to end up here, but just in case... + throw std::runtime_error( + format("Unsupported attempt to override %s type for metadata key %s\n", + override_type_to_str(ovrd->tag), ovrd->key)); + } + return true; + } + LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n", + __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag)); + return false; + } + + template + static typename std::enable_if::value, bool>::type + try_override(OT & target, const struct llama_model_kv_override * ovrd) { + if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) { + target = ovrd->bool_value; + return true; + } + return false; + } + + template + static typename std::enable_if::value && std::is_integral::value, bool>::type + try_override(OT & target, const struct llama_model_kv_override * ovrd) { + if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) { + target = ovrd->int_value; + return true; + } + return false; + } + + template + static typename std::enable_if::value, bool>::type + try_override(T & target, const struct llama_model_kv_override * ovrd) { + if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) { + target = ovrd->float_value; + return true; + } + return false; + } + + template + static typename std::enable_if::value, bool>::type + try_override(T & target, const struct llama_model_kv_override * ovrd) { + (void)target; + (void)ovrd; + if (!ovrd) { return false; } + // Currently, we should never end up here so it would be a bug if we do. + throw std::runtime_error(format("Unsupported attempt to override string type for metadata key %s\n", + ovrd ? ovrd->key : "NULL")); + } + + static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) { + if (try_override(target, ovrd)) { + return true; + } + if (k < 0) { return false; } + target = get_kv(ctx, k); + return true; + } + + static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) { + return set(ctx, gguf_find_key(ctx, key), target, ovrd); + } + + static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) { + return set(ctx, key.c_str(), target, ovrd); + } + }; +} + +using llama_buf_map = std::unordered_map; + +struct llama_model_loader { + int n_kv = 0; + int n_tensors = 0; + int n_created = 0; + + int64_t n_elements = 0; + size_t n_bytes = 0; + + bool use_mmap = false; + + llama_files files; + llama_ftype ftype; + llama_fver fver; + + llama_mmaps mappings; + + // Holds information on a model weight + struct llama_tensor_weight { + uint16_t idx; // source file index + size_t offs; // tensor data offset in the original file + + ggml_tensor * tensor; + + llama_tensor_weight(uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) { + const int tensor_idx = gguf_find_tensor(gguf_ctx, name); + offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx); + } + }; + std::vector weights; + + std::unordered_map kv_overrides; + + struct gguf_context * meta = NULL; + std::vector contexts; + + std::string arch_name; + LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN); + + llama_model_loader(const std::string & fname, bool use_mmap, const struct llama_model_kv_override * param_overrides_p) { + int trace = 0; + if (getenv("LLAMA_TRACE")) { + trace = atoi(getenv("LLAMA_TRACE")); + } + + if (param_overrides_p != nullptr) { + for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) { + kv_overrides.insert({std::string(p->key), *p}); + } + } + + struct ggml_context * ctx = NULL; + struct gguf_init_params params = { + /*.no_alloc = */ true, + /*.ctx = */ &ctx, + }; + + meta = gguf_init_from_file(fname.c_str(), params); + if (!meta) { + throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str())); + } + + get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false); + llm_kv = LLM_KV(llm_arch_from_string(arch_name)); + + // Save tensors data offset of the main file. + // For subsidiary files, `meta` tensor data offset must not be used, + // so we build a unified tensors index for weights. + for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { + weights.emplace_back(0, cur->name, meta, cur); + } + files.emplace_back(new llama_file(fname.c_str(), "rb")); + contexts.emplace_back(ctx); + + uint16_t n_split = 0; + get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false); + + // Load additional GGML contexts + if (n_split > 1) { + uint16_t idx = 0; + get_key(llm_kv(LLM_KV_SPLIT_NO), idx); + if (idx != 0) { + throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx)); + } + + char split_prefix[PATH_MAX] = {0}; + if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) { + throw std::runtime_error(format("invalid split file: %s", fname.c_str())); + } + + if (trace > 0) { + LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split); + } + + char split_path[PATH_MAX] = {0}; + for (idx = 1; idx < n_split; idx++) { + llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split); + + struct gguf_init_params split_params = { + /*.no_alloc = */ true, + /*.ctx = */ &ctx, + }; + struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params); + if (!ctx_gguf) { + throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path)); + } + + // Save tensors data offset info of the shard. + for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) { + weights.emplace_back(idx, cur->name, ctx_gguf, cur); + } + files.emplace_back(new llama_file(split_path, "rb")); + contexts.emplace_back(ctx); + + gguf_free(ctx_gguf); + } + + get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors); + + // sanity check + { + const int n_tensors_loaded = (int) weights.size(); + if (n_tensors != n_tensors_loaded) { + throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded)); + } + } + + LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1); + } + + n_kv = gguf_get_n_kv(meta); + n_tensors = weights.size(); + + fver = (enum llama_fver) gguf_get_version(meta); + + for (auto & w : weights) { + n_elements += ggml_nelements(w.tensor); + n_bytes += ggml_nbytes(w.tensor); + } + + LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n", + __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver)); + + // determine file type based on the number of tensors for each quantization and print meta data + // TODO: make optional + { + std::map n_type; + + uint32_t n_type_max = 0; + enum ggml_type type_max = GGML_TYPE_F32; + + for (int i = 0; i < n_tensors; i++) { + const ggml_tensor * tensor = weights.at(i).tensor; + enum ggml_type type = tensor->type; + + n_type[type]++; + + if (n_type_max < n_type[type]) { + n_type_max = n_type[type]; + type_max = type; + } + + if (trace > 0) { + const uint16_t sid = weights.at(i).idx; + LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str()); + } + } + + switch (type_max) { + case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break; + case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break; + case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break; + case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break; + case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break; + case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break; + case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break; + case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break; + case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break; + case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break; + case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break; + case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break; + case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break; + case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break; + case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break; + case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break; + case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break; + case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break; + case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break; + case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break; + case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break; + default: + { + LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max)); + ftype = LLAMA_FTYPE_ALL_F32; + } break; + } + + // this is a way to mark that we have "guessed" the file type + ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED); + + { + const int kid = gguf_find_key(meta, "general.file_type"); + if (kid >= 0) { + ftype = (llama_ftype) gguf_get_val_u32(meta, kid); + } + } + + LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__); + + for (int i = 0; i < n_kv; i++) { + const char * name = gguf_get_key(meta, i); + const enum gguf_type type = gguf_get_kv_type(meta, i); + const std::string type_name = + type == GGUF_TYPE_ARRAY + ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i)) + : gguf_type_name(type); + + std::string value = gguf_kv_to_str(meta, i); + const size_t MAX_VALUE_LEN = 40; + if (value.size() > MAX_VALUE_LEN) { + value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str()); + } + replace_all(value, "\n", "\\n"); + + LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str()); + } + + // print type counts + for (auto & kv : n_type) { + if (kv.second == 0) { + continue; + } + + LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second); + } + } + + if (!llama_mmap::SUPPORTED) { + LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__); + use_mmap = false; + } + + this->use_mmap = use_mmap; + } + + ~llama_model_loader() { + if (meta) { + gguf_free(meta); + } + for (auto * ctx : contexts) { + ggml_free(ctx); + } + } + + template + typename std::enable_if::value, bool>::type + get_arr_n(const std::string & key, T & result, const bool required = true) { + const int kid = gguf_find_key(meta, key.c_str()); + + if (kid < 0) { + if (required) { + throw std::runtime_error(format("key not found in model: %s", key.c_str())); + } + return false; + } + + struct GGUFMeta::ArrayInfo arr_info = + GGUFMeta::GKV::get_kv(meta, kid); + + + result = arr_info.length; + return true; + } + + template + typename std::enable_if::value, bool>::type + get_arr_n(const enum llm_kv kid, T & result, const bool required = true) { + return get_arr_n(llm_kv(kid), result, required); + } + + template + bool get_key(const std::string & key, T & result, const bool required = true) { + auto it = kv_overrides.find(key); + + const struct llama_model_kv_override * override = + it != kv_overrides.end() ? &it->second : nullptr; + + const bool found = GGUFMeta::GKV::set(meta, key, result, override); + + if (required && !found) { + throw std::runtime_error(format("key not found in model: %s", key.c_str())); + } + + return found; + } + + template + bool get_key(const enum llm_kv kid, T & result, const bool required = true) { + return get_key(llm_kv(kid), result, required); + } + + std::string get_arch_name() const { + return arch_name; + } + + enum llm_arch get_arch() const { + return llm_kv.arch; + } + + const char * get_tensor_name(int i) const { + return weights.at(i).tensor->name; + } + + const llama_tensor_weight * get_weight(const char * name) const { + for (const auto & weight : weights) { + if (strcmp(name, weight.tensor->name) == 0) { + return &weight; + } + } + return nullptr; + } + + const llama_tensor_weight & require_weight(const char * name) const { + const llama_tensor_weight * weight = get_weight(name); + if (!weight) { + throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name)); + } + return *weight; + } + + struct ggml_tensor * get_tensor_meta(const char * name) const { + const auto * weight = get_weight(name); + if (!weight) { + return nullptr; + } + return weight->tensor; + } + + struct ggml_tensor * require_tensor_meta(const char * name) const { + struct ggml_tensor * tensor = get_tensor_meta(name); + if (!tensor) { + throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name)); + } + return tensor; + } + + struct ggml_tensor * get_tensor_meta(int i) const { + return get_tensor_meta(get_tensor_name(i)); + } + + struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur) { + struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur); + ggml_set_name(tensor, ggml_get_name(cur)); + + n_created++; + + return tensor; + } + + const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector & ne, bool required) const { + const struct ggml_tensor * cur = get_tensor_meta(name.c_str()); + + if (cur == NULL) { + if (!required) { + return NULL; + } + throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str())); + } + + { + bool is_ok = true; + for (size_t i = 0; i < GGML_MAX_DIMS; ++i) { + if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) { + is_ok = false; + break; + } + } + if (!is_ok) { + throw std::runtime_error( + format("%s: tensor '%s' has wrong shape; expected %s, got %s", + __func__, name.c_str(), + llama_format_tensor_shape(ne).c_str(), + llama_format_tensor_shape(cur).c_str())); + } + } + + return cur; + } + + struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector & ne, bool required = true) { + const struct ggml_tensor * cur = check_tensor_dims(name, ne, required); + + if (cur == NULL) { + return NULL; + } + + return create_tensor_for(ctx, cur); + } + + struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector & ne, size_t offset, bool required = true) { + const struct ggml_tensor * cur = check_tensor_dims(name, ne, required); + + if (cur == NULL) { + return NULL; + } + + if (cur->type != base->type) { + throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type))); + } + + std::array dims; + for (size_t i = 0; i < GGML_MAX_DIMS; ++i) { + dims[i] = i < ne.size() ? ne[i] : 1; + } + + struct ggml_tensor * tensor = ggml_view_4d(ctx, base, + dims[0], dims[1], dims[2], dims[3], + cur->nb[1], cur->nb[2], cur->nb[3], + offset); + + ggml_set_name(tensor, name.c_str()); + + n_created++; + + return tensor; + } + + void done_getting_tensors() const { + if (n_created != n_tensors) { + throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created)); + } + } + + void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) { + if (use_mmap) { + mappings.reserve(files.size()); + mmaps_used.reserve(files.size()); + for (const auto & file : files) { + std::unique_ptr mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa())); + mmaps_used.emplace_back(mapping->size, 0); + if (mlock_mmaps) { + std::unique_ptr mlock_mmap(new llama_mlock()); + mlock_mmap->init(mapping->addr); + mlock_mmaps->emplace_back(std::move(mlock_mmap)); + } + mappings.emplace_back(std::move(mapping)); + } + } + + // compute the total size of all tensors for progress reporting + for (auto & w : weights) { + size_data += ggml_nbytes(w.tensor); + } + } + + void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const { + GGML_ASSERT(!mappings.empty()); + const auto & mapping = mappings.at(idx); + + *first = mapping->size; + *last = 0; + *addr = mapping->addr; + for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) { + try { + const auto * weight = get_weight(ggml_get_name(tensor)); + if (!weight) { + continue; + } + if (weight->idx != idx) { + continue; + } + *first = std::min(*first, weight->offs); + *last = std::max(*last, weight->offs + ggml_nbytes(tensor)); + } catch(...) { + // the tensor is not in the model + } + } + } + + // for backwards compatibility, does not support ggml-backend + void load_data_for(struct ggml_tensor * cur) const { + const auto & w = require_weight(ggml_get_name(cur)); + + if (use_mmap) { + const auto & mapping = mappings.at(w.idx); + if (cur->data == nullptr) { + cur->data = (uint8_t *)mapping->addr + w.offs; + } else { + memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur)); + } + } else { + GGML_ASSERT(cur->data != nullptr); + GGML_ASSERT(w.idx < files.size()); + const auto & file = files.at(w.idx); + file->seek(w.offs, SEEK_SET); + file->read_raw(cur->data, ggml_nbytes(cur)); + } + } + + size_t size_done = 0; + size_t size_data = 0; + std::vector> mmaps_used; + + // Returns false if cancelled by progress_callback + bool load_all_data( + struct ggml_context * ctx, + llama_buf_map & bufs_mmap, + llama_mlocks * lmlocks, + llama_progress_callback progress_callback, + void * progress_callback_user_data) { + GGML_ASSERT(size_data != 0 && "call init_mappings() first"); + + std::vector> read_buf; + for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) { + const auto * weight = get_weight(ggml_get_name(cur)); + if (weight == nullptr) { + // this can happen with split experts models + continue; + } + + if (progress_callback) { + if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) { + return false; + } + } + + size_t n_size = ggml_nbytes(cur); + + if (use_mmap) { + const auto & mapping = mappings.at(weight->idx); + ggml_backend_buffer_t buf_mmap = nullptr; + if (bufs_mmap.count(weight->idx)) { + buf_mmap = bufs_mmap.at(weight->idx); + } + GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated + if (buf_mmap && cur->data == nullptr) { + ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + weight->offs); + if (lmlocks) { + const auto & lmlock = lmlocks->at(weight->idx); + lmlock->grow_to(weight->offs + ggml_nbytes(cur)); + } + + auto & mmap_used = mmaps_used[weight->idx]; + mmap_used.first = std::min(mmap_used.first, weight->offs); + mmap_used.second = std::max(mmap_used.second, weight->offs + n_size); + } else { + ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + weight->offs, 0, n_size); + } + } else { + GGML_ASSERT(weight->idx < files.size()); + const auto & file = files.at(weight->idx); + if (ggml_backend_buffer_is_host(cur->buffer)) { + file->seek(weight->offs, SEEK_SET); + file->read_raw(cur->data, ggml_nbytes(cur)); + } else { + read_buf.resize(ggml_nbytes(cur)); + file->seek(weight->offs, SEEK_SET); + file->read_raw(read_buf.data(), ggml_nbytes(cur)); + ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size); + } + } + + size_done += n_size; + } + + // check if this is the last call and do final cleanup + if (size_done >= size_data) { + // unmap offloaded tensors and metadata + if (use_mmap) { + for (uint32_t idx = 0; idx < mappings.size(); idx++) { + const auto & mmap_used = mmaps_used.at(idx); + auto & mapping = mappings.at(idx); + mapping->unmap_fragment(0, mmap_used.first); + if (mmap_used.second != 0) { + mapping->unmap_fragment(mmap_used.second, mapping->size); + } + } + } + if (progress_callback) { + // Even though the model is done loading, we still honor + // cancellation since we need to free allocations. + return progress_callback(1.0f, progress_callback_user_data); + } + } + + return true; + } +}; + +template<> +bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) { + uint32_t tmp; + const bool found = get_key(kid, tmp, required); + if (found) { + result = (enum llama_pooling_type) tmp; + } else { + result = LLAMA_POOLING_TYPE_UNSPECIFIED; + } + return found; +} + + +// +// load LLaMA models +// + +static const char * llama_model_arch_name(llm_arch arch) { + auto it = LLM_ARCH_NAMES.find(arch); + if (it == LLM_ARCH_NAMES.end()) { + return "unknown"; + } + return it->second; +} + +static std::string llama_model_ftype_name(llama_ftype ftype) { + if (ftype & LLAMA_FTYPE_GUESSED) { + return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)"; + } + + switch (ftype) { + case LLAMA_FTYPE_ALL_F32: return "all F32"; + case LLAMA_FTYPE_MOSTLY_F16: return "F16"; + case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0"; + case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1"; + case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16: + return "Q4_1, some F16"; + case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0"; + case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1"; + case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0"; + + // K-quants + case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium"; + case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small"; + case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small"; + case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium"; + case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large"; + case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small"; + case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium"; + case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small"; + case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium"; + case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K"; + case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw"; + case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw"; + + default: return "unknown, may not work"; + } +} + +static const char * llama_model_type_name(e_model type) { + switch (type) { + case MODEL_22M: return "22M"; + case MODEL_33M: return "33M"; + case MODEL_109M: return "109M"; + case MODEL_137M: return "137M"; + case MODEL_0_5B: return "0.5B"; + case MODEL_1B: return "1B"; + case MODEL_2B: return "2B"; + case MODEL_3B: return "3B"; + case MODEL_7B: return "7B"; + case MODEL_8B: return "8B"; + case MODEL_12B: return "12B"; + case MODEL_13B: return "13B"; + case MODEL_14B: return "14B"; + case MODEL_15B: return "15B"; + case MODEL_20B: return "20B"; + case MODEL_30B: return "30B"; + case MODEL_34B: return "34B"; + case MODEL_35B: return "35B"; + case MODEL_40B: return "40B"; + case MODEL_65B: return "65B"; + case MODEL_70B: return "70B"; + case MODEL_314B: return "314B"; + case MODEL_SMALL: return "0.1B"; + case MODEL_MEDIUM: return "0.4B"; + case MODEL_LARGE: return "0.8B"; + case MODEL_XL: return "1.5B"; + case MODEL_A2_7B: return "A2.7B"; + case MODEL_8x7B: return "8x7B"; + case MODEL_8x22B: return "8x22B"; + case MODEL_16x12B: return "16x12B"; + default: return "?B"; + } +} + +static const char * llama_model_vocab_type_name(enum llama_vocab_type type){ + switch (type) { + case LLAMA_VOCAB_TYPE_NONE: return "no vocab"; + case LLAMA_VOCAB_TYPE_SPM: return "SPM"; + case LLAMA_VOCAB_TYPE_BPE: return "BPE"; + case LLAMA_VOCAB_TYPE_WPM: return "WPM"; + default: return "unknown"; + } +} + +static void llm_load_arch(llama_model_loader & ml, llama_model & model) { + model.arch = ml.get_arch(); + if (model.arch == LLM_ARCH_UNKNOWN) { + throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'"); + } +} + +static void llm_load_hparams( + llama_model_loader & ml, + llama_model & model) { + auto & hparams = model.hparams; + const gguf_context * ctx = ml.meta; + + // get metadata as string + for (int i = 0; i < gguf_get_n_kv(ctx); i++) { + enum gguf_type type = gguf_get_kv_type(ctx, i); + if (type == GGUF_TYPE_ARRAY) { + continue; + } + const char * name = gguf_get_key(ctx, i); + const std::string value = gguf_kv_to_str(ctx, i); + model.gguf_kv.emplace(name, value); + } + + // get general kv + ml.get_key(LLM_KV_GENERAL_NAME, model.name, false); + + // get hparams kv + ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab); + ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train); + ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd); + ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff); + ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head); + ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer); + ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false); + ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false); + + GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS); + GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert); + if (hparams.n_expert > 0) { + GGML_ASSERT(hparams.n_expert_used > 0); + } else { + GGML_ASSERT(hparams.n_expert_used == 0); + } + + // n_head_kv is optional, default to n_head + hparams.n_head_kv = hparams.n_head; + ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false); + + bool rope_finetuned = false; + ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false); + hparams.rope_finetuned = rope_finetuned; + + hparams.n_yarn_orig_ctx = hparams.n_ctx_train; + ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false); + + // rope_freq_base (optional) + hparams.rope_freq_base_train = 10000.0f; + ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false); + + std::string rope_scaling("linear"); + ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false); + hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling); + GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED); + + // rope_freq_scale (inverse of the kv) is optional + float ropescale = 0.0f; + if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) { + // try the old key name + ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false); + } + hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale; + + // sanity check for n_rot (optional) + { + hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head; + + ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false); + + if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) { + if (hparams.n_rot != hparams.n_embd / hparams.n_head) { + throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head)); + } + } + // gpt-neox n_rot = rotary_pct * (n_embd / n_head) + // gpt-j n_rot = rotary_dim + } + + hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head; + ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false); + + hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head; + ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false); + + // arch-specific KVs + switch (model.arch) { + case LLM_ARCH_LLAMA: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + if (hparams.n_expert == 8) { + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_8x7B; break; + case 56: model.type = e_model::MODEL_8x22B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } else { + switch (hparams.n_layer) { + case 22: model.type = e_model::MODEL_1B; break; + case 26: model.type = e_model::MODEL_3B; break; + case 32: model.type = e_model::MODEL_7B; break; + case 40: model.type = e_model::MODEL_13B; break; + case 48: model.type = e_model::MODEL_34B; break; + case 60: model.type = e_model::MODEL_30B; break; + case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } + } break; + case LLM_ARCH_MINICPM: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + switch (hparams.n_layer) { + case 40: model.type = e_model::MODEL_2B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_GROK: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + switch (hparams.n_layer) { + case 64: model.type = e_model::MODEL_314B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_FALCON: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_7B; break; + case 60: model.type = e_model::MODEL_40B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_BAICHUAN: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_7B; break; + case 40: model.type = e_model::MODEL_13B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + + if (model.type == e_model::MODEL_13B) { + // TODO: become GGUF KV parameter + hparams.f_max_alibi_bias = 8.0f; + } + } break; + case LLM_ARCH_STARCODER: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + switch (hparams.n_layer) { + case 24: model.type = e_model::MODEL_1B; break; + case 36: model.type = e_model::MODEL_3B; break; + case 42: model.type = e_model::MODEL_7B; break; + case 40: model.type = e_model::MODEL_15B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_PERSIMMON: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + switch (hparams.n_layer) { + case 36: model.type = e_model::MODEL_8B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_REFACT: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_1B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + + // TODO: become GGUF KV parameter + hparams.f_max_alibi_bias = 8.0f; + } break; + case LLM_ARCH_BERT: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); + ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type); + ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false); + + switch (hparams.n_layer) { + case 3: + model.type = e_model::MODEL_17M; break; // bge-micro + case 6: + model.type = e_model::MODEL_22M; break; // MiniLM-L6 + case 12: + switch (hparams.n_embd) { + case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small + case 768: model.type = e_model::MODEL_109M; break; // bge-base + } break; + case 24: + model.type = e_model::MODEL_335M; break; // bge-large + } + } break; + case LLM_ARCH_NOMIC_BERT: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn); + ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type); + ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type); + + if (hparams.n_layer == 12 && hparams.n_embd == 768) { + model.type = e_model::MODEL_137M; + } + } break; + case LLM_ARCH_BLOOM: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + + switch (hparams.n_layer) { + case 24: model.type = e_model::MODEL_1B; break; + case 30: + switch (hparams.n_embd) { + case 2560: model.type = e_model::MODEL_3B; break; + case 4096: model.type = e_model::MODEL_7B; break; + } break; + } + + // TODO: become GGUF KV parameter + hparams.f_max_alibi_bias = 8.0f; + } break; + case LLM_ARCH_MPT: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false); + ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias); + + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_7B; break; + case 48: model.type = e_model::MODEL_30B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_STABLELM: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + + switch (hparams.n_layer) { + case 24: model.type = e_model::MODEL_1B; break; + case 32: model.type = e_model::MODEL_3B; break; + case 40: model.type = e_model::MODEL_12B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_QWEN: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_7B; break; + case 40: model.type = e_model::MODEL_13B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_QWEN2: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + switch (hparams.n_layer) { + case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break; + case 32: model.type = e_model::MODEL_7B; break; + case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break; + case 80: model.type = e_model::MODEL_70B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_QWEN2MOE: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + switch (hparams.n_layer) { + case 24: model.type = e_model::MODEL_A2_7B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_PHI2: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + + switch (hparams.n_layer) { + case 24: model.type = e_model::MODEL_1B; break; + case 32: model.type = e_model::MODEL_3B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_PLAMO: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + switch (hparams.n_layer) { + case 40: model.type = e_model::MODEL_13B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_GPT2: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + switch (hparams.n_layer) { + case 12: model.type = e_model::MODEL_SMALL; break; + case 24: model.type = e_model::MODEL_MEDIUM; break; + case 36: model.type = e_model::MODEL_LARGE; break; + case 48: model.type = e_model::MODEL_XL; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_CODESHELL: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + switch (hparams.n_layer) { + case 42: model.type = e_model::MODEL_SMALL; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_ORION: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + + switch (hparams.n_layer) { + case 40: model.type = e_model::MODEL_14B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_INTERNLM2: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_7B; break; + case 48: model.type = e_model::MODEL_20B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_GEMMA: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + switch (hparams.n_layer) { + case 18: model.type = e_model::MODEL_2B; break; + case 28: model.type = e_model::MODEL_7B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_STARCODER2: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + switch (hparams.n_layer) { + case 30: model.type = e_model::MODEL_3B; break; + case 32: model.type = e_model::MODEL_7B; break; + case 40: model.type = e_model::MODEL_15B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_MAMBA: + { + ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv); + ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner); + ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state); + ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank); + + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + + switch (hparams.n_layer) { + case 24: + switch (hparams.n_embd) { + case 768: model.type = e_model::MODEL_SMALL; break; + default: model.type = e_model::MODEL_UNKNOWN; + } break; + case 48: + switch (hparams.n_embd) { + case 1024: model.type = e_model::MODEL_MEDIUM; break; + case 1536: model.type = e_model::MODEL_LARGE; break; + case 2048: model.type = e_model::MODEL_XL; break; + default: model.type = e_model::MODEL_UNKNOWN; + } break; + case 64: + switch (hparams.n_embd) { + case 2560: model.type = e_model::MODEL_3B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_XVERSE: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); + switch (hparams.n_layer) { + case 32: model.type = e_model::MODEL_7B; break; + case 40: model.type = e_model::MODEL_13B; break; + case 80: model.type = e_model::MODEL_65B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_COMMAND_R: + { + ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale); + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + switch (hparams.n_layer) { + case 40: model.type = e_model::MODEL_35B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_DBRX: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv); + + switch (hparams.n_layer) { + case 40: model.type = e_model::MODEL_16x12B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + case LLM_ARCH_OLMO: + { + ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); + ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false); + + switch (hparams.n_layer) { + case 22: model.type = e_model::MODEL_1B; break; + case 32: model.type = e_model::MODEL_7B; break; + case 80: model.type = e_model::MODEL_70B; break; + default: model.type = e_model::MODEL_UNKNOWN; + } + } break; + default: (void)0; + } + + model.ftype = ml.ftype; + + if (hparams.f_max_alibi_bias > 0.0f) { + hparams.need_kq_pos = true; + } + + hparams.rope_type = llama_rope_type(&model); +} + +// TODO: This should probably be in llama.h +static std::vector llama_tokenize_internal( + const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false +); +static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch); + +static void llm_load_vocab( + llama_model_loader & ml, + llama_model & model) { + auto & vocab = model.vocab; + + struct gguf_context * ctx = ml.meta; + + const auto kv = LLM_KV(model.arch); + + // determine vocab type + { + std::string tokenizer_name; + + ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_name); + + if (tokenizer_name == "no_vocab") { + vocab.type = LLAMA_VOCAB_TYPE_NONE; + + // default special tokens + vocab.special_bos_id = -1; + vocab.special_eos_id = -1; + vocab.special_unk_id = -1; + vocab.special_sep_id = -1; + vocab.special_pad_id = -1; + vocab.special_cls_id = -1; + vocab.special_mask_id = -1; + vocab.linefeed_id = -1; + + return; + } else if (tokenizer_name == "llama") { + vocab.type = LLAMA_VOCAB_TYPE_SPM; + + // default special tokens + vocab.special_bos_id = 1; + vocab.special_eos_id = 2; + vocab.special_unk_id = 0; + vocab.special_sep_id = -1; + vocab.special_pad_id = -1; + vocab.special_cls_id = -1; + vocab.special_mask_id = -1; + + // For Fill-In-the-Middle (FIM)/infill models which where converted + // prior to support of FIM special tokens in GGUF, the following + // will allow those models to continue to work. The general names + // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and + // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once + // new versions of these models have been published. + std::string gen_name; + ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false); + + std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(), + [](unsigned char c){ return std::tolower(c); }); + + if (gen_name.find("code") != std::string::npos) { + if (model.arch == LLM_ARCH_LLAMA) { + vocab.special_prefix_id = 32007; + vocab.special_suffix_id = 32008; + vocab.special_middle_id = 32009; + vocab.special_eot_id = 32010; + } else if (model.arch == LLM_ARCH_GEMMA) { + vocab.special_prefix_id = 67; + vocab.special_suffix_id = 69; + vocab.special_middle_id = 68; + vocab.special_eot_id = 70; + } + } + + const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str()); + if (add_space_prefix_keyidx != -1) { + vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx); + } // The default value of add_space_prefix is true. + } else if (tokenizer_name == "gpt2") { + vocab.type = LLAMA_VOCAB_TYPE_BPE; + + // read bpe merges and populate bpe ranks + const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str()); + if (merges_keyidx == -1) { + throw std::runtime_error("cannot find tokenizer merges in model file\n"); + } + + const int n_merges = gguf_get_arr_n(ctx, merges_keyidx); + + for (int i = 0; i < n_merges; i++) { + const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i); + GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0); + + std::string first; + std::string second; + + const size_t pos = word.find(' ', 1); + + if (pos != std::string::npos) { + first = word.substr(0, pos); + second = word.substr(pos + 1); + } + + vocab.bpe_ranks.emplace(std::make_pair(first, second), i); + } + + // default special tokens + vocab.special_bos_id = 11; + vocab.special_eos_id = 11; + vocab.special_unk_id = -1; + vocab.special_sep_id = -1; + vocab.special_pad_id = -1; + vocab.special_cls_id = -1; + vocab.special_mask_id = -1; + } else if (tokenizer_name == "bert") { + vocab.type = LLAMA_VOCAB_TYPE_WPM; + + // default special tokens + vocab.special_bos_id = -1; + vocab.special_eos_id = -1; + vocab.special_unk_id = 100; + vocab.special_sep_id = 102; + vocab.special_pad_id = 0; + vocab.special_cls_id = 101; + vocab.special_mask_id = 103; + vocab.add_space_prefix = false; + } else { + LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str()); + LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__); + + vocab.type = LLAMA_VOCAB_TYPE_SPM; + } + } + + const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str()); + if (token_idx == -1) { + throw std::runtime_error("cannot find tokenizer vocab in model file\n"); + } + + const float * scores = nullptr; + const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str()); + if (score_idx != -1) { + scores = (const float * ) gguf_get_arr_data(ctx, score_idx); + } + + const int * toktypes = nullptr; + const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str()); + if (toktype_idx != -1) { + toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx); + } + + const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx); + + vocab.id_to_token.resize(n_vocab); + + for (uint32_t i = 0; i < n_vocab; i++) { + std::string word = gguf_get_arr_str(ctx, token_idx, i); + GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0); + + vocab.token_to_id[word] = i; + + auto & token_data = vocab.id_to_token[i]; + token_data.text = std::move(word); + token_data.score = scores ? scores[i] : 0.0f; + token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL; + } + GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size()); + + // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n' + if (vocab.type == LLAMA_VOCAB_TYPE_SPM) { + try { + vocab.linefeed_id = llama_byte_to_token(vocab, '\n'); + } catch (const std::exception & e) { + LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what()); + vocab.linefeed_id = vocab.special_pad_id; + } + } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) { + vocab.linefeed_id = vocab.special_pad_id; + } else { + const std::vector ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A + GGML_ASSERT(!ids.empty() && "model vocab missing newline token"); + vocab.linefeed_id = ids[0]; + } + + // special tokens + { + const std::vector> special_token_types = { + { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id }, + { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id }, + { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id }, + { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id }, + { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id }, + { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id }, + { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id }, + { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id }, + { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id }, + { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id }, + { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id }, + }; + for (const auto & it : special_token_types) { + const std::string & key = kv(std::get<0>(it)); + int32_t & id = std::get<1>(it); + + uint32_t new_id; + if (!ml.get_key(std::get<0>(it), new_id, false)) { + continue; + } + if (new_id >= vocab.id_to_token.size()) { + LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n", + __func__, key.c_str(), new_id, id); + } else { + id = new_id; + } + + } + + // Handle add_bos_token and add_eos_token + { + bool temp = true; + + if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) { + vocab.special_add_bos = int(temp); + } + if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) { + vocab.special_add_eos = int(temp); + } + } + } + + // build special tokens cache + { + // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type, + // and will always be correctly labeled in 'added_tokens.json' etc. + // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed + // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer + // are special tokens. + // From testing, this appears to correlate 1:1 with special tokens. + // + + // Counting special tokens and verifying in only one direction + // is sufficient to detect difference in those two sets. + // + uint32_t special_tokens_count_by_type = 0; + uint32_t special_tokens_count_from_verification = 0; + + bool special_tokens_definition_mismatch = false; + + for (const auto & t : vocab.token_to_id) { + const auto & token = t.first; + const auto & id = t.second; + + // Count all non-normal tokens in the vocab while iterating + if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) { + special_tokens_count_by_type++; + } + + // Skip single character tokens + if (token.length() > 1) { + bool is_tokenizable = false; + + // Split token string representation in two, in all possible ways + // and check if both halves can be matched to a valid token + for (unsigned i = 1; i < token.length();) { + const auto left = token.substr(0, i); + const auto right = token.substr(i); + + // check if we didnt partition in the middle of a utf sequence + auto utf = utf8_len(left.at(left.length() - 1)); + + if (utf == 1) { + if (vocab.token_to_id.find(left) != vocab.token_to_id.end() && + vocab.token_to_id.find(right) != vocab.token_to_id.end() ) { + is_tokenizable = true; + break; + } + i++; + } else { + // skip over the rest of multibyte utf sequence + i += utf - 1; + } + } + + if (!is_tokenizable) { + // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1 + // it's faster to re-filter them here, since there are way less candidates now + + // Calculate a total "utf" length of a token string representation + size_t utf8_str_len = 0; + for (unsigned i = 0; i < token.length();) { + utf8_str_len++; + i += utf8_len(token.at(i)); + } + + // And skip the ones which are one character + if (utf8_str_len > 1) { + // At this point what we have left are special tokens only + vocab.special_tokens_cache[token] = id; + + // Count manually found special tokens + special_tokens_count_from_verification++; + + // If this manually found special token is not marked as such, flag a mismatch + if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) { + special_tokens_definition_mismatch = true; + } + } + } + } + } + + if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) { + LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n", + __func__, + special_tokens_count_from_verification, vocab.id_to_token.size(), + special_tokens_count_by_type, vocab.id_to_token.size() + ); + } else { + LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n", + __func__, + special_tokens_count_from_verification, vocab.id_to_token.size() + ); + } + } +} + +static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) { + const auto & hparams = model.hparams; + const auto & vocab = model.vocab; + + const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train); + + // hparams + LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver)); + LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch)); + LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type)); + LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab); + LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size()); + LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train); + LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd); + LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head); + LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv); + LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer); + LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot); + LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k); + LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v); + LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa()); + LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa()); + LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa()); + LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps); + LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps); + LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv); + LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias); + LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale); + LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff); + LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert); + LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used); + LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn); + LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type); + LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type); + LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type); + LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train); + LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train); + LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx); + LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown"); + LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv); + LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner); + LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state); + LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank); + LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type)); + LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str()); + if (ml.n_elements >= 1e12) { + LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12); + } else if (ml.n_elements >= 1e9) { + LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9); + } else if (ml.n_elements >= 1e6) { + LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6); + } else { + LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3); + } + if (ml.n_bytes < GiB) { + LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements); + } else { + LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements); + } + + // general kv + LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str()); + + // special tokens + if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); } + if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); } + if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); } + if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); } + if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); } + if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); } + if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); } + if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); } +} + +// Returns false if cancelled by progress_callback +static bool llm_load_tensors( + llama_model_loader & ml, + llama_model & model, + int n_gpu_layers, + enum llama_split_mode split_mode, + int main_gpu, + const float * tensor_split, + bool use_mlock, + llama_progress_callback progress_callback, + void * progress_callback_user_data) { + model.t_start_us = ggml_time_us(); + + auto & hparams = model.hparams; + +#ifdef GGML_USE_SYCL + // disable MoE with SYCL until mul_mat_id is updated + if (hparams.n_expert > 0) { + n_gpu_layers = 0; + } +#endif + + model.split_mode = split_mode; + model.main_gpu = main_gpu; + model.n_gpu_layers = n_gpu_layers; + + const int64_t n_layer = hparams.n_layer; + const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0); + bool use_mmap_buffer = true; + + // there is very little benefit to offloading the input layer, so always keep it on the CPU + model.buft_input = llama_default_buffer_type_cpu(true); + //model.buft_input = llama_default_buffer_type_offload(main_gpu); + + model.buft_layer.resize(n_layer); + + // assign cpu layers + for (int64_t i = 0; i < i_gpu_start; ++i) { + model.buft_layer[i] = llama_default_buffer_type_cpu(true); + } + + if (split_mode == LLAMA_SPLIT_MODE_LAYER) { + // calculate the split points + int device_count = llama_get_device_count(); + bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; }); + std::vector splits(device_count); + if (all_zero) { + // default split, by free memory + for (int i = 0; i < device_count; ++i) { + splits[i] = llama_get_device_memory(i); + } + } else { + std::copy(tensor_split, tensor_split + device_count, splits.begin()); + } + + // sum and normalize the splits to get the split points + float split_sum = 0.0f; + for (int i = 0; i < device_count; ++i) { + split_sum += splits[i]; + splits[i] = split_sum; + } + for (int i = 0; i < device_count; ++i) { + splits[i] /= split_sum; + } + + // assign the repeating layers to the devices according to the splits + int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1); + for (int64_t i = i_gpu_start; i < n_layer; ++i) { + int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin(); + model.buft_layer[i] = llama_default_buffer_type_offload(layer_gpu); + } + // assign the output layer + if (n_gpu_layers > n_layer) { + int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin(); + model.buft_output = llama_default_buffer_type_offload(layer_gpu); + } else { + model.buft_output = llama_default_buffer_type_cpu(true); + } + } else { + ggml_backend_buffer_type_t split_buft; + if (split_mode == LLAMA_SPLIT_MODE_ROW) { + split_buft = llama_default_buffer_type_split(main_gpu, tensor_split); + } else { + // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported + split_buft = llama_default_buffer_type_offload(main_gpu); + } + // assign the repeating layers + for (int64_t i = i_gpu_start; i < n_layer; ++i) { + model.buft_layer[i] = { + split_buft, + llama_default_buffer_type_offload(main_gpu) + }; + } + // assign the output layer + if (n_gpu_layers > n_layer) { + model.buft_output = { + split_buft, + llama_default_buffer_type_offload(main_gpu) + }; + } else { + model.buft_output = llama_default_buffer_type_cpu(true); + } + } + + // count used buffer types + std::map buft_layer_count; + buft_layer_count[model.buft_input.buft]++; + buft_layer_count[model.buft_input.buft_matrix]++; + buft_layer_count[model.buft_output.buft]++; + buft_layer_count[model.buft_output.buft_matrix]++; + for (int64_t i = 0; i < n_layer; ++i) { + buft_layer_count[model.buft_layer[i].buft]++; + buft_layer_count[model.buft_layer[i].buft_matrix]++; + } + + // create one context per buffer type + size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output + + // for moe merged tensors + ctx_size += ggml_tensor_overhead()*n_layer*3; + + std::map ctx_map; + for (auto & it : buft_layer_count) { + struct ggml_init_params params = { + /*.mem_size =*/ ctx_size, + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ true, + }; + ggml_context * ctx = ggml_init(params); + if (!ctx) { + throw std::runtime_error(format("failed to create context")); + } + ctx_map[it.first] = ctx; + model.ctxs.push_back(ctx); + } + + LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0); + + // create tensors for the weights + { + const int64_t n_embd = hparams.n_embd; + const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); + const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(); + const int64_t n_embd_gqa = n_embd_v_gqa; + const int64_t n_vocab = hparams.n_vocab; + const int64_t n_vocab_type = hparams.n_vocab_type; + const int64_t n_ff = hparams.n_ff; + const int64_t n_expert = hparams.n_expert; + + if (n_expert > 0 && hparams.n_expert_used == 0) { + throw std::runtime_error("model has expert layers but no expert layers are used"); + } + + GGML_ASSERT(n_embd_gqa == n_embd_k_gqa); + + ggml_context * ctx_input = ctx_map.at(model.buft_input.buft); + ggml_context * ctx_output = ctx_map.at(model.buft_output.buft); + ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix); + auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); }; + auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); }; + + model.layers.resize(n_layer); + + const auto tn = LLM_TN(model.arch); + switch (model.arch) { + case LLM_ARCH_LLAMA: + case LLM_ARCH_REFACT: + case LLM_ARCH_MINICPM: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + if (model.arch != LLM_ARCH_MINICPM){ + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false); + // if output is NULL, init from the input tok embed + if (model.output == NULL) { + model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + ml.n_created--; // artificial tensor + ml.size_data += ggml_nbytes(model.output); + } + } + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + + // optional bias tensors + layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false); + layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false); + layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false); + layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + + if (n_expert == 0) { + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + } else { + layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); + + layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false); + if (layer.ffn_gate_exps) { + layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}); + layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}); + } else { + // merge split expert into a single tensor for compatibility with older models + // requires disabling mmap + use_mmap_buffer = false; + + ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type; + ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type; + ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type; + + layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert); + layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert); + layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert); + + ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str()); + ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str()); + ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str()); + + for (uint32_t x = 0; x < n_expert; ++x) { + // the individual experts are loaded into a view of the merged tensor + ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x); + ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x); + ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x); + } + } + } + } + } break; + case LLM_ARCH_GROK: + { + if (n_expert == 0) { + throw std::runtime_error("Grok model cannot have zero experts"); + } + + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false); + // if output is NULL, init from the input tok embed + if (model.output == NULL) { + model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + ml.n_created--; // artificial tensor + ml.size_data += ggml_nbytes(model.output); + } + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + + layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + + layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); + + layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false); + if (layer.ffn_gate_exps) { + layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert}); + layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}); + } else { + // merge split expert into a single tensor for compatibility with older models + // requires disabling mmap + use_mmap_buffer = false; + + ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type; + ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type; + ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type; + + layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert); + layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert); + layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert); + + ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str()); + ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str()); + ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str()); + + for (uint32_t x = 0; x < n_expert; ++x) { + // the individual experts are loaded into a view of the merged tensor + ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x); + ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x); + ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x); + } + } + + layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}); + } + } break; + case LLM_ARCH_DBRX: + { + if (n_expert == 0) { + throw std::runtime_error("DBRX model cannot have zero experts"); + } + + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + + layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + + layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); + + layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); + layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}); + layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert}); + layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert}); + } + } break; + case LLM_ARCH_BAICHUAN: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + } + } break; + case LLM_ARCH_FALCON: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); + + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false); + if (!model.output) { + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU + ml.n_created--; // artificial tensor + ml.size_data += ggml_nbytes(model.output); + } + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + + layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, false); + layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, false); + + layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + } + } break; + case LLM_ARCH_STARCODER: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}); + + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + + layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); + layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); + + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); + + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); + layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); + + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); + } + } break; + case LLM_ARCH_PERSIMMON: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + + layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); + layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); + + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); + + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); + layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); + + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); + + layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64}); + layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64}); + + layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64}); + layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64}); + } + } break; + case LLM_ARCH_BERT: + case LLM_ARCH_NOMIC_BERT: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); + if (model.arch == LLM_ARCH_BERT) { + model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}); + } + + model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); + model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + if (model.arch == LLM_ARCH_BERT) { + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); + layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}); + + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); + layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}); + + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); + layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}); + } else { + layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); + } + + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + + layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); + layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd}); + + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); + + if (model.arch == LLM_ARCH_BERT) { + layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); + layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); + + layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); + } else { + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + } + + layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd}); + layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd}); + } + } break; + case LLM_ARCH_BLOOM: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); + model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); + + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + + layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); + layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); + + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); + + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); + layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); + + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); + } + } break; + case LLM_ARCH_MPT: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, false); + + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false); + + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false); + if (!model.output) { + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU + ml.n_created--; // artificial tensor + ml.size_data += ggml_nbytes(model.output); + } + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, false); + + layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); + layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false); + + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false); + + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); + layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, false); + + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, false); + + layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, false); + layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, false); + + layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, false); + layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, false); + + // AWQ ScaleActivation layer + layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false); + } + } break; + case LLM_ARCH_STABLELM: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + { + model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + + // optional bias tensors, present in Stable LM 2 1.6B + layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false); + layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false); + layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false); + + // optional q and k layernorms, present in StableLM 2 12B + layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, false); + layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, false); + + // optional FFN norm, not present in StableLM 2 12B which uses parallel residual + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, false); + layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false); + + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + } + } break; + case LLM_ARCH_QWEN: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + + layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3}); + layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2}); + } + } break; + case LLM_ARCH_QWEN2: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false); + // if output is NULL, init from the input tok embed + if (model.output == NULL) { + model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + ml.n_created--; // artificial tensor + ml.size_data += ggml_nbytes(model.output); + } + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + + // optional bias tensors + layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}); + layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}); + layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + } + } break; + case LLM_ARCH_QWEN2MOE: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + + // optional bias tensors + layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}); + layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}); + layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + + layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert}); + + GGML_ASSERT(hparams.n_expert > 0); + GGML_ASSERT(hparams.n_expert_used > 0); + + // MoE branch + auto n_ff_exp = n_ff / hparams.n_expert_used; + layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}); + layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert}); + layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert}); + + // Shared expert branch + layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd}); + layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff}); + layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff, n_embd}); + layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff}); + } + } break; + case LLM_ARCH_PHI2: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab}); + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + + layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, false); + layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false); + + if (layer.wqkv == nullptr) { + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); + layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}); + + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); + layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}); + + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); + layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}); + } + + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); + + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); + layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); + + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); + } + } break; + case LLM_ARCH_PLAMO: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + } + } break; + case LLM_ARCH_GPT2: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}); + + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + + layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); + layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); + + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); + + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); + layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); + + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); + } + } break; + case LLM_ARCH_CODESHELL: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + + layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); + layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}); + + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); + + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd}); + layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); + + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}); + } + } break; + case LLM_ARCH_ORION: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + } + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); + + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + } + } break; + case LLM_ARCH_INTERNLM2: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}); + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); + + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + } + } break; + case LLM_ARCH_GEMMA: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // same as tok_embd, duplicated to allow offloading + ml.n_created--; // artificial tensor + ml.size_data += ggml_nbytes(model.output); + + const int64_t n_ff = hparams.n_ff; + const int64_t n_embd_head_k = hparams.n_embd_head_k; + const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); + const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(); + + for (uint32_t i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd}); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + } + } break; + case LLM_ARCH_STARCODER2: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}); + + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false); + // if output is NULL, init from the input tok embed + if (model.output == NULL) { + model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + ml.n_created--; // artificial tensor + ml.size_data += ggml_nbytes(model.output); + } + + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}); + + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + + // optional bias tensors + layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}); + layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}); + layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}); + layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); + + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); + + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + + // optional bias tensors + layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}); + layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff}); + } + } break; + case LLM_ARCH_MAMBA: + { + const int64_t d_conv = hparams.ssm_d_conv; + const int64_t d_inner = hparams.ssm_d_inner; + const int64_t d_state = hparams.ssm_d_state; + const int64_t dt_rank = hparams.ssm_dt_rank; + // only an expansion factor of 2 is supported for now + GGML_ASSERT(2 * n_embd == d_inner); + + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false); + // if output is NULL, init from the input tok embed, duplicated to allow offloading + if (model.output == NULL) { + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + ml.n_created--; // artificial tensor + ml.size_data += ggml_nbytes(model.output); + } + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + // norm + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + + layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner}); + + layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner}); + layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner}); + + layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state}); + + layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner}); + layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner}); + + // no "weight" suffix for these + layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner}); + layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner}); + + // out_proj + layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd}); + } + } break; + case LLM_ARCH_XVERSE: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + } + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + auto & layer = model.layers[i]; + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + } + } break; + case LLM_ARCH_COMMAND_R: + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + { + model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); + // init output from the input tok embed + model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + ml.n_created--; // artificial tensor + ml.size_data += ggml_nbytes(model.output); + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_layer = ctx_for_layer(i); + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}); + + if (n_layer >= 64){ + layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}); + layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}); + } + + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + } + } break; + case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed + { + model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + + // output + { + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, false); + // if output is NULL, init from the input tok embed + if (model.output == NULL) { + model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + ml.n_created--; // artificial tensor + ml.size_data += ggml_nbytes(model.output); + } + } + + for (int i = 0; i < n_layer; ++i) { + ggml_context * ctx_split = ctx_for_layer_split(i); + + auto & layer = model.layers[i]; + + layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}); + layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}); + layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); + layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + + + layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}); + layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}); + layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}); + } + } break; + default: + throw std::runtime_error("unknown architecture"); + } + } + + ml.done_getting_tensors(); + + ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr); + model.mappings.reserve(ml.mappings.size()); + + // create the backend buffers + std::vector> ctx_bufs; + ctx_bufs.reserve(ctx_map.size()); + + // Ensure we have enough capacity for the maximum backend buffer we will potentially create + size_t n_max_backend_buffer = ctx_map.size() * ml.files.size(); + model.bufs.reserve(n_max_backend_buffer); + + for (auto & it : ctx_map) { + ggml_backend_buffer_type_t buft = it.first; + ggml_context * ctx = it.second; + + llama_buf_map bufs; + bufs.reserve(n_max_backend_buffer); + + // only the mmap region containing the tensors in the model is mapped to the backend buffer + // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers + // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size + if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) { + for (uint32_t idx = 0; idx < ml.files.size(); idx++) { + void * addr = nullptr; + size_t first, last; + ml.get_mapping_range(&first, &last, &addr, idx, ctx); + if (first >= last) { + continue; + } + ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first); + if (buf == nullptr) { + throw std::runtime_error("unable to allocate backend CPU buffer"); + } + model.bufs.push_back(buf); + bufs.emplace(idx, buf); +#ifdef GGML_USE_CUDA + if (n_layer >= n_gpu_layers) { + ggml_backend_cuda_register_host_buffer( + ggml_backend_buffer_get_base(buf), + ggml_backend_buffer_get_size(buf)); + } +#endif + } + } +#ifdef GGML_USE_METAL + else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) { + for (uint32_t idx = 0; idx < ml.files.size(); idx++) { + const size_t max_size = ggml_get_max_tensor_size(ctx); + void * addr = nullptr; + size_t first, last; + ml.get_mapping_range(&first, &last, &addr, idx, ctx); + if (first >= last) { + continue; + } + ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size); + if (buf == nullptr) { + throw std::runtime_error("unable to allocate backend metal buffer"); + } + model.bufs.push_back(buf); + bufs.emplace(idx, buf); + } + } +#endif + else { + ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); + if (buf == nullptr) { + throw std::runtime_error("unable to allocate backend buffer"); + } + model.bufs.push_back(buf); + if (use_mlock && ggml_backend_buffer_is_host(buf)) { + model.mlock_bufs.emplace_back(new llama_mlock); + auto & mlock_buf = model.mlock_bufs.back(); + mlock_buf->init (ggml_backend_buffer_get_base(buf)); + mlock_buf->grow_to(ggml_backend_buffer_get_size(buf)); + } + for (uint32_t idx = 0; idx < ml.files.size(); idx++) { + bufs.emplace(idx, buf); + } + } + + if (bufs.empty()) { + throw std::runtime_error("failed to allocate buffer"); + } + + for (auto & buf : bufs) { + // indicate that this buffer contains weights + // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight + ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS); + } + + ctx_bufs.emplace_back(ctx, bufs); + } + + if (llama_supports_gpu_offload()) { + const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer)); + + LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu); + if (n_gpu_layers > (int) hparams.n_layer) { + LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__); + } + + const int max_backend_supported_layers = hparams.n_layer + 1; + const int max_offloadable_layers = hparams.n_layer + 1; + + LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers); + } + + // print memory requirements + for (ggml_backend_buffer_t buf : model.bufs) { + LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0); + } + + // populate tensors_by_name + for (ggml_context * ctx : model.ctxs) { + for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) { + model.tensors_by_name.emplace_back(ggml_get_name(cur), cur); + } + } + + // load tensor data + for (auto & it : ctx_bufs) { + ggml_context * ctx = it.first; + auto & bufs = it.second; + if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) { + return false; + } + } + + if (use_mmap_buffer) { + for (auto & mapping : ml.mappings) { + model.mappings.emplace_back(std::move(mapping)); + } + } + + // loading time will be recalculate after the first eval, so + // we take page faults deferred by mmap() into consideration + model.t_load_us = ggml_time_us() - model.t_start_us; + return true; +} + +// Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback +static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) { + try { + llama_model_loader ml(fname, params.use_mmap, params.kv_overrides); + + model.hparams.vocab_only = params.vocab_only; + + try { + llm_load_arch(ml, model); + } catch(const std::exception & e) { + throw std::runtime_error("error loading model architecture: " + std::string(e.what())); + } + try { + llm_load_hparams(ml, model); + } catch(const std::exception & e) { + throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what())); + } + try { + llm_load_vocab(ml, model); + } catch(const std::exception & e) { + throw std::runtime_error("error loading model vocabulary: " + std::string(e.what())); + } + + llm_load_print_meta(ml, model); + + if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE && + model.hparams.n_vocab != model.vocab.id_to_token.size()) { + throw std::runtime_error("vocab size mismatch"); + } + + if (params.vocab_only) { + LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__); + return 0; + } + +#ifdef GGML_USE_KOMPUTE + if (params.n_gpu_layers > 0 && ( + !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) + || !( + model.ftype == LLAMA_FTYPE_ALL_F32 || + model.ftype == LLAMA_FTYPE_MOSTLY_F16 || + model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || + model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1 + ) + )) { + // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file + LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__); + params.n_gpu_layers = 0; + } +#endif + +#ifdef GGML_USE_SYCL + if (params.split_mode == LLAMA_SPLIT_MODE_NONE) { + ggml_backend_sycl_set_single_device_mode(params.main_gpu); + //SYCL use device index (0, 1, 2) directly, uer input device id, then convert to device index. + params.main_gpu = ggml_backend_sycl_get_device_index(params.main_gpu); + } else { + ggml_backend_sycl_set_mul_device_mode(); + } +#endif + + if (!llm_load_tensors( + ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock, + params.progress_callback, params.progress_callback_user_data + )) { + return -2; + } + } catch (const std::exception & err) { + LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what()); + return -1; + } + + return 0; +} + +// +// llm_build +// + +using llm_build_cb = std::function; + +enum llm_ffn_op_type { + LLM_FFN_SILU, + LLM_FFN_GELU, + LLM_FFN_RELU, + LLM_FFN_RELU_SQR, +}; + +enum llm_ffn_gate_type { + LLM_FFN_SEQ, + LLM_FFN_PAR, // ffn_gate is parallel to ffn_up +}; + +enum llm_norm_type { + LLM_NORM, + LLM_NORM_RMS, +}; + +static struct ggml_tensor * llm_build_inp_embd( + struct ggml_context * ctx, + struct llama_context & lctx, + const llama_hparams & hparams, + const llama_batch & batch, + struct ggml_tensor * tok_embd, + const llm_build_cb & cb) { + const int64_t n_embd = hparams.n_embd; + + struct ggml_tensor * inpL; + + if (batch.token) { + lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens); + cb(lctx.inp_tokens, "inp_tokens", -1); + ggml_set_input(lctx.inp_tokens); + + inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens); + } else { +#ifdef GGML_USE_MPI + GGML_ASSERT(false && "not implemented"); +#endif + lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens); + inpL = lctx.inp_embd; + ggml_set_input(lctx.inp_embd); + } + + cb(inpL, "inp_embd", -1); + + return inpL; +} + +static void llm_build_kv_store( + struct ggml_context * ctx, + const llama_hparams & hparams, + const llama_kv_cache & kv, + struct ggml_cgraph * graph, + struct ggml_tensor * k_cur, + struct ggml_tensor * v_cur, + int64_t n_ctx, + int32_t n_tokens, + int32_t kv_head, + const llm_build_cb & cb, + int64_t il) { + const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); + const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(); + + GGML_ASSERT(kv.size == n_ctx); + + // compute the transposed [n_tokens, n_embd] V matrix + assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens); + struct ggml_tensor * v_cur_t = ggml_transpose(ctx, v_cur); + cb(v_cur_t, "v_cur_t", il); + + struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa, + (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head); + cb(k_cache_view, "k_cache_view", il); + + struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa, + ( n_ctx)*ggml_element_size(kv.v_l[il]), + (kv_head)*ggml_element_size(kv.v_l[il])); + cb(v_cache_view, "v_cache_view", il); + + // important: storing RoPE-ed version of K in the KV cache! + ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view)); + ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur_t, v_cache_view)); +} + +static struct ggml_tensor * llm_build_norm( + struct ggml_context * ctx, + struct ggml_tensor * cur, + const llama_hparams & hparams, + struct ggml_tensor * mw, + struct ggml_tensor * mb, + llm_norm_type type, + const llm_build_cb & cb, + int il) { + switch (type) { + case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break; + case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break; + } + + if (mw || mb) { + cb(cur, "norm", il); + } + + if (mw) { + cur = ggml_mul(ctx, cur, mw); + if (mb) { + cb(cur, "norm_w", il); + } + } + + if (mb) { + cur = ggml_add(ctx, cur, mb); + } + + return cur; +} + +static struct ggml_tensor * llm_build_ffn( + struct ggml_context * ctx, + struct ggml_tensor * cur, + struct ggml_tensor * up, + struct ggml_tensor * up_b, + struct ggml_tensor * gate, + struct ggml_tensor * gate_b, + struct ggml_tensor * down, + struct ggml_tensor * down_b, + struct ggml_tensor * act_scales, + llm_ffn_op_type type_op, + llm_ffn_gate_type type_gate, + const llm_build_cb & cb, + int il) { + struct ggml_tensor * tmp = ggml_mul_mat(ctx, up, cur); + cb(tmp, "ffn_up", il); + + if (up_b) { + tmp = ggml_add(ctx, tmp, up_b); + cb(tmp, "ffn_up_b", il); + } + + if (gate) { + switch (type_gate) { + case LLM_FFN_SEQ: + { + cur = ggml_mul_mat(ctx, gate, tmp); + cb(cur, "ffn_gate", il); + } break; + case LLM_FFN_PAR: + { + cur = ggml_mul_mat(ctx, gate, cur); + cb(cur, "ffn_gate", il); + } break; + } + + if (gate_b) { + cur = ggml_add(ctx, cur, gate_b); + cb(cur, "ffn_gate_b", il); + } + } else { + cur = tmp; + } + + switch (type_op) { + case LLM_FFN_SILU: + { + cur = ggml_silu(ctx, cur); + cb(cur, "ffn_silu", il); + } break; + case LLM_FFN_GELU: + { + cur = ggml_gelu(ctx, cur); + cb(cur, "ffn_gelu", il); + if (act_scales != NULL) { + cur = ggml_div(ctx, cur, act_scales); + cb(cur, "ffn_act", il); + } + } break; + case LLM_FFN_RELU: + { + cur = ggml_relu(ctx, cur); + cb(cur, "ffn_relu", il); + } break; + case LLM_FFN_RELU_SQR: + { + cur = ggml_relu(ctx, cur); + cb(cur, "ffn_relu", il); + + cur = ggml_sqr(ctx, cur); + cb(cur, "ffn_sqr(relu)", il); + } break; + } + + if (type_gate == LLM_FFN_PAR) { + cur = ggml_mul(ctx, cur, tmp); + cb(cur, "ffn_gate_par", il); + } + + cur = ggml_mul_mat(ctx, down, cur); + if (down_b) { + cb(cur, "ffn_down", il); + } + + if (down_b) { + cur = ggml_add(ctx, cur, down_b); + } + + return cur; +} + +static struct ggml_tensor * llm_build_moe_ffn( + struct ggml_context * ctx, + struct ggml_tensor * cur, + struct ggml_tensor * gate_inp, + struct ggml_tensor * up_exps, + struct ggml_tensor * gate_exps, + struct ggml_tensor * down_exps, + int64_t n_expert, + int64_t n_expert_used, + llm_ffn_op_type type_op, + bool norm_w, + const llm_build_cb & cb, + int il) { + int64_t n_embd = cur->ne[0]; + int64_t n_tokens = cur->ne[1]; + + ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens] + cb(logits, "ffn_moe_logits", il); + + ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens] + cb(probs, "ffn_moe_probs", il); + + // select experts + ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens] + cb(selected_experts->src[0], "ffn_moe_argsort", il); + cb(selected_experts, "ffn_moe_topk", il); + + ggml_tensor * weights = ggml_get_rows(ctx, + ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens] + cb(weights, "ffn_moe_weights", il); + + if (norm_w) { + weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens); + + ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens] + cb(weights_sum, "ffn_moe_weights_sum", il); + + weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens] + cb(weights, "ffn_moe_weights_norm", il); + + weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens); + } + + cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens); + ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens] + cb(up, "ffn_moe_up", il); + + ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens] + cb(gate, "ffn_moe_gate", il); + + switch (type_op) { + case LLM_FFN_SILU: + { + gate = ggml_silu(ctx, gate); + cb(gate, "ffn_moe_silu", il); + } break; + case LLM_FFN_GELU: + { + gate = ggml_gelu(ctx, gate); + cb(gate, "ffn_moe_gelu", il); + } break; + default: + GGML_ASSERT(false); + } + + ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens] + cb(par, "ffn_moe_gate_par", il); + + ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens] + cb(experts, "ffn_moe_down", il); + + experts = ggml_mul(ctx, experts, weights); + + // aggregate experts + ggml_tensor * moe_out = nullptr; + for (int i = 0; i < n_expert_used; ++i) { + ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens, + experts->nb[2], i*experts->nb[1]); + + if (i == 0) { + moe_out = cur_expert; + } else { + moe_out = ggml_add(ctx, moe_out, cur_expert); + } + } + + if (n_expert_used == 1) { + // avoid returning a non-contiguous tensor + moe_out = ggml_cont(ctx, moe_out); + } + + return moe_out; +} + +// if max_alibi_bias > 0 then apply ALiBi +static struct ggml_tensor * llm_build_kqv( + struct ggml_context * ctx, + const llama_model & model, + const llama_hparams & hparams, + const llama_kv_cache & kv, + struct ggml_cgraph * graph, + struct ggml_tensor * wo, + struct ggml_tensor * wo_b, + struct ggml_tensor * q_cur, + struct ggml_tensor * kq_mask, + struct ggml_tensor * kq_pos, + int64_t n_ctx, + int32_t n_tokens, + int32_t n_kv, + float kq_scale, + const llm_build_cb & cb, + int il) { + const int64_t n_head = hparams.n_head; + const int64_t n_head_kv = hparams.n_head_kv; + const int64_t n_embd_head_k = hparams.n_embd_head_k; + const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(); + const int64_t n_embd_head_v = hparams.n_embd_head_v; + + struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3); + cb(q, "q", il); + + struct ggml_tensor * k = + ggml_view_3d(ctx, kv.k_l[il], + n_embd_head_k, n_kv, n_head_kv, + ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa), + ggml_row_size(kv.k_l[il]->type, n_embd_head_k), + 0); + cb(k, "k", il); + + struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q); + cb(kq, "kq", il); + + if (model.arch == LLM_ARCH_PHI2) { + // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs + // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847 + ggml_mul_mat_set_prec(kq, GGML_PREC_F32); + } + + if (model.arch == LLM_ARCH_GROK) { + // need to do the following: + // multiply by attn_output_multiplyer of 0.08838834764831845 + // and then : + // kq = 30 * tanh(kq / 30) + // before the softmax below + + //try from phi2 + //ggml_mul_mat_set_prec(kq, GGML_PREC_F32); + + kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f)); + kq = ggml_scale(ctx, kq, 30); + } + +#if defined(GGML_USE_KOMPUTE) +#pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Kompute") +#pragma message(" Falling back to ggml_alibi(). Will become an error in Mar 2024") +#pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5488") + if (hparams.f_max_alibi_bias > 0.0f) { + kq = ggml_scale(ctx, kq, kq_scale); + cb(kq, "kq_scaled", il); + + kq = ggml_alibi(ctx, kq, /*n_past*/ 0, n_head, hparams.f_max_alibi_bias); + cb(kq, "kq_scaled_alibi", il); + + kq = ggml_add(ctx, kq, kq_mask); + cb(kq, "kq_masked", il); + + kq = ggml_soft_max(ctx, kq); + cb(kq, "kq_soft_max", il); + } else +#endif + { + kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_pos, kq_scale, hparams.f_max_alibi_bias); + cb(kq, "kq_soft_max_ext", il); + } + + GGML_ASSERT(kv.size == n_ctx); + + // split cached v into n_head heads + struct ggml_tensor * v = + ggml_view_3d(ctx, kv.v_l[il], + n_kv, n_embd_head_v, n_head_kv, + ggml_element_size(kv.v_l[il])*n_ctx, + ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v, + 0); + cb(v, "v", il); + + struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq); + cb(kqv, "kqv", il); + + struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3); + cb(kqv_merged, "kqv_merged", il); + + struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens); + cb(cur, "kqv_merged_cont", il); + + ggml_build_forward_expand(graph, cur); + + cur = ggml_mul_mat(ctx, wo, cur); + if (wo_b) { + cb(cur, "kqv_wo", il); + } + + if (wo_b) { + cur = ggml_add(ctx, cur, wo_b); + } + + return cur; +} + +static struct ggml_tensor * llm_build_kv( + struct ggml_context * ctx, + const llama_model & model, + const llama_hparams & hparams, + const llama_kv_cache & kv, + struct ggml_cgraph * graph, + struct ggml_tensor * wo, + struct ggml_tensor * wo_b, + struct ggml_tensor * k_cur, + struct ggml_tensor * v_cur, + struct ggml_tensor * q_cur, + struct ggml_tensor * kq_mask, + struct ggml_tensor * kq_pos, + int64_t n_ctx, + int32_t n_tokens, + int32_t kv_head, + int32_t n_kv, + float kq_scale, + const llm_build_cb & cb, + int il) { + + // these nodes are added to the graph together so that they are not reordered + // by doing so, the number of splits in the graph is reduced + ggml_build_forward_expand(graph, q_cur); + ggml_build_forward_expand(graph, k_cur); + ggml_build_forward_expand(graph, v_cur); + + llm_build_kv_store(ctx, hparams, kv, graph, k_cur, v_cur, n_ctx, n_tokens, kv_head, cb, il); + + struct ggml_tensor * cur; + + cur = llm_build_kqv(ctx, model, hparams, kv, graph, wo, wo_b, + q_cur, kq_mask, kq_pos, n_ctx, n_tokens, n_kv, kq_scale, cb, il); + cb(cur, "kqv_out", il); + + return cur; +} + +struct llm_build_context { + const llama_model & model; + llama_context & lctx; + const llama_hparams & hparams; + const llama_cparams & cparams; + const llama_batch & batch; + const llama_kv_cache & kv_self; + + const int64_t n_embd; + const int64_t n_layer; + const int64_t n_rot; + const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train) + const int64_t n_head; + const int64_t n_head_kv; + const int64_t n_embd_head_k; + const int64_t n_embd_k_gqa; + const int64_t n_embd_head_v; + const int64_t n_embd_v_gqa; + const int64_t n_expert; + const int64_t n_expert_used; + + const float freq_base; + const float freq_scale; + const float ext_factor; + const float attn_factor; + const float beta_fast; + const float beta_slow; + const float norm_eps; + const float norm_rms_eps; + + const int32_t n_tokens; + const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size) + const int32_t n_outputs; + const int32_t kv_head; // index of where we store new KV data in the cache + const int32_t n_orig_ctx; + + const enum llama_pooling_type pooling_type; + const enum llama_rope_type rope_type; + + const llm_build_cb & cb; + + std::vector & buf_compute_meta; + + struct ggml_context * ctx0 = nullptr; + + // TODO: consider making the entire interface noexcept + llm_build_context( + llama_context & lctx, + const llama_batch & batch, + const llm_build_cb & cb, + bool worst_case) : + model (lctx.model), + lctx (lctx), + hparams (model.hparams), + cparams (lctx.cparams), + batch (batch), + kv_self (lctx.kv_self), + n_embd (hparams.n_embd), + n_layer (hparams.n_layer), + n_rot (hparams.n_rot), + n_ctx (cparams.n_ctx), + n_head (hparams.n_head), + n_head_kv (hparams.n_head_kv), + n_embd_head_k (hparams.n_embd_head_k), + n_embd_k_gqa (hparams.n_embd_k_gqa()), + n_embd_head_v (hparams.n_embd_head_v), + n_embd_v_gqa (hparams.n_embd_v_gqa()), + n_expert (hparams.n_expert), + n_expert_used (hparams.n_expert_used), + freq_base (cparams.rope_freq_base), + freq_scale (cparams.rope_freq_scale), + ext_factor (cparams.yarn_ext_factor), + attn_factor (cparams.yarn_attn_factor), + beta_fast (cparams.yarn_beta_fast), + beta_slow (cparams.yarn_beta_slow), + norm_eps (hparams.f_norm_eps), + norm_rms_eps (hparams.f_norm_rms_eps), + n_tokens (batch.n_tokens), + n_kv (worst_case ? kv_self.size : kv_self.n), + n_outputs (worst_case ? n_tokens : lctx.n_outputs), + kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head), + n_orig_ctx (cparams.n_yarn_orig_ctx), + pooling_type (cparams.pooling_type), + rope_type (hparams.rope_type), + cb (cb), + buf_compute_meta (lctx.buf_compute_meta) { + // all initializations should be done in init() + } + + void init() { + struct ggml_init_params params = { + /*.mem_size =*/ buf_compute_meta.size(), + /*.mem_buffer =*/ buf_compute_meta.data(), + /*.no_alloc =*/ true, + }; + + ctx0 = ggml_init(params); + + lctx.inp_tokens = nullptr; + lctx.inp_embd = nullptr; + lctx.inp_pos = nullptr; + lctx.inp_out_ids = nullptr; + lctx.inp_KQ_mask = nullptr; + lctx.inp_KQ_pos = nullptr; + lctx.inp_K_shift = nullptr; + lctx.inp_mean = nullptr; + lctx.inp_cls = nullptr; + lctx.inp_s_copy = nullptr; + lctx.inp_s_mask = nullptr; + lctx.inp_s_seq = nullptr; + } + + void free() { + if (ctx0) { + ggml_free(ctx0); + ctx0 = nullptr; + } + } + + struct ggml_cgraph * build_k_shift() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + GGML_ASSERT(kv_self.size == n_ctx); + + lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx); + cb(lctx.inp_K_shift, "K_shift", -1); + ggml_set_input(lctx.inp_K_shift); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * tmp = + // we rotate only the first n_rot dimensions + ggml_rope_custom_inplace(ctx0, + ggml_view_3d(ctx0, kv_self.k_l[il], + n_embd_head_k, n_head_kv, n_ctx, + ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k), + ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa), + 0), + lctx.inp_K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow); + cb(tmp, "K_shifted", il); + ggml_build_forward_expand(gf, tmp); + } + + return gf; + } + + struct ggml_cgraph * build_s_copy() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + GGML_ASSERT(kv_self.recurrent); + + struct ggml_tensor * state_copy = build_inp_s_copy(); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size); + struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size); + + conv_states = ggml_get_rows(ctx0, conv_states, state_copy); + ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy); + + // TODO: name the intermediate tensors with cb() + + ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il])); + ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il])); + } + + return gf; + } + + struct ggml_cgraph * build_defrag(const std::vector & ids) { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + for (uint32_t i = 0; i < ids.size(); ++i) { + const uint32_t id = ids[i]; + + if (i == id || id == ids.size()) { + continue; + } + + uint32_t nm = 1; + + while (i + nm < ids.size() && ids[i + nm] == id + nm) { + nm++; + } + + for (int il = 0; il < n_layer; ++il) { + ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il], + n_embd_k_gqa, nm, + ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa), + ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i)); + + ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il], + n_embd_k_gqa, nm, + ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa), + ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id)); + + ggml_tensor * view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il], + nm, n_embd_v_gqa, + ggml_row_size(kv_self.v_l[il]->type, kv_self.size), + ggml_row_size(kv_self.v_l[il]->type, i)); + + ggml_tensor * view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il], + nm, n_embd_v_gqa, + ggml_row_size(kv_self.v_l[il]->type, kv_self.size), + ggml_row_size(kv_self.v_l[il]->type, id)); + + ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst)); + ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst)); + } + + i += nm - 1; + } + + //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes); + + return gf; + } + + struct ggml_tensor * build_inp_pos() { + lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + cb(lctx.inp_pos, "inp_pos", -1); + ggml_set_input(lctx.inp_pos); + return lctx.inp_pos; + } + + struct ggml_tensor * build_inp_out_ids() { + lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs); + cb(lctx.inp_out_ids, "inp_out_ids", -1); + ggml_set_input(lctx.inp_out_ids); + return lctx.inp_out_ids; + } + + struct ggml_tensor * build_inp_KQ_mask(bool causal = true) { + if (causal) { + lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, n_tokens); + } else { + lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens); + } + cb(lctx.inp_KQ_mask, "KQ_mask", -1); + ggml_set_input(lctx.inp_KQ_mask); + return lctx.inp_KQ_mask; + } + + struct ggml_tensor * build_inp_KQ_pos() { + lctx.inp_KQ_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, n_kv); + cb(lctx.inp_KQ_pos, "KQ_pos", -1); + ggml_set_input(lctx.inp_KQ_pos); + return lctx.inp_KQ_pos; + } + + struct ggml_tensor * build_inp_mean() { + lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens); + cb(lctx.inp_mean, "inp_mean", -1); + ggml_set_input(lctx.inp_mean); + return lctx.inp_mean; + } + + struct ggml_tensor * build_inp_cls() { + lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens); + cb(lctx.inp_cls, "inp_cls", -1); + ggml_set_input(lctx.inp_cls); + return lctx.inp_cls; + } + + struct ggml_tensor * build_inp_s_copy() { + lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size); + cb(lctx.inp_s_copy, "inp_s_copy", -1); + ggml_set_input(lctx.inp_s_copy); + return lctx.inp_s_copy; + } + + struct ggml_tensor * build_inp_s_mask() { + lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv); + cb(lctx.inp_s_mask, "inp_s_mask", -1); + ggml_set_input(lctx.inp_s_mask); + return lctx.inp_s_mask; + } + + struct ggml_tensor * build_inp_s_seq() { + lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens); + cb(lctx.inp_s_seq, "inp_s_seq", -1); + ggml_set_input(lctx.inp_s_seq); + return lctx.inp_s_seq; + } + + struct ggml_cgraph * build_llama() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + // mutable variable, needed during the last layer of the computation to skip unused tokens + int32_t n_tokens = this->n_tokens; + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + if (model.layers[il].bq) { + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + } + + struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + if (model.layers[il].bk) { + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + } + + struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + if (model.layers[il].bv) { + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + } + + Qcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + n_tokens = n_outputs; + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // feed-forward network + if (model.layers[il].ffn_gate_inp == nullptr) { + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, NULL, + model.layers[il].ffn_gate, NULL, + model.layers[il].ffn_down, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); + } else { + // MoE branch + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_moe_ffn(ctx0, cur, + model.layers[il].ffn_gate_inp, + model.layers[il].ffn_up_exps, + model.layers[il].ffn_gate_exps, + model.layers[il].ffn_down_exps, + n_expert, n_expert_used, + LLM_FFN_SILU, true, + cb, il); + cb(cur, "ffn_moe_out", il); + } + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "ffn_out", il); + + ggml_tensor * layer_dir = lctx.cvec.tensor_for(il); + if (layer_dir != nullptr) { + cur = ggml_add(ctx0, cur, layer_dir); + } + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_baichuan() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr; + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + // positions of the tokens in the KV cache + struct ggml_tensor * KQ_pos = build_inp_KQ_pos(); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + + struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + + struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + + switch (model.type) { + case MODEL_7B: + Qcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + Kcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + break; + case MODEL_13B: + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens); + Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens); + break; + default: + GGML_ASSERT(false); + } + cb(Qcur, "Qcur", il); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, NULL, + Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // feed-forward network + { + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, NULL, + model.layers[il].ffn_gate, NULL, + model.layers[il].ffn_down, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); + } + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_xverse() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + // positions of the tokens in the KV cache + struct ggml_tensor * KQ_pos = build_inp_KQ_pos(); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + + struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + + struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + + Qcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, NULL, + Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // feed-forward network + { + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, NULL, + model.layers[il].ffn_gate, NULL, + model.layers[il].ffn_down, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); + } + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_falcon() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * attn_norm; + + attn_norm = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, + model.layers[il].attn_norm_b, + LLM_NORM, cb, il); + cb(attn_norm, "attn_norm", il); + + // self-attention + { + if (model.layers[il].attn_norm_2) { + // Falcon-40B + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm_2, + model.layers[il].attn_norm_2_b, + LLM_NORM, cb, il); + cb(cur, "attn_norm_2", il); + } else { + cur = attn_norm; + } + + cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); + cb(cur, "wqkv", il); + + struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); + struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); + struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); + + cb(Qcur, "Qcur", il); + cb(Kcur, "Kcur", il); + cb(Vcur, "Vcur", il); + + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); + Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); + + // using mode = 2 for neox mode + Qcur = ggml_rope_custom( + ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, + freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_custom( + ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, + freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, NULL, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids); + } + + struct ggml_tensor * ffn_inp = cur; + + // feed forward + { + cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result + model.layers[il].ffn_up, NULL, + NULL, NULL, + model.layers[il].ffn_down, NULL, + NULL, + LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); + cb(cur, "ffn_out", il); + } + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "l_out", il); + + cur = ggml_add(ctx0, cur, inpL); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + // norm + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, + model.output_norm_b, + LLM_NORM, cb, -1); + cb(cur, "result_norm", -1); + + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_grok() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + // mutable variable, needed during the last layer of the computation to skip unused tokens + int32_t n_tokens = this->n_tokens; + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // multiply by embedding_multiplier_scale of 78.38367176906169 + inpL = ggml_scale(ctx0, inpL, 78.38367176906169f); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + + + // self-attention + { + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + if (model.layers[il].bq) { + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + } + + struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + if (model.layers[il].bk) { + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + } + + struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + if (model.layers[il].bv) { + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + } + + Qcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + n_tokens = n_outputs; + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + // Grok + // if attn_out_norm is present then apply it before adding the input + if (model.layers[il].attn_out_norm) { + cur = llm_build_norm(ctx0, cur, hparams, + model.layers[il].attn_out_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_out_norm", il); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // feed-forward network + // MoE branch + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_moe_ffn(ctx0, cur, + model.layers[il].ffn_gate_inp, + model.layers[il].ffn_up_exps, + model.layers[il].ffn_gate_exps, + model.layers[il].ffn_down_exps, + n_expert, n_expert_used, + LLM_FFN_GELU, true, + cb, il); + cb(cur, "ffn_moe_out", il); + + // Grok + // if layer_out_norm is present then apply it before adding the input + // Idea: maybe ffn_out_norm is a better name + if (model.layers[il].layer_out_norm) { + cur = llm_build_norm(ctx0, cur, hparams, + model.layers[il].layer_out_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "layer_out_norm", il); + } + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "ffn_out", il); + + ggml_tensor * layer_dir = lctx.cvec.tensor_for(il); + if (layer_dir != nullptr) { + cur = ggml_add(ctx0, cur, layer_dir); + } + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + + // Grok + // multiply logits by output_multiplier_scale of 0.5773502691896257 + + cur = ggml_scale(ctx0, cur, 0.5773502691896257f); + + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_dbrx() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + // mutable variable, needed during the last layer of the computation to skip unused tokens + int32_t n_tokens = this->n_tokens; + + const int64_t n_embd_head = hparams.n_embd_head_v; + const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + struct ggml_tensor * Qcur = nullptr; + struct ggml_tensor * Kcur = nullptr; + struct ggml_tensor * Vcur = nullptr; + + cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); + cb(cur, "wqkv", il); + + cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv); + cb(cur, "wqkv_clamped", il); + + Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); + Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); + Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); + + cb(Qcur, "Qcur", il); + cb(Kcur, "Kcur", il); + cb(Vcur, "Vcur", il); + + Qcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, NULL, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + n_tokens = n_outputs; + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // feed-forward network + // MoE branch + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].attn_out_norm, NULL, + LLM_NORM, cb, il); + cb(cur, "attn_out_norm", il); + + cur = llm_build_moe_ffn(ctx0, cur, + model.layers[il].ffn_gate_inp, + model.layers[il].ffn_up_exps, + model.layers[il].ffn_gate_exps, + model.layers[il].ffn_down_exps, + n_expert, n_expert_used, + LLM_FFN_SILU, true, + cb, il); + cb(cur, "ffn_moe_out", il); + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "ffn_out", il); + + ggml_tensor * layer_dir = lctx.cvec.tensor_for(il); + if (layer_dir != nullptr) { + cur = ggml_add(ctx0, cur, layer_dir); + } + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_starcoder() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos); + cb(pos, "pos_embd", -1); + + inpL = ggml_add(ctx0, inpL, pos); + cb(inpL, "inpL", -1); + + for (int il = 0; il < n_layer; ++il) { + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, + model.layers[il].attn_norm_b, + LLM_NORM, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); + cb(cur, "wqkv", il); + + cur = ggml_add(ctx0, cur, model.layers[il].bqkv); + cb(cur, "bqkv", il); + + struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); + struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); + struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); + + cb(Qcur, "Qcur", il); + cb(Kcur, "Kcur", il); + cb(Vcur, "Vcur", il); + + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + } + + // add the input + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); + cb(ffn_inp, "ffn_inp", il); + + // FF + { + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, + model.layers[il].ffn_norm_b, + LLM_NORM, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, model.layers[il].ffn_up_b, + NULL, NULL, + model.layers[il].ffn_down, model.layers[il].ffn_down_b, + NULL, + LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); + cb(cur, "ffn_out", il); + } + + inpL = ggml_add(ctx0, cur, ffn_inp); + cb(inpL, "l_out", il); + } + + cur = llm_build_norm(ctx0, inpL, hparams, + model.output_norm, + model.output_norm_b, + LLM_NORM, cb, -1); + cb(cur, "result_norm", -1); + + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_persimmon() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head/2 == hparams.n_rot); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * residual = inpL; + + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, + model.layers[il].attn_norm_b, + LLM_NORM, cb, il); + cb(cur, "attn_norm", il); + + // self attention + { + cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); + cb(cur, "wqkv", il); + + cur = ggml_add(ctx0, cur, model.layers[il].bqkv); + cb(cur, "bqkv", il); + + // split qkv + GGML_ASSERT(n_head_kv == n_head); + + struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens); + cb(tmpqkv, "tmpqkv", il); + + struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2)); + cb(tmpqkv_perm, "tmpqkv", il); + + struct ggml_tensor * tmpq = ggml_view_3d( + ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens, + ggml_element_size(tmpqkv_perm) * n_embd_head, + ggml_element_size(tmpqkv_perm) * n_embd_head * n_head, + 0 + ); + cb(tmpq, "tmpq", il); + + struct ggml_tensor * tmpk = ggml_view_3d( + ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens, + ggml_element_size(tmpqkv_perm) * n_embd_head, + ggml_element_size(tmpqkv_perm) * n_embd_head * n_head, + ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens + ); + cb(tmpk, "tmpk", il); + + // Q/K Layernorm + tmpq = llm_build_norm(ctx0, tmpq, hparams, + model.layers[il].attn_q_norm, + model.layers[il].attn_q_norm_b, + LLM_NORM, cb, il); + cb(tmpq, "tmpq", il); + + tmpk = llm_build_norm(ctx0, tmpk, hparams, + model.layers[il].attn_k_norm, + model.layers[il].attn_k_norm_b, + LLM_NORM, cb, il); + cb(tmpk, "tmpk", il); + + // RoPE the first n_rot of q/k, pass the other half, and concat. + struct ggml_tensor * qrot = ggml_view_3d( + ctx0, tmpq, n_rot, n_head, n_tokens, + ggml_element_size(tmpq) * n_embd_head, + ggml_element_size(tmpq) * n_embd_head * n_head, + 0 + ); + cb(qrot, "qrot", il); + + struct ggml_tensor * krot = ggml_view_3d( + ctx0, tmpk, n_rot, n_head, n_tokens, + ggml_element_size(tmpk) * n_embd_head, + ggml_element_size(tmpk) * n_embd_head * n_head, + 0 + ); + cb(krot, "krot", il); + + // get the second half of tmpq, e.g tmpq[n_rot:, :, :] + struct ggml_tensor * qpass = ggml_view_3d( + ctx0, tmpq, n_rot, n_head, n_tokens, + ggml_element_size(tmpq) * n_embd_head, + ggml_element_size(tmpq) * n_embd_head * n_head, + ggml_element_size(tmpq) * n_rot + ); + cb(qpass, "qpass", il); + + struct ggml_tensor * kpass = ggml_view_3d( + ctx0, tmpk, n_rot, n_head, n_tokens, + ggml_element_size(tmpk) * n_embd_head, + ggml_element_size(tmpk) * n_embd_head * n_head, + ggml_element_size(tmpk) * n_rot + ); + cb(kpass, "kpass", il); + + struct ggml_tensor * qrotated = ggml_rope_custom( + ctx0, qrot, inp_pos, n_rot, rope_type, 0, n_orig_ctx, + freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(qrotated, "qrotated", il); + + struct ggml_tensor * krotated = ggml_rope_custom( + ctx0, krot, inp_pos, n_rot, rope_type, 0, n_orig_ctx, + freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(krotated, "krotated", il); + + // ggml currently only supports concatenation on dim=2 + // so we need to permute qrot, qpass, concat, then permute back. + qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3)); + cb(qrotated, "qrotated", il); + + krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3)); + cb(krotated, "krotated", il); + + qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3)); + cb(qpass, "qpass", il); + + kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3)); + cb(kpass, "kpass", il); + + struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass); + cb(Qcur, "Qcur", il); + + struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass); + cb(Kcur, "Kcur", il); + + struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3)); + cb(Q, "Q", il); + + Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3)); + cb(Kcur, "Kcur", il); + + struct ggml_tensor * Vcur = ggml_view_3d( + ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens, + ggml_element_size(tmpqkv_perm) * n_embd_head, + ggml_element_size(tmpqkv_perm) * n_embd_head * n_head, + ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2 + ); + cb(Vcur, "Vcur", il); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Q, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + residual = ggml_get_rows(ctx0, residual, inp_out_ids); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur); + cb(ffn_inp, "ffn_inp", il); + + // feed-forward network + { + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, + model.layers[il].ffn_norm_b, + LLM_NORM, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, model.layers[il].ffn_up_b, + NULL, NULL, + model.layers[il].ffn_down, model.layers[il].ffn_down_b, + NULL, + LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il); + cb(cur, "ffn_out", il); + } + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "l_out", il); + + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, + model.output_norm_b, + LLM_NORM, cb, -1); + cb(cur, "result_norm", -1); + + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_refact() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + // positions of the tokens in the KV cache + struct ggml_tensor * KQ_pos = build_inp_KQ_pos(); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + + struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + + struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + + Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); + cb(Kcur, "Kcur", il); + + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); + cb(Qcur, "Qcur", il); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, NULL, + Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // feed-forward network + { + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, NULL, + model.layers[il].ffn_gate, NULL, + model.layers[il].ffn_down, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); + } + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_bert() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); + + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + struct ggml_tensor * inp_pos = build_inp_pos(); + struct ggml_tensor * inp_mean = build_inp_mean(); + struct ggml_tensor * inp_cls = build_inp_cls(); + + // construct input embeddings (token, type, position) + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // token types are hardcoded to zero ("Sentence A") + struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0); + inpL = ggml_add(ctx0, inpL, type_row0); + if (model.arch == LLM_ARCH_BERT) { + inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL); + } + cb(inpL, "inp_embd", -1); + + // embed layer norm + inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1); + cb(inpL, "inp_norm", -1); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false); + + // iterate layers + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * cur = inpL; + + struct ggml_tensor * Qcur; + struct ggml_tensor * Kcur; + struct ggml_tensor * Vcur; + + // self-attention + if (model.arch == LLM_ARCH_BERT) { + Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq); + cb(Qcur, "Qcur", il); + + Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk); + cb(Kcur, "Kcur", il); + + Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv); + cb(Vcur, "Vcur", il); + + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); + Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); + } else { + // compute Q and K and RoPE them + cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); + cb(cur, "wqkv", il); + + Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); + Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); + Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); + + cb(Qcur, "Qcur", il); + cb(Kcur, "Kcur", il); + cb(Vcur, "Vcur", il); + + Qcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + } + + struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3); + struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3)); + + struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q); + cb(kq, "kq", il); + + kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, nullptr, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias); + cb(kq, "kq_soft_max_ext", il); + + struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens))); + cb(v, "v", il); + + struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq); + cb(kqv, "kqv", il); + + struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3); + cb(kqv_merged, "kqv_merged", il); + + cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens); + cb(cur, "kqv_merged_cont", il); + + ggml_build_forward_expand(gf, cur); + + cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur); + if (model.layers[il].bo) { + cb(cur, "kqv_wo", il); + } + + if (model.layers[il].bo) { + cur = ggml_add(ctx0, cur, model.layers[il].bo); + } + cb(cur, "kqv_out", il); + + if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + } + + // re-add the layer input + cur = ggml_add(ctx0, cur, inpL); + + // attention layer norm + cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il); + + struct ggml_tensor * ffn_inp = cur; + cb(ffn_inp, "ffn_inp", il); + + // feed-forward network + if (model.arch == LLM_ARCH_BERT) { + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, model.layers[il].ffn_up_b, + NULL, NULL, + model.layers[il].ffn_down, model.layers[il].ffn_down_b, + NULL, + LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); + } else { + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, NULL, + model.layers[il].ffn_gate, NULL, + model.layers[il].ffn_down, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + } + cb(cur, "ffn_out", il); + + // attentions bypass the intermediate layer + cur = ggml_add(ctx0, cur, ffn_inp); + + // output layer norm + cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il); + + // input for next layer + inpL = cur; + } + + // final output + cur = inpL; + cb(cur, "result_embd", -1); + + // pooling layer + switch (pooling_type) { + case LLAMA_POOLING_TYPE_NONE: + { + // nop + } break; + case LLAMA_POOLING_TYPE_MEAN: + { + cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean); + cb(cur, "result_embd_pooled", -1); + } break; + case LLAMA_POOLING_TYPE_CLS: + { + cur = ggml_get_rows(ctx0, cur, inp_cls); + cb(cur, "result_embd_pooled", -1); + } break; + case LLAMA_POOLING_TYPE_UNSPECIFIED: + { + GGML_ASSERT(false && "Invalid pooling type"); + } break; + } + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_bloom() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + // positions of the tokens in the KV cache + struct ggml_tensor * KQ_pos = build_inp_KQ_pos(); + + inpL = llm_build_norm(ctx0, inpL, hparams, + model.tok_norm, + model.tok_norm_b, + LLM_NORM, cb, -1); + cb(inpL, "inp_norm", -1); + + for (int il = 0; il < n_layer; ++il) { + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, + model.layers[il].attn_norm_b, + LLM_NORM, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); + cb(cur, "wqkv", il); + + cur = ggml_add(ctx0, cur, model.layers[il].bqkv); + cb(cur, "bqkv", il); + + struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); + struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); + struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); + + cb(Qcur, "Qcur", il); + cb(Kcur, "Kcur", il); + cb(Vcur, "Vcur", il); + + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + } + + // Add the input + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); + cb(ffn_inp, "ffn_inp", il); + + // FF + { + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, + model.layers[il].ffn_norm_b, + LLM_NORM, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, model.layers[il].ffn_up_b, + NULL, NULL, + model.layers[il].ffn_down, model.layers[il].ffn_down_b, + NULL, + LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); + cb(cur, "ffn_out", il); + } + + inpL = ggml_add(ctx0, cur, ffn_inp); + cb(inpL, "l_out", il); + } + + cur = llm_build_norm(ctx0, inpL, hparams, + model.output_norm, + model.output_norm_b, + LLM_NORM, cb, -1); + cb(cur, "result_norm", -1); + + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_mpt() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + + struct ggml_tensor * cur; + struct ggml_tensor * pos; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + // positions of the tokens in the KV cache + struct ggml_tensor * KQ_pos = build_inp_KQ_pos(); + + if (model.pos_embd) { + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos); + cb(pos, "pos_embd", -1); + + inpL = ggml_add(ctx0, inpL, pos); + cb(inpL, "inpL", -1); + } + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * attn_norm; + + attn_norm = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, + model.layers[il].attn_norm_b, + LLM_NORM, cb, il); + cb(attn_norm, "attn_norm", il); + + // self-attention + { + cur = attn_norm; + + cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); + cb(cur, "wqkv", il); + + if (model.layers[il].bqkv){ + cur = ggml_add(ctx0, cur, model.layers[il].bqkv); + cb(cur, "bqkv", il); + } + + if (hparams.f_clamp_kqv > 0.0f) { + cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv); + cb(cur, "wqkv_clamped", il); + } + + struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); + struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); + struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); + + cb(Qcur, "Qcur", il); + cb(Kcur, "Kcur", il); + cb(Vcur, "Vcur", il); + + // Q/K Layernorm + if (model.layers[il].attn_q_norm) { + Qcur = llm_build_norm(ctx0, Qcur, hparams, + model.layers[il].attn_q_norm, + model.layers[il].attn_q_norm_b, + LLM_NORM, cb, il); + cb(Qcur, "Qcur", il); + + Kcur = llm_build_norm(ctx0, Kcur, hparams, + model.layers[il].attn_k_norm, + model.layers[il].attn_k_norm_b, + LLM_NORM, cb, il); + cb(Kcur, "Kcur", il); + + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); + Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } else { + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + } + + // Add the input + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); + cb(ffn_inp, "ffn_inp", il); + + // feed forward + { + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, + model.layers[il].ffn_norm_b, + LLM_NORM, cb, il); + cb(cur, "ffn_norm", il); + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, model.layers[il].ffn_up_b, + NULL, NULL, + model.layers[il].ffn_down, model.layers[il].ffn_down_b, + model.layers[il].ffn_act, + LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); + cb(cur, "ffn_out", il); + } + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, + model.output_norm_b, + LLM_NORM, cb, -1); + cb(cur, "result_norm", -1); + + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_stablelm() { + struct ggml_cgraph * gf = ggml_new_graph(ctx0); + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, + model.layers[il].attn_norm_b, + LLM_NORM, cb, il); + cb(cur, "attn_norm", il); + + struct ggml_tensor * inpSA = cur; + + // self-attention + { + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + if (model.layers[il].bq) { + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + } + + struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + if (model.layers[il].bk) { + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + } + + struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + if (model.layers[il].bv) { + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + } + + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); + cb(Qcur, "Qcur", il); + Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); + cb(Kcur, "Kcur", il); + + if (model.layers[il].attn_q_norm) { + Qcur = llm_build_norm(ctx0, Qcur, hparams, + model.layers[il].attn_q_norm, + NULL, + LLM_NORM, cb, il); + cb(Qcur, "Qcur", il); + } + if (model.layers[il].attn_k_norm) { + Kcur = llm_build_norm(ctx0, Kcur, hparams, + model.layers[il].attn_k_norm, + NULL, + LLM_NORM, cb, il); + cb(Kcur, "Kcur", il); + } + + + Qcur = ggml_rope_custom( + ctx0, Qcur, inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_custom( + ctx0, Kcur, inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, NULL, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); + cb(ffn_inp, "ffn_inp", il); + + // feed-forward network + { + if (model.layers[il].ffn_norm) { + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, + model.layers[il].ffn_norm_b, + LLM_NORM, cb, il); + cb(cur, "ffn_norm", il); + } else { + // parallel residual + cur = inpSA; + } + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, NULL, + model.layers[il].ffn_gate, NULL, + model.layers[il].ffn_down, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); + } + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, + model.output_norm_b, + LLM_NORM, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_qwen() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); + cb(cur, "wqkv", il); + + cur = ggml_add(ctx0, cur, model.layers[il].bqkv); + cb(cur, "bqkv", il); + + struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); + struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); + struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd))); + + cb(Qcur, "Qcur", il); + cb(Kcur, "Kcur", il); + cb(Vcur, "Vcur", il); + + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); + Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); + + // using mode = 2 for neox mode + Qcur = ggml_rope_custom( + ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, + freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_custom( + ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, + freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, NULL, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // feed-forward forward + { + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, NULL, + model.layers[il].ffn_gate, NULL, + model.layers[il].ffn_down, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); + } + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_qwen2() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + + struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + + struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + + Qcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // feed-forward network + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, NULL, + model.layers[il].ffn_gate, NULL, + model.layers[il].ffn_down, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_qwen2moe() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + // mutable variable, needed during the last layer of the computation to skip unused tokens + int32_t n_tokens = this->n_tokens; + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + + // self_attention + { + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + + struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + + struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + + Qcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + n_tokens = n_outputs; + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // MoE branch + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + ggml_tensor * moe_out = + llm_build_moe_ffn(ctx0, cur, + model.layers[il].ffn_gate_inp, + model.layers[il].ffn_up_exps, + model.layers[il].ffn_gate_exps, + model.layers[il].ffn_down_exps, + n_expert, n_expert_used, + LLM_FFN_SILU, false, + cb, il); + cb(cur, "ffn_moe_out", il); + + // FFN shared expert + { + ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur); + cb(cur_gate_inp, "ffn_shexp_gate_inp", il); + + // sigmoid + ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp); + cb(cur_gate, "ffn_shexp_gate", il); + + ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up_shexp, NULL, + model.layers[il].ffn_gate_shexp, NULL, + model.layers[il].ffn_down_shexp, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(cur_ffn, "ffn_shexp", il); + + ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate); + cb(ffn_shexp_out, "ffn_shexp_out", il); + + moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out); + cb(moe_out, "ffn_out", il); + + cur = moe_out; + } + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_phi2() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + + struct ggml_tensor * cur; + struct ggml_tensor * attn_norm_output; + struct ggml_tensor * ffn_output; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + attn_norm_output = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, + model.layers[il].attn_norm_b, + LLM_NORM, cb, il); + cb(attn_norm_output, "attn_norm", il); + + // self-attention + { + struct ggml_tensor * Qcur = nullptr; + struct ggml_tensor * Kcur = nullptr; + struct ggml_tensor * Vcur = nullptr; + + if (model.layers[il].wqkv) { + cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output); + cb(cur, "wqkv", il); + + cur = ggml_add(ctx0, cur, model.layers[il].bqkv); + cb(cur, "bqkv", il); + + Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); + Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); + Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); + } else { + Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq); + Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk); + Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv); + } + + cb(Qcur, "Qcur", il); + cb(Kcur, "Kcur", il); + cb(Vcur, "Vcur", il); + + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); + Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens); + + Qcur = ggml_rope_custom( + ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, + freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + // with phi2, we scale the Q to avoid precision issues + // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66 + Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head))); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_custom( + ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx, + freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids); + } + + // FF + { + ffn_output = llm_build_ffn(ctx0, attn_norm_output, + model.layers[il].ffn_up, model.layers[il].ffn_up_b, + NULL, NULL, + model.layers[il].ffn_down, model.layers[il].ffn_down_b, + NULL, + LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); + cb(ffn_output, "ffn_out", il); + } + + cur = ggml_add(ctx0, cur, ffn_output); + cb(cur, "l_out", il); + + cur = ggml_add(ctx0, cur, inpL); + cb(cur, "l_out", il); + + inpL = cur; + } + + cur = llm_build_norm(ctx0, inpL, hparams, + model.output_norm, + model.output_norm_b, + LLM_NORM, cb, -1); + cb(cur, "result_norm", -1); + + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output_no_bias", -1); + + cur = ggml_add(ctx0, cur, model.output_b); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_plamo() { + struct ggml_cgraph * gf = ggml_new_graph(ctx0); + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + + struct ggml_tensor * attention_norm = cur; + + // self-attention + { + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + + struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + + struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + + Qcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos, + n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, + n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, NULL, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + struct ggml_tensor * sa_out = cur; + + cur = attention_norm; + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + } + + // feed-forward network + { + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, NULL, + model.layers[il].ffn_gate, NULL, + model.layers[il].ffn_down, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); + } + + cur = ggml_add(ctx0, cur, sa_out); + cb(cur, "l_out", il); + + cur = ggml_add(ctx0, cur, inpL); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_gpt2() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + + struct ggml_tensor * cur; + struct ggml_tensor * pos; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos); + cb(pos, "pos_embd", -1); + + inpL = ggml_add(ctx0, inpL, pos); + cb(inpL, "inpL", -1); + + for (int il = 0; il < n_layer; ++il) { + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, + model.layers[il].attn_norm_b, + LLM_NORM, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); + cb(cur, "wqkv", il); + + cur = ggml_add(ctx0, cur, model.layers[il].bqkv); + cb(cur, "bqkv", il); + + struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); + struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); + struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); + + cb(Qcur, "Qcur", il); + cb(Kcur, "Kcur", il); + cb(Vcur, "Vcur", il); + + Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + } + + // add the input + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); + cb(ffn_inp, "ffn_inp", il); + + // FF + { + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, + model.layers[il].ffn_norm_b, + LLM_NORM, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, model.layers[il].ffn_up_b, + NULL, NULL, + model.layers[il].ffn_down, model.layers[il].ffn_down_b, + NULL, + LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); + cb(cur, "ffn_out", il); + } + + inpL = ggml_add(ctx0, cur, ffn_inp); + cb(inpL, "l_out", il); + } + + cur = llm_build_norm(ctx0, inpL, hparams, + model.output_norm, + model.output_norm_b, + LLM_NORM, cb, -1); + cb(cur, "result_norm", -1); + + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_codeshell() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + const int64_t n_embd_gqa = hparams.n_embd_v_gqa(); + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, + model.layers[il].attn_norm_b, + LLM_NORM, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur); + cb(cur, "wqkv", il); + + cur = ggml_add(ctx0, cur, model.layers[il].bqkv); + cb(cur, "bqkv", il); + + struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd))); + struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd))); + struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa))); + + cb(tmpq, "tmpq", il); + cb(tmpk, "tmpk", il); + cb(Vcur, "Vcur", il); + + struct ggml_tensor * Qcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + struct ggml_tensor * Kcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + } + + // add the input + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL); + cb(ffn_inp, "ffn_inp", il); + + // FF + { + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, + model.layers[il].ffn_norm_b, + LLM_NORM, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, model.layers[il].ffn_up_b, + NULL, NULL, + model.layers[il].ffn_down, model.layers[il].ffn_down_b, + NULL, + LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); + cb(cur, "ffn_out", il); + } + + inpL = ggml_add(ctx0, cur, ffn_inp); + cb(inpL, "l_out", il); + } + + cur = llm_build_norm(ctx0, inpL, hparams, + model.output_norm, + model.output_norm_b, + LLM_NORM, cb, -1); + cb(cur, "result_norm", -1); + + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_orion() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, model.layers[il].attn_norm_b, + LLM_NORM, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + // if (model.layers[il].bq) { + // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + // cb(Qcur, "Qcur", il); + // } + + struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + // if (model.layers[il].bk) { + // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + // cb(Kcur, "Kcur", il); + // } + + struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + // if (model.layers[il].bv) { + // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + // cb(Vcur, "Vcur", il); + // } + + Qcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, NULL, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // feed-forward network + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, + LLM_NORM, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, NULL, + model.layers[il].ffn_gate, NULL, + model.layers[il].ffn_down, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, model.output_norm_b, + LLM_NORM, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_internlm2() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + if (model.layers[il].bq) { + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + } + + struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + if (model.layers[il].bk) { + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + } + + struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + if (model.layers[il].bv) { + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + } + + Qcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // feed-forward network + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, NULL, + model.layers[il].ffn_gate, NULL, + model.layers[il].ffn_down, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + // ref: https://arxiv.org/abs/2203.03466 + // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738 + // based on the original build_llama() function + struct ggml_cgraph * build_minicpm() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + const int64_t n_embd = hparams.n_embd; + //TODO: if the model varies, these parameters need to be read from the model + const int64_t n_embd_base = 256; + const float scale_embd = 12.0f; + const float scale_depth = 1.4f; + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // scale the input embeddings + inpL = ggml_scale(ctx0, inpL, scale_embd); + cb(inpL, "inp_scaled", -1); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + if (model.layers[il].bq) { + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + } + + struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + if (model.layers[il].bk) { + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + } + + struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + if (model.layers[il].bv) { + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + } + + Qcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + // scale_res - scale the hidden states for residual connection + const float scale_res = scale_depth/sqrtf(float(n_layer)); + cur = ggml_scale(ctx0, cur, scale_res); + cb(cur, "hidden_scaled", -1); + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // feed-forward network + { + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, NULL, + model.layers[il].ffn_gate, NULL, + model.layers[il].ffn_down, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); + } + + // scale the hidden states for residual connection + cur = ggml_scale(ctx0, cur, scale_res); + cb(cur, "hidden_scaled_ffn", -1); + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head scaling + const float scale_lmhead = float(n_embd_base)/float(n_embd); + cur = ggml_scale(ctx0, cur, scale_lmhead); + cb(cur, "lmhead_scaling", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.tok_embd, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_gemma() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head_k = hparams.n_embd_head_k; + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd)); + cb(inpL, "inp_scaled", -1); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + + struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + + struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + + Qcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, + n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow); + cb(Qcur, "Qcur", il); + + Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k))); + cb(Qcur, "Qcur_scaled", il); + + Kcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, + n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, NULL, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + } + + struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL); + cb(sa_out, "sa_out", il); + + cur = llm_build_norm(ctx0, sa_out, hparams, + model.layers[il].ffn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "ffn_norm", il); + + // feed-forward network + { + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, NULL, + model.layers[il].ffn_gate, NULL, + model.layers[il].ffn_down, NULL, + NULL, + LLM_FFN_GELU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); + } + + cur = ggml_add(ctx0, cur, sa_out); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_starcoder2() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, model.layers[il].attn_norm_b, + LLM_NORM, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + if (model.layers[il].bq) { + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + } + + struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + if (model.layers[il].bk) { + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + } + + struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + if (model.layers[il].bv) { + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + } + + Qcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // feed-forward network + + cur = llm_build_norm(ctx0, ffn_inp, hparams, + model.layers[il].ffn_norm, model.layers[il].ffn_norm_b, + LLM_NORM, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, model.layers[il].ffn_up_b, + NULL, NULL, + model.layers[il].ffn_down, model.layers[il].ffn_down_b, + NULL, + LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); + cb(cur, "ffn_out", il); + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, model.output_norm_b, + LLM_NORM, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_mamba() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t d_model = n_embd; + const int64_t d_conv = hparams.ssm_d_conv; + const int64_t d_inner = hparams.ssm_d_inner; + GGML_ASSERT(2 * d_model == d_inner); + const int64_t d_state = hparams.ssm_d_state; + const int64_t dt_rank = hparams.ssm_dt_rank; + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + // {n_embd, n_tokens} + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + struct ggml_tensor * state_mask = build_inp_s_mask(); + struct ggml_tensor * state_seq = build_inp_s_seq(); + + for (int il = 0; il < n_layer; ++il) { + // (ab)using the KV cache to store the states + struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size); + struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size); + + // clear states of sequences which are starting at the beginning of this batch + { + conv_states = ggml_mul(ctx0, + ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]), + state_mask); + ssm_states = ggml_mul(ctx0, + ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]), + state_mask); + } + + conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv); + ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv); + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM_RMS, cb, il); + cb(cur, "attn_norm", il); + + // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens} + struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur); + // split the above in two + // => {d_inner, n_tokens} + struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0); + struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner); + + // conv + { + // Custom operator which is needed only to ease simultaneous sequence processing. + // For a single sequence, the equivalent is to concatenate the columns of conv_states and x, + // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension, + // then element-wise multiply that with the conv1d weigth, + // then sum the elements of each row, + // (the last two steps are a dot product over rows (also doable with mul_mat)) + // then permute away the ne[0] dimension, + // and then you're left with the resulting x tensor. + // The new conv_states is the last (d_conv - 1) columns + // of the last 3rd dimensional "layer" of the self-overlapping view. + // For simultaneous sequences, it's more complicated. + struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq); + + // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache + ggml_build_forward_expand(gf, + ggml_cpy(ctx0, + ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)), + ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv)))); + + // extract x from x_conv + x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0); + + // bias + x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b); + + x = ggml_silu(ctx0, x); + } + + // ssm + { + // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens} + struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x); + // split + struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0); + struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank); + struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state)); + + // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens} + dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt); + dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b); + + // Custom operator to optimize the parallel associative scan + // as described in the Annex D of the Mamba paper. + // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined, + // because only a single tensor can be returned. + struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq); + + // store last states (the second part of y_ssm_states) + ggml_build_forward_expand(gf, + ggml_cpy(ctx0, + ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)), + ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states)))); + + struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0); + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + x = ggml_get_rows(ctx0, x, inp_out_ids); + y = ggml_get_rows(ctx0, y, inp_out_ids); + z = ggml_get_rows(ctx0, z, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + } + + // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens} + y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d)); + y = ggml_mul(ctx0, y, ggml_silu(ctx0, z)); + + // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens} + cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y); + } + + // residual + cur = ggml_add(ctx0, cur, inpL); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + // final rmsnorm + cur = llm_build_norm(ctx0, inpL, hparams, + model.output_norm, NULL, + LLM_NORM_RMS, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } + + struct ggml_cgraph * build_command_r() { + + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + const float f_logit_scale = hparams.f_logit_scale; + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + model.layers[il].attn_norm, NULL, + LLM_NORM, cb, il); + cb(cur, "attn_norm", il); + struct ggml_tensor * ffn_inp = cur; + + // self-attention + { + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + if (model.layers[il].bq) { + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + } + + struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + if (model.layers[il].bk) { + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + } + + struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + if (model.layers[il].bv) { + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + } + + if (model.layers[il].attn_q_norm) { + Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens, + ggml_element_size(Qcur) * n_embd_head, + ggml_element_size(Qcur) * n_embd_head * n_head, + 0); + cb(Qcur, "Qcur", il); + Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens, + ggml_element_size(Kcur) * n_embd_head, + ggml_element_size(Kcur) * n_embd_head * n_head_kv, + 0); + cb(Kcur, "Kcur", il); + + Qcur = llm_build_norm(ctx0, Qcur, hparams, + model.layers[il].attn_q_norm, + NULL, + LLM_NORM, cb, il); + cb(Qcur, "Qcur", il); + + Kcur = llm_build_norm(ctx0, Kcur, hparams, + model.layers[il].attn_k_norm, + NULL, + LLM_NORM, cb, il); + cb(Kcur, "Kcur", il); + } + + Qcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, model.layers[il].bo, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpL = ggml_get_rows(ctx0, inpL, inp_out_ids); + ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids); + } + + struct ggml_tensor * attn_out = cur; + + // feed-forward network + { + cur = llm_build_ffn(ctx0, ffn_inp, + model.layers[il].ffn_up, NULL, + model.layers[il].ffn_gate, NULL, + model.layers[il].ffn_down, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); + } + + // add together residual + FFN + self-attention + cur = ggml_add(ctx0, cur, inpL); + cur = ggml_add(ctx0, cur, attn_out); + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + model.output_norm, NULL, + LLM_NORM, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + + if (f_logit_scale) { + cur = ggml_scale(ctx0, cur, f_logit_scale); + } + + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + + } + + // ref: https://allenai.org/olmo + // based on the original build_llama() function, changes: + // * non-parametric layer norm + // * clamp qkv + // * removed bias + // * removed MoE + struct ggml_cgraph * build_olmo() { + struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false); + + // mutable variable, needed during the last layer of the computation to skip unused tokens + int32_t n_tokens = this->n_tokens; + + const int64_t n_embd_head = hparams.n_embd_head_v; + GGML_ASSERT(n_embd_head == hparams.n_embd_head_k); + GGML_ASSERT(n_embd_head == hparams.n_rot); + + struct ggml_tensor * cur; + struct ggml_tensor * inpL; + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + + // inp_pos - contains the positions + struct ggml_tensor * inp_pos = build_inp_pos(); + + // KQ_mask (mask for 1 head, it will be broadcasted to all heads) + struct ggml_tensor * KQ_mask = build_inp_KQ_mask(); + + for (int il = 0; il < n_layer; ++il) { + struct ggml_tensor * inpSA = inpL; + + // norm + cur = llm_build_norm(ctx0, inpL, hparams, + NULL, NULL, + LLM_NORM, cb, il); + cb(cur, "attn_norm", il); + + // self-attention + { + // compute Q and K and RoPE them + struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); + cb(Qcur, "Qcur", il); + if (hparams.f_clamp_kqv > 0.0f) { + Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv); + cb(Qcur, "Qcur", il); + } + + struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); + cb(Kcur, "Kcur", il); + if (hparams.f_clamp_kqv > 0.0f) { + Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv); + cb(Kcur, "Kcur", il); + } + + struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); + cb(Vcur, "Vcur", il); + if (hparams.f_clamp_kqv > 0.0f) { + Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv); + cb(Vcur, "Vcur", il); + } + + Qcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Qcur, "Qcur", il); + + Kcur = ggml_rope_custom( + ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, + n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale, + ext_factor, attn_factor, beta_fast, beta_slow + ); + cb(Kcur, "Kcur", il); + + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, + model.layers[il].wo, nullptr, + Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il); + } + + if (il == n_layer - 1) { + // skip computing output for unused tokens + struct ggml_tensor * inp_out_ids = build_inp_out_ids(); + n_tokens = n_outputs; + cur = ggml_get_rows(ctx0, cur, inp_out_ids); + inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids); + } + + struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA); + cb(ffn_inp, "ffn_inp", il); + + // feed-forward network + cur = llm_build_norm(ctx0, ffn_inp, hparams, + NULL, NULL, + LLM_NORM, cb, il); + cb(cur, "ffn_norm", il); + + cur = llm_build_ffn(ctx0, cur, + model.layers[il].ffn_up, NULL, + model.layers[il].ffn_gate, NULL, + model.layers[il].ffn_down, NULL, + NULL, + LLM_FFN_SILU, LLM_FFN_PAR, cb, il); + cb(cur, "ffn_out", il); + + cur = ggml_add(ctx0, cur, ffn_inp); + cb(cur, "ffn_out", il); + + ggml_tensor * layer_dir = lctx.cvec.tensor_for(il); + if (layer_dir != nullptr) { + cur = ggml_add(ctx0, cur, layer_dir); + } + cb(cur, "l_out", il); + + // input for next layer + inpL = cur; + } + + cur = inpL; + + cur = llm_build_norm(ctx0, cur, hparams, + NULL, NULL, + LLM_NORM, cb, -1); + cb(cur, "result_norm", -1); + + // lm_head + cur = ggml_mul_mat(ctx0, model.output, cur); + cb(cur, "result_output", -1); + + ggml_build_forward_expand(gf, cur); + + return gf; + } +}; + +static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector & ids) { + llama_batch dummy; + dummy.n_tokens = 0; + + llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { }; + + struct llm_build_context llm(lctx, dummy, cb, false); + + llm.init(); + + struct ggml_cgraph * result = llm.build_defrag(ids); + + llm.free(); + + return result; +} + +static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) { + llama_batch dummy; + dummy.n_tokens = 0; + + llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { }; + + struct llm_build_context llm(lctx, dummy, cb, false); + + llm.init(); + + struct ggml_cgraph * result = llm.build_k_shift(); + + llm.free(); + + return result; +} + +static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) { + llama_batch dummy; + dummy.n_tokens = 0; + + llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { }; + + struct llm_build_context llm(lctx, dummy, cb, false); + + llm.init(); + + struct ggml_cgraph * result = llm.build_s_copy(); + + llm.free(); + + return result; +} + +static struct ggml_cgraph * llama_build_graph( + llama_context & lctx, + const llama_batch & batch, + bool worst_case) { + const auto & model = lctx.model; + + // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.) + llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) { + if (il >= 0) { + ggml_format_name(cur, "%s-%d", name, il); + } else { + ggml_set_name(cur, name); + } + + if (!lctx.cparams.offload_kqv) { + if (strcmp(name, "kqv_merged_cont") == 0) { + // all nodes between the KV store and the attention output are run on the CPU + ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu); + } + } + + // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends + // FIXME: fix in ggml_backend_sched + const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer; + if (batch.n_tokens < 32 || full_offload) { + if (il != -1 && strcmp(name, "norm") == 0) { + for (auto * backend : lctx.backends) { + if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) { + ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend); + break; + } + } + } + } + }; + + struct ggml_cgraph * result = NULL; + + struct llm_build_context llm(lctx, batch, cb, worst_case); + + llm.init(); + + switch (model.arch) { + case LLM_ARCH_LLAMA: + { + result = llm.build_llama(); + } break; + case LLM_ARCH_BAICHUAN: + { + result = llm.build_baichuan(); + } break; + case LLM_ARCH_FALCON: + { + result = llm.build_falcon(); + } break; + case LLM_ARCH_GROK: + { + result = llm.build_grok(); + } break; + case LLM_ARCH_STARCODER: + { + result = llm.build_starcoder(); + } break; + case LLM_ARCH_PERSIMMON: + { + result = llm.build_persimmon(); + } break; + case LLM_ARCH_REFACT: + { + result = llm.build_refact(); + } break; + case LLM_ARCH_BERT: + case LLM_ARCH_NOMIC_BERT: + { + result = llm.build_bert(); + } break; + case LLM_ARCH_BLOOM: + { + result = llm.build_bloom(); + } break; + case LLM_ARCH_MPT: + { + result = llm.build_mpt(); + } break; + case LLM_ARCH_STABLELM: + { + result = llm.build_stablelm(); + } break; + case LLM_ARCH_QWEN: + { + result = llm.build_qwen(); + } break; + case LLM_ARCH_QWEN2: + { + result = llm.build_qwen2(); + } break; + case LLM_ARCH_QWEN2MOE: + { + result = llm.build_qwen2moe(); + } break; + case LLM_ARCH_PHI2: + { + result = llm.build_phi2(); + } break; + case LLM_ARCH_PLAMO: + { + result = llm.build_plamo(); + } break; + case LLM_ARCH_GPT2: + { + result = llm.build_gpt2(); + } break; + case LLM_ARCH_CODESHELL: + { + result = llm.build_codeshell(); + } break; + case LLM_ARCH_ORION: + { + result = llm.build_orion(); + } break; + case LLM_ARCH_INTERNLM2: + { + result = llm.build_internlm2(); + } break; + case LLM_ARCH_MINICPM: + { + result = llm.build_minicpm(); + } break; + case LLM_ARCH_GEMMA: + { + result = llm.build_gemma(); + } break; + case LLM_ARCH_STARCODER2: + { + result = llm.build_starcoder2(); + } break; + case LLM_ARCH_MAMBA: + { + result = llm.build_mamba(); + } break; + case LLM_ARCH_XVERSE: + { + result = llm.build_xverse(); + } break; + case LLM_ARCH_COMMAND_R: + { + result = llm.build_command_r(); + } break; + case LLM_ARCH_DBRX: + { + result = llm.build_dbrx(); + } break; + case LLM_ARCH_OLMO: + { + result = llm.build_olmo(); + } break; + default: + GGML_ASSERT(false); + } + + llm.free(); + + return result; +} + +static void llama_set_k_shift(llama_context & lctx) { + const int64_t kv_size = lctx.kv_self.size; + + assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer)); + + int32_t * data = (int32_t *) lctx.inp_K_shift->data; + + for (int i = 0; i < kv_size; ++i) { + data[i] = lctx.kv_self.cells[i].delta; + } +} + +static void llama_set_s_copy(llama_context & lctx) { + const int64_t kv_size = lctx.kv_self.size; + + assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer)); + + int32_t * data = (int32_t *) lctx.inp_s_copy->data; + + for (int i = 0; i < kv_size; ++i) { + data[i] = lctx.kv_self.cells[i].src; + } +} + +static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) { + // + // set input data + // + + const auto & hparams = lctx.model.hparams; + const auto & cparams = lctx.cparams; + const auto & kv_self = lctx.kv_self; + + if (batch.token) { + const int64_t n_tokens = batch.n_tokens; + + ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens)); + } + + if (batch.embd) { + const int64_t n_embd = hparams.n_embd; + const int64_t n_tokens = batch.n_tokens; + + ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd)); + } + + if (batch.pos && lctx.inp_pos) { + const int64_t n_tokens = batch.n_tokens; + + ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos)); + } + + if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) { + GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs"); + const int64_t n_tokens = batch.n_tokens; + + GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer)); + int32_t * data = (int32_t *) lctx.inp_out_ids->data; + + if (lctx.n_outputs == n_tokens) { + for (int i = 0; i < n_tokens; ++i) { + data[i] = i; + } + } else if (batch.logits) { + int32_t n_outputs = 0; + for (int i = 0; i < n_tokens; ++i) { + if (batch.logits[i]) { + data[n_outputs++] = i; + } + } + // the graph needs to have been passed the correct number of outputs + GGML_ASSERT(lctx.n_outputs == n_outputs); + } else if (lctx.n_outputs == 1) { + // only keep last output + data[0] = n_tokens - 1; + } else { + GGML_ASSERT(lctx.n_outputs == 0); + } + } + + GGML_ASSERT( + // (!a || b) is a logical implication (a -> b) + // !hparams.causal_attn -> !cparams.causal_attn + (hparams.causal_attn || !cparams.causal_attn) && + "causal attention with embedding models is not supported" + ); + + if (lctx.inp_KQ_mask) { + // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache. + if (cparams.causal_attn) { + const int64_t n_kv = kv_self.n; + const int64_t n_tokens = batch.n_tokens; + + GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer)); + + float * data = (float *) lctx.inp_KQ_mask->data; + + // For causal attention, use only the previous KV cells + // of the correct sequence for each token of the batch. + // It's assumed that if a token in the batch has multiple sequences, they are equivalent. + for (int h = 0; h < 1; ++h) { + for (int j = 0; j < n_tokens; ++j) { + const llama_pos pos = batch.pos[j]; + const llama_seq_id seq_id = batch.seq_id[j][0]; + + for (int i = 0; i < n_kv; ++i) { + float f; + if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) { + f = -INFINITY; + } else { + f = 0.0f; + } + data[h*(n_kv*n_tokens) + j*n_kv + i] = f; + } + } + } + } else { + // when using kv cache, the mask needs to match the kv cache size + const int64_t n_tokens = batch.n_tokens; + const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens; + + GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer)); + + float * data = (float *) lctx.inp_KQ_mask->data; + + for (int h = 0; h < 1; ++h) { + for (int j = 0; j < n_tokens; ++j) { + const llama_seq_id seq_id = batch.seq_id[j][0]; + + for (int i = 0; i < n_tokens; ++i) { + float f = -INFINITY; + for (int s = 0; s < batch.n_seq_id[i]; ++s) { + if (batch.seq_id[i][s] == seq_id) { + f = 0.0f; + break; + } + } + + data[h*(n_tokens*n_tokens) + j*n_stride + i] = f; + } + + for (int i = n_tokens; i < n_stride; ++i) { + data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY; + } + } + } + } + } + + if (hparams.need_kq_pos) { + const int64_t n_kv = kv_self.n; + + GGML_ASSERT(lctx.inp_KQ_pos); + GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_pos->buffer)); + + float * data = (float *) lctx.inp_KQ_pos->data; + + for (int i = 0; i < n_kv; ++i) { + data[i] = float(lctx.kv_self.cells[i].pos); + } + } + + if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) { + const int64_t n_tokens = batch.n_tokens; + + GGML_ASSERT(lctx.inp_mean); + GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer)); + + float * data = (float *) lctx.inp_mean->data; + memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean)); + + std::vector sum(n_tokens, 0); + for (int i = 0; i < n_tokens; ++i) { + const llama_seq_id seq_id = batch.seq_id[i][0]; + + GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN"); + + sum[seq_id] += 1; + } + + std::vector div(n_tokens, 0.0f); + for (int i = 0; i < n_tokens; ++i) { + const uint64_t s = sum[i]; + if (s > 0) { + div[i] = 1.0f/float(s); + } + } + + for (int i = 0; i < n_tokens; ++i) { + const llama_seq_id seq_id = batch.seq_id[i][0]; + data[seq_id*n_tokens + i] = div[seq_id]; + } + } + + if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) { + const int64_t n_tokens = batch.n_tokens; + + GGML_ASSERT(lctx.inp_cls); + GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer)); + + uint32_t * data = (uint32_t *) lctx.inp_cls->data; + memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls)); + + for (int i = 0; i < n_tokens; ++i) { + const llama_seq_id seq_id = batch.seq_id[i][0]; + const llama_pos pos = batch.pos[i]; + + GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS"); + + if (pos == 0) { + data[seq_id] = i; + } + } + } + + if (kv_self.recurrent) { + const int64_t n_kv = kv_self.n; + + if (lctx.inp_s_mask) { + GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer)); + float * data = (float *) lctx.inp_s_mask->data; + + // states which are not affected by the current batch are left untouched + for (int i = 0; i < n_kv; ++i) { + llama_seq_id seq_id = i + lctx.kv_self.head; + llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id]; + bool has_self_seq = kv_cell.has_seq_id(seq_id); + + data[i] = (float) has_self_seq; + + // ensure current sequences will be kept + if (!has_self_seq && kv_cell.pos >= 0) { + kv_cell.seq_id.insert(seq_id); + } + } + } + // For Mamba (and other recurrent architectures), + // update the correct state(s)/sequence(s) for each token of the batch. + // Like with the KQ_mask, if a token in the batch has multiple sequences, + // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv). + if (lctx.inp_s_seq) { + const int64_t n_tokens = batch.n_tokens; + + GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer)); + int32_t * data = (int32_t *) lctx.inp_s_seq->data; + + for (int j = 0; j < n_tokens; ++j) { + const int32_t n_seq = batch.n_seq_id[j]; + GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence + + for (int i = 0; i < n_kv; ++i) { + if (i < n_seq) { + // for this type of model, the head is the minimum seq_id of the batch + data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head; + } else { + data[j*n_kv + i] = -1; + } + } + } + } + } +} + +// Make sure enough space is available for outputs. +// Returns max number of outputs for which space was reserved. +static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) { + const auto & cparams = lctx.cparams; + const auto & hparams = lctx.model.hparams; + + const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max); + + const auto n_batch = cparams.n_batch; + const auto n_vocab = hparams.n_vocab; + const auto n_embd = hparams.n_embd; + + // TODO: use a per-batch flag for logits presence instead + const bool has_logits = cparams.causal_attn; + const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE); + + const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0; + const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0; + + if (lctx.output_ids.empty()) { + // init, never resized afterwards + lctx.output_ids.resize(n_batch); + } + + const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0; + const size_t new_size = (logits_size + embd_size) * sizeof(float); + + // alloc only when more than the current capacity is required + // TODO: also consider shrinking the buffer + if (!lctx.buf_output || prev_size < new_size) { + if (lctx.buf_output) { +#ifndef NDEBUG + // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark) + LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0); +#endif + ggml_backend_buffer_free(lctx.buf_output); + lctx.buf_output = nullptr; + lctx.logits = nullptr; + lctx.embd = nullptr; + } + + lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size); + if (lctx.buf_output == nullptr) { + LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0)); + return 0; + } + } + + float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output); + + lctx.logits = has_logits ? output_base : nullptr; + lctx.embd = has_embd ? output_base + logits_size : nullptr; + + lctx.output_size = n_outputs_max; + lctx.logits_size = logits_size; + lctx.embd_size = embd_size; + + // set all ids as invalid (negative) + std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1); + + ggml_backend_buffer_clear(lctx.buf_output, 0); + + lctx.n_outputs = 0; + + return n_outputs_max; +} + + +static void llama_graph_compute( + llama_context & lctx, + ggml_cgraph * gf, + int n_threads) { +#ifdef GGML_USE_MPI + const int64_t n_layer = lctx.model.hparams.n_layer; + ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer); +#endif + +#ifdef GGML_USE_METAL + if (ggml_backend_is_metal(lctx.backend_metal)) { + ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads); + } +#endif + + if (lctx.backend_cpu != nullptr) { + ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads); + ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data); + } + + ggml_backend_sched_graph_compute_async(lctx.sched, gf); + + // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched)); + +#ifdef GGML_USE_MPI + ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer); +#endif +} + +// decode a batch of tokens by evaluating the transformer +// +// - lctx: llama context +// - batch: batch to evaluate +// +// return 0 on success +// return positive int on warning +// return negative int on error +// +static int llama_decode_internal( + llama_context & lctx, + llama_batch batch_all) { // TODO: rename back to batch + + const uint32_t n_tokens_all = batch_all.n_tokens; + + if (n_tokens_all == 0) { + LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__); + return -1; + } + + const auto & model = lctx.model; + const auto & hparams = model.hparams; + const auto & cparams = lctx.cparams; + + GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT + + GGML_ASSERT(n_tokens_all <= cparams.n_batch); + + GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens"); + + if (lctx.t_compute_start_us == 0) { + lctx.t_compute_start_us = ggml_time_us(); + } + lctx.n_queued_tokens += n_tokens_all; + +#ifdef GGML_USE_MPI + // TODO: needs fix after #3228 + GGML_ASSERT(false && "not implemented"); + //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads); +#endif + + auto & kv_self = lctx.kv_self; + + const int64_t n_embd = hparams.n_embd; + const int64_t n_vocab = hparams.n_vocab; + + uint32_t n_outputs = 0; + uint32_t n_outputs_prev = 0; + + const auto n_ubatch = cparams.n_ubatch; + + std::vector pos; + std::vector n_seq_id; + std::vector seq_id_arr; + std::vector> seq_id; + + // count outputs + if (batch_all.logits) { + for (uint32_t i = 0; i < n_tokens_all; ++i) { + n_outputs += batch_all.logits[i] != 0; + } + } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) { + n_outputs = n_tokens_all; + } else { + // keep last output only + n_outputs = 1; + } + + // reserve output buffer + if (llama_output_reserve(lctx, n_outputs) < n_outputs) { + LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs); + return -2; + }; + + // set output mappings + if (batch_all.logits) { + int32_t i_logits = 0; + for (uint32_t i = 0; i < n_tokens_all; ++i) { + if (batch_all.logits[i]) { + lctx.output_ids[i] = i_logits++; + } + } + } else { + for (uint32_t i = 0; i < n_outputs; ++i) { + lctx.output_ids[i] = i; + } + } + + for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) { + const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token); + llama_batch u_batch = { + /* .n_tokens = */ (int32_t) n_tokens, + /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr, + /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr, + /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr, + /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr, + /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr, + /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr, + /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1, + /* .all_pos_1 = */ batch_all.all_pos_1, + /* .all_seq_id = */ batch_all.all_seq_id, + }; + + // count the outputs in this u_batch + { + int32_t n_outputs_new = 0; + + if (u_batch.logits) { + for (uint32_t i = 0; i < n_tokens; i++) { + n_outputs_new += u_batch.logits[i] != 0; + } + } else if (n_outputs == n_tokens_all) { + n_outputs_new = n_tokens; + } else { + // keep last output only + if (cur_token + n_tokens >= n_tokens_all) { + n_outputs_new = 1; + } + } + + // needs to happen before the graph is built + lctx.n_outputs = n_outputs_new; + } + + int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch; + GGML_ASSERT(n_threads > 0); + + // helpers for smoother batch API transition + // after deprecating the llama_eval calls, these will be removed + if (u_batch.pos == nullptr) { + pos.resize(n_tokens); + for (uint32_t i = 0; i < n_tokens; i++) { + pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1; + } + + u_batch.pos = pos.data(); + } + + if (u_batch.seq_id == nullptr) { + n_seq_id.resize(n_tokens); + seq_id.resize(n_tokens); + seq_id_arr.resize(n_tokens); + for (uint32_t i = 0; i < n_tokens; i++) { + n_seq_id[i] = 1; + seq_id[i].resize(1); + seq_id[i][0] = u_batch.all_seq_id; + seq_id_arr[i] = seq_id[i].data(); + } + + u_batch.n_seq_id = n_seq_id.data(); + u_batch.seq_id = seq_id_arr.data(); + } + + // non-causal masks do not use the KV cache + if (hparams.causal_attn) { + llama_kv_cache_update(&lctx); + + // if we have enough unused cells before the current head -> + // better to start searching from the beginning of the cache, hoping to fill it + if (kv_self.head > kv_self.used + 2*n_tokens) { + kv_self.head = 0; + } + + if (!llama_kv_cache_find_slot(kv_self, u_batch)) { + return 1; + } + + if (!kv_self.recurrent) { + // a heuristic, to avoid attending the full cache if it is not yet utilized + // after enough generations, the benefit from this heuristic disappears + // if we start defragmenting the cache, the benefit from this will be more important + kv_self.n = std::min(kv_self.size, std::max(32u, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32))); + //kv_self.n = llama_kv_cache_cell_max(kv_self); + } + } + + //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head); + + ggml_backend_sched_reset(lctx.sched); + ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data); + + ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false); + + // the output is always the last tensor in the graph + struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1]; + struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2]; + + if (lctx.n_outputs == 0) { + // no output + res = nullptr; + embd = nullptr; + } else if (!hparams.causal_attn) { + res = nullptr; // do not extract logits for embedding models such as BERT + + // token or sequence embeddings + embd = gf->nodes[gf->n_nodes - 1]; + + GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0); + } else if (cparams.embeddings) { + // the embeddings could be in the second to last tensor, or any of the previous tensors + int i_embd = gf->n_nodes - 2; + for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) { + i_embd = gf->n_nodes - i; + if (i_embd < 0) { break; } + embd = gf->nodes[i_embd]; + } + GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor"); + + // TODO: use a per-batch flag to know when to skip logits while keeping embeddings + if (!cparams.causal_attn) { + res = nullptr; // do not extract logits when not needed + // skip computing logits + // TODO: is this safe? + gf->n_nodes = i_embd + 1; + } + } else { + embd = nullptr; // do not extract embeddings when not needed + GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor"); + } + // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs); + + // for big prompts, if BLAS is enabled, it is better to use only one thread + // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance + // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well + // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering + // with the BLAS calls. need a better solution + // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is + // being processed then Accelerate/BLAS will not be involved, so capping would limit performance. + if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) { + n_threads = std::min(4, n_threads); + } + + ggml_backend_sched_alloc_graph(lctx.sched, gf); + + llama_set_inputs(lctx, u_batch); + + llama_graph_compute(lctx, gf, n_threads); + + // update the kv ring buffer + { + kv_self.head += n_tokens; + + // Ensure kv cache head points to a valid index. + if (kv_self.head >= kv_self.size) { + kv_self.head = 0; + } + } + +#ifdef GGML_PERF + // print timing information per ggml operation (for debugging purposes) + // requires GGML_PERF to be defined + ggml_graph_print(gf); +#endif + + // plot the computation graph in dot format (for debugging purposes) + //if (n_past%100 == 0) { + // ggml_graph_dump_dot(gf, NULL, "llama.dot"); + //} + + // extract logits + if (res) { + ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res); + GGML_ASSERT(backend_res != nullptr); + GGML_ASSERT(lctx.logits != nullptr); + + float * logits_out = lctx.logits + n_outputs_prev*n_vocab; + const int32_t n_outputs_new = lctx.n_outputs; + + if (n_outputs_new) { + GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs); + GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size); + ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float)); + } + } + + // extract embeddings + if (embd) { + ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd); + GGML_ASSERT(backend_embd != nullptr); + + switch (cparams.pooling_type) { + case LLAMA_POOLING_TYPE_NONE: + { + // extract token embeddings + GGML_ASSERT(lctx.embd != nullptr); + float * embd_out = lctx.embd + n_outputs_prev*n_embd; + const int32_t n_outputs_new = lctx.n_outputs; + + if (n_outputs_new) { + GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs); + GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size); + ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float)); + } + } break; + case LLAMA_POOLING_TYPE_CLS: + case LLAMA_POOLING_TYPE_MEAN: + { + GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0); + + // extract sequence embeddings + auto & embd_seq_out = lctx.embd_seq; + embd_seq_out.clear(); + + for (uint32_t i = 0; i < n_tokens; i++) { + const llama_seq_id seq_id = u_batch.seq_id[i][0]; + if (embd_seq_out.find(seq_id) != embd_seq_out.end()) { + continue; + } + embd_seq_out[seq_id].resize(n_embd); + ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float)); + } + } break; + case LLAMA_POOLING_TYPE_UNSPECIFIED: + { + GGML_ASSERT(false && "unknown pooling type"); + } break; + } + } + n_outputs_prev += lctx.n_outputs; + } + + // set to total number of outputs in the batch, for use in llama_get_logits_ith + lctx.n_outputs = n_outputs; + + // wait for the computation to finish (automatically done when obtaining the model output) + //llama_synchronize(&lctx); + + // decide if we need to defrag the kv cache + if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) { + const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f; + + // queue defragmentation for next llama_kv_cache_update + if (fragmentation > cparams.defrag_thold) { + //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation); + + llama_kv_cache_defrag(kv_self); + } + } + + return 0; +} + + +// find holes from the beginning of the KV cache and fill them by moving data from the end of the cache +static void llama_kv_cache_defrag_internal(struct llama_context & lctx) { + auto & kv_self = lctx.kv_self; + + const auto & hparams = lctx.model.hparams; + + const uint32_t n_layer = hparams.n_layer; + + const uint32_t n_kv = llama_kv_cache_cell_max(kv_self); + const uint32_t n_used = kv_self.used; + + assert(n_used <= n_kv); + + //const int64_t t_start = ggml_time_us(); + + // number of cells moved + uint32_t n_moves = 0; + + // each move requires 6*n_layer tensors (see build_defrag) + // - source view, destination view, copy operation + // - x2 for keys and values + const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer); + + // determine which KV cells to move where + // + // cell i moves to ids[i] + // + // if ids[i] == i || ids[i] == n_kv, then cell i is not moved + // + std::vector ids(n_kv, n_kv); + + for (uint32_t i0 = 0; i0 < n_used; ++i0) { + const auto & cell0 = kv_self.cells[i0]; + + if (!cell0.is_empty()) { + ids[i0] = i0; + + continue; + } + + // found a hole - fill it with data from the end of the cache + + uint32_t nh = 1; + + // determine the size of the hole + while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) { + nh++; + } + + uint32_t nf = 0; + uint32_t is = n_kv - 1; + + // starting from the end, find nh non-empty cells + for (; is > i0; --is) { + const auto & cell1 = kv_self.cells[is]; + + if (cell1.is_empty() || ids[is] != n_kv) { + continue; + } + + // non-empty cell which is not yet moved + nf++; + + if (nf == nh) { + break; + } + } + + // this can only happen if `n_used` is not accurate, which would be a bug + GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh"); + + nf = 0; + + uint32_t i1 = is; + + // are we moving a continuous block of memory? + bool cont = false; + + // should we stop searching for the next move? + bool stop = false; + + // go back and move the nf cells to the hole + for (; i1 < n_kv; ++i1) { + auto & cell1 = kv_self.cells[i1]; + + if (cell1.is_empty() || ids[i1] != n_kv) { + if (n_moves == max_moves) { + stop = true; + break; + } + + cont = false; + continue; + } + + // this cell goes to (i0 + nf) + ids[i1] = i0 + nf; + + // move the cell meta data + kv_self.cells[i0 + nf] = cell1; + + // clear the old cell and move the head there + cell1 = llama_kv_cell(); + kv_self.head = n_used; + + if (!cont) { + n_moves++; + cont = true; + } + + nf++; + + if (nf == nh) { + break; + } + } + + if (stop || n_moves == max_moves) { + break; + } + + //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh); + + i0 += nh - 1; + } + + if (n_moves == 0) { + return; + } + + //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves); + + //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer); + +#if 0 + // CPU defrag + // + // TODO: optimizations are possible: + // - multiple threads + // - avoid copying to the host memory when already there + // + // likely not worth the effort, as we have ggml_graph based defrag + // + + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(); + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(); + + const uint32_t kv_size = kv_self.size; + + std::vector buf_k; + std::vector buf_v; + + for (uint32_t il = 0; il < n_layer; ++il) { + const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa); + const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size); + + const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type); + const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size); + + buf_k.resize(k_size); + buf_v.resize(v_size); + + ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size()); + ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size()); + + // batch move [i, i+nm) to [id, id+nm) + // note: cells can move only to a lower index + for (uint32_t i = 0; i < n_kv; ++i) { + const uint32_t id = ids[i]; + + if (i == id || id == n_kv) { + continue; + } + + uint32_t nm = 1; + + while (i + nm < n_kv && ids[i + nm] == id + nm) { + nm++; + } + + // move keys + { + const int64_t os = i*k_size_row; + const int64_t od = id*k_size_row; + + memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row); + } + + // move values (note: they are transposed) + { + const int64_t os = i; + const int64_t od = id; + + for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { + memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el); + } + } + + i += nm - 1; + } + + ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size()); + ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size()); + } +#else + // ggml_graph defrag + + ggml_backend_sched_reset(lctx.sched); + + ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids); + + llama_graph_compute(lctx, gf, lctx.cparams.n_threads); +#endif + + //const int64_t t_end = ggml_time_us(); + + //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0); +} + +static void llama_kv_cache_update_internal(struct llama_context & lctx) { + bool need_reserve = false; + + // apply K-shift if needed + if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) { + { + ggml_backend_sched_reset(lctx.sched); + + ggml_cgraph * gf = llama_build_graph_k_shift(lctx); + + ggml_backend_sched_alloc_graph(lctx.sched, gf); + + llama_set_k_shift(lctx); + + llama_graph_compute(lctx, gf, lctx.cparams.n_threads); + + need_reserve = true; + } + + { + auto & kv_self = lctx.kv_self; + + kv_self.has_shift = false; + + for (uint32_t i = 0; i < kv_self.size; ++i) { + kv_self.cells[i].delta = 0; + } + } + } + + if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) { + { + ggml_backend_sched_reset(lctx.sched); + + ggml_cgraph * gf = llama_build_graph_s_copy(lctx); + + ggml_backend_sched_alloc_graph(lctx.sched, gf); + + llama_set_s_copy(lctx); + + llama_graph_compute(lctx, gf, lctx.cparams.n_threads); + + need_reserve = true; + } + + { + auto & kv_self = lctx.kv_self; + + kv_self.do_copy = false; + + for (uint32_t i = 0; i < kv_self.size; ++i) { + kv_self.cells[i].src = i; + } + } + } + + // defragment the KV cache if needed + if (lctx.kv_self.do_defrag) { + llama_kv_cache_defrag_internal(lctx); + + need_reserve = true; + + lctx.kv_self.do_defrag = false; + } + + // reserve a worst case graph again + if (need_reserve) { + // TODO: extract to a function + // build worst-case graph + int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch); + int n_past = lctx.cparams.n_ctx - n_tokens; + llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph + ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true); + + // initialize scheduler with the worst-case graph + ggml_backend_sched_reset(lctx.sched); + if (!ggml_backend_sched_reserve(lctx.sched, gf)) { + LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__); + } + } +} + +// +// tokenizer +// + +static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) { + return vocab.type; +} + +static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) { + GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); + return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL; +} + +static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) { + GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); + return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN; +} + +static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) { + GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); + return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL; +} + +static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) { + GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); + return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE; +} + +static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) { + GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); + return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED; +} + +static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) { + GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE); + GGML_ASSERT(llama_is_byte_token(vocab, id)); + const auto& token_data = vocab.id_to_token.at(id); + switch (llama_vocab_get_type(vocab)) { + case LLAMA_VOCAB_TYPE_SPM: { + auto buf = token_data.text.substr(3, 2); + return strtol(buf.c_str(), NULL, 16); + } + case LLAMA_VOCAB_TYPE_BPE: { + GGML_ASSERT(false); + return unicode_utf8_to_byte(token_data.text); + } + case LLAMA_VOCAB_TYPE_WPM: { + GGML_ASSERT(false); + } + default: + GGML_ASSERT(false); + } +} + +static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) { + GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE); + static const char * hex = "0123456789ABCDEF"; + switch (llama_vocab_get_type(vocab)) { + case LLAMA_VOCAB_TYPE_SPM: { + const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 }; + auto token = vocab.token_to_id.find(buf); + if (token != vocab.token_to_id.end()) { + return (*token).second; + } + // Try to fall back to just the byte as a string + const char buf2[2] = { (char)ch, 0 }; + return vocab.token_to_id.at(buf2); + } + case LLAMA_VOCAB_TYPE_WPM: + case LLAMA_VOCAB_TYPE_BPE: { + return vocab.token_to_id.at(unicode_byte_to_utf8(ch)); + } + default: + GGML_ASSERT(false); + } +} + +static void llama_escape_whitespace(std::string & text) { + replace_all(text, " ", "\xe2\x96\x81"); +} + +static void llama_unescape_whitespace(std::string & word) { + replace_all(word, "\xe2\x96\x81", " "); +} + +struct llm_symbol { + using index = int; + index prev; + index next; + const char * text; + size_t n; +}; + +static_assert(std::is_trivially_copyable::value, "llm_symbol is not trivially copyable"); + +// SPM tokenizer +// original implementation: +// https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4 + +struct llm_bigram_spm { + struct comparator { + bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) { + return (l.score < r.score) || (l.score == r.score && l.left > r.left); + } + }; + using queue_storage = std::vector; + using queue = std::priority_queue; + llm_symbol::index left; + llm_symbol::index right; + float score; + size_t size; +}; + +struct llm_tokenizer_spm { + llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {} + + void tokenize(const std::string & text, std::vector & output) { + // split string into utf8 chars + int index = 0; + size_t offs = 0; + while (offs < text.size()) { + llm_symbol sym; + size_t len = utf8_len(text[offs]); + sym.text = text.c_str() + offs; + sym.n = std::min(len, text.size() - offs); + offs += sym.n; + sym.prev = index - 1; + sym.next = offs == text.size() ? -1 : index + 1; + index++; + symbols.emplace_back(sym); + } + + // seed the work queue with all possible 2-character tokens. + for (size_t i = 1; i < symbols.size(); ++i) { + try_add_bigram(i - 1, i); + } + + // keep substituting the highest frequency pairs for as long as we can. + while (!work_queue.empty()) { + auto bigram = work_queue.top(); + work_queue.pop(); + + auto & left_sym = symbols[bigram.left]; + auto & right_sym = symbols[bigram.right]; + + // if one of the symbols already got merged, skip it. + if (left_sym.n == 0 || right_sym.n == 0 || + left_sym.n + right_sym.n != bigram.size) { + continue; + } + + // merge the right sym into the left one + left_sym.n += right_sym.n; + right_sym.n = 0; + + //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size); + + // remove the right sym from the chain + left_sym.next = right_sym.next; + if (right_sym.next >= 0) { + symbols[right_sym.next].prev = bigram.left; + } + + // find more substitutions + try_add_bigram(left_sym.prev, bigram.left); + try_add_bigram(bigram.left, left_sym.next); + } + + for (int i = 0; i != -1; i = symbols[i].next) { + auto & symbol = symbols[i]; + resegment(symbol, output); + } + } + +private: + void resegment(llm_symbol & symbol, std::vector & output) { + auto text = std::string(symbol.text, symbol.n); + auto token = vocab.token_to_id.find(text); + + // Do we need to support is_unused? + if (token != vocab.token_to_id.end()) { + output.push_back((*token).second); + return; + } + + const auto p = rev_merge.find(text); + + if (p == rev_merge.end()) { + // output any symbols that did not form tokens as bytes. + output.reserve(output.size() + symbol.n); + for (int j = 0; j < (int)symbol.n; ++j) { + llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]); + output.push_back(token_id); + } + return; + } + + resegment(symbols[p->second.first], output); + resegment(symbols[p->second.second], output); + } + + void try_add_bigram(int left, int right) { + if (left == -1 || right == -1) { + return; + } + + const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n); + auto token = vocab.token_to_id.find(text); + + if (token == vocab.token_to_id.end()) { + return; + } + + if (static_cast((*token).second) >= vocab.id_to_token.size()) { + return; + } + + const auto & tok_data = vocab.id_to_token[(*token).second]; + + llm_bigram_spm bigram; + bigram.left = left; + bigram.right = right; + bigram.score = tok_data.score; + bigram.size = text.size(); + + work_queue.push(bigram); + + // Do we need to support is_unused? + rev_merge[text] = std::make_pair(left, right); + } + + const llama_vocab & vocab; + + std::vector symbols; + llm_bigram_spm::queue work_queue; + + std::map> rev_merge; +}; + +// BPE tokenizer +// adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License] +// tried to simplify unicode stuff, so most likely does not work 100% correctly! + +// TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused + +struct llm_bigram_bpe { + struct comparator { + bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const { + return l.rank > r.rank || (l.rank == r.rank && l.left > r.left); + } + }; + + using queue_storage = std::vector; + using queue = std::priority_queue; + llm_symbol::index left; + llm_symbol::index right; + std::string text; + int rank; + size_t size; +}; + +struct llm_tokenizer_bpe { + llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {} + + void tokenize(const std::string & text, std::vector & output) { + int final_prev_index = -1; + auto word_collection = bpe_gpt2_preprocess(text); + + symbols_final.clear(); + + for (auto & word : word_collection) { + work_queue = llm_bigram_bpe::queue(); + symbols.clear(); + + int index = 0; + size_t offset = 0; + + while (offset < word.size()) { + llm_symbol sym; + size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset])); + sym.text = word.c_str() + offset; + sym.n = char_len; + offset += sym.n; + sym.prev = index - 1; + sym.next = offset == word.size() ? -1 : index + 1; + index++; + symbols.emplace_back(sym); + } + for (size_t i = 1; i < symbols.size(); ++i) { + add_new_bigram(i - 1, i); + } + + // build token(s) + while (!work_queue.empty()) { + auto bigram = work_queue.top(); + work_queue.pop(); + + auto & left_symbol = symbols[bigram.left]; + auto & right_symbol = symbols[bigram.right]; + + if (left_symbol.n == 0 || right_symbol.n == 0) { + continue; + } + std::string left_token = std::string(left_symbol.text, left_symbol.n); + std::string right_token = std::string(right_symbol.text, right_symbol.n); + if (left_token + right_token != bigram.text) { + continue; // Skip this bigram if it's outdated + } + + // merge the right sym into the left one + left_symbol.n += right_symbol.n; + right_symbol.n = 0; + + // remove the right sym from the chain + left_symbol.next = right_symbol.next; + if (right_symbol.next >= 0) { + symbols[right_symbol.next].prev = bigram.left; + } + + add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol + add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol + } + + // add the finished tokens to the final list keeping correct order for next and prev + for (auto & sym : symbols) { + if (sym.n > 0) { + sym.prev = final_prev_index; + sym.next = -1; + if (final_prev_index != -1) { + symbols_final[final_prev_index].next = symbols_final.size(); + } + symbols_final.emplace_back(sym); + final_prev_index = symbols_final.size() - 1; + } + } + } + + symbols = symbols_final; + + if (!symbols.empty()) { + for (int i = 0; i != -1; i = symbols[i].next) { + auto & symbol = symbols[i]; + if (symbol.n == 0) { + continue; + } + + const std::string str = std::string(symbol.text, symbol.n); + const auto token = vocab.token_to_id.find(str); + + if (token == vocab.token_to_id.end()) { + for (auto j = str.begin(); j != str.end(); ++j) { + std::string byte_str(1, *j); + auto token_multibyte = vocab.token_to_id.find(byte_str); + if (token_multibyte == vocab.token_to_id.end()) { + throw std::runtime_error("ERROR: byte not found in vocab"); + } + output.push_back((*token_multibyte).second); + } + } else { + output.push_back((*token).second); + } + } + } + } + +private: + void add_new_bigram(int left, int right) { + if (left == -1 || right == -1) { + return; + } + + std::string left_token = std::string(symbols[left].text, symbols[left].n); + std::string right_token = std::string(symbols[right].text, symbols[right].n); + + int rank_found = -1; + + rank_found = vocab.find_bpe_rank(left_token, right_token); + + if (rank_found < 0) { + return; + } + + llm_bigram_bpe bigram; + + bigram.left = left; + bigram.right = right; + bigram.text = left_token + right_token; + bigram.size = left_token.size() + right_token.size(); + bigram.rank = rank_found; + + work_queue.push(bigram); + } + + std::vector bpe_gpt2_preprocess(const std::string & text) { + std::vector bpe_words; + std::vector bpe_encoded_words; + + std::string token = ""; + // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+ + bool collecting_numeric = false; + bool collecting_letter = false; + bool collecting_special = false; + bool collecting_whitespace_lookahead = false; + bool collecting = false; + + std::vector text_utf; + text_utf.reserve(text.size()); + bpe_words.reserve(text.size()); + bpe_encoded_words.reserve(text.size()); + + const auto cpts = unicode_cpts_from_utf8(text); + for (size_t i = 0; i < cpts.size(); ++i) + text_utf.emplace_back(unicode_cpt_to_utf8(cpts[i])); + + for (int i = 0; i < (int)text_utf.size(); i++) { + const std::string & utf_char = text_utf[i]; + bool split_condition = false; + int bytes_remain = text_utf.size() - i; + // forward backward lookups + const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : ""; + const std::string & utf_char_next_next = (i + 2 < (int)text_utf.size()) ? text_utf[i + 2] : ""; + + // handling contractions + if (!split_condition && bytes_remain >= 2) { + // 's|'t|'m|'d + if (utf_char == "\'" && (utf_char_next == "s" || utf_char_next == "t" || utf_char_next == "m" || utf_char_next == "d")) { + split_condition = true; + } + if (split_condition) { + if (token.size()) { + bpe_words.emplace_back(token); // push previous content as token + } + token = utf_char + utf_char_next; + bpe_words.emplace_back(token); + token = ""; + i++; + continue; + } + } + if (!split_condition && bytes_remain >= 3) { + // 're|'ve|'ll + if (utf_char == "\'" && ( + (utf_char_next == "r" && utf_char_next_next == "e") || + (utf_char_next == "v" && utf_char_next_next == "e") || + (utf_char_next == "l" && utf_char_next_next == "l")) + ) { + split_condition = true; + } + if (split_condition) { + // current token + next token can be defined + if (token.size()) { + bpe_words.emplace_back(token); // push previous content as token + } + token = utf_char + utf_char_next + utf_char_next_next; + bpe_words.emplace_back(token); // the contraction + token = ""; + i += 2; + continue; + } + } + + if (!split_condition && !collecting) { + if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER)) { + collecting_letter = true; + collecting = true; + } + else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) { + collecting_numeric = true; + collecting = true; + } + else if ( + ((unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) && (unicode_cpt_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) || + (!token.size() && utf_char == " " && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_LETTER && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_DIGIT && unicode_cpt_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE) + ) { + collecting_special = true; + collecting = true; + } + else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE && unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_WHITESPACE) { + collecting_whitespace_lookahead = true; + collecting = true; + } + else if (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE) { + split_condition = true; + } + } + else if (!split_condition && collecting) { + if (collecting_letter && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_LETTER) { + split_condition = true; + } + else if (collecting_numeric && unicode_cpt_type(utf_char) != CODEPOINT_TYPE_DIGIT) { + split_condition = true; + } + else if (collecting_special && (unicode_cpt_type(utf_char) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_DIGIT || unicode_cpt_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) { + split_condition = true; + } + else if (collecting_whitespace_lookahead && (unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_LETTER || unicode_cpt_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) { + split_condition = true; + } + } + + if (utf_char_next == "") { + split_condition = true; // final + token += utf_char; + } + + if (split_condition) { + if (token.size()) { + bpe_words.emplace_back(token); + } + token = utf_char; + collecting = false; + collecting_letter = false; + collecting_numeric = false; + collecting_special = false; + collecting_whitespace_lookahead = false; + } + else { + token += utf_char; + } + } + + for (std::string & word : bpe_words) { + std::string encoded_token = ""; + for (char & c : word) { + encoded_token += unicode_byte_to_utf8(c); + } + bpe_encoded_words.emplace_back(encoded_token); + } + + return bpe_encoded_words; + } + + const llama_vocab & vocab; + + std::vector symbols; + std::vector symbols_final; + + llm_bigram_bpe::queue work_queue; +}; + +struct llm_tokenizer_wpm { + llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {} + + void tokenize(const std::string & text, std::vector & output) { + auto * token_map = &vocab.token_to_id; + + // normalize and split by whitespace + std::vector words = preprocess(text); + + // bos token prepended already + + // find the longest tokens that form the words + for (const std::string &word : words) { + // skip empty words + if (word.size() == 0) { + continue; + } + + // prepend phantom space + std::string word1 = "\xe2\x96\x81" + word; + int n = word1.size(); + + // we're at the start of a new word + int i = 0; + bool match_any = false; + + // move through character position in word + while (i < n) { + // loop through possible match length + bool match = false; + for (int j = n; j > i; j--) { + auto it = token_map->find(word1.substr(i, j - i)); + if (it != token_map->end()) { + output.push_back(it->second); + match = true; + match_any = true; + i = j; + break; + } + } + + // must be an unknown character + if (!match) { + i++; + } + } + + // we didn't find any matches for this word + if (!match_any) { + output.push_back(vocab.special_unk_id); + } + } + } + + std::vector preprocess(const std::string & text) { + std::vector cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text)); + + // strip accents, strip control, uniformize whitespace, + // to lowercase, pad chinese characters, pad punctuation + std::string new_str = ""; + for (uint32_t code : cpts_nfd) { + int type = unicode_cpt_type(code); + if (type == CODEPOINT_TYPE_ACCENT_MARK || type == CODEPOINT_TYPE_CONTROL) { + continue; + } + code = unicode_tolower(code); + if (type == CODEPOINT_TYPE_WHITESPACE) { + code = ' '; + } + std::string s = unicode_cpt_to_utf8(code); + if (type == CODEPOINT_TYPE_PUNCTUATION || is_ascii_punct(code) || is_chinese_char(code)) { + new_str += " "; + new_str += s; + new_str += " "; + } else { + new_str += s; + } + } + + // split by whitespace + uint64_t l = 0; + uint64_t r = 0; + std::vector words; + while (r < new_str.size()) { + // if is whitespace + if (isspace(new_str[r], std::locale::classic())) { + if (r > l) words.push_back(new_str.substr(l, (r - l))); + l = r + 1; + r = l; + } else { + r += 1; + } + } + if (r > l) { + words.push_back(new_str.substr(l, (r - l))); + } + return words; + } + + bool is_ascii_punct(uint32_t code) { + if (code > 0xFF) { + return false; + } + auto c = char(static_cast(code)); + return ispunct(c, std::locale::classic()); + } + + bool is_chinese_char(uint32_t cpt) { + if ((cpt >= 0x4E00 && cpt <= 0x9FFF) || + (cpt >= 0x3400 && cpt <= 0x4DBF) || + (cpt >= 0x20000 && cpt <= 0x2A6DF) || + (cpt >= 0x2A700 && cpt <= 0x2B73F) || + (cpt >= 0x2B740 && cpt <= 0x2B81F) || + (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920 + (cpt >= 0xF900 && cpt <= 0xFAFF) || + (cpt >= 0x2F800 && cpt <= 0x2FA1F) || + (cpt >= 0x3000 && cpt <= 0x303F) || + (cpt >= 0xFF00 && cpt <= 0xFFEF)) { + return true; // NOLINT + } + return false; + } + + const llama_vocab & vocab; +}; + +typedef enum FRAGMENT_BUFFER_VARIANT_TYPE { + FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN, + FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT +} FRAGMENT_BUFFER_VARIANT_TYPE; + +struct fragment_buffer_variant { + fragment_buffer_variant(llama_vocab::id _token) + : + type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN), + token(_token), + raw_text(_dummy), + offset(0), + length(0) {} + + fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length) + : + type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT), + token((llama_vocab::id) - 1), + raw_text(_raw_text), + offset(_offset), + length(_length){ + GGML_ASSERT(_offset >= 0); + GGML_ASSERT(_length >= 1); + GGML_ASSERT(offset + length <= raw_text.length()); + } + + const FRAGMENT_BUFFER_VARIANT_TYPE type; + const llama_vocab::id token; + const std::string _dummy; + const std::string & raw_text; + const uint64_t offset; + const uint64_t length; +}; + +// #define PRETOKENIZERDEBUG + +static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list & buffer) { + // for each special token + for (const auto & st: vocab.special_tokens_cache) { + const auto & special_token = st.first; + const auto & special_id = st.second; + + // for each text fragment + std::forward_list::iterator it = buffer.begin(); + while (it != buffer.end()) { + auto & fragment = (*it); + + // if a fragment is text ( not yet processed ) + if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { + auto * raw_text = &(fragment.raw_text); + + auto raw_text_base_offset = fragment.offset; + auto raw_text_base_length = fragment.length; + + // loop over the text + while (true) { + // find the first occurrence of a given special token in this fragment + // passing offset argument only limit the "search area" but match coordinates + // are still relative to the source full raw_text + auto match = raw_text->find(special_token, raw_text_base_offset); + + // no occurrences found, stop processing this fragment for a given special token + if (match == std::string::npos) break; + + // check if match is within bounds of offset <-> length + if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break; + +#ifdef PRETOKENIZERDEBUG + LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str()); +#endif + auto source = std::distance(buffer.begin(), it); + + // if match is further than base offset + // then we have some text to the left of it + if (match > raw_text_base_offset) { + // left + const int64_t left_reminder_offset = raw_text_base_offset + 0; + const int64_t left_reminder_length = match - raw_text_base_offset; + buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length); + +#ifdef PRETOKENIZERDEBUG + LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str()); +#endif + it++; + } + + // special token + buffer.emplace_after(it, special_id); + it++; + + // right + if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) { + const int64_t right_reminder_offset = match + special_token.length(); + const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length()); + buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length); + +#ifdef PRETOKENIZERDEBUG + LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str()); +#endif + + it++; + + if (source == 0) { + buffer.erase_after(buffer.before_begin()); + } else { + buffer.erase_after(std::next(buffer.begin(), (source-1))); + } + + // repeat for the right side + raw_text_base_offset = right_reminder_offset; + raw_text_base_length = right_reminder_length; + +#ifdef PRETOKENIZERDEBUG + LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str()); +#endif + } else { + if (source == 0) { + buffer.erase_after(buffer.before_begin()); + } else { + buffer.erase_after(std::next(buffer.begin(), (source-1))); + } + break; + } + } + } + it++; + } + } +} + +static std::vector llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) { + std::vector output; + std::forward_list fragment_buffer; + + if (!raw_text.empty()) { + fragment_buffer.emplace_front(raw_text, 0, raw_text.length()); + if (parse_special) tokenizer_st_partition(vocab, fragment_buffer); + } + + switch (vocab.type) { + case LLAMA_VOCAB_TYPE_SPM: + { + // OG tokenizer behavior: + // + // tokenizer.encode('', add_special_tokens=True) returns [1] + // tokenizer.encode('', add_special_tokens=False) returns [] + + if (add_special && vocab.special_add_bos != 0) { + GGML_ASSERT(vocab.special_bos_id != -1); + output.push_back(vocab.special_bos_id); + } + + for (const auto & fragment : fragment_buffer) { + if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { + // without adding this leading whitespace, we do not get the same results as the original tokenizer + + // TODO: It's likely possible to get rid of this string copy entirely + // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer + // and passing 'add space prefix' as bool argument + // + auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); + if (&fragment == &fragment_buffer.front()) { + if (vocab.add_space_prefix) { + raw_text = " " + raw_text; // prefix with space if the first token is not special + } + } + +#ifdef PRETOKENIZERDEBUG + LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); +#endif + llm_tokenizer_spm tokenizer(vocab); + llama_escape_whitespace(raw_text); + tokenizer.tokenize(raw_text, output); + } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) + output.push_back(fragment.token); + } + } + + if (add_special && vocab.special_add_eos == 1) { + GGML_ASSERT(vocab.special_eos_id != -1); + output.push_back(vocab.special_eos_id); + } + } break; + case LLAMA_VOCAB_TYPE_BPE: + { + if (add_special && vocab.special_add_bos == 1) { + GGML_ASSERT(vocab.special_bos_id != -1); + output.push_back(vocab.special_bos_id); + } + + for (const auto & fragment : fragment_buffer) { + if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { + auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); + +#ifdef PRETOKENIZERDEBUG + LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); +#endif + llm_tokenizer_bpe tokenizer(vocab); + tokenizer.tokenize(raw_text, output); + } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) + output.push_back(fragment.token); + } + } + + GGML_ASSERT(vocab.special_add_eos != 1); + } break; + case LLAMA_VOCAB_TYPE_WPM: + { + if (add_special) { + GGML_ASSERT(vocab.special_cls_id != -1); + output.push_back(vocab.special_cls_id); + } + + for (const auto & fragment : fragment_buffer) { + if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { + auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); + +#ifdef PRETOKENIZERDEBUG + LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); +#endif + llm_tokenizer_wpm tokenizer(vocab); + tokenizer.tokenize(raw_text, output); + } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) + output.push_back(fragment.token); + } + } + + if (add_special) { + GGML_ASSERT(vocab.special_sep_id != -1); + output.push_back(vocab.special_sep_id); + } + } break; + case LLAMA_VOCAB_TYPE_NONE: + GGML_ASSERT(false); + } + + return output; +} + +// +// grammar - internal +// + + +// Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as +// pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`. +std::pair, llama_partial_utf8> decode_utf8( + const std::string & src, + llama_partial_utf8 partial_start) { + static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 }; + const char * pos = src.c_str(); + std::vector code_points; + // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0. + code_points.reserve(src.size() + 1); + uint32_t value = partial_start.value; + int n_remain = partial_start.n_remain; + + // continue previous decode, if applicable + while (*pos != 0 && n_remain > 0) { + uint8_t next_byte = static_cast(*pos); + if ((next_byte >> 6) != 2) { + // invalid sequence, abort + code_points.push_back(0); + return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 }); + } + value = (value << 6) + (next_byte & 0x3F); + ++pos; + --n_remain; + } + + if (partial_start.n_remain > 0 && n_remain == 0) { + code_points.push_back(value); + } + + // decode any subsequent utf-8 sequences, which may end in an incomplete one + while (*pos != 0) { + uint8_t first_byte = static_cast(*pos); + uint8_t highbits = first_byte >> 4; + n_remain = lookup[highbits] - 1; + + if (n_remain < 0) { + // invalid sequence, abort + code_points.clear(); + code_points.push_back(0); + return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain }); + } + + uint8_t mask = (1 << (7 - n_remain)) - 1; + value = first_byte & mask; + ++pos; + while (*pos != 0 && n_remain > 0) { + value = (value << 6) + (static_cast(*pos) & 0x3F); + ++pos; + --n_remain; + } + if (n_remain == 0) { + code_points.push_back(value); + } + } + code_points.push_back(0); + + return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain }); +} + +// returns true iff pos points to the end of one of the definitions of a rule +static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) { + switch (pos->type) { + case LLAMA_GRETYPE_END: return true; // NOLINT + case LLAMA_GRETYPE_ALT: return true; // NOLINT + default: return false; + } +} + +// returns true iff chr satisfies the char range at pos (regular or inverse range) +// asserts that pos is pointing to a char range element +static std::pair llama_grammar_match_char( + const llama_grammar_element * pos, + const uint32_t chr) { + + bool found = false; + bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR; + + GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT + + do { + if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) { + // inclusive range, e.g. [a-z] + found = found || (pos->value <= chr && chr <= pos[1].value); + pos += 2; + } else { + // exact char match, e.g. [a] or "a" + found = found || pos->value == chr; + pos += 1; + } + } while (pos->type == LLAMA_GRETYPE_CHAR_ALT); + + return std::make_pair(found == is_positive_char, pos); +} + +// returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char +// range at pos (regular or inverse range) +// asserts that pos is pointing to a char range element +static bool llama_grammar_match_partial_char( + const llama_grammar_element * pos, + const llama_partial_utf8 partial_utf8) { + + bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR; + GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); + + uint32_t partial_value = partial_utf8.value; + int n_remain = partial_utf8.n_remain; + + // invalid sequence or 7-bit char split across 2 bytes (overlong) + if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) { + return false; + } + + // range of possible code points this partial UTF-8 sequence could complete to + uint32_t low = partial_value << (n_remain * 6); + uint32_t high = low | ((1 << (n_remain * 6)) - 1); + + if (low == 0) { + if (n_remain == 2) { + low = 1 << 11; + } else if (n_remain == 3) { + low = 1 << 16; + } + } + + do { + if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) { + // inclusive range, e.g. [a-z] + if (pos->value <= high && low <= pos[1].value) { + return is_positive_char; + } + pos += 2; + } else { + // exact char match, e.g. [a] or "a" + if (low <= pos->value && pos->value <= high) { + return is_positive_char; + } + pos += 1; + } + } while (pos->type == LLAMA_GRETYPE_CHAR_ALT); + + return !is_positive_char; +} + + +// transforms a grammar pushdown stack into N possible stacks, all ending +// at a character range (terminal element) +static void llama_grammar_advance_stack( + const std::vector> & rules, + const std::vector & stack, + std::vector> & new_stacks) { + + if (stack.empty()) { + if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) { + new_stacks.emplace_back(stack); + } + return; + } + + const llama_grammar_element * pos = stack.back(); + + switch (pos->type) { + case LLAMA_GRETYPE_RULE_REF: { + const size_t rule_id = static_cast(pos->value); + const llama_grammar_element * subpos = rules[rule_id].data(); + do { + // init new stack without the top (pos) + std::vector new_stack(stack.begin(), stack.end() - 1); + if (!llama_grammar_is_end_of_sequence(pos + 1)) { + // if this rule ref is followed by another element, add that to stack + new_stack.push_back(pos + 1); + } + if (!llama_grammar_is_end_of_sequence(subpos)) { + // if alternate is nonempty, add to stack + new_stack.push_back(subpos); + } + llama_grammar_advance_stack(rules, new_stack, new_stacks); + while (!llama_grammar_is_end_of_sequence(subpos)) { + // scan to end of alternate def + subpos++; + } + if (subpos->type == LLAMA_GRETYPE_ALT) { + // there's another alternate def of this rule to process + subpos++; + } else { + break; + } + } while (true); + break; + } + case LLAMA_GRETYPE_CHAR: + case LLAMA_GRETYPE_CHAR_NOT: + if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) { + // only add the stack if it's not a duplicate of one we already have + new_stacks.emplace_back(stack); + } + break; + default: + // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range + // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on + // those + GGML_ASSERT(false); + } +} + +// takes a set of possible pushdown stacks on a grammar, which are required to +// be positioned at a character range (see `llama_grammar_advance_stack`), and +// produces the N possible stacks if the given char is accepted at those +// positions +void llama_grammar_accept( + const std::vector> & rules, + const std::vector> & stacks, + const uint32_t chr, + std::vector> & new_stacks) { + + new_stacks.clear(); + + for (const auto & stack : stacks) { + if (stack.empty()) { + continue; + } + + auto match = llama_grammar_match_char(stack.back(), chr); + if (match.first) { + const llama_grammar_element * pos = match.second; + + // update top of stack to next element, if any + std::vector new_stack(stack.begin(), stack.end() - 1); + if (!llama_grammar_is_end_of_sequence(pos)) { + new_stack.push_back(pos); + } + llama_grammar_advance_stack(rules, new_stack, new_stacks); + } + } +} + +static std::vector llama_grammar_reject_candidates( + const std::vector> & rules, + const std::vector> & stacks, + const std::vector & candidates); + +static std::vector llama_grammar_reject_candidates_for_stack( + const std::vector> & rules, + const std::vector & stack, + const std::vector & candidates) { + + std::vector rejects; + rejects.reserve(candidates.size()); + + if (stack.empty()) { + for (const auto & tok : candidates) { + if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) { + rejects.push_back(tok); + } + } + return rejects; + } + + const llama_grammar_element * stack_pos = stack.back(); + + std::vector next_candidates; + next_candidates.reserve(candidates.size()); + + for (const auto & tok : candidates) { + if (*tok.code_points == 0) { + // reached end of full codepoints in token, reject iff it ended in a partial sequence + // that cannot satisfy this position in grammar + if (tok.partial_utf8.n_remain != 0 && + !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) { + rejects.push_back(tok); + } + } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) { + next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 }); + } else { + rejects.push_back(tok); + } + } + + const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second; + + // update top of stack to next element, if any + std::vector stack_after(stack.begin(), stack.end() - 1); + if (!llama_grammar_is_end_of_sequence(stack_pos_after)) { + stack_after.push_back(stack_pos_after); + } + std::vector> next_stacks; + llama_grammar_advance_stack(rules, stack_after, next_stacks); + + auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates); + for (const auto & tok : next_rejects) { + rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 }); + } + + return rejects; +} + +static std::vector llama_grammar_reject_candidates( + const std::vector> & rules, + const std::vector> & stacks, + const std::vector & candidates) { + GGML_ASSERT(!stacks.empty()); // REVIEW + + if (candidates.empty()) { + return std::vector(); + } + + auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates); + + for (size_t i = 1, size = stacks.size(); i < size; ++i) { + rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects); + } + return rejects; +} + +// +// grammar - external +// + +struct llama_grammar * llama_grammar_init( + const llama_grammar_element ** rules, + size_t n_rules, + size_t start_rule_index) { + const llama_grammar_element * pos; + + // copy rule definitions into vectors + std::vector> vec_rules(n_rules); + for (size_t i = 0; i < n_rules; i++) { + for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) { + vec_rules[i].push_back(*pos); + } + vec_rules[i].push_back({LLAMA_GRETYPE_END, 0}); + } + + // loop over alternates of start rule to build initial stacks + std::vector> stacks; + pos = vec_rules[start_rule_index].data(); + do { + std::vector stack; + if (!llama_grammar_is_end_of_sequence(pos)) { + // if alternate is nonempty, add to stack + stack.push_back(pos); + } + llama_grammar_advance_stack(vec_rules, stack, stacks); + while (!llama_grammar_is_end_of_sequence(pos)) { + // scan to end of alternate def + pos++; + } + if (pos->type == LLAMA_GRETYPE_ALT) { + // there's another alternate def of this rule to process + pos++; + } else { + break; + } + } while (true); + + return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} }; +} + +void llama_grammar_free(struct llama_grammar * grammar) { + delete grammar; +} + +struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) { + llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 }; + + // redirect elements in stacks to point to new rules + for (size_t is = 0; is < result->stacks.size(); is++) { + for (size_t ie = 0; ie < result->stacks[is].size(); ie++) { + for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) { + for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) { + if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) { + result->stacks[is][ie] = &result->rules[ir0][ir1]; + } + } + } + } + } + + return result; +} + +// +// sampling +// + +void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) { + if (seed == LLAMA_DEFAULT_SEED) { + seed = time(NULL); + } + ctx->rng.seed(seed); +} + +void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) { + GGML_ASSERT(candidates->size > 0); + + const int64_t t_start_sample_us = ggml_time_us(); + + // Sort the logits in descending order + if (!candidates->sorted) { + std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { + return a.logit > b.logit; + }); + candidates->sorted = true; + } + + float max_l = candidates->data[0].logit; + float cum_sum = 0.0f; + for (size_t i = 0; i < candidates->size; ++i) { + float p = expf(candidates->data[i].logit - max_l); + candidates->data[i].p = p; + cum_sum += p; + } + for (size_t i = 0; i < candidates->size; ++i) { + candidates->data[i].p /= cum_sum; + } + + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) { + // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast + // if (k >= (int32_t)candidates->size) { + // return; + // } + + const int64_t t_start_sample_us = ggml_time_us(); + + if (k <= 0) { + k = candidates->size; + } + + k = std::max(k, (int) min_keep); + k = std::min(k, (int) candidates->size); + + // Sort scores in descending order + if (!candidates->sorted) { + auto comp = [](const llama_token_data & a, const llama_token_data & b) { + return a.logit > b.logit; + }; + if (k <= 128) { + std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp); + } else { + constexpr int nbuckets = 128; + constexpr float bucket_low = -10.0f; + constexpr float bucket_high = 10.0f; + constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low); + constexpr float bucker_inter = -bucket_low * bucket_scale; + + std::vector bucket_idx(candidates->size); + std::vector histo(nbuckets, 0); + + for (int i = 0; i < (int)candidates->size; ++i) { + const float val = candidates->data[i].logit; + int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low); + ib = std::max(0, std::min(nbuckets-1, ib)); + bucket_idx[i] = ib; + ++histo[ib]; + } + int nhave = 0; + int ib = nbuckets - 1; + for ( ; ib >= 0; --ib) { + nhave += histo[ib]; + if (nhave >= k) break; + } + std::vector tmp_tokens(nhave); + auto ptr = tmp_tokens.data(); + std::vector bucket_ptrs; + bucket_ptrs.reserve(nbuckets - ib); + for (int j = nbuckets - 1; j >= ib; --j) { + bucket_ptrs.push_back(ptr); + ptr += histo[j]; + } + for (int i = 0; i < (int)candidates->size; ++i) { + int j = bucket_idx[i]; + if (j >= ib) { + *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i]; + } + } + + ptr = tmp_tokens.data(); + int ndone = 0; + for (int j = nbuckets-1; j > ib; --j) { + std::sort(ptr, ptr + histo[j], comp); + ptr += histo[j]; + ndone += histo[j]; + } + std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp); + + std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data)); + + } + candidates->sorted = true; + } + candidates->size = k; + + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) { + if (p >= 1.0f) { + return; + } + + llama_sample_softmax(ctx, candidates); + + const int64_t t_start_sample_us = ggml_time_us(); + + // Compute the cumulative probabilities + float cum_sum = 0.0f; + size_t last_idx = candidates->size; + + for (size_t i = 0; i < candidates->size; ++i) { + cum_sum += candidates->data[i].p; + + // Check if the running sum is at least p or if we have kept at least min_keep tokens + // we set the last index to i+1 to indicate that the current iterate should be included in the set + if (cum_sum >= p && i + 1 >= min_keep) { + last_idx = i + 1; + break; + } + } + + // Resize the output vector to keep only the top-p tokens + candidates->size = last_idx; + + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) { + if (p <= 0.0f || !candidates->size) { + return; + } + + const int64_t t_start_sample_us = ggml_time_us(); + + bool min_p_applied = false; + + // if the candidates aren't sorted, try the unsorted implementation first + if (!candidates->sorted) { + std::vector filtered_tokens; + + float max_logit = -FLT_MAX; + for (size_t i = 0; i < candidates->size; ++i) { + max_logit = std::max(max_logit, candidates->data[i].logit); + } + const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max + + for (size_t i = 0; i < candidates->size; ++i) { + if (candidates->data[i].logit >= min_logit) { + filtered_tokens.push_back(candidates->data[i]); + } + } + + // if we have enough values the operation was a success + if (filtered_tokens.size() >= min_keep) { + memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data)); + candidates->size = filtered_tokens.size(); + min_p_applied = true; + } + } + + // if the candidates are sorted or the unsorted implementation failed, use this implementation + if (!min_p_applied) { + // Sort the logits in descending order + if (!candidates->sorted) { + std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { + return a.logit > b.logit; + }); + candidates->sorted = true; + } + + const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max + size_t i = 1; // first token always matches + + for (; i < candidates->size; ++i) { + if (candidates->data[i].logit < min_logit && i >= min_keep) { + break; // prob too small + } + } + + // Resize the output vector to keep only the matching tokens + candidates->size = i; + } + + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) { + if (z >= 1.0f || candidates->size <= 2) { + return; + } + + llama_sample_softmax(nullptr, candidates); + const int64_t t_start_sample_us = ggml_time_us(); + + // Compute the first and second derivatives + std::vector first_derivatives(candidates->size - 1); + std::vector second_derivatives(candidates->size - 2); + + for (size_t i = 0; i < first_derivatives.size(); ++i) { + first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p; + } + for (size_t i = 0; i < second_derivatives.size(); ++i) { + second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1]; + } + + // Calculate absolute value of second derivatives + for (size_t i = 0; i < second_derivatives.size(); ++i) { + second_derivatives[i] = std::abs(second_derivatives[i]); + } + + // Normalize the second derivatives + { + const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f); + + if (second_derivatives_sum > 1e-6f) { + for (float & value : second_derivatives) { + value /= second_derivatives_sum; + } + } else { + for (float & value : second_derivatives) { + value = 1.0f / second_derivatives.size(); + } + } + } + + float cum_sum = 0.0f; + size_t last_idx = candidates->size; + for (size_t i = 0; i < second_derivatives.size(); ++i) { + cum_sum += second_derivatives[i]; + + // Check if the running sum is greater than z or if we have kept at least min_keep tokens + if (cum_sum > z && i >= min_keep) { + last_idx = i; + break; + } + } + + // Resize the output vector to keep only the tokens above the tail location + candidates->size = last_idx; + + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) { + // Reference implementation: + // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr + if (p >= 1.0f) { + return; + } + + // Compute the softmax of logits and calculate entropy + llama_sample_softmax(nullptr, candidates); + + const int64_t t_start_sample_us = ggml_time_us(); + + float entropy = 0.0f; + for (size_t i = 0; i < candidates->size; ++i) { + entropy += -candidates->data[i].p * logf(candidates->data[i].p); + } + + // Compute the absolute difference between negative log probability and entropy for each candidate + std::vector shifted_scores; + for (size_t i = 0; i < candidates->size; ++i) { + float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy); + shifted_scores.push_back(shifted_score); + } + + // Sort tokens based on the shifted_scores and their corresponding indices + std::vector indices(candidates->size); + std::iota(indices.begin(), indices.end(), 0); + + std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) { + return shifted_scores[a] < shifted_scores[b]; + }); + + // Compute the cumulative probabilities + float cum_sum = 0.0f; + size_t last_idx = indices.size(); + + for (size_t i = 0; i < indices.size(); ++i) { + size_t idx = indices[i]; + cum_sum += candidates->data[idx].p; + + // Check if the running sum is greater than typical or if we have kept at least min_keep tokens + if (cum_sum > p && i >= min_keep - 1) { + last_idx = i + 1; + break; + } + } + + // Resize the output vector to keep only the locally typical tokens + std::vector new_candidates; + for (size_t i = 0; i < last_idx; ++i) { + size_t idx = indices[i]; + new_candidates.push_back(candidates->data[idx]); + } + + // Replace the data in candidates with the new_candidates data + std::copy(new_candidates.begin(), new_candidates.end(), candidates->data); + candidates->size = new_candidates.size(); + candidates->sorted = false; + + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) { + const int64_t t_start_sample_us = ggml_time_us(); + + // no need to do anything if there is only one (or zero) candidates + if(candidates_p->size <= 1) { + return; + } + + // Calculate maximum possible entropy + float max_entropy = -logf(1.0f / candidates_p->size); + + llama_sample_softmax(nullptr, candidates_p); + + // Calculate entropy of the softmax probabilities + float entropy = 0.0f; + for (size_t i = 0; i < candidates_p->size; ++i) { + float prob = candidates_p->data[i].p; + if (prob > 0.0f) { // Ensure no log(0) + entropy -= prob * logf(prob); + } + } + + // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above) + float normalized_entropy = entropy / max_entropy; + + // Map the normalized entropy to the desired temperature range using the power function + float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val); + +#ifdef DEBUG + LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp); + LLAMA_LOG_INFO("Entropy: %f\n", entropy); + LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy); + LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy); + LLAMA_LOG_INFO("Exponent: %f\n", exponent_val); + LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp); +#endif + + // Apply the dynamically calculated temperature scaling + for (size_t i = 0; i < candidates_p->size; ++i) { + candidates_p->data[i].logit /= dyn_temp; + } + + // Re-compute softmax probabilities after scaling logits with dynamic temperature + double max_l_double = candidates_p->data[0].logit; + double cum_sum_double = 0.0; + for (size_t i = 0; i < candidates_p->size; ++i) { + double p = exp(candidates_p->data[i].logit - max_l_double); + candidates_p->data[i].p = p; // Store the scaled probability + cum_sum_double += p; + } + for (size_t i = 0; i < candidates_p->size; ++i) { + candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities + } + +#ifdef DEBUG + // Print the updated top 25 probabilities after temperature scaling + LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n"); + for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) { + LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f); + } +#endif + + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) { + const int64_t t_start_sample_us = ggml_time_us(); + + for (size_t i = 0; i < candidates_p->size; ++i) { + candidates_p->data[i].logit /= temp; + } + + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_repetition_penalties( + struct llama_context * ctx, + llama_token_data_array * candidates, + const llama_token * last_tokens, + size_t penalty_last_n, + float penalty_repeat, + float penalty_freq, + float penalty_present) { + if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) { + return; + } + + const int64_t t_start_sample_us = ggml_time_us(); + + // Create a frequency map to count occurrences of each token in last_tokens + std::unordered_map token_count; + for (size_t i = 0; i < penalty_last_n; ++i) { + token_count[last_tokens[i]]++; + } + + // Apply frequency and presence penalties to the candidates + for (size_t i = 0; i < candidates->size; ++i) { + const auto token_iter = token_count.find(candidates->data[i].id); + if (token_iter == token_count.end()) { + continue; + } + + const int count = token_iter->second; + + // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong. + // This is common fix for this problem, which is to multiply by the penalty instead of dividing. + if (candidates->data[i].logit <= 0) { + candidates->data[i].logit *= penalty_repeat; + } else { + candidates->data[i].logit /= penalty_repeat; + } + + candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present; + } + + candidates->sorted = false; + + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + } +} + +void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) { + GGML_ASSERT(ctx); + const int64_t t_start_sample_us = ggml_time_us(); + + bool allow_eos = false; + for (const auto & stack : grammar->stacks) { + if (stack.empty()) { + allow_eos = true; + break; + } + } + + const llama_token eos = llama_token_eos(&ctx->model); + + std::vector, llama_partial_utf8>> candidates_decoded; + candidates_decoded.reserve(candidates->size); + std::vector candidates_grammar; + candidates_grammar.reserve(candidates->size); + + for (size_t i = 0; i < candidates->size; ++i) { + const llama_token id = candidates->data[i].id; + const std::string piece = llama_token_to_piece(ctx, id); + if (id == eos) { + if (!allow_eos) { + candidates->data[i].logit = -INFINITY; + } + } else if (piece.empty() || piece[0] == 0) { + candidates->data[i].logit = -INFINITY; + } else { + candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8)); + candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second }); + } + } + + const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar); + for (const auto & reject : rejects) { + candidates->data[reject.index].logit = -INFINITY; + } + + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; +} + +static void llama_log_softmax(float * array, size_t size) { + float max_l = *std::max_element(array, array + size); + float sum = 0.f; + for (size_t i = 0; i < size; ++i) { + float p = expf(array[i] - max_l); + sum += p; + array[i] = p; + } + + for (size_t i = 0; i < size; ++i) { + array[i] = logf(array[i] / sum); + } +} + +void llama_sample_apply_guidance( + struct llama_context * ctx, + float * logits, + float * logits_guidance, + float scale) { + GGML_ASSERT(ctx); + + const auto t_start_sample_us = ggml_time_us(); + const auto n_vocab = llama_n_vocab(llama_get_model(ctx)); + + llama_log_softmax(logits, n_vocab); + llama_log_softmax(logits_guidance, n_vocab); + + for (int i = 0; i < n_vocab; ++i) { + auto & l = logits[i]; + const auto & g = logits_guidance[i]; + + l = scale * (l - g) + g; + } + + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; +} + +llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) { + GGML_ASSERT(ctx); + + auto N = float(llama_n_vocab(llama_get_model(ctx))); + int64_t t_start_sample_us; + t_start_sample_us = ggml_time_us(); + + llama_sample_softmax(nullptr, candidates); + + // Estimate s_hat using the most probable m tokens + float s_hat = 0.0; + float sum_ti_bi = 0.0; + float sum_ti_sq = 0.0; + for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) { + float t_i = logf(float(i + 2) / float(i + 1)); + float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p); + sum_ti_bi += t_i * b_i; + sum_ti_sq += t_i * t_i; + } + s_hat = sum_ti_bi / sum_ti_sq; + + // Compute k from the estimated s_hat and target surprise value + float epsilon_hat = s_hat - 1; + float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat); + + // Sample the next word X using top-k sampling + llama_sample_top_k(nullptr, candidates, int(k), 1); + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + } + llama_token X = llama_sample_token(ctx, candidates); + t_start_sample_us = ggml_time_us(); + + // Compute error as the difference between observed surprise and target surprise value + size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { + return candidate.id == X; + })); + float observed_surprise = -log2f(candidates->data[X_idx].p); + float e = observed_surprise - tau; + + // Update mu using the learning rate and error + *mu = *mu - eta * e; + + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + } + return X; +} + +llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) { + int64_t t_start_sample_us; + t_start_sample_us = ggml_time_us(); + + llama_sample_softmax(ctx, candidates); + + // Truncate the words with surprise values greater than mu + candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { + return -log2f(candidate.p) > *mu; + })); + + if (candidates->size == 0) { + candidates->size = 1; + } + + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + } + + // Normalize the probabilities of the remaining words + llama_sample_softmax(ctx, candidates); + + // Sample the next word X from the remaining words + llama_token X = llama_sample_token(ctx, candidates); + t_start_sample_us = ggml_time_us(); + + // Compute error as the difference between observed surprise and target surprise value + size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { + return candidate.id == X; + })); + float observed_surprise = -log2f(candidates->data[X_idx].p); + float e = observed_surprise - tau; + + // Update mu using the learning rate and error + *mu = *mu - eta * e; + + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + } + return X; +} + +llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) { + const int64_t t_start_sample_us = ggml_time_us(); + + // Find max element + auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) { + return a.logit < b.logit; + }); + + llama_token result = max_iter->id; + if (ctx) { + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + ctx->n_sample++; + } + return result; +} + +llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) { + GGML_ASSERT(ctx); + + const int64_t t_start_sample_us = ggml_time_us(); + llama_sample_softmax(nullptr, candidates); + + std::vector probs; + probs.reserve(candidates->size); + for (size_t i = 0; i < candidates->size; ++i) { + probs.push_back(candidates->data[i].p); + } + + std::discrete_distribution<> dist(probs.begin(), probs.end()); + auto & rng = ctx->rng; + int idx = dist(rng); + + llama_token result = candidates->data[idx].id; + + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + ctx->n_sample++; + return result; +} + +void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) { + const int64_t t_start_sample_us = ggml_time_us(); + + if (token == llama_token_eos(&ctx->model)) { + for (const auto & stack : grammar->stacks) { + if (stack.empty()) { + return; + } + } + GGML_ASSERT(false); + } + + const std::string piece = llama_token_to_piece(ctx, token); + + // Note terminating 0 in decoded string + const auto decoded = decode_utf8(piece, grammar->partial_utf8); + const auto & code_points = decoded.first; + std::vector> tmp_new_stacks; + for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) { + llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks); + grammar->stacks = tmp_new_stacks; + } + grammar->partial_utf8 = decoded.second; + GGML_ASSERT(!grammar->stacks.empty()); + + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; +} + +// +// Beam search +// + +struct llama_beam { + std::vector tokens; + float p; // Cumulative beam probability (renormalized relative to all beams) + bool eob; // Initialize end-of-beam to false. Callback sets this to true. + // Sort beams by probability. In case of ties, prefer beams at eob. + bool operator<(const llama_beam & rhs) const { + return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob); + } + // Shift off first n tokens and discard them. + void shift_tokens(const size_t n) { + if (n) { + std::copy(tokens.begin() + n, tokens.end(), tokens.begin()); + tokens.resize(tokens.size() - n); + } + } + llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; } +}; + +// A struct for calculating logit-related info. +struct llama_logit_info { + const float * const logits; + const int n_vocab; + const float max_l; + const float normalizer; + struct sum_exp { + float max_l; + float operator()(float sum, float l) const { return sum + std::exp(l - max_l); } + }; + llama_logit_info(llama_context * ctx) + : logits(llama_get_logits(ctx)) + , n_vocab(llama_n_vocab(llama_get_model(ctx))) + , max_l(*std::max_element(logits, logits + n_vocab)) + , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l})) + { } + llama_token_data get_token_data(const llama_token token_id) const { + constexpr auto p = std::numeric_limits::quiet_NaN(); // never used + return {token_id, logits[token_id], p}; + } + // Return top k token_data by logit. + std::vector top_k(size_t k) { + std::vector min_heap; // min-heap by logit + const llama_token k_min = std::min(static_cast(k), n_vocab); + min_heap.reserve(k_min); + for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) { + min_heap.push_back(get_token_data(token_id)); + } + auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; }; + std::make_heap(min_heap.begin(), min_heap.end(), comp); + for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) { + if (min_heap.front().logit < logits[token_id]) { + std::pop_heap(min_heap.begin(), min_heap.end(), comp); + min_heap.back().id = token_id; + min_heap.back().logit = logits[token_id]; + std::push_heap(min_heap.begin(), min_heap.end(), comp); + } + } + return min_heap; + } + float probability_from_logit(float logit) const { + return normalizer * std::exp(logit - max_l); + } +}; + +struct llama_beam_search_data { + llama_context * ctx; + size_t n_beams; + int n_past; + int n_predict; + std::vector beams; + std::vector next_beams; + + // Re-calculated on each loop iteration + size_t common_prefix_length; + + // Used to communicate to/from callback on beams state. + std::vector beam_views; + + llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict) + : ctx(ctx) + , n_beams(n_beams) + , n_past(n_past) + , n_predict(n_predict) + , beam_views(n_beams) { + beams.reserve(n_beams); + next_beams.reserve(n_beams); + } + + // Collapse beams to a single beam given by index. + void collapse_beams(const size_t beam_idx) { + if (0u < beam_idx) { + std::swap(beams[0], beams[beam_idx]); + } + beams.resize(1); + } + + // Min-heaps are used to efficiently collect the top-k elements (k=n_beams). + // The repetitive patterns below reflect the 2 stages of heaps: + // * Gather elements until the vector is full, then call std::make_heap() on it. + // * If the heap is full and a new element is found that should be included, pop the + // least element to the back(), replace it with the new, then push it into the heap. + void fill_next_beams_by_top_probabilities(llama_beam & beam) { + // Min-heaps use a greater-than comparator. + const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; }; + if (beam.eob) { + // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough. + if (next_beams.size() < n_beams) { + next_beams.push_back(std::move(beam)); + if (next_beams.size() == n_beams) { + std::make_heap(next_beams.begin(), next_beams.end(), comp); + } + } else if (next_beams.front().p < beam.p) { + std::pop_heap(next_beams.begin(), next_beams.end(), comp); + next_beams.back() = std::move(beam); + std::push_heap(next_beams.begin(), next_beams.end(), comp); + } + } else { + // beam is not at end-of-sentence, so branch with next top_k tokens. + if (!beam.tokens.empty()) { + llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0)); + } + llama_logit_info logit_info(ctx); + std::vector next_tokens = logit_info.top_k(n_beams); + + // Clear the kv slot so that other beams may try different tokens at this position. The llama_decode() + // call in loop() will conclusively fill in the kv slot once the beams converge at this position. + llama_kv_cache_seq_rm(ctx, 0, n_past, -1); + + size_t i=0; + if (next_beams.size() < n_beams) { + for (; next_beams.size() < n_beams ; ++i) { + llama_beam next_beam = beam; + next_beam.tokens.push_back(next_tokens[i].id); + next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit); + next_beams.push_back(std::move(next_beam)); + } + std::make_heap(next_beams.begin(), next_beams.end(), comp); + } else { + for (; next_beams.front().p == 0.0f ; ++i) { + std::pop_heap(next_beams.begin(), next_beams.end(), comp); + next_beams.back() = beam; + next_beams.back().tokens.push_back(next_tokens[i].id); + next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit); + std::push_heap(next_beams.begin(), next_beams.end(), comp); + } + } + for (; i < n_beams ; ++i) { + const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit); + if (next_beams.front().p < next_p) { + std::pop_heap(next_beams.begin(), next_beams.end(), comp); + next_beams.back() = beam; + next_beams.back().tokens.push_back(next_tokens[i].id); + next_beams.back().p = next_p; + std::push_heap(next_beams.begin(), next_beams.end(), comp); + } + } + } + } + + // Find common_prefix_length based on beams. + // Requires beams is not empty. + size_t find_common_prefix_length() { + size_t common_prefix_length = beams[0].tokens.size(); + for (size_t i = 1 ; i < beams.size() ; ++i) { + common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size()); + for (size_t j = 0 ; j < common_prefix_length ; ++j) { + if (beams[0].tokens[j] != beams[i].tokens[j]) { + common_prefix_length = j; + break; + } + } + } + return common_prefix_length; + } + + // Construct beams_state to send back to caller via the callback function. + // Side effect: set common_prefix_length = find_common_prefix_length(); + llama_beams_state get_beams_state(const bool last_call) { + for (size_t i = 0 ; i < beams.size() ; ++i) { + beam_views[i] = beams[i].view(); + } + common_prefix_length = find_common_prefix_length(); + return {beam_views.data(), beams.size(), common_prefix_length, last_call}; + } + + // Loop: + // * while i < n_predict, AND + // * any of the beams have not yet reached end-of-beam (eob), AND + // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence + // (since all other beam probabilities can only decrease) + void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) { + beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob. + const auto not_eob = [](const llama_beam & beam) { return !beam.eob; }; + for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) && + !beams[top_beam_index()].eob ; ++i) { + callback(callback_data, get_beams_state(false)); // Sets common_prefix_length + update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed. + if (common_prefix_length) { + llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0)); + n_past += common_prefix_length; + } + // Zero-out next_beam probabilities to place them last in following min-heap. + std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; }); + for (llama_beam & beam : beams) { + beam.shift_tokens(common_prefix_length); + fill_next_beams_by_top_probabilities(beam); + } + // next_beams become the beams of next/final iteration. Swap them to re-use memory. + beams.swap(next_beams); + renormalize_beam_probabilities(beams); + } + collapse_beams(top_beam_index()); + callback(callback_data, get_beams_state(true)); + } + + // As beams grow, the cumulative probabilities decrease. + // Renormalize them to avoid floating point underflow. + static void renormalize_beam_probabilities(std::vector & beams) { + const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; }; + const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p); + std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; }); + } + + // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering. + size_t top_beam_index() { + return std::max_element(beams.begin(), beams.end()) - beams.begin(); + } + + // Copy (p,eob) for each beam which may have been changed by the callback. + void update_beams_from_beam_views() { + for (size_t i = 0 ; i < beams.size() ; ++i) { + beams[i].p = beam_views[i].p; + beams[i].eob = beam_views[i].eob; + } + } +}; + +void llama_beam_search(llama_context * ctx, + llama_beam_search_callback_fn_t callback, void * callback_data, + size_t n_beams, int n_past, int n_predict) { + assert(ctx); + const int64_t t_start_sample_us = ggml_time_us(); + + llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict); + + beam_search_data.loop(callback, callback_data); + + ctx->t_sample_us += ggml_time_us() - t_start_sample_us; + ctx->n_sample++; +} + +// +// quantization +// + +struct quantize_state_internal { + const llama_model & model; + const llama_model_quantize_params * params; + + int n_attention_wv = 0; + int n_ffn_down = 0; + int n_ffn_gate = 0; + int n_ffn_up = 0; + int i_attention_wv = 0; + int i_ffn_down = 0; + int i_ffn_gate = 0; + int i_ffn_up = 0; + + int n_k_quantized = 0; + int n_fallback = 0; + + bool has_imatrix = false; + + // used to figure out if a model shares tok_embd with the output weight + bool has_output = false; + + quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params) + : model(model) + , params(params) + {} +}; + +static void llama_tensor_dequantize_internal( + struct ggml_tensor * tensor, std::vector> & output, std::vector & workers, + const size_t nelements, const int nthread +) { + if (output.size() < nelements) { + output.resize(nelements); + } + float * f32_output = (float *) output.data(); + + ggml_type_traits_t qtype; + if (ggml_is_quantized(tensor->type)) { + qtype = ggml_internal_get_type_traits(tensor->type); + if (qtype.to_float == NULL) { + throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type))); + } + } else if (tensor->type != GGML_TYPE_F16) { + throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type))); + } + + if (nthread < 2) { + if (tensor->type == GGML_TYPE_F16) { + ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements); + } else if (ggml_is_quantized(tensor->type)) { + qtype.to_float(tensor->data, f32_output, nelements); + } else { + GGML_ASSERT(false); // unreachable + } + return; + } + + size_t block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type); + size_t block_size_bytes = ggml_type_size(tensor->type); + + GGML_ASSERT(nelements % block_size == 0); + size_t nblocks = nelements / block_size; + size_t blocks_per_thread = nblocks / nthread; + size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count + + size_t in_buff_offs = 0; + size_t out_buff_offs = 0; + + for (int tnum = 0; tnum < nthread; tnum++) { + size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread + size_t thr_elems = thr_blocks * block_size; // number of elements for this thread + size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread + + auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) { + if (typ == GGML_TYPE_F16) { + ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels); + } else { + qtype.to_float(inbuf, outbuf, nels); + } + }; + workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems); + in_buff_offs += thr_block_bytes; + out_buff_offs += thr_elems; + } + for (auto & w : workers) { w.join(); } + workers.clear(); +} + +static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) { + const std::string name = ggml_get_name(tensor); + + // TODO: avoid hardcoded tensor names - use the TN_* constants + const llm_arch arch = qs.model.arch; + const auto tn = LLM_TN(arch); + + auto use_more_bits = [](int i_layer, int num_layers) -> bool { + return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2; + }; + const int n_expert = std::max(1, (int)qs.model.hparams.n_expert); + auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) { + if (n_expert > 1) { + // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly + // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work + // for getting the current layer as I initially thought, and we need to resort to parsing the + // tensor name. + if (sscanf(name, "blk.%d.", &i_layer) != 1) { + throw std::runtime_error(format("Failed to determine layer for tensor %s", name)); + } + if (i_layer < 0 || i_layer >= n_layer) { + throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer)); + } + } + return std::make_pair(i_layer, n_layer); + }; + + // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings + // with the quantization of the output tensor + if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) { + if (qs.params->output_tensor_type < GGML_TYPE_COUNT) { + new_type = qs.params->output_tensor_type; + } else { + int nx = tensor->ne[0]; + if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) { + new_type = GGML_TYPE_Q8_0; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || + ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || + ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { + new_type = GGML_TYPE_Q5_K; + } + else if (new_type != GGML_TYPE_Q8_0) { + new_type = GGML_TYPE_Q6_K; + } + } + } else if (name == "token_embd.weight") { + if (qs.params->token_embedding_type < GGML_TYPE_COUNT) { + new_type = qs.params->token_embedding_type; + } else { + if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || + ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { + new_type = GGML_TYPE_Q2_K; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) { + new_type = GGML_TYPE_IQ3_S; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { + new_type = GGML_TYPE_IQ3_S; + } + } + } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || + ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) { + if (name.find("attn_v.weight") != std::string::npos) { + if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K; + else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; + ++qs.i_attention_wv; + } + else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) { + new_type = GGML_TYPE_Q4_K; + } + else if (name.find("ffn_down") != std::string::npos) { + if (qs.i_ffn_down < qs.n_ffn_down/8) { + new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K; + } + ++qs.i_ffn_down; + } + else if (name.find("attn_output.weight") != std::string::npos) { + if (qs.model.hparams.n_expert == 8) { + new_type = GGML_TYPE_Q5_K; + } else { + if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS; + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S; + } + } + } else if (name.find("attn_v.weight") != std::string::npos) { + if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) { + new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) { + new_type = GGML_TYPE_Q4_K; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { + new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS; + } + else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) { + new_type = GGML_TYPE_Q4_K; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) { + new_type = GGML_TYPE_Q4_K; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { + new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K; + else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) { + new_type = GGML_TYPE_Q5_K; + } + else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) && + use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K; + else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) && + (qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K; + if (qs.model.type == MODEL_70B) { + // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is + // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with + // nearly negligible increase in model size by quantizing this tensor with more bits: + if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K; + } + if (qs.model.hparams.n_expert == 8) { + // for the 8-expert model, bumping this to Q8_0 trades just ~128MB + // TODO: explore better strategies + new_type = GGML_TYPE_Q8_0; + } + ++qs.i_attention_wv; + } else if (name.find("attn_k.weight") != std::string::npos) { + if (qs.model.hparams.n_expert == 8) { + // for the 8-expert model, bumping this to Q8_0 trades just ~128MB + // TODO: explore better strategies + new_type = GGML_TYPE_Q8_0; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) { + new_type = GGML_TYPE_IQ3_XXS; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { + new_type = GGML_TYPE_IQ2_S; + } + } else if (name.find("attn_q.weight") != std::string::npos) { + if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) { + new_type = GGML_TYPE_IQ3_XXS; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) { + new_type = GGML_TYPE_IQ2_S; + } + } else if (name.find("ffn_down") != std::string::npos) { + auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str()); + int i_layer = info.first, n_layer = info.second; + if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) { + if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) { + new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { + new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K + : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K + : GGML_TYPE_Q3_K; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 || + (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) { + new_type = GGML_TYPE_Q4_K; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) { + new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) { + if (arch == LLM_ARCH_FALCON) { + new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K : + use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K; + } else { + if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K; + } + } + else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) { + new_type = GGML_TYPE_Q5_K; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) { + new_type = GGML_TYPE_Q5_K; + } + else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0) + && qs.has_imatrix && i_layer < n_layer/8) { + // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0. + // We only do it when an imatrix is provided because a) we want to make sure that one can always get the + // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix. + new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1; + } + ++qs.i_ffn_down; + } else if (name.find("attn_output.weight") != std::string::npos) { + if (arch != LLM_ARCH_FALCON) { + if (qs.model.hparams.n_expert == 8) { + if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || + ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || + ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S || + ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) { + new_type = GGML_TYPE_Q5_K; + } + } else { + if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K; + } + } else { + if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K; + } + } + else if (name.find("attn_qkv.weight") != std::string::npos) { + if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) { + new_type = GGML_TYPE_Q4_K; + } + else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K; + else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K; + } + else if (name.find("ffn_gate") != std::string::npos) { + auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str()); + int i_layer = info.first, n_layer = info.second; + if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) { + new_type = GGML_TYPE_IQ3_XXS; + } + ++qs.i_ffn_gate; + } + else if (name.find("ffn_up") != std::string::npos) { + auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str()); + int i_layer = info.first, n_layer = info.second; + if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) { + new_type = GGML_TYPE_IQ3_XXS; + } + ++qs.i_ffn_up; + } + + // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; + //} + // IK: let's remove this, else Q2_K is almost the same as Q3_K_S + //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) { + // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; + //} + // This can be used to reduce the size of the Q5_K_S model. + // The associated PPL increase is fully in line with the size reduction + //else { + // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K; + //} + bool convert_incompatible_tensor = false; + if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K || + new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS || + new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S || + new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S || + new_type == GGML_TYPE_IQ1_M) { + int nx = tensor->ne[0]; + int ny = tensor->ne[1]; + if (nx % QK_K != 0) { + LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type)); + convert_incompatible_tensor = true; + } else { + ++qs.n_k_quantized; + } + } + if (convert_incompatible_tensor) { + switch (new_type) { + case GGML_TYPE_IQ2_XXS: + case GGML_TYPE_IQ2_XS: + case GGML_TYPE_IQ2_S: + case GGML_TYPE_IQ3_XXS: + case GGML_TYPE_IQ3_S: + case GGML_TYPE_IQ1_S: + case GGML_TYPE_IQ1_M: + case GGML_TYPE_Q2_K: + case GGML_TYPE_Q3_K: + case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break; + case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break; + case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break; + case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break; + default: throw std::runtime_error("\nUnsupported tensor size encountered\n"); + } + LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type)); + ++qs.n_fallback; + } + + return new_type; +} + +static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector & workers, const int nthread) { + std::mutex mutex; + int64_t counter = 0; + size_t new_size = 0; + if (nthread < 2) { + // single-thread + return ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix); + } + auto compute = [&mutex, &counter, &new_size, new_type, f32_data, new_data, chunk_size, + nrows, n_per_row, imatrix]() { + const int64_t nrows_per_chunk = chunk_size / n_per_row; + size_t local_size = 0; + while (true) { + std::unique_lock lock(mutex); + int64_t first_row = counter; counter += nrows_per_chunk; + if (first_row >= nrows) { + if (local_size > 0) { + new_size += local_size; + } + break; + } + lock.unlock(); + const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk); + local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix); + } + }; + for (int it = 0; it < nthread - 1; ++it) { + workers.emplace_back(compute); + } + compute(); + for (auto & w : workers) { w.join(); } + workers.clear(); + return new_size; +} + +static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) { + ggml_type default_type; + llama_ftype ftype = params->ftype; + + switch (params->ftype) { + case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break; + case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break; + case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break; + case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break; + case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break; + case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break; + case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break; + + // K-quants + case LLAMA_FTYPE_MOSTLY_Q2_K_S: + case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break; + case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break; + case LLAMA_FTYPE_MOSTLY_Q3_K_S: + case LLAMA_FTYPE_MOSTLY_Q3_K_M: + case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break; + case LLAMA_FTYPE_MOSTLY_Q4_K_S: + case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break; + case LLAMA_FTYPE_MOSTLY_Q5_K_S: + case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break; + case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break; + case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break; + case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break; + case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break; + case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break; + case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break; + case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break; + case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break; + case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break; + case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break; + case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break; + case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break; + + default: throw std::runtime_error(format("invalid output file type %d\n", ftype)); + } + + int nthread = params->nthread; + + if (nthread <= 0) { + nthread = std::thread::hardware_concurrency(); + } + + // mmap consistently increases speed Linux, and also increases speed on Windows with + // hot cache. It may cause a slowdown on macOS, possibly related to free memory. +#if defined(__linux__) || defined(_WIN32) + constexpr bool use_mmap = true; +#else + constexpr bool use_mmap = false; +#endif + + llama_model_kv_override * kv_overrides = nullptr; + if (params->kv_overrides) { + auto v = (std::vector*)params->kv_overrides; + kv_overrides = v->data(); + } + llama_model_loader ml(fname_inp, use_mmap, kv_overrides); + ml.init_mappings(false); // no prefetching + + llama_model model; + llm_load_arch(ml, model); + llm_load_hparams(ml, model); + + struct quantize_state_internal qs(model, params); + + if (params->only_copy) { + ftype = model.ftype; + } + const std::unordered_map> * imatrix_data = nullptr; + if (params->imatrix) { + imatrix_data = static_cast>*>(params->imatrix); + if (imatrix_data) { + LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size())); + qs.has_imatrix = true; + } + } + + const size_t align = GGUF_DEFAULT_ALIGNMENT; + struct gguf_context * ctx_out = gguf_init_empty(); + + // copy the KV pairs from the input file + gguf_set_kv (ctx_out, ml.meta); + gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION); + gguf_set_val_u32(ctx_out, "general.file_type", ftype); + // Remove split metadata + gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str()); + gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str()); + gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str()); + + if (params->kv_overrides) { + const std::vector & overrides = *(const std::vector *)params->kv_overrides; + for (auto & o : overrides) { + if (o.key[0] == 0) break; + if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) { + gguf_set_val_f32(ctx_out, o.key, o.float_value); + } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) { + gguf_set_val_i32(ctx_out, o.key, o.int_value); + } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) { + gguf_set_val_bool(ctx_out, o.key, o.bool_value); + } else { + LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key); + } + } + } + + for (int i = 0; i < ml.n_tensors; ++i) { + const struct ggml_tensor * meta = ml.get_tensor_meta(i); + + const std::string name = ggml_get_name(meta); + + // TODO: avoid hardcoded tensor names - use the TN_* constants + if (name.find("attn_v.weight") != std::string::npos || + name.find("attn_qkv.weight") != std::string::npos) { + ++qs.n_attention_wv; + } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) { + qs.has_output = true; + } + } + + qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer; + + // sanity checks + // + // - qs.n_attention_wv == 0 for Mamba models + // - qs.n_attention_wv == model.hparams.n_layer for Transformer models + // + GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected"); + + size_t total_size_org = 0; + size_t total_size_new = 0; + + std::vector workers; + workers.reserve(nthread); + + int idx = 0; + + std::vector> read_data; + std::vector> work; + std::vector> f32_conv_buf; + + // populate the original tensors so we get an initial meta data + for (int i = 0; i < ml.n_tensors; ++i) { + const struct ggml_tensor * meta = ml.get_tensor_meta(i); + gguf_add_tensor(ctx_out, meta); + } + + std::ofstream fout(fname_out, std::ios::binary); + fout.exceptions(std::ofstream::failbit); // fail fast on write errors + + const size_t meta_size = gguf_get_meta_size(ctx_out); + + LLAMA_LOG_INFO("%s: meta size = %zu bytes\n", __func__, meta_size); + + // placeholder for the meta data + ::zeros(fout, meta_size); + + const auto tn = LLM_TN(model.arch); + + for (int i = 0; i < ml.n_tensors; ++i) { + struct ggml_tensor * tensor = ml.get_tensor_meta(i); + + const std::string name = ggml_get_name(tensor); + + if (!ml.use_mmap) { + if (read_data.size() < ggml_nbytes(tensor)) { + read_data.resize(ggml_nbytes(tensor)); + } + tensor->data = read_data.data(); + } + ml.load_data_for(tensor); + + LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ", + ++idx, ml.n_tensors, + ggml_get_name(tensor), + llama_format_tensor_shape(tensor).c_str(), + ggml_type_name(tensor->type)); + + // This used to be a regex, but has an extreme cost to compile times. + bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'? + + // quantize only 2D and 3D tensors (experts) + quantize &= (ggml_n_dims(tensor) >= 2); + + // do not quantize norm tensors + quantize &= name.find("_norm.weight") == std::string::npos; + + quantize &= params->quantize_output_tensor || name != "output.weight"; + quantize &= !params->only_copy; + + // do not quantize expert gating tensors + // NOTE: can't use LLM_TN here because the layer number is not known + quantize &= name.find("ffn_gate_inp.weight") == std::string::npos; + + // do not quantize positional embeddings and token types (BERT) + quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight"); + quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight"); + + // do not quantize Mamba's small yet 2D weights + // NOTE: can't use LLM_TN here because the layer number is not known + quantize &= name.find("ssm_conv1d.weight") == std::string::npos; + quantize &= name.find("ssm_x.weight") == std::string::npos; + quantize &= name.find("ssm_dt.weight") == std::string::npos; + + enum ggml_type new_type; + void * new_data; + size_t new_size; + + if (quantize) { + new_type = default_type; + + // get more optimal quantization type based on the tensor shape, layer, etc. + if (!params->pure && ggml_is_quantized(default_type)) { + new_type = llama_tensor_get_type(qs, new_type, tensor, ftype); + } + if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) { + new_type = params->token_embedding_type; + } + if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) { + new_type = params->output_tensor_type; + } + + // If we've decided to quantize to the same type the tensor is already + // in then there's nothing to do. + quantize = tensor->type != new_type; + } + + if (!quantize) { + new_type = tensor->type; + new_data = tensor->data; + new_size = ggml_nbytes(tensor); + LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0); + } else { + const int64_t nelements = ggml_nelements(tensor); + + const float * imatrix = nullptr; + if (imatrix_data) { + auto it = imatrix_data->find(tensor->name); + if (it == imatrix_data->end()) { + LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name); + } else { + if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) { + imatrix = it->second.data(); + } else { + LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__, + int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name); + + // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix + // this is a significant error and it may be good idea to abort the process if this happens, + // since many people will miss the error and not realize that most of the model is being quantized without an imatrix + // tok_embd should be ignored in this case, since it always causes this warning + if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) { + throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s", + int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name)); + } + } + } + } + if ((new_type == GGML_TYPE_IQ2_XXS || + new_type == GGML_TYPE_IQ2_XS || + new_type == GGML_TYPE_IQ2_S || + new_type == GGML_TYPE_IQ1_S || + (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) || + (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) { + LLAMA_LOG_ERROR("\n\n============================================================\n"); + LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name); + LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n"); + LLAMA_LOG_ERROR("============================================================\n\n"); + throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name)); + } + + float * f32_data; + + if (tensor->type == GGML_TYPE_F32) { + f32_data = (float *) tensor->data; + } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) { + throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type))); + } else { + llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread); + f32_data = (float *) f32_conv_buf.data(); + } + + LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type)); + fflush(stdout); + + if (work.size() < (size_t)nelements * 4) { + work.resize(nelements * 4); // upper bound on size + } + new_data = work.data(); + + const int64_t n_per_row = tensor->ne[0]; + const int64_t nrows = tensor->ne[1]; + + static const int64_t min_chunk_size = 32 * 512; + const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row); + + const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1]; + const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size; + const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1; + + // quantize each expert separately since they have different importance matrices + new_size = 0; + for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) { + const float * f32_data_03 = f32_data + i03 * nelements_matrix; + void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows; + const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr; + + new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use); + } + LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0); + } + total_size_org += ggml_nbytes(tensor); + total_size_new += new_size; + + // update the gguf meta data as we go + gguf_set_tensor_type(ctx_out, name.c_str(), new_type); + gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size); + + // write tensor data + padding + fout.write((const char *) new_data, new_size); + zeros(fout, GGML_PAD(new_size, align) - new_size); + } + + // go back to beginning of file and write the updated meta data + { + fout.seekp(0); + std::vector data(gguf_get_meta_size(ctx_out)); + gguf_get_meta_data(ctx_out, data.data()); + fout.write((const char *) data.data(), data.size()); + } + + fout.close(); + + gguf_free(ctx_out); + + LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0); + LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0); + + if (qs.n_fallback > 0) { + LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n", + __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback); + } +} + +static int llama_apply_lora_from_file_internal( + const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads +) { + LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora); + + const int64_t t_start_lora_us = ggml_time_us(); + + llama_file fin(path_lora, "rb"); + + // verify magic and version + { + uint32_t magic = fin.read_u32(); + if (magic != LLAMA_FILE_MAGIC_GGLA) { + LLAMA_LOG_ERROR("%s: bad file magic\n", __func__); + return 1; + } + + uint32_t format_version = fin.read_u32(); + if (format_version != 1) { + LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ ); + return 1; + } + } + + int32_t lora_r = fin.read_u32(); + int32_t lora_alpha = fin.read_u32(); + float scaling = scale * (float)lora_alpha / (float)lora_r; + + LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling); + + // load base model + std::unique_ptr ml; + if (path_base_model) { + LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model); + ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*kv_overrides*/ nullptr)); + ml->init_mappings(/*prefetch*/ false); // no prefetching + } + + struct tensor_meta { + std::string name; + ggml_type type; + int32_t ne[2]; + size_t offset; + }; + std::map tensor_meta_map; + + // load all tensor meta + while (true) { + if (fin.tell() == fin.size) { + // eof + break; + } + + int32_t n_dims; + int32_t name_len; + int32_t ftype; + + fin.read_raw(&n_dims, sizeof(n_dims)); + fin.read_raw(&name_len, sizeof(name_len)); + fin.read_raw(&ftype, sizeof(ftype)); + + if (n_dims != 1 && n_dims != 2) { + LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims); + return 1; + } + + int32_t ne[2] = { 1, 1 }; + for (int i = 0; i < n_dims; ++i) { + fin.read_raw(&ne[i], sizeof(ne[i])); + } + + std::string name; + { + GGML_ASSERT(name_len < GGML_MAX_NAME); + char buf[GGML_MAX_NAME]; + fin.read_raw(buf, name_len); + name = std::string(buf, name_len); + } + + // check for lora suffix + std::string lora_suffix; + if (name.length() > 6) { + lora_suffix = name.substr(name.length() - 6); + } + if (lora_suffix != ".loraA" && lora_suffix != ".loraB") { + LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str()); + return 1; + } + + // tensor type + ggml_type wtype; + switch (ftype) { + case 0: wtype = GGML_TYPE_F32; break; + case 1: wtype = GGML_TYPE_F16; break; + default: + { + LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n", + __func__, ftype); + return 1; + } + } + + // data offset + size_t offset = fin.tell(); + offset = (offset + 31) & -32; + + // skip tensor data + fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET); + + tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset }); + } + + bool warned = false; + int n_tensors = 0; + + // apply + ggml_backend_t backend_cpu = ggml_backend_cpu_init(); + if (backend_cpu == nullptr) { + LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__); + return 1; + } + ggml_backend_cpu_set_n_threads(backend_cpu, n_threads); + + std::vector> read_buf; + for (const auto & it : model.tensors_by_name) { + const std::string & base_name = it.first; + ggml_tensor * model_t = it.second; + + if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() || + tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) { + continue; + } + + tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA"); + tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB"); + + ggml_init_params lora_init_params = { + /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(), + /* .mem_buffer */ nullptr, + /* .no_alloc */ true, + }; + ggml_context * lora_ctx = ggml_init(lora_init_params); + if (lora_ctx == nullptr) { + LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__); + ggml_backend_free(backend_cpu); + return 1; + } + + // create tensors + ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]); + ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]); + ggml_set_name(loraA, metaA.name.c_str()); + ggml_set_name(loraB, metaB.name.c_str()); + + ggml_tensor * base_t; + if (ml) { + if (!ml->get_tensor_meta(base_name.c_str())) { + LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str()); + return 1; + } + base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str())); + } else { + base_t = ggml_dup_tensor(lora_ctx, model_t); + } + ggml_set_name(base_t, base_name.c_str()); + + // allocate in backend buffer + ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type()); + if (lora_buf == nullptr) { + LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__); + return 1; + } + + // load tensor data + auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) { + read_buf.resize(ggml_nbytes(tensor)); + fin.seek(tensor_meta.offset, SEEK_SET); + fin.read_raw(read_buf.data(), ggml_nbytes(tensor)); + ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size()); + }; + load_tensor(metaA, loraA); + load_tensor(metaB, loraB); + + // load base model tensor data + if (ml) { + ml->load_data_for(base_t); + } else { + ggml_backend_tensor_copy(model_t, base_t); + } + + if (ggml_is_quantized(base_t->type) && !warned) { + LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, " + "use a f16 or f32 base model with --lora-base\n", __func__); + warned = true; + } + + if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) { + LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");" + " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]); + ggml_free(lora_ctx); + ggml_backend_buffer_free(lora_buf); + ggml_backend_free(backend_cpu); + return 1; + } + + auto build_lora_graph = [&]() { + // w = w + BA*s + ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB); + ggml_set_name(BA, "BA"); + + if (scaling != 1.0f) { + BA = ggml_scale(lora_ctx, BA, scaling); + ggml_set_name(BA, "BA_scaled"); + } + + ggml_tensor * r; + r = ggml_add_inplace(lora_ctx, base_t, BA); + ggml_set_name(r, "r_add"); + + if (base_t->type != model_t->type) { + // convert the result to the model type + r = ggml_cast(lora_ctx, r, model_t->type); + ggml_set_name(r, "r_cast"); + } + + return r; + }; + + ggml_cgraph * gf = ggml_new_graph(lora_ctx); + ggml_tensor * r = build_lora_graph(); + ggml_build_forward_expand(gf, r); + + ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type()); + if (graph_buf == nullptr) { + LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__); + ggml_free(lora_ctx); + ggml_backend_buffer_free(lora_buf); + ggml_backend_free(backend_cpu); + return 1; + } + + ggml_backend_graph_compute(backend_cpu, gf); + + ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r)); + +#if 0 + // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU + //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE); + + // sched compute + ggml_build_forward_expand(gf, build_graph()); + ggml_backend_sched_init_measure(sched, gf); + + // create the graph again, since the previous one was destroyed by the measure + ggml_graph_clear(gf); + ggml_build_forward_expand(gf, build_graph()); + ggml_backend_sched_graph_compute(sched, gf); + ggml_backend_sched_free(sched); +#endif + + ggml_backend_buffer_free(lora_buf); + ggml_backend_buffer_free(graph_buf); + ggml_free(lora_ctx); + + n_tensors++; + if (n_tensors % 4 == 0) { + LLAMA_LOG_INFO("."); + } + } + + ggml_backend_free(backend_cpu); + + const int64_t t_lora_us = ggml_time_us() - t_start_lora_us; + LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0); + + return 0; +} + +// +// interface implementation +// +struct llama_model_params llama_model_default_params() { + struct llama_model_params result = { + /*.n_gpu_layers =*/ 0, + /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER, + /*.main_gpu =*/ 0, + /*.tensor_split =*/ nullptr, + /*.progress_callback =*/ nullptr, + /*.progress_callback_user_data =*/ nullptr, + /*.kv_overrides =*/ nullptr, + /*.vocab_only =*/ false, + /*.use_mmap =*/ true, + /*.use_mlock =*/ false, + }; + +#ifdef GGML_USE_METAL + // note: we usually have plenty of VRAM, so by default offload all layers to the GPU + result.n_gpu_layers = 999; +#endif + + return result; +} + +struct llama_context_params llama_context_default_params() { + struct llama_context_params result = { + /*.seed =*/ LLAMA_DEFAULT_SEED, + /*.n_ctx =*/ 512, + /*.n_batch =*/ 2048, + /*.n_ubatch =*/ 512, + /*.n_seq_max =*/ 1, + /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default + /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS, + /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED, + /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED, + /*.rope_freq_base =*/ 0.0f, + /*.rope_freq_scale =*/ 0.0f, + /*.yarn_ext_factor =*/ -1.0f, + /*.yarn_attn_factor =*/ 1.0f, + /*.yarn_beta_fast =*/ 32.0f, + /*.yarn_beta_slow =*/ 1.0f, + /*.yarn_orig_ctx =*/ 0, + /*.defrag_thold =*/ -1.0f, + /*.cb_eval =*/ nullptr, + /*.cb_eval_user_data =*/ nullptr, + /*.type_k =*/ GGML_TYPE_F16, + /*.type_v =*/ GGML_TYPE_F16, + /*.logits_all =*/ false, + /*.embeddings =*/ false, + /*.offload_kqv =*/ true, + /*.abort_callback =*/ nullptr, + /*.abort_callback_data =*/ nullptr, + }; + + return result; +} + +struct llama_model_quantize_params llama_model_quantize_default_params() { + struct llama_model_quantize_params result = { + /*.nthread =*/ 0, + /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1, + /*.output_tensor_type =*/ GGML_TYPE_COUNT, + /*.token_embedding_type =*/ GGML_TYPE_COUNT, + /*.allow_requantize =*/ false, + /*.quantize_output_tensor =*/ true, + /*.only_copy =*/ false, + /*.pure =*/ false, + /*.imatrix =*/ nullptr, + /*.kv_overrides =*/ nullptr, + }; + + return result; +} + +size_t llama_max_devices(void) { +#if defined(GGML_USE_METAL) + return 1; +#elif defined(GGML_USE_CUDA) + return GGML_CUDA_MAX_DEVICES; +#elif defined(GGML_USE_SYCL) + return GGML_SYCL_MAX_DEVICES; +#elif defined(GGML_USE_VULKAN) + return GGML_VK_MAX_DEVICES; +#else + return 1; +#endif +} + +bool llama_supports_mmap(void) { + return llama_mmap::SUPPORTED; +} + +bool llama_supports_mlock(void) { + return llama_mlock::SUPPORTED; +} + +bool llama_supports_gpu_offload(void) { +#if defined(GGML_USE_CUDA) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \ + defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) + // Defined when llama.cpp is compiled with support for offloading model layers to GPU. + return true; +#else + return false; +#endif +} + +void llama_backend_init(void) { + ggml_time_init(); + + // needed to initialize f16 tables + { + struct ggml_init_params params = { 0, NULL, false }; + struct ggml_context * ctx = ggml_init(params); + ggml_free(ctx); + } + +#ifdef GGML_USE_MPI + ggml_mpi_backend_init(); +#endif +} + +void llama_numa_init(enum ggml_numa_strategy numa) { + if (numa != GGML_NUMA_STRATEGY_DISABLED) { + ggml_numa_init(numa); + } +} + +void llama_backend_free(void) { +#ifdef GGML_USE_MPI + ggml_mpi_backend_free(); +#endif + ggml_quantize_free(); +} + +int64_t llama_time_us(void) { + return ggml_time_us(); +} + +struct llama_model * llama_load_model_from_file( + const char * path_model, + struct llama_model_params params) { + ggml_time_init(); + + llama_model * model = new llama_model; + + unsigned cur_percentage = 0; + if (params.progress_callback == NULL) { + params.progress_callback_user_data = &cur_percentage; + params.progress_callback = [](float progress, void * ctx) { + unsigned * cur_percentage_p = (unsigned *) ctx; + unsigned percentage = (unsigned) (100 * progress); + while (percentage > *cur_percentage_p) { + *cur_percentage_p = percentage; + LLAMA_LOG_INFO("."); + if (percentage >= 100) { + LLAMA_LOG_INFO("\n"); + } + } + return true; + }; + } + + int status = llama_model_load(path_model, *model, params); + GGML_ASSERT(status <= 0); + if (status < 0) { + if (status == -1) { + LLAMA_LOG_ERROR("%s: failed to load model\n", __func__); + } else if (status == -2) { + LLAMA_LOG_INFO("%s: cancelled model load\n", __func__); + } + delete model; + return nullptr; + } + + return model; +} + +void llama_free_model(struct llama_model * model) { + delete model; +} + +struct llama_context * llama_new_context_with_model( + struct llama_model * model, + struct llama_context_params params) { + + if (!model) { + LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__); + return nullptr; + } + + if (params.n_batch == 0 && params.n_ubatch == 0) { + LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__); + return nullptr; + } + + if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) { + LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__); + return nullptr; + } + + llama_context * ctx = new llama_context(*model); + + const auto & hparams = model->hparams; + auto & cparams = ctx->cparams; + + cparams.n_seq_max = std::max(1u, params.n_seq_max); + cparams.n_threads = params.n_threads; + cparams.n_threads_batch = params.n_threads_batch; + cparams.yarn_ext_factor = params.yarn_ext_factor; + cparams.yarn_attn_factor = params.yarn_attn_factor; + cparams.yarn_beta_fast = params.yarn_beta_fast; + cparams.yarn_beta_slow = params.yarn_beta_slow; + cparams.defrag_thold = params.defrag_thold; + cparams.embeddings = params.embeddings; + cparams.offload_kqv = params.offload_kqv; + cparams.pooling_type = params.pooling_type; + + cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx; + cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base; + cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale; + + // this is necessary due to kv_self.n being padded later during inference + cparams.n_ctx = GGML_PAD(cparams.n_ctx, 32); + + // with causal attention, the batch size is limited by the context size + cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch; + cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch); + + + cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx : + hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx : + hparams.n_ctx_train; + + cparams.cb_eval = params.cb_eval; + cparams.cb_eval_user_data = params.cb_eval_user_data; + + auto rope_scaling_type = params.rope_scaling_type; + if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) { + rope_scaling_type = hparams.rope_scaling_type_train; + } + + if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) { + cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none + } + + if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set' + cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f; + } + + cparams.causal_attn = hparams.causal_attn; + + if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) { + if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) { + cparams.pooling_type = LLAMA_POOLING_TYPE_NONE; + } else { + cparams.pooling_type = hparams.pooling_type; + } + } + + if (params.seed == LLAMA_DEFAULT_SEED) { + params.seed = time(NULL); + } + + LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx); + LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch); + LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch); + LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base); + LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale); + + ctx->abort_callback = params.abort_callback; + ctx->abort_callback_data = params.abort_callback_data; + + ctx->rng = std::mt19937(params.seed); + ctx->logits_all = params.logits_all; + + uint32_t kv_size = cparams.n_ctx; + ggml_type type_k = params.type_k; + ggml_type type_v = params.type_v; + + // Mamba only needs a constant number of KV cache cells per sequence + if (model->arch == LLM_ARCH_MAMBA) { + // Mamba needs at least as many KV cells as there are sequences kept at any time + kv_size = std::max((uint32_t) 1, params.n_seq_max); + // it's probably best to keep as much precision as possible for the states + type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states + type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states + } + + GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0); + GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0); + + if (!hparams.vocab_only) { + // initialize backends +#ifdef GGML_USE_METAL + if (model->n_gpu_layers > 0) { + ctx->backend_metal = ggml_backend_metal_init(); + if (ctx->backend_metal == nullptr) { + LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__); + llama_free(ctx); + return nullptr; + } + ctx->backends.push_back(ctx->backend_metal); + } +#elif defined(GGML_USE_CUDA) + if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) { + // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used + ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu); + if (backend == nullptr) { + LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu); + llama_free(ctx); + return nullptr; + } + ctx->backends.push_back(backend); + } else { + // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU + for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) { + ggml_backend_t backend = ggml_backend_cuda_init(device); + if (backend == nullptr) { + LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device); + llama_free(ctx); + return nullptr; + } + ctx->backends.push_back(backend); + } + } +#elif defined(GGML_USE_VULKAN) + if (model->split_mode == LLAMA_SPLIT_MODE_ROW) { + LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__); + llama_free(ctx); + return nullptr; + } + if (model->split_mode == LLAMA_SPLIT_MODE_NONE) { + ggml_backend_t backend = ggml_backend_vk_init(0); + if (backend == nullptr) { + LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__); + llama_free(ctx); + return nullptr; + } + ctx->backends.push_back(backend); + } else { + for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) { + ggml_backend_t backend = ggml_backend_vk_init(device); + if (backend == nullptr) { + LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device); + llama_free(ctx); + return nullptr; + } + ctx->backends.push_back(backend); + } + } +#elif defined(GGML_USE_SYCL) + // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used + if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) { + ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu); + if (backend == nullptr) { + int main_gpu_id = ggml_backend_sycl_get_device_id(model->main_gpu); + LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, main_gpu_id, model->main_gpu); + llama_free(ctx); + return nullptr; + } + ctx->backends.push_back(backend); + } else { + // LLAMA_SPLIT_LAYER requires a backend for each GPU + for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) { + ggml_backend_t backend = ggml_backend_sycl_init(i); + if (backend == nullptr) { + int id_list[GGML_SYCL_MAX_DEVICES]; + ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES); + LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i); + llama_free(ctx); + return nullptr; + } + ctx->backends.push_back(backend); + } + } +#elif defined(GGML_USE_KOMPUTE) + if (model->n_gpu_layers > 0) { + auto * backend = ggml_backend_kompute_init(model->main_gpu); + if (backend == nullptr) { + LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__); + llama_free(ctx); + return nullptr; + } + ctx->backends.push_back(backend); + } +#endif + ctx->backend_cpu = ggml_backend_cpu_init(); + if (ctx->backend_cpu == nullptr) { + LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__); + llama_free(ctx); + return nullptr; + } + ctx->backends.push_back(ctx->backend_cpu); + + if (!llama_kv_cache_init(ctx->kv_self, ctx->model, type_k, type_v, kv_size, cparams.offload_kqv)) { + LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__); + llama_free(ctx); + return nullptr; + } + + { + size_t memory_size_k = 0; + size_t memory_size_v = 0; + + for (auto & k : ctx->kv_self.k_l) { + memory_size_k += ggml_nbytes(k); + } + + for (auto & v : ctx->kv_self.v_l) { + memory_size_v += ggml_nbytes(v); + } + + LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__, + (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), + ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f), + ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f)); + } + + // graph outputs buffer + { + // resized during inference when a batch uses more outputs + if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) { + LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__); + llama_free(ctx); + return nullptr; + } + + LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__, + ggml_backend_buffer_name(ctx->buf_output), + ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0); + } + + // scheduler and compute buffers + { + // buffer types used for the compute buffer of each backend + std::vector backend_buft; + for (auto * backend : ctx->backends) { + if (ggml_backend_is_cpu(backend)) { + // use host buffers for the CPU backend compute buffer + backend_buft.push_back(llama_default_buffer_type_cpu(true)); + } else { + backend_buft.push_back(ggml_backend_get_default_buffer_type(backend)); + } + } + + // buffer used to store the computation graph and the tensor meta data + ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false)); + + // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary + bool pipeline_parallel = llama_get_device_count() > 1 && model->n_gpu_layers > (int)model->hparams.n_layer && model->split_mode == LLAMA_SPLIT_MODE_LAYER; +#ifndef GGML_USE_CUDA + // pipeline parallelism requires support for async compute and events + // currently this is only implemented in the CUDA backend + pipeline_parallel = false; +#endif + ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel); + + if (pipeline_parallel) { + LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched)); + } + + // build worst-case graph + int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch); + int n_past = cparams.n_ctx - n_tokens; + llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph + ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true); + + // initialize scheduler with the worst-case graph + if (!ggml_backend_sched_reserve(ctx->sched, gf)) { + LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__); + llama_free(ctx); + return nullptr; + } + + for (size_t i = 0; i < ctx->backends.size(); i++) { + ggml_backend_t backend = ctx->backends[i]; + ggml_backend_buffer_type_t buft = backend_buft[i]; + size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend); + if (size > 1) { + LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__, + ggml_backend_buft_name(buft), + size / 1024.0 / 1024.0); + } + } + + // note: the number of splits during measure is higher than during inference due to the kv shift + int n_splits = ggml_backend_sched_get_n_splits(ctx->sched); + LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes); + LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits); + } + } + +#ifdef GGML_USE_MPI + ctx->ctx_mpi = ggml_mpi_init(); + + if (ggml_mpi_rank(ctx->ctx_mpi) > 0) { + // Enter a blocking eval loop with dummy input, letting rank=0 drive the process + // TODO: needs fix after #3228 + GGML_ASSERT(false && "not implemented"); + //const std::vector tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx)); + //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {}; + llama_backend_free(); + exit(1); + } +#endif + + return ctx; +} + +void llama_free(struct llama_context * ctx) { + delete ctx; +} + +const llama_model * llama_get_model(const struct llama_context * ctx) { + return &ctx->model; +} + +uint32_t llama_n_ctx(const struct llama_context * ctx) { + return ctx->cparams.n_ctx; +} + +uint32_t llama_n_batch(const struct llama_context * ctx) { + return ctx->cparams.n_batch; +} + +uint32_t llama_n_ubatch(const struct llama_context * ctx) { + return ctx->cparams.n_ubatch; +} + +uint32_t llama_n_seq_max(const struct llama_context * ctx) { + return ctx->kv_self.size; +} + +enum llama_vocab_type llama_vocab_type(const struct llama_model * model) { + return model->vocab.type; +} + +enum llama_rope_type llama_rope_type(const struct llama_model * model) { + switch (model->arch) { + // these models do not use RoPE + case LLM_ARCH_GPT2: + case LLM_ARCH_GPTJ: + case LLM_ARCH_GPTNEOX: + case LLM_ARCH_MPT: + case LLM_ARCH_REFACT: + case LLM_ARCH_BLOOM: + case LLM_ARCH_MAMBA: + return LLAMA_ROPE_TYPE_NONE; + + // use what we call a normal RoPE, operating on pairs of consecutive head values + case LLM_ARCH_LLAMA: + case LLM_ARCH_BAICHUAN: + case LLM_ARCH_STARCODER: + case LLM_ARCH_PLAMO: + case LLM_ARCH_CODESHELL: + case LLM_ARCH_ORION: + case LLM_ARCH_INTERNLM2: + case LLM_ARCH_MINICPM: + case LLM_ARCH_XVERSE: + case LLM_ARCH_COMMAND_R: + case LLM_ARCH_OLMO: + return LLAMA_ROPE_TYPE_NORM; + + // the pairs of head values are offset by n_rot/2 + case LLM_ARCH_FALCON: + case LLM_ARCH_GROK: + case LLM_ARCH_DBRX: + case LLM_ARCH_PERSIMMON: + case LLM_ARCH_BERT: + case LLM_ARCH_NOMIC_BERT: + case LLM_ARCH_STABLELM: + case LLM_ARCH_QWEN: + case LLM_ARCH_QWEN2: + case LLM_ARCH_QWEN2MOE: + case LLM_ARCH_PHI2: + case LLM_ARCH_GEMMA: + case LLM_ARCH_STARCODER2: + return LLAMA_ROPE_TYPE_NEOX; + + // all model arches should be listed explicitly here + case LLM_ARCH_UNKNOWN: + GGML_ASSERT(false && "unknown architecture"); + break; + } + + return LLAMA_ROPE_TYPE_NONE; +} + +int32_t llama_n_vocab(const struct llama_model * model) { + return model->hparams.n_vocab; +} + +int32_t llama_n_ctx_train(const struct llama_model * model) { + return model->hparams.n_ctx_train; +} + +int32_t llama_n_embd(const struct llama_model * model) { + return model->hparams.n_embd; +} + +int32_t llama_n_layer(const struct llama_model * model) { + return model->hparams.n_layer; +} + +float llama_rope_freq_scale_train(const struct llama_model * model) { + return model->hparams.rope_freq_scale_train; +} + +int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) { + const auto & it = model->gguf_kv.find(key); + if (it == model->gguf_kv.end()) { + if (buf_size > 0) { + buf[0] = '\0'; + } + return -1; + } + return snprintf(buf, buf_size, "%s", it->second.c_str()); +} + +int32_t llama_model_meta_count(const struct llama_model * model) { + return (int)model->gguf_kv.size(); +} + +int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) { + if (i < 0 || i >= (int)model->gguf_kv.size()) { + if (buf_size > 0) { + buf[0] = '\0'; + } + return -1; + } + auto it = model->gguf_kv.begin(); + std::advance(it, i); + return snprintf(buf, buf_size, "%s", it->first.c_str()); +} + +int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) { + if (i < 0 || i >= (int)model->gguf_kv.size()) { + if (buf_size > 0) { + buf[0] = '\0'; + } + return -1; + } + auto it = model->gguf_kv.begin(); + std::advance(it, i); + return snprintf(buf, buf_size, "%s", it->second.c_str()); +} + +int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) { + return snprintf(buf, buf_size, "%s %s %s", + llama_model_arch_name(model->arch), + llama_model_type_name(model->type), + llama_model_ftype_name(model->ftype).c_str()); +} + +uint64_t llama_model_size(const struct llama_model * model) { + uint64_t size = 0; + for (const auto & it : model->tensors_by_name) { + size += ggml_nbytes(it.second); + } + return size; +} + +uint64_t llama_model_n_params(const struct llama_model * model) { + uint64_t nparams = 0; + for (const auto & it : model->tensors_by_name) { + nparams += ggml_nelements(it.second); + } + return nparams; +} + +struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) { + auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(), + [name](const std::pair & it) { + return it.first == name; + }); + if (it == model->tensors_by_name.end()) { + return nullptr; + } + return it->second; +} + +uint32_t llama_model_quantize( + const char * fname_inp, + const char * fname_out, + const llama_model_quantize_params * params) { + try { + llama_model_quantize_internal(fname_inp, fname_out, params); + return 0; + } catch (const std::exception & err) { + LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what()); + return 1; + } +} + +int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) { + try { + return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads); + } catch (const std::exception & err) { + LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what()); + return 1; + } +} + +static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) { + GGML_ASSERT(cvec.tensors.empty()); + GGML_ASSERT(cvec.ctxs.empty()); + GGML_ASSERT(cvec.bufs.empty()); + + // count layer buffer types + std::map buft_layer_count; + for (int64_t i = 0; i < model.hparams.n_layer; i++) { + buft_layer_count[model.buft_layer[i].buft]++; + } + + // allocate contexts + std::map ctx_map; + for (auto & it : buft_layer_count) { + int n_layers = it.second; + struct ggml_init_params params = { + /*.mem_size =*/ n_layers * ggml_tensor_overhead(), + /*.mem_buffer =*/ NULL, + /*.no_alloc =*/ true, + }; + ggml_context * ctx = ggml_init(params); + if (!ctx) { + LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__); + return 1; + } + ctx_map[it.first] = ctx; + } + + // make tensors + cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0 + for (size_t il = 1; il < model.hparams.n_layer; il++) { + struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft); + ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd); + cvec.tensors.push_back(tensor); + } + + // allocate tensors / buffers and zero + for (auto it : ctx_map) { + ggml_backend_buffer_type_t buft = it.first; + ggml_context * ctx = it.second; + ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); + if (!buf) { + LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__); + return false; + } + ggml_backend_buffer_clear(buf, 0); + cvec.ctxs.push_back(ctx); + cvec.bufs.push_back(buf); + } + + return true; +} + +int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) { + const llama_model & model = lctx->model; + llama_control_vector & cvec = lctx->cvec; + + if (data == nullptr) { + // disable the current control vector (but leave allocated for later) + cvec.layer_start = -1; + cvec.layer_end = -1; + return 0; + } + + if (n_embd != (int) model.hparams.n_embd) { + LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__); + return 1; + } + + if (cvec.tensors.empty()) { + if (!llama_control_vector_init(cvec, model)) { + return 1; + } + } + + cvec.layer_start = il_start; + cvec.layer_end = il_end; + + for (size_t il = 1; il < model.hparams.n_layer; il++) { + assert(cvec.tensors[il] != nullptr); + + const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present + if (off + n_embd <= len) { + ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il])); + } + } + + return 0; +} + +struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) { + struct llama_kv_cache_view result = { + /*.n_cells = */ 0, + /*.n_seq_max = */ n_seq_max, + /*.token_count = */ 0, + /*.used_cells = */ llama_get_kv_cache_used_cells(ctx), + /*.max_contiguous = */ 0, + /*.max_contiguous_idx = */ -1, + /*.cells = */ nullptr, + /*.cells_sequences = */ nullptr, + }; + return result; +} + +void llama_kv_cache_view_free(struct llama_kv_cache_view * view) { + if (view->cells != nullptr) { + free(view->cells); + view->cells = nullptr; + } + if (view->cells_sequences != nullptr) { + free(view->cells_sequences); + view->cells_sequences = nullptr; + } +} + +void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) { + if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) { + view->n_cells = int32_t(ctx->kv_self.size); + void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells); + GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells"); + view->cells = (struct llama_kv_cache_view_cell *)p; + p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells); + GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences"); + view->cells_sequences = (llama_seq_id *)p; + } + + const std::vector & kv_cells = ctx->kv_self.cells; + llama_kv_cache_view_cell * c_curr = view->cells; + llama_seq_id * cs_curr = view->cells_sequences; + int32_t used_cells = 0; + int32_t token_count = 0; + int32_t curr_contig_idx = -1; + uint32_t max_contig = 0; + int32_t max_contig_idx = -1; + + for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) { + const size_t curr_size = kv_cells[i].seq_id.size(); + token_count += curr_size; + c_curr->pos = kv_cells[i].pos + kv_cells[i].delta; + + if (curr_size > 0) { + if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) { + max_contig = i - curr_contig_idx; + max_contig_idx = curr_contig_idx; + } + curr_contig_idx = -1; + } else if (curr_contig_idx < 0) { + curr_contig_idx = i; + } + + int seq_idx = 0; + for (const llama_seq_id it : kv_cells[i].seq_id) { + if (seq_idx >= view->n_seq_max) { + break; + } + cs_curr[seq_idx] = it; + seq_idx++; + } + if (seq_idx != 0) { + used_cells++; + } + for (; seq_idx < view->n_seq_max; seq_idx++) { + cs_curr[seq_idx] = -1; + } + } + if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) { + max_contig_idx = curr_contig_idx; + max_contig = kv_cells.size() - curr_contig_idx; + } + view->max_contiguous = max_contig; + view->max_contiguous_idx = max_contig_idx; + view->token_count = token_count; + view->used_cells = used_cells; + if (uint32_t(used_cells) != ctx->kv_self.used) { + LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n", + __func__, ctx->kv_self.used, used_cells); + } +} + +int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) { + int result = 0; + + for (uint32_t i = 0; i < ctx->kv_self.size; i++) { + result += ctx->kv_self.cells[i].seq_id.size(); + } + + return result; +} + +int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) { + return ctx->kv_self.used; +} + +void llama_kv_cache_clear(struct llama_context * ctx) { + llama_kv_cache_clear(ctx->kv_self); +} + +bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) { + return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1); +} + +void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { + if (seq_id_src == seq_id_dst) { + return; + } + llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1); +} + +void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) { + llama_kv_cache_seq_keep(ctx->kv_self, seq_id); +} + +void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) { + if (delta == 0) { + return; + } + + llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta); +} + +void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { + if (d == 1) { + return; + } + + llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d); +} + +llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) { + return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id); +} + +void llama_kv_cache_defrag(struct llama_context * ctx) { + llama_kv_cache_defrag(ctx->kv_self); +} + +void llama_kv_cache_update(struct llama_context * ctx) { + llama_kv_cache_update_internal(*ctx); +} + +// deprecated +size_t llama_get_state_size(const struct llama_context * ctx) { + return llama_state_get_size(ctx); +} + +// deprecated +size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) { + return llama_state_get_data(ctx, dst); +} + +// deprecated +size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) { + return llama_state_set_data(ctx, src); +} + +// deprecated +bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { + return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out); +} + +// deprecated +bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) { + return llama_state_save_file(ctx, path_session, tokens, n_token_count); +} + +// Returns the *maximum* size of the state +size_t llama_state_get_size(const struct llama_context * ctx) { + const auto & cparams = ctx->cparams; + const auto & hparams = ctx->model.hparams; + + // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state. + // for reference, std::mt19937(1337) serializes to 6701 bytes. + const size_t s_rng_size = sizeof(size_t); + const size_t s_rng = LLAMA_MAX_RNG_STATE; + const size_t s_n_outputs = sizeof(size_t); + // assume worst case for outputs although only currently set ones are serialized + const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t); + const size_t s_logits_size = sizeof(size_t); + const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0; + const size_t s_embedding_size = sizeof(size_t); + const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0; + const size_t s_kv_buf_size = sizeof(size_t); + const size_t s_kv_head = sizeof(uint32_t); + const size_t s_kv_size = sizeof(uint32_t); + const size_t s_kv_used = sizeof(uint32_t); + const size_t s_kv = ctx->kv_self.total_size(); + const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id); + const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell; + + const size_t s_total = ( + + s_rng_size + + s_rng + + s_n_outputs + + s_output_pos + + s_logits_size + + s_logits + + s_embedding_size + + s_embedding + + s_kv_buf_size + + s_kv_head + + s_kv_size + + s_kv_used + + s_kv + + s_kv_cells + ); + + return s_total; +} + +// llama_context_data +struct llama_data_context { + virtual void write(const void * src, size_t size) = 0; + virtual size_t get_size_written() = 0; + virtual ~llama_data_context() = default; +}; + +struct llama_data_buffer_context : llama_data_context { + uint8_t * ptr; + size_t size_written = 0; + + llama_data_buffer_context(uint8_t * p) : ptr(p) {} + + void write(const void * src, size_t size) override { + memcpy(ptr, src, size); + ptr += size; + size_written += size; + } + + size_t get_size_written() override { + return size_written; + } +}; + +struct llama_data_file_context : llama_data_context { + llama_file * file; + size_t size_written = 0; + + llama_data_file_context(llama_file * f) : file(f) {} + + void write(const void * src, size_t size) override { + file->write_raw(src, size); + size_written += size; + } + + size_t get_size_written() override { + return size_written; + } +}; + +/** copy state data into either a buffer or file depending on the passed in context + * + * file context: + * llama_file file("/path", "wb"); + * llama_data_file_context data_ctx(&file); + * llama_state_get_data(ctx, &data_ctx); + * + * buffer context: + * std::vector buf(max_size, 0); + * llama_data_buffer_context data_ctx(&buf.data()); + * llama_state_get_data(ctx, &data_ctx); + * +*/ +static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) { + // copy rng + { + std::ostringstream rng_ss; + rng_ss << ctx->rng; + + const std::string & rng_str = rng_ss.str(); + const size_t rng_size = rng_str.size(); + + GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE); + + data_ctx->write(&rng_size, sizeof(rng_size)); + data_ctx->write(rng_str.data(), rng_size); + } + + // copy outputs + { + // Can't use ctx->n_outputs because it's not for the + // entire last batch when n_ubatch is smaller than n_batch + size_t n_outputs = 0; + + // copy output ids + { + std::vector output_pos; + + const size_t n_batch = ctx->cparams.n_batch; + const auto & output_ids = ctx->output_ids; + + output_pos.resize(ctx->output_size); + + // build a more compact representation of the output ids + for (size_t i = 0; i < n_batch; ++i) { + // map an output id to a position in the batch + int32_t pos = output_ids[i]; + if (pos >= 0) { + if ((size_t) pos >= n_outputs) { + n_outputs = pos + 1; + } + GGML_ASSERT((size_t) pos < ctx->output_size); + output_pos[pos] = i; + } + } + + data_ctx->write(&n_outputs, sizeof(n_outputs)); + + if (n_outputs) { + data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t)); + } + } + + // copy logits + { + const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab); + + data_ctx->write(&logits_size, sizeof(logits_size)); + + if (logits_size) { + data_ctx->write(ctx->logits, logits_size * sizeof(float)); + } + } + + // copy embeddings + { + const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd); + + data_ctx->write(&embeddings_size, sizeof(embeddings_size)); + + if (embeddings_size) { + data_ctx->write(ctx->embd, embeddings_size * sizeof(float)); + } + } + } + + // copy kv cache + { + const auto & kv_self = ctx->kv_self; + const auto & hparams = ctx->model.hparams; + + const uint32_t n_layer = hparams.n_layer; + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s(); + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s(); + + // NOTE: kv_size and kv_buf_size are mostly used for sanity checks + const uint32_t kv_head = llama_kv_cache_cell_max(kv_self); + const uint32_t kv_size = kv_self.size; + const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head; + const uint32_t kv_used = kv_self.used; + + data_ctx->write(&kv_buf_size, sizeof(kv_buf_size)); + data_ctx->write(&kv_head, sizeof(kv_head)); + data_ctx->write(&kv_size, sizeof(kv_size)); + data_ctx->write(&kv_used, sizeof(kv_used)); + + if (kv_buf_size) { + const size_t pre_kv_buf_size = data_ctx->get_size_written(); + + std::vector tmp_buf; + for (int il = 0; il < (int) n_layer; ++il) { + const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head); + + tmp_buf.resize(k_size); + ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size()); + data_ctx->write(tmp_buf.data(), tmp_buf.size()); + + if (kv_self.recurrent) { + // v is contiguous for recurrent models + // TODO: use other tensors for state models than k and v + const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head); + + tmp_buf.resize(v_size); + ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size()); + data_ctx->write(tmp_buf.data(), tmp_buf.size()); + continue; + } + + // v is not contiguous, copy row by row + const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head); + const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size); + + tmp_buf.resize(v_row_size); + for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) { + ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size()); + data_ctx->write(tmp_buf.data(), tmp_buf.size()); + } + } + GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size); + } + + for (uint32_t i = 0; i < kv_head; ++i) { + const auto & cell = kv_self.cells[i]; + + const llama_pos pos = cell.pos; + const size_t seq_id_size = cell.seq_id.size(); + + data_ctx->write(&pos, sizeof(pos)); + data_ctx->write(&seq_id_size, sizeof(seq_id_size)); + + for (auto seq_id : cell.seq_id) { + data_ctx->write(&seq_id, sizeof(seq_id)); + } + } + } +} + +size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) { + llama_data_buffer_context data_ctx(dst); + llama_state_get_data_internal(ctx, &data_ctx); + + return data_ctx.get_size_written(); +} + +// Sets the state reading from the specified source address +size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) { + const uint8_t * inp = src; + + // set rng + { + size_t rng_size; + memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size); + + GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE); + + std::string rng_str((const char *)inp, rng_size); inp += rng_size; + + std::istringstream rng_ss(rng_str); + rng_ss >> ctx->rng; + + GGML_ASSERT(!rng_ss.fail()); + } + + // set output ids + { + size_t n_outputs; + std::vector output_pos; + + memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs); + + GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs)); + + if (n_outputs) { + output_pos.resize(n_outputs); + memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t)); + inp += n_outputs * sizeof(int32_t); + + for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) { + int32_t id = output_pos[i]; + GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch); + ctx->output_ids[id] = i; + } + + ctx->n_outputs = n_outputs; + } + } + + // set logits + { + size_t logits_size; + + memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size); + + GGML_ASSERT(ctx->logits_size >= logits_size); + + if (logits_size) { + memcpy(ctx->logits, inp, logits_size * sizeof(float)); + inp += logits_size * sizeof(float); + } + } + + // set embeddings + { + size_t embeddings_size; + + memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size); + + GGML_ASSERT(ctx->embd_size >= embeddings_size); + + if (embeddings_size) { + memcpy(ctx->embd, inp, embeddings_size * sizeof(float)); + inp += embeddings_size * sizeof(float); + } + } + + // set kv cache + { + const auto & kv_self = ctx->kv_self; + const auto & hparams = ctx->model.hparams; + + const uint32_t n_layer = hparams.n_layer; + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s(); + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s(); + + size_t kv_buf_size; + uint32_t kv_head; + uint32_t kv_size; + uint32_t kv_used; + + memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size); + memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head); + memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size); + memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used); + + if (kv_self.size != kv_size) { + // the KV cache needs to be big enough to load all the KV cells from the saved state + GGML_ASSERT(kv_self.size >= kv_head); + + LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n", + __func__, kv_head, kv_size, kv_self.size); + } + + if (kv_buf_size) { + const size_t pre_kv_buf_size = inp - src; + + GGML_ASSERT(kv_self.total_size() >= kv_buf_size); + + for (int il = 0; il < (int) n_layer; ++il) { + const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head); + + ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size); + inp += k_size; + + if (kv_self.recurrent) { + // v is contiguous for recurrent models + // TODO: use other tensors for state models than k and v + const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head); + + ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size); + inp += v_size; + continue; + } + + // v is not contiguous, copy row by row + const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head); + const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size); + + for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) { + ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size); + inp += v_row_size; + } + } + GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size); + } + + llama_kv_cache_clear(ctx); + + ctx->kv_self.head = kv_head; + ctx->kv_self.used = kv_used; + + for (uint32_t i = 0; i < kv_head; ++i) { + llama_pos pos; + size_t seq_id_size; + + memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos); + memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size); + + ctx->kv_self.cells[i].pos = pos; + + llama_seq_id seq_id; + + for (size_t j = 0; j < seq_id_size; ++j) { + memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id); + ctx->kv_self.cells[i].seq_id.insert(seq_id); + } + } + } + + const size_t nread = inp - src; + const size_t max_size = llama_state_get_size(ctx); + + GGML_ASSERT(nread <= max_size); + + return nread; +} + +static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { + llama_file file(path_session, "rb"); + + // sanity checks + { + const uint32_t magic = file.read_u32(); + const uint32_t version = file.read_u32(); + + if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) { + LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version); + return false; + } + + llama_hparams session_hparams; + file.read_raw(&session_hparams, sizeof(llama_hparams)); + + if (session_hparams != ctx->model.hparams) { + LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__); + return false; + } + } + + // load the prompt + { + const uint32_t n_token_count = file.read_u32(); + + if (n_token_count > n_token_capacity) { + LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity); + return false; + } + + file.read_raw(tokens_out, sizeof(llama_token) * n_token_count); + *n_token_count_out = n_token_count; + } + + // restore the context state + { + const size_t n_state_size_cur = file.size - file.tell(); + const size_t n_state_size_max = llama_state_get_size(ctx); + + if (n_state_size_cur > n_state_size_max) { + LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur); + return false; + } + + std::vector state_data(n_state_size_max); + file.read_raw(state_data.data(), n_state_size_cur); + + llama_state_set_data(ctx, state_data.data()); + } + + return true; +} + +bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { + try { + return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out); + } catch (const std::exception & err) { + LLAMA_LOG_ERROR("error loading session file: %s\n", err.what()); + return false; + } +} + +static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) { + llama_file file(path_session, "wb"); + + file.write_u32(LLAMA_SESSION_MAGIC); + file.write_u32(LLAMA_SESSION_VERSION); + + file.write_raw(&ctx->model.hparams, sizeof(llama_hparams)); + + // save the prompt + file.write_u32((uint32_t) n_token_count); + file.write_raw(tokens, sizeof(llama_token) * n_token_count); + + // save the context state using stream saving + llama_data_file_context data_ctx(&file); + llama_state_get_data_internal(ctx, &data_ctx); + + return true; +} + +bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) { + try { + return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count); + } catch (const std::exception & err) { + LLAMA_LOG_ERROR("error saving session file: %s\n", err.what()); + return false; + } +} + +size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) { + // save the size of size_t as a uint32_t for safety check + const size_t size_t_size_size = sizeof(uint32_t); + + // other values + const size_t s_cell_count_size = sizeof(uint32_t); + const size_t s_layer_count_size = sizeof(uint32_t); + const size_t n_embd_v_gqa_size = sizeof(uint32_t); + + size_t s_cell_count = 0; + size_t s_cell_data_size = 0; + const auto & kv_self = ctx->kv_self; + const auto & hparams = ctx->model.hparams; + + const uint32_t n_layer = hparams.n_layer; + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s(); + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s(); + + for (uint32_t i = 0; i < kv_self.size; ++i) { + const auto & cell = kv_self.cells[i]; + if (cell.seq_id.count(seq_id) > 0) { + ++s_cell_count; + s_cell_data_size += sizeof(llama_pos); + } + } + + for (int il = 0; il < (int)n_layer; ++il) { + // types of keys and values + s_cell_data_size += sizeof(int32_t) * 2; + // k_size_row and v_size_el values of layer + s_cell_data_size += sizeof(size_t) * 2; + + // keys + const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa); + s_cell_data_size += k_size_row * s_cell_count; + + // values (transposed) + const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type); + s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa; + } + + const size_t s_total = ( + size_t_size_size + + s_cell_count_size + + s_layer_count_size + + n_embd_v_gqa_size + + s_cell_data_size + ); + + return s_total; +} + +static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) { + const auto & kv_self = ctx->kv_self; + GGML_ASSERT(!kv_self.recurrent); // not implemented + + // Save the size of size_t as a uint32_t for safety check + const uint32_t size_t_size = sizeof(size_t); + data_ctx.write(&size_t_size, sizeof(size_t_size)); + + std::vector> cell_ranges; // ranges, from inclusive, to exclusive + uint32_t cell_count = 0; + + // Count the number of cells with the specified seq_id + // Find all the ranges of cells with this seq id + { + uint32_t cell_range_begin = kv_self.size; + for (uint32_t i = 0; i < kv_self.size; ++i) { + const auto & cell = kv_self.cells[i]; + if (cell.has_seq_id(seq_id)) { + ++cell_count; + if (cell_range_begin == kv_self.size) { + cell_range_begin = i; + } + } + else { + if (cell_range_begin != kv_self.size) { + cell_ranges.push_back({ cell_range_begin, i }); + cell_range_begin = kv_self.size; + } + } + } + if (cell_range_begin != kv_self.size) { + cell_ranges.push_back({ cell_range_begin, kv_self.size }); + } + + // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count + uint32_t cell_count_check = 0; + for (const auto & range : cell_ranges) { + cell_count_check += range.second - range.first; + } + GGML_ASSERT(cell_count == cell_count_check); + } + + // Write the cell count + data_ctx.write(&cell_count, sizeof(cell_count)); + + const auto & hparams = ctx->model.hparams; + const uint32_t n_layer = hparams.n_layer; + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s(); + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s(); + + // Write the layer count + data_ctx.write(&n_layer, sizeof(n_layer)); + + // Write n_embd_v_gqa + data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa)); + + // Iterate the ranges and write all the pos (this is the token position in the prompt) + for (const auto & range : cell_ranges) { + for (uint32_t i = range.first; i < range.second; ++i) { + const auto & cell = kv_self.cells[i]; + data_ctx.write(&cell.pos, sizeof(cell.pos)); + } + } + + // Iterate and write all the keys first, each row is a cell + // Get whole range at a time + std::vector tmp_buf; + for (int il = 0; il < (int)n_layer; ++il) { + // Write key type + const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type; + data_ctx.write(&k_type_i, sizeof(k_type_i)); + + // Write row size of key + const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa); + data_ctx.write(&k_size_row, sizeof(k_size_row)); + + // Read each range of cells of k_size length each into tmp_buf and write out + for (const auto & range : cell_ranges) { + const size_t range_size = range.second - range.first; + tmp_buf.resize(range_size * k_size_row); + ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row); + data_ctx.write(tmp_buf.data(), tmp_buf.size()); + } + } + + // For the values, they are transposed, so we also need the element size and get the element ranges from each row + const uint32_t kv_size = kv_self.size; + for (int il = 0; il < (int)n_layer; ++il) { + // Write value type + const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type; + data_ctx.write(&v_type_i, sizeof(v_type_i)); + + // Write element size + const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type); + data_ctx.write(&v_size_el, sizeof(v_size_el)); + + // For each row, we get the element values of each cell + for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { + // Read each range of cells of v_size_el length each into tmp_buf and write out + for (const auto & range : cell_ranges) { + const size_t range_size = range.second - range.first; + const size_t src_offset = (range.first + j * kv_size) * v_size_el; + tmp_buf.resize(range_size * v_size_el); + ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size()); + data_ctx.write(tmp_buf.data(), tmp_buf.size()); + } + } + } + + return data_ctx.get_size_written(); +} + +size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) { + llama_data_buffer_context data_ctx(dst); + return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id); +} + +size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) { + auto & kv_self = ctx->kv_self; + GGML_ASSERT(!kv_self.recurrent); // not implemented + + // Wipe the slot + llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1); + + const uint8_t * inp = src; + + // Read size of size_t + uint32_t size_t_size; + memcpy(&size_t_size, inp, sizeof(size_t_size)); + inp += sizeof(size_t_size); + if (size_t_size != sizeof(size_t)) { + LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__); + return 0; + } + + // Read the cell count + uint32_t cell_count; + memcpy(&cell_count, inp, sizeof(cell_count)); + inp += sizeof(cell_count); + + // Read the layer count + uint32_t n_layer_ref; + memcpy(&n_layer_ref, inp, sizeof(n_layer_ref)); + inp += sizeof(n_layer_ref); + + // Read n_embd_v_gqa + uint32_t n_embd_v_gqa_ref; + memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref)); + inp += sizeof(n_embd_v_gqa_ref); + + // Sanity check model compatibility + const auto & hparams = ctx->model.hparams; + const uint32_t n_layer = hparams.n_layer; + const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s(); + const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s(); + if (n_layer != n_layer_ref) { + LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref); + return 0; + } + if (n_embd_v_gqa != n_embd_v_gqa_ref) { + LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref); + return 0; + } + + // Allocate the new cells for the slot + if (cell_count) { + llama_batch batch = llama_batch_init(cell_count, 0, 1); + batch.n_tokens = cell_count; + for (uint32_t i = 0; i < cell_count; ++i) { + llama_pos pos; + memcpy(&pos, inp, sizeof(pos)); + inp += sizeof(pos); + + batch.pos[i] = pos; + batch.n_seq_id[i] = 1; + batch.seq_id[i][0] = dest_seq_id; + } + if (!llama_kv_cache_find_slot(kv_self, batch)) { + llama_batch_free(batch); + LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__); + return 0; + } + + // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values) + // Assume that this is one contiguous block of cells + GGML_ASSERT(kv_self.head + cell_count <= kv_self.size); + GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]); + GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]); + GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id)); + GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id)); + + // Cleanup + llama_batch_free(batch); + } + + const uint32_t kv_size = kv_self.size; + const uint32_t kv_head = kv_self.head; + + // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo + for (int il = 0; il < (int)n_layer; ++il) { + // Read type of key + int32_t k_type_i_ref; + memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref)); + inp += sizeof(k_type_i_ref); + const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type; + if (k_type_i != k_type_i_ref) { + llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1); + LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il); + return 0; + } + + // Read row size of key + size_t k_size_row_ref; + memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref)); + inp += sizeof(k_size_row_ref); + const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa); + if (k_size_row != k_size_row_ref) { + llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1); + LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il); + return 0; + } + + if (cell_count) { + // Read and set the keys for the whole cell range + ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row); + inp += cell_count * k_size_row; + } + } + + // For each layer, read the values for each cell (transposed) + for (int il = 0; il < (int)n_layer; ++il) { + // Read type of value + int32_t v_type_i_ref; + memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref)); + inp += sizeof(v_type_i_ref); + const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type; + if (v_type_i != v_type_i_ref) { + llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1); + LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); + return 0; + } + + // Read element size of value + size_t v_size_el_ref; + memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref)); + inp += sizeof(v_size_el_ref); + const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type); + if (v_size_el != v_size_el_ref) { + llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1); + LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il); + return 0; + } + + if (cell_count) { + // For each row in the transposed matrix, read the values for the whole cell range + for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { + const size_t dst_offset = (kv_head + j * kv_size) * v_size_el; + ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el); + inp += cell_count * v_size_el; + } + } + } + + const size_t nread = inp - src; + return nread; +} + +static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) { + llama_file file(filepath, "wb"); + + file.write_u32(LLAMA_STATE_SEQ_MAGIC); + file.write_u32(LLAMA_STATE_SEQ_VERSION); + + // save the prompt + file.write_u32((uint32_t)n_token_count); + file.write_raw(tokens, sizeof(llama_token) * n_token_count); + + // save the context state using stream saving + llama_data_file_context data_ctx(&file); + llama_state_seq_get_data_internal(ctx, data_ctx, seq_id); + + const size_t res = file.tell(); + GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written()); + return res; +} + +static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { + llama_file file(filepath, "rb"); + + // version checks + { + const uint32_t magic = file.read_u32(); + const uint32_t version = file.read_u32(); + + if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) { + LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version); + return 0; + } + } + + // load the prompt + { + const uint32_t n_token_count = file.read_u32(); + + if (n_token_count > n_token_capacity) { + LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity); + return 0; + } + + file.read_raw(tokens_out, sizeof(llama_token) * n_token_count); + *n_token_count_out = n_token_count; + } + + // restore the context state + { + const size_t state_size = file.size - file.tell(); + std::vector state_data(state_size); + file.read_raw(state_data.data(), state_size); + const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id); + if (!nread) { + LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__); + return 0; + } + GGML_ASSERT(nread <= state_size); + GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell()); + } + + return file.tell(); +} + +size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) { + try { + return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count); + } catch (const std::exception & err) { + LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what()); + return 0; + } +} + +size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) { + try { + return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out); + } catch (const std::exception & err) { + LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what()); + return 0; + } +} + +void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) { + ctx->cparams.n_threads = n_threads; + ctx->cparams.n_threads_batch = n_threads_batch; +} + +void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) { + ctx->abort_callback = abort_callback; + ctx->abort_callback_data = abort_callback_data; +} + +void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) { + ctx->cparams.causal_attn = causal_attn; +} + +struct llama_batch llama_batch_get_one( + llama_token * tokens, + int32_t n_tokens, + llama_pos pos_0, + llama_seq_id seq_id) { + return { + /*n_tokens =*/ n_tokens, + /*tokens =*/ tokens, + /*embd =*/ nullptr, + /*pos =*/ nullptr, + /*n_seq_id =*/ nullptr, + /*seq_id =*/ nullptr, + /*logits =*/ nullptr, + /*all_pos_0 =*/ pos_0, + /*all_pos_1 =*/ 1, + /*all_seq_id =*/ seq_id, + }; +} + +struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) { + llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, }; + + if (embd) { + batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd); + } else { + batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc); + } + + batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc); + batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc); + batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1)); + for (int i = 0; i < n_tokens_alloc; ++i) { + batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max); + } + batch.seq_id[n_tokens_alloc] = nullptr; + + batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc); + + return batch; +} + +void llama_batch_free(struct llama_batch batch) { + if (batch.token) free(batch.token); + if (batch.embd) free(batch.embd); + if (batch.pos) free(batch.pos); + if (batch.n_seq_id) free(batch.n_seq_id); + if (batch.seq_id) { + for (int i = 0; batch.seq_id[i] != nullptr; ++i) { + free(batch.seq_id[i]); + } + free(batch.seq_id); + } + if (batch.logits) free(batch.logits); +} + +int32_t llama_decode( + struct llama_context * ctx, + struct llama_batch batch) { + const int ret = llama_decode_internal(*ctx, batch); + if (ret < 0) { + LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret); + } + + return ret; +} + +void llama_synchronize(struct llama_context * ctx) { + ggml_backend_sched_synchronize(ctx->sched); + + // FIXME: if multiple single tokens are evaluated without a synchronization, + // the stats will be added to the prompt evaluation stats + // this should only happen when using batch size 1 to evaluate a batch + + // add the evaluation to the stats + if (ctx->n_queued_tokens == 1) { + ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us; + ctx->n_eval++; + } else if (ctx->n_queued_tokens > 1) { + ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us; + ctx->n_p_eval += ctx->n_queued_tokens; + } + + // get a more accurate load time, upon first eval + if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) { + ctx->t_load_us = ggml_time_us() - ctx->t_start_us; + ctx->has_evaluated_once = true; + } + + ctx->n_queued_tokens = 0; + ctx->t_compute_start_us = 0; +} + +float * llama_get_logits(struct llama_context * ctx) { + llama_synchronize(ctx); + + return ctx->logits; +} + +float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) { + int32_t j = -1; + llama_synchronize(ctx); + + try { + if (ctx->logits == nullptr) { + throw std::runtime_error("no logits"); + } + + if (i < 0) { + j = ctx->n_outputs + i; + if (j < 0) { + throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs)); + } + } else if ((size_t) i >= ctx->output_ids.size()) { + throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size())); + } else { + j = ctx->output_ids[i]; + } + + if (j < 0) { + throw std::runtime_error(format("batch.logits[%d] != true", i)); + } + if (j >= ctx->n_outputs) { + // This should not happen + throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs)); + } + + return ctx->logits + j*ctx->model.hparams.n_vocab; + } catch (const std::exception & err) { + LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what()); +#ifndef NDEBUG + GGML_ASSERT(false); +#endif + return nullptr; + } +} + +float * llama_get_embeddings(struct llama_context * ctx) { + llama_synchronize(ctx); + + return ctx->embd; +} + +float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) { + int32_t j = -1; + + llama_synchronize(ctx); + + try { + if (ctx->embd == nullptr) { + throw std::runtime_error("no embeddings"); + } + + if (i < 0) { + j = ctx->n_outputs + i; + if (j < 0) { + throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs)); + } + } else if ((size_t) i >= ctx->output_ids.size()) { + throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size())); + } else { + j = ctx->output_ids[i]; + } + + if (j < 0) { + throw std::runtime_error(format("batch.logits[%d] != true", i)); + } + if (j >= ctx->n_outputs) { + // This should not happen + throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs)); + } + + return ctx->embd + j*ctx->model.hparams.n_embd; + } catch (const std::exception & err) { + LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what()); +#ifndef NDEBUG + GGML_ASSERT(false); +#endif + return nullptr; + } +} + +float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) { + llama_synchronize(ctx); + + auto it = ctx->embd_seq.find(seq_id); + if (it == ctx->embd_seq.end()) { + return nullptr; + } + + return it->second.data(); +} + +const char * llama_token_get_text(const struct llama_model * model, llama_token token) { + GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE); + return model->vocab.id_to_token[token].text.c_str(); +} + +float llama_token_get_score(const struct llama_model * model, llama_token token) { + GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE); + return model->vocab.id_to_token[token].score; +} + +llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) { + GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE); + return model->vocab.id_to_token[token].type; +} + +llama_token llama_token_bos(const struct llama_model * model) { + return model->vocab.special_bos_id; +} + +llama_token llama_token_eos(const struct llama_model * model) { + return model->vocab.special_eos_id; +} + +llama_token llama_token_cls(const struct llama_model * model) { + return model->vocab.special_cls_id; +} + +llama_token llama_token_sep(const struct llama_model * model) { + return model->vocab.special_sep_id; +} + +llama_token llama_token_nl(const struct llama_model * model) { + return model->vocab.linefeed_id; +} + +int32_t llama_add_bos_token(const struct llama_model * model) { + return model->vocab.special_add_bos; +} + +int32_t llama_add_eos_token(const struct llama_model * model) { + return model->vocab.special_add_eos; +} + +llama_token llama_token_prefix(const struct llama_model * model) { + return model->vocab.special_prefix_id; +} + +llama_token llama_token_middle(const struct llama_model * model) { + return model->vocab.special_middle_id; +} + +llama_token llama_token_suffix(const struct llama_model * model) { + return model->vocab.special_suffix_id; +} + +llama_token llama_token_eot(const struct llama_model * model) { + return model->vocab.special_eot_id; +} + +int32_t llama_tokenize( + const struct llama_model * model, + const char * text, + int32_t text_len, + llama_token * tokens, + int32_t n_tokens_max, + bool add_special, + bool parse_special) { + auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special); + + if (n_tokens_max < (int) res.size()) { + // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__); + return -((int) res.size()); + } + + for (size_t i = 0; i < res.size(); i++) { + tokens[i] = res[i]; + } + + return res.size(); +} + +static std::string llama_decode_text(const std::string & text) { + std::string decoded_text; + auto unicode_sequences = unicode_cpts_from_utf8(text); + for (auto & unicode_sequence : unicode_sequences) { + decoded_text += unicode_utf8_to_byte(unicode_cpt_to_utf8(unicode_sequence)); + } + + return decoded_text; +} + +// does not write null-terminator to buf +int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length) { + if (0 <= token && token < llama_n_vocab(model)) { + switch (llama_vocab_get_type(model->vocab)) { + case LLAMA_VOCAB_TYPE_WPM: + case LLAMA_VOCAB_TYPE_SPM: { + // NOTE: we accept all unsupported token types, + // suppressing them like CONTROL tokens. + if (llama_is_normal_token(model->vocab, token)) { + std::string result = model->vocab.id_to_token[token].text; + llama_unescape_whitespace(result); + if (length < (int) result.length()) { + return -(int) result.length(); + } + memcpy(buf, result.c_str(), result.length()); + return result.length(); + } else if (llama_is_user_defined_token(model->vocab, token)) { + std::string result = model->vocab.id_to_token[token].text; + if (length < (int) result.length()) { + return -(int) result.length(); + } + memcpy(buf, result.c_str(), result.length()); + return result.length(); + } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT + if (length < 3) { + return -3; + } + memcpy(buf, "\xe2\x96\x85", 3); + return 3; + } else if (llama_is_control_token(model->vocab, token)) { + ; + } else if (llama_is_byte_token(model->vocab, token)) { + if (length < 1) { + return -1; + } + buf[0] = llama_token_to_byte(model->vocab, token); + return 1; + } + break; + } + case LLAMA_VOCAB_TYPE_BPE: { + // NOTE: we accept all unsupported token types, + // suppressing them like CONTROL tokens. + if (llama_is_normal_token(model->vocab, token)) { + std::string result = model->vocab.id_to_token[token].text; + result = llama_decode_text(result); + if (length < (int) result.length()) { + return -(int) result.length(); + } + memcpy(buf, result.c_str(), result.length()); + return result.length(); + } else if (llama_is_user_defined_token(model->vocab, token)) { + std::string result = model->vocab.id_to_token[token].text; + if (length < (int) result.length()) { + return -(int) result.length(); + } + memcpy(buf, result.c_str(), result.length()); + return result.length(); + } else if (llama_is_control_token(model->vocab, token)) { + ; + } + break; + } + default: + GGML_ASSERT(false); + } + } + return 0; +} + +// trim whitespace from the beginning and end of a string +static std::string trim(const std::string & str) { + size_t start = 0; + size_t end = str.size(); + while (start < end && isspace(str[start])) { + start += 1; + } + while (end > start && isspace(str[end - 1])) { + end -= 1; + } + return str.substr(start, end - start); +} + +// Simple version of "llama_apply_chat_template" that only works with strings +// This function uses heuristic checks to determine commonly used template. It is not a jinja parser. +static int32_t llama_chat_apply_template_internal( + const std::string & tmpl, + const std::vector & chat, + std::string & dest, bool add_ass) { + // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527 + std::stringstream ss; + if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) { + // chatml template + for (auto message : chat) { + ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n"; + } + if (add_ass) { + ss << "<|im_start|>assistant\n"; + } + } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) { + // llama2 template and its variants + // [variant] support system message + bool support_system_message = tmpl.find("<>") != std::string::npos; + // [variant] space before + after response + bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos; + // [variant] add BOS inside history + bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos; + // [variant] trim spaces from the input message + bool strip_message = tmpl.find("content.strip()") != std::string::npos; + // construct the prompt + bool is_inside_turn = true; // skip BOS at the beginning + ss << "[INST] "; + for (auto message : chat) { + std::string content = strip_message ? trim(message->content) : message->content; + std::string role(message->role); + if (!is_inside_turn) { + is_inside_turn = true; + ss << (add_bos_inside_history ? "[INST] " : "[INST] "); + } + if (role == "system") { + if (support_system_message) { + ss << "<>\n" << content << "\n<>\n\n"; + } else { + // if the model does not support system message, we still include it in the first message, but without <> + ss << content << "\n"; + } + } else if (role == "user") { + ss << content << " [/INST]"; + } else { + ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << ""; + is_inside_turn = false; + } + } + // llama2 templates seem to not care about "add_generation_prompt" + } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) { + // zephyr template + for (auto message : chat) { + ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n"; + } + if (add_ass) { + ss << "<|assistant|>\n"; + } + } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) { + // mlabonne/AlphaMonarch-7B template (the is included inside history) + for (auto message : chat) { + std::string bos = (message == chat.front()) ? "" : ""; // skip BOS for first message + ss << bos << message->role << "\n" << message->content << "\n"; + } + if (add_ass) { + ss << "assistant\n"; + } + } else if (tmpl == "gemma" || tmpl.find("") != std::string::npos) { + // google/gemma-7b-it + std::string system_prompt = ""; + for (auto message : chat) { + std::string role(message->role); + if (role == "system") { + // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken + system_prompt = trim(message->content); + continue; + } + // in gemma, "assistant" is "model" + role = role == "assistant" ? "model" : message->role; + ss << "" << role << "\n"; + if (!system_prompt.empty() && role != "model") { + ss << system_prompt << "\n\n"; + system_prompt = ""; + } + ss << trim(message->content) << "\n"; + } + if (add_ass) { + ss << "model\n"; + } + } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) { + // OrionStarAI/Orion-14B-Chat + std::string system_prompt = ""; + for (auto message : chat) { + std::string role(message->role); + if (role == "system") { + // there is no system message support, we will merge it with user prompt + system_prompt = message->content; + continue; + } else if (role == "user") { + ss << "Human: "; + if (!system_prompt.empty()) { + ss << system_prompt << "\n\n"; + system_prompt = ""; + } + ss << message->content << "\n\nAssistant: "; + } else { + ss << message->content << ""; + } + } + } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) { + // openchat/openchat-3.5-0106, + for (auto message : chat) { + std::string role(message->role); + if (role == "system") { + ss << message->content << "<|end_of_turn|>"; + } else { + role[0] = toupper(role[0]); + ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>"; + } + } + if (add_ass) { + ss << "GPT4 Correct Assistant:"; + } + } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) { + // eachadea/vicuna-13b-1.1 (and Orca variant) + for (auto message : chat) { + std::string role(message->role); + if (role == "system") { + // Orca-Vicuna variant uses a system prefix + if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) { + ss << "SYSTEM: " << message->content << "\n"; + } else { + ss << message->content << "\n\n"; + } + } else if (role == "user") { + ss << "USER: " << message->content << "\n"; + } else if (role == "assistant") { + ss << "ASSISTANT: " << message->content << "\n"; + } + } + if (add_ass) { + ss << "ASSISTANT:"; + } + } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) { + // deepseek-ai/deepseek-coder-33b-instruct + for (auto message : chat) { + std::string role(message->role); + if (role == "system") { + ss << message->content; + } else if (role == "user") { + ss << "### Instruction:\n" << message->content << "\n"; + } else if (role == "assistant") { + ss << "### Response:\n" << message->content << "\n<|EOT|>\n"; + } + } + if (add_ass) { + ss << "### Response:\n"; + } + } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) { + // CohereForAI/c4ai-command-r-plus + for (auto message : chat) { + std::string role(message->role); + if (role == "system") { + ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>"; + } else if (role == "user") { + ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>"; + } else if (role == "assistant") { + ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>"; + } + } + if (add_ass) { + ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>"; + } + } else { + // template not supported + return -1; + } + dest = ss.str(); + return dest.size(); +} + +LLAMA_API int32_t llama_chat_apply_template( + const struct llama_model * model, + const char * tmpl, + const struct llama_chat_message * chat, + size_t n_msg, + bool add_ass, + char * buf, + int32_t length) { + std::string curr_tmpl(tmpl == nullptr ? "" : tmpl); + if (tmpl == nullptr) { + GGML_ASSERT(model != nullptr); + // load template from model + std::vector model_template(2048, 0); // longest known template is about 1200 bytes + std::string template_key = "tokenizer.chat_template"; + int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size()); + if (res < 0) { + // worst case: there is no information about template, we will use chatml by default + curr_tmpl = "chatml"; // see llama_chat_apply_template_internal + } else { + curr_tmpl = std::string(model_template.data(), model_template.size()); + } + } + + // format the chat to string + std::vector chat_vec; + chat_vec.resize(n_msg); + for (size_t i = 0; i < n_msg; i++) { + chat_vec[i] = &chat[i]; + } + + std::string formatted_chat; + int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass); + if (res < 0) { + return res; + } + if (buf && length > 0) { + strncpy(buf, formatted_chat.c_str(), length); + } + return res; +} + +LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) { + static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf"; + if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) { + return strlen(split_path); + } + return 0; +} + +int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) { + std::string str_split_path(split_path); + char postfix[32]; + snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count); + std::string str_postfix(postfix); + + // check if dest ends with postfix + int size_prefix = str_split_path.size() - str_postfix.size(); + if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) { + snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path); + return size_prefix; + } + + return 0; +} + +struct llama_timings llama_get_timings(struct llama_context * ctx) { + struct llama_timings result = { + /*.t_start_ms =*/ 1e-3 * ctx->t_start_us, + /*.t_end_ms =*/ 1.00 * ggml_time_ms(), + /*.t_load_ms =*/ 1e-3 * ctx->t_load_us, + /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us, + /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us, + /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us, + + /*.n_sample =*/ std::max(1, ctx->n_sample), + /*.n_p_eval =*/ std::max(1, ctx->n_p_eval), + /*.n_eval =*/ std::max(1, ctx->n_eval), + }; + + return result; +} + +void llama_print_timings(struct llama_context * ctx) { + const llama_timings timings = llama_get_timings(ctx); + + LLAMA_LOG_INFO("\n"); + LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms); + LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", + __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample); + LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n", + __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval); + LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", + __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval); + LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval)); +} + +void llama_reset_timings(struct llama_context * ctx) { + ctx->t_start_us = ggml_time_us(); + ctx->t_sample_us = ctx->n_sample = 0; + ctx->t_eval_us = ctx->n_eval = 0; + ctx->t_p_eval_us = ctx->n_p_eval = 0; +} + +const char * llama_print_system_info(void) { + static std::string s; + + s = ""; + s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | "; + s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | "; + s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | "; + s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | "; + s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | "; + s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | "; + s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | "; + s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | "; + s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | "; + s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | "; + s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | "; + s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | "; + s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | "; + s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | "; + s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | "; + s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | "; + s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | "; + + return s.c_str(); +} + +void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) { + fprintf(stream, "\n"); + fprintf(stream, "###########\n"); + fprintf(stream, "# Timings #\n"); + fprintf(stream, "###########\n"); + fprintf(stream, "\n"); + + fprintf(stream, "mst_eval: %.2f # ms / token during generation\n", + 1.0e-3 * ctx->t_eval_us / ctx->n_eval); + fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n", + 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval); + fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n", + 1.0e-3 * ctx->t_sample_us / ctx->n_sample); + fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval); + fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval); + fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample); + fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us); + fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us); + fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us); + fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us); + fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n", + 1.0e6 * ctx->n_eval / ctx->t_eval_us); + fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n", + 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us); + fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n", + 1.0e6 * ctx->n_sample / ctx->t_sample_us); +} + +// For internal test use +const std::vector> & llama_internal_get_tensor_map( + struct llama_context * ctx +) { + return ctx->model.tensors_by_name; +} + +void llama_log_set(ggml_log_callback log_callback, void * user_data) { + g_state.log_callback = log_callback ? log_callback : llama_log_callback_default; + g_state.log_callback_user_data = user_data; +#ifdef GGML_USE_METAL + ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data); +#endif +} + +static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) { + va_list args_copy; + va_copy(args_copy, args); + char buffer[128]; + int len = vsnprintf(buffer, 128, format, args); + if (len < 128) { + g_state.log_callback(level, buffer, g_state.log_callback_user_data); + } else { + char* buffer2 = new char[len+1]; + vsnprintf(buffer2, len+1, format, args_copy); + buffer2[len] = 0; + g_state.log_callback(level, buffer2, g_state.log_callback_user_data); + delete[] buffer2; + } + va_end(args_copy); +} + +static void llama_log_internal(ggml_log_level level, const char * format, ...) { + va_list args; + va_start(args, format); + llama_log_internal_v(level, format, args); + va_end(args); +} + +static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) { + (void) level; + (void) user_data; + fputs(text, stderr); + fflush(stderr); +} diff --git a/llama/llama.go b/llama/llama.go new file mode 100644 index 00000000..4709d255 --- /dev/null +++ b/llama/llama.go @@ -0,0 +1,16 @@ +// TODO: embed the metal library +// +//go:generate bash metal.sh +package llama + +// #cgo CFLAGS: -I. +// #cgo CXXFLAGS: -std=c++11 -DGGML_USE_METAL +// #cgo darwin,arm64 LDFLAGS: -framework Foundation -framework Metal -framework MetalKit -framework Accelerate +// #include +// #include "llama.h" +import "C" + +// SystemInfo is an unused example of calling llama.cpp functions using CGo +func SystemInfo() string { + return C.GoString(C.llama_print_system_info()) +} diff --git a/llama/llama.h b/llama/llama.h new file mode 100644 index 00000000..b5da686f --- /dev/null +++ b/llama/llama.h @@ -0,0 +1,1112 @@ +#ifndef LLAMA_H +#define LLAMA_H + +#include "ggml.h" +#include "ggml-backend.h" + +#include +#include +#include +#include + +#ifdef LLAMA_SHARED +# if defined(_WIN32) && !defined(__MINGW32__) +# ifdef LLAMA_BUILD +# define LLAMA_API __declspec(dllexport) +# else +# define LLAMA_API __declspec(dllimport) +# endif +# else +# define LLAMA_API __attribute__ ((visibility ("default"))) +# endif +#else +# define LLAMA_API +#endif + +#ifdef __GNUC__ +# define DEPRECATED(func, hint) func __attribute__((deprecated(hint))) +#elif defined(_MSC_VER) +# define DEPRECATED(func, hint) __declspec(deprecated(hint)) func +#else +# define DEPRECATED(func, hint) func +#endif + +#define LLAMA_DEFAULT_SEED 0xFFFFFFFF + +#define LLAMA_MAX_RNG_STATE (64*1024) + +#define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla' +#define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn' +#define LLAMA_FILE_MAGIC_GGSQ 0x67677371u // 'ggsq' + +#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN +#define LLAMA_SESSION_VERSION 5 + +#define LLAMA_STATE_SEQ_MAGIC LLAMA_FILE_MAGIC_GGSQ +#define LLAMA_STATE_SEQ_VERSION 1 + +#ifdef __cplusplus +extern "C" { +#endif + + // + // C interface + // + // TODO: show sample usage + // + + struct llama_model; + struct llama_context; + + typedef int32_t llama_pos; + typedef int32_t llama_token; + typedef int32_t llama_seq_id; + + enum llama_vocab_type { + LLAMA_VOCAB_TYPE_NONE = 0, // For models without vocab + LLAMA_VOCAB_TYPE_SPM = 1, // LLaMA tokenizer based on byte-level BPE with byte fallback + LLAMA_VOCAB_TYPE_BPE = 2, // GPT-2 tokenizer based on byte-level BPE + LLAMA_VOCAB_TYPE_WPM = 3, // BERT tokenizer based on WordPiece + }; + + // note: these values should be synchronized with ggml_rope + // TODO: maybe move this enum to ggml.h (ggml_rope_type) + enum llama_rope_type { + LLAMA_ROPE_TYPE_NONE = -1, + LLAMA_ROPE_TYPE_NORM = 0, + LLAMA_ROPE_TYPE_NEOX = 2, + LLAMA_ROPE_TYPE_GLM = 4, + }; + + enum llama_token_type { + LLAMA_TOKEN_TYPE_UNDEFINED = 0, + LLAMA_TOKEN_TYPE_NORMAL = 1, + LLAMA_TOKEN_TYPE_UNKNOWN = 2, + LLAMA_TOKEN_TYPE_CONTROL = 3, + LLAMA_TOKEN_TYPE_USER_DEFINED = 4, + LLAMA_TOKEN_TYPE_UNUSED = 5, + LLAMA_TOKEN_TYPE_BYTE = 6, + }; + + // model file types + enum llama_ftype { + LLAMA_FTYPE_ALL_F32 = 0, + LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16 + // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed + // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed + LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors + LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors + LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors + LLAMA_FTYPE_MOSTLY_IQ3_XS = 22, // except 1d tensors + LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors + LLAMA_FTYPE_MOSTLY_IQ1_S = 24, // except 1d tensors + LLAMA_FTYPE_MOSTLY_IQ4_NL = 25, // except 1d tensors + LLAMA_FTYPE_MOSTLY_IQ3_S = 26, // except 1d tensors + LLAMA_FTYPE_MOSTLY_IQ3_M = 27, // except 1d tensors + LLAMA_FTYPE_MOSTLY_IQ2_S = 28, // except 1d tensors + LLAMA_FTYPE_MOSTLY_IQ2_M = 29, // except 1d tensors + LLAMA_FTYPE_MOSTLY_IQ4_XS = 30, // except 1d tensors + LLAMA_FTYPE_MOSTLY_IQ1_M = 31, // except 1d tensors + + LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file + }; + + enum llama_rope_scaling_type { + LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED = -1, + LLAMA_ROPE_SCALING_TYPE_NONE = 0, + LLAMA_ROPE_SCALING_TYPE_LINEAR = 1, + LLAMA_ROPE_SCALING_TYPE_YARN = 2, + LLAMA_ROPE_SCALING_TYPE_MAX_VALUE = LLAMA_ROPE_SCALING_TYPE_YARN, + }; + + enum llama_pooling_type { + LLAMA_POOLING_TYPE_UNSPECIFIED = -1, + LLAMA_POOLING_TYPE_NONE = 0, + LLAMA_POOLING_TYPE_MEAN = 1, + LLAMA_POOLING_TYPE_CLS = 2, + }; + + enum llama_split_mode { + LLAMA_SPLIT_MODE_NONE = 0, // single GPU + LLAMA_SPLIT_MODE_LAYER = 1, // split layers and KV across GPUs + LLAMA_SPLIT_MODE_ROW = 2, // split rows across GPUs + }; + + typedef struct llama_token_data { + llama_token id; // token id + float logit; // log-odds of the token + float p; // probability of the token + } llama_token_data; + + typedef struct llama_token_data_array { + llama_token_data * data; + size_t size; + bool sorted; + } llama_token_data_array; + + typedef bool (*llama_progress_callback)(float progress, void *ctx); + + // Input data for llama_decode + // A llama_batch object can contain input about one or many sequences + // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens + // + // - token : the token ids of the input (used when embd is NULL) + // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL) + // - pos : the positions of the respective token in the sequence + // - seq_id : the sequence to which the respective token belongs + // - logits : if zero, the logits (and/or the embeddings) for the respective token will not be output + // + typedef struct llama_batch { + int32_t n_tokens; + + llama_token * token; + float * embd; + llama_pos * pos; + int32_t * n_seq_id; + llama_seq_id ** seq_id; + int8_t * logits; // TODO: rename this to "output" + + // NOTE: helpers for smooth API transition - can be deprecated in the future + // for future-proof code, use the above fields instead and ignore everything below + // + // pos[i] = all_pos_0 + i*all_pos_1 + // + llama_pos all_pos_0; // used if pos == NULL + llama_pos all_pos_1; // used if pos == NULL + llama_seq_id all_seq_id; // used if seq_id == NULL + } llama_batch; + + enum llama_model_kv_override_type { + LLAMA_KV_OVERRIDE_TYPE_INT, + LLAMA_KV_OVERRIDE_TYPE_FLOAT, + LLAMA_KV_OVERRIDE_TYPE_BOOL, + }; + + struct llama_model_kv_override { + char key[128]; + enum llama_model_kv_override_type tag; + union { + int64_t int_value; + double float_value; + bool bool_value; + }; + }; + + struct llama_model_params { + int32_t n_gpu_layers; // number of layers to store in VRAM + enum llama_split_mode split_mode; // how to split the model across multiple GPUs + + // main_gpu interpretation depends on split_mode: + // LLAMA_SPLIT_NONE: the GPU that is used for the entire model + // LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results + // LLAMA_SPLIT_LAYER: ignored + int32_t main_gpu; + + // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices() + const float * tensor_split; + + // Called with a progress value between 0.0 and 1.0. Pass NULL to disable. + // If the provided progress_callback returns true, model loading continues. + // If it returns false, model loading is immediately aborted. + llama_progress_callback progress_callback; + + // context pointer passed to the progress callback + void * progress_callback_user_data; + + // override key-value pairs of the model meta data + const struct llama_model_kv_override * kv_overrides; + + // Keep the booleans together to avoid misalignment during copy-by-value. + bool vocab_only; // only load the vocabulary, no weights + bool use_mmap; // use mmap if possible + bool use_mlock; // force system to keep model in RAM + }; + + struct llama_context_params { + uint32_t seed; // RNG seed, -1 for random + uint32_t n_ctx; // text context, 0 = from model + uint32_t n_batch; // logical maximum batch size that can be submitted to llama_decode + uint32_t n_ubatch; // physical maximum batch size + uint32_t n_seq_max; // max number of sequences (i.e. distinct states for recurrent models) + uint32_t n_threads; // number of threads to use for generation + uint32_t n_threads_batch; // number of threads to use for batch processing + + enum llama_rope_scaling_type rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type` + enum llama_pooling_type pooling_type; // whether to pool (sum) embedding results by sequence id + // (ignored if no pooling layer) + + // ref: https://github.com/ggerganov/llama.cpp/pull/2054 + float rope_freq_base; // RoPE base frequency, 0 = from model + float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model + float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model + float yarn_attn_factor; // YaRN magnitude scaling factor + float yarn_beta_fast; // YaRN low correction dim + float yarn_beta_slow; // YaRN high correction dim + uint32_t yarn_orig_ctx; // YaRN original context size + float defrag_thold; // defragment the KV cache if holes/size > thold, < 0 disabled (default) + + ggml_backend_sched_eval_callback cb_eval; + void * cb_eval_user_data; + + enum ggml_type type_k; // data type for K cache + enum ggml_type type_v; // data type for V cache + + // Keep the booleans together to avoid misalignment during copy-by-value. + bool logits_all; // the llama_decode() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead) + bool embeddings; // if true, extract embeddings (together with logits) + bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU + + // Abort callback + // if it returns true, execution of llama_decode() will be aborted + // currently works only with CPU execution + ggml_abort_callback abort_callback; + void * abort_callback_data; + }; + + // model quantization parameters + typedef struct llama_model_quantize_params { + int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency() + enum llama_ftype ftype; // quantize to this llama_ftype + enum ggml_type output_tensor_type; // output tensor type + enum ggml_type token_embedding_type; // itoken embeddings tensor type + bool allow_requantize; // allow quantizing non-f32/f16 tensors + bool quantize_output_tensor; // quantize output.weight + bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored + bool pure; // quantize all tensors to the default type + void * imatrix; // pointer to importance matrix data + void * kv_overrides; // pointer to vector containing overrides + } llama_model_quantize_params; + + // grammar types + struct llama_grammar; + + // grammar element type + enum llama_gretype { + // end of rule definition + LLAMA_GRETYPE_END = 0, + + // start of alternate definition for rule + LLAMA_GRETYPE_ALT = 1, + + // non-terminal element: reference to rule + LLAMA_GRETYPE_RULE_REF = 2, + + // terminal element: character (code point) + LLAMA_GRETYPE_CHAR = 3, + + // inverse char(s) ([^a], [^a-b] [^abc]) + LLAMA_GRETYPE_CHAR_NOT = 4, + + // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to + // be an inclusive range ([a-z]) + LLAMA_GRETYPE_CHAR_RNG_UPPER = 5, + + // modifies a preceding LLAMA_GRETYPE_CHAR or + // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA]) + LLAMA_GRETYPE_CHAR_ALT = 6, + }; + + typedef struct llama_grammar_element { + enum llama_gretype type; + uint32_t value; // Unicode code point or rule ID + } llama_grammar_element; + + // performance timing information + struct llama_timings { + double t_start_ms; + double t_end_ms; + double t_load_ms; + double t_sample_ms; + double t_p_eval_ms; + double t_eval_ms; + + int32_t n_sample; + int32_t n_p_eval; + int32_t n_eval; + }; + + // used in chat template + typedef struct llama_chat_message { + const char * role; + const char * content; + } llama_chat_message; + + // Helpers for getting default parameters + LLAMA_API struct llama_model_params llama_model_default_params(void); + LLAMA_API struct llama_context_params llama_context_default_params(void); + LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void); + + // Initialize the llama + ggml backend + // If numa is true, use NUMA optimizations + // Call once at the start of the program + LLAMA_API void llama_backend_init(void); + + //optional: + LLAMA_API void llama_numa_init(enum ggml_numa_strategy numa); + + // Call once at the end of the program - currently only used for MPI + LLAMA_API void llama_backend_free(void); + + LLAMA_API struct llama_model * llama_load_model_from_file( + const char * path_model, + struct llama_model_params params); + + LLAMA_API void llama_free_model(struct llama_model * model); + + LLAMA_API struct llama_context * llama_new_context_with_model( + struct llama_model * model, + struct llama_context_params params); + + // Frees all allocated memory + LLAMA_API void llama_free(struct llama_context * ctx); + + LLAMA_API int64_t llama_time_us(void); + + LLAMA_API size_t llama_max_devices(void); + + LLAMA_API bool llama_supports_mmap (void); + LLAMA_API bool llama_supports_mlock (void); + LLAMA_API bool llama_supports_gpu_offload(void); + + LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx); + + LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx); + LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx); + LLAMA_API uint32_t llama_n_ubatch (const struct llama_context * ctx); + LLAMA_API uint32_t llama_n_seq_max (const struct llama_context * ctx); + + LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model); + LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model); + + LLAMA_API int32_t llama_n_vocab (const struct llama_model * model); + LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model); + LLAMA_API int32_t llama_n_embd (const struct llama_model * model); + LLAMA_API int32_t llama_n_layer (const struct llama_model * model); + + // Get the model's RoPE frequency scaling factor + LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model); + + // Functions to access the model's GGUF metadata scalar values + // - The functions return the length of the string on success, or -1 on failure + // - The output string is always null-terminated and cleared on failure + // - GGUF array values are not supported by these functions + + // Get metadata value as a string by key name + LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size); + + // Get the number of metadata key/value pairs + LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model); + + // Get metadata key name by index + LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size); + + // Get metadata value as a string by index + LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size); + + // Get a string describing the model type + LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size); + + // Returns the total size of all the tensors in the model in bytes + LLAMA_API uint64_t llama_model_size(const struct llama_model * model); + + // Returns the total number of parameters in the model + LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model); + + // Get a llama model tensor + LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name); + + // Returns 0 on success + LLAMA_API uint32_t llama_model_quantize( + const char * fname_inp, + const char * fname_out, + const llama_model_quantize_params * params); + + // Apply a LoRA adapter to a loaded model + // path_base_model is the path to a higher quality model to use as a base for + // the layers modified by the adapter. Can be NULL to use the current loaded model. + // The model needs to be reloaded before applying a new adapter, otherwise the adapter + // will be applied on top of the previous one + // Returns 0 on success + LLAMA_API int32_t llama_model_apply_lora_from_file( + const struct llama_model * model, + const char * path_lora, + float scale, + const char * path_base_model, + int32_t n_threads); + + // Apply a loaded control vector to a llama_context, or if data is NULL, clear + // the currently loaded vector. + // n_embd should be the size of a single layer's control, and data should point + // to an n_embd x n_layers buffer starting from layer 1. + // il_start and il_end are the layer range the vector should apply to (both inclusive) + // See llama_control_vector_load in common to load a control vector. + LLAMA_API int32_t llama_control_vector_apply( + struct llama_context * lctx, + const float * data, + size_t len, + int32_t n_embd, + int32_t il_start, + int32_t il_end); + + // + // KV cache + // + + // Information associated with an individual cell in the KV cache view. + struct llama_kv_cache_view_cell { + // The position for this cell. Takes KV cache shifts into account. + // May be negative if the cell is not populated. + llama_pos pos; + }; + + // An updateable view of the KV cache. + struct llama_kv_cache_view { + // Number of KV cache cells. This will be the same as the context size. + int32_t n_cells; + + // Maximum number of sequences that can exist in a cell. It's not an error + // if there are more sequences in a cell than this value, however they will + // not be visible in the view cells_sequences. + int32_t n_seq_max; + + // Number of tokens in the cache. For example, if there are two populated + // cells, the first with 1 sequence id in it and the second with 2 sequence + // ids then you'll have 3 tokens. + int32_t token_count; + + // Number of populated cache cells. + int32_t used_cells; + + // Maximum contiguous empty slots in the cache. + int32_t max_contiguous; + + // Index to the start of the max_contiguous slot range. Can be negative + // when cache is full. + int32_t max_contiguous_idx; + + // Information for an individual cell. + struct llama_kv_cache_view_cell * cells; + + // The sequences for each cell. There will be n_seq_max items per cell. + llama_seq_id * cells_sequences; + }; + + // Create an empty KV cache view. (use only for debugging purposes) + LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max); + + // Free a KV cache view. (use only for debugging purposes) + LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view); + + // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes) + LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view); + + // Returns the number of tokens in the KV cache (slow, use only for debug) + // If a KV cell has multiple sequences assigned to it, it will be counted multiple times + LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx); + + // Returns the number of used KV cells (i.e. have at least one sequence assigned to them) + LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx); + + // Clear the KV cache + LLAMA_API void llama_kv_cache_clear( + struct llama_context * ctx); + + // Removes all tokens that belong to the specified sequence and have positions in [p0, p1) + // Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails + // seq_id < 0 : match any sequence + // p0 < 0 : [0, p1] + // p1 < 0 : [p0, inf) + LLAMA_API bool llama_kv_cache_seq_rm( + struct llama_context * ctx, + llama_seq_id seq_id, + llama_pos p0, + llama_pos p1); + + // Copy all tokens that belong to the specified sequence to another sequence + // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence + // p0 < 0 : [0, p1] + // p1 < 0 : [p0, inf) + LLAMA_API void llama_kv_cache_seq_cp( + struct llama_context * ctx, + llama_seq_id seq_id_src, + llama_seq_id seq_id_dst, + llama_pos p0, + llama_pos p1); + + // Removes all tokens that do not belong to the specified sequence + LLAMA_API void llama_kv_cache_seq_keep( + struct llama_context * ctx, + llama_seq_id seq_id); + + // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1) + // If the KV cache is RoPEd, the KV data is updated accordingly: + // - lazily on next llama_decode() + // - explicitly with llama_kv_cache_update() + // p0 < 0 : [0, p1] + // p1 < 0 : [p0, inf) + LLAMA_API void llama_kv_cache_seq_add( + struct llama_context * ctx, + llama_seq_id seq_id, + llama_pos p0, + llama_pos p1, + llama_pos delta); + + // Integer division of the positions by factor of `d > 1` + // If the KV cache is RoPEd, the KV data is updated accordingly: + // - lazily on next llama_decode() + // - explicitly with llama_kv_cache_update() + // p0 < 0 : [0, p1] + // p1 < 0 : [p0, inf) + LLAMA_API void llama_kv_cache_seq_div( + struct llama_context * ctx, + llama_seq_id seq_id, + llama_pos p0, + llama_pos p1, + int d); + + // Returns the largest position present in the KV cache for the specified sequence + LLAMA_API llama_pos llama_kv_cache_seq_pos_max( + struct llama_context * ctx, + llama_seq_id seq_id); + + // Defragment the KV cache + // This will be applied: + // - lazily on next llama_decode() + // - explicitly with llama_kv_cache_update() + LLAMA_API void llama_kv_cache_defrag(struct llama_context * ctx); + + // Apply the KV cache updates (such as K-shifts, defragmentation, etc.) + LLAMA_API void llama_kv_cache_update(struct llama_context * ctx); + + // + // State / sessions + // + + // Returns the maximum size in bytes of the state (rng, logits, embedding + // and kv_cache) - will often be smaller after compacting tokens + LLAMA_API size_t llama_state_get_size(const struct llama_context * ctx); + LLAMA_API DEPRECATED(size_t llama_get_state_size(const struct llama_context * ctx), + "use llama_state_get_size instead"); + + // Copies the state to the specified destination address. + // Destination needs to have allocated enough memory. + // Returns the number of bytes copied + LLAMA_API size_t llama_state_get_data( + struct llama_context * ctx, + uint8_t * dst); + LLAMA_API DEPRECATED(size_t llama_copy_state_data( + struct llama_context * ctx, + uint8_t * dst), + "use llama_state_get_data instead"); + + // Set the state reading from the specified address + // Returns the number of bytes read + LLAMA_API size_t llama_state_set_data( + struct llama_context * ctx, + const uint8_t * src); + LLAMA_API DEPRECATED(size_t llama_set_state_data( + struct llama_context * ctx, + const uint8_t * src), + "use llama_state_set_data instead"); + + // Save/load session file + LLAMA_API bool llama_state_load_file( + struct llama_context * ctx, + const char * path_session, + llama_token * tokens_out, + size_t n_token_capacity, + size_t * n_token_count_out); + LLAMA_API DEPRECATED(bool llama_load_session_file( + struct llama_context * ctx, + const char * path_session, + llama_token * tokens_out, + size_t n_token_capacity, + size_t * n_token_count_out), + "use llama_state_load_file instead"); + + LLAMA_API bool llama_state_save_file( + struct llama_context * ctx, + const char * path_session, + const llama_token * tokens, + size_t n_token_count); + LLAMA_API DEPRECATED(bool llama_save_session_file( + struct llama_context * ctx, + const char * path_session, + const llama_token * tokens, + size_t n_token_count), + "use llama_state_save_file instead"); + + // Get the exact size needed to copy the KV cache of a single sequence + LLAMA_API size_t llama_state_seq_get_size( + struct llama_context * ctx, + llama_seq_id seq_id); + + // Copy the KV cache of a single sequence into the specified buffer + LLAMA_API size_t llama_state_seq_get_data( + struct llama_context * ctx, + uint8_t * dst, + llama_seq_id seq_id); + + // Copy the sequence data (originally copied with `llama_state_seq_get_data`) into the specified sequence + // Returns: + // - Positive: Ok + // - Zero: Failed to load + LLAMA_API size_t llama_state_seq_set_data( + struct llama_context * ctx, + const uint8_t * src, + llama_seq_id dest_seq_id); + + LLAMA_API size_t llama_state_seq_save_file( + struct llama_context * ctx, + const char * filepath, + llama_seq_id seq_id, + const llama_token * tokens, + size_t n_token_count); + + LLAMA_API size_t llama_state_seq_load_file( + struct llama_context * ctx, + const char * filepath, + llama_seq_id dest_seq_id, + llama_token * tokens_out, + size_t n_token_capacity, + size_t * n_token_count_out); + + // + // Decoding + // + + // Return batch for single sequence of tokens starting at pos_0 + // + // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it + // + LLAMA_API struct llama_batch llama_batch_get_one( + llama_token * tokens, + int32_t n_tokens, + llama_pos pos_0, + llama_seq_id seq_id); + + // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens + // Each token can be assigned up to n_seq_max sequence ids + // The batch has to be freed with llama_batch_free() + // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float) + // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token + // The rest of the llama_batch members are allocated with size n_tokens + // All members are left uninitialized + LLAMA_API struct llama_batch llama_batch_init( + int32_t n_tokens, + int32_t embd, + int32_t n_seq_max); + + // Frees a batch of tokens allocated with llama_batch_init() + LLAMA_API void llama_batch_free(struct llama_batch batch); + + // Positive return values does not mean a fatal error, but rather a warning. + // 0 - success + // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context) + // < 0 - error + LLAMA_API int32_t llama_decode( + struct llama_context * ctx, + struct llama_batch batch); + + // Set the number of threads used for decoding + // n_threads is the number of threads used for generation (single token) + // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens) + LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch); + + // Set whether to use causal attention or not + // If set to true, the model will only attend to the past tokens + LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn); + + // Set abort callback + LLAMA_API void llama_set_abort_callback(struct llama_context * ctx, ggml_abort_callback abort_callback, void * abort_callback_data); + + // Wait until all computations are finished + // This is automatically done when using one of the functions below to obtain the computation results + // and is not necessary to call it explicitly in most cases + LLAMA_API void llama_synchronize(struct llama_context * ctx); + + // Token logits obtained from the last call to llama_decode() + // The logits for which llama_batch.logits[i] != 0 are stored contiguously + // in the order they have appeared in the batch. + // Rows: number of tokens for which llama_batch.logits[i] != 0 + // Cols: n_vocab + LLAMA_API float * llama_get_logits(struct llama_context * ctx); + + // Logits for the ith token. For positive indices, Equivalent to: + // llama_get_logits(ctx) + ctx->output_ids[i]*n_vocab + // Negative indicies can be used to access logits in reverse order, -1 is the last logit. + // returns NULL for invalid ids. + LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i); + + // Get all output token embeddings. + // when pooling_type == LLAMA_POOLING_TYPE_NONE or when using a generative model, + // the embeddings for which llama_batch.logits[i] != 0 are stored contiguously + // in the order they have appeared in the batch. + // shape: [n_outputs*n_embd] + // Otherwise, returns NULL. + LLAMA_API float * llama_get_embeddings(struct llama_context * ctx); + + // Get the embeddings for the ith token. For positive indices, Equivalent to: + // llama_get_embeddings(ctx) + ctx->output_ids[i]*n_embd + // Negative indicies can be used to access embeddings in reverse order, -1 is the last embedding. + // shape: [n_embd] (1-dimensional) + // returns NULL for invalid ids. + LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i); + + // Get the embeddings for a sequence id + // Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE + // shape: [n_embd] (1-dimensional) + LLAMA_API float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id); + + // + // Vocab + // + + LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token); + + LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token); + + LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token); + + // Special tokens + LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence + LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence + LLAMA_API llama_token llama_token_cls(const struct llama_model * model); // classification + LLAMA_API llama_token llama_token_sep(const struct llama_model * model); // sentence separator + LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line + + // Returns -1 if unknown, 1 for true or 0 for false. + LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model); + + // Returns -1 if unknown, 1 for true or 0 for false. + LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model); + + // codellama infill tokens + LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix + LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle + LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix + LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle + + // + // Tokenization + // + + /// @details Convert the provided text into tokens. + /// @param tokens The tokens pointer must be large enough to hold the resulting tokens. + /// @return Returns the number of tokens on success, no more than n_tokens_max + /// @return Returns a negative number on failure - the number of tokens that would have been returned + /// @param parse_special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated + /// as plaintext. Does not insert a leading space. + LLAMA_API int32_t llama_tokenize( + const struct llama_model * model, + const char * text, + int32_t text_len, + llama_token * tokens, + int32_t n_tokens_max, + bool add_special, + bool parse_special); + + // Token Id -> Piece. + // Uses the vocabulary in the provided context. + // Does not write null terminator to the buffer. + // User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens. + LLAMA_API int32_t llama_token_to_piece( + const struct llama_model * model, + llama_token token, + char * buf, + int32_t length); + + /// Apply chat template. Inspired by hf apply_chat_template() on python. + /// Both "model" and "custom_template" are optional, but at least one is required. "custom_template" has higher precedence than "model" + /// NOTE: This function does not use a jinja parser. It only support a pre-defined list of template. See more: https://github.com/ggerganov/llama.cpp/wiki/Templates-supported-by-llama_chat_apply_template + /// @param tmpl A Jinja template to use for this chat. If this is nullptr, the model’s default chat template will be used instead. + /// @param chat Pointer to a list of multiple llama_chat_message + /// @param n_msg Number of llama_chat_message in this chat + /// @param add_ass Whether to end the prompt with the token(s) that indicate the start of an assistant message. + /// @param buf A buffer to hold the output formatted prompt. The recommended alloc size is 2 * (total number of characters of all messages) + /// @param length The size of the allocated buffer + /// @return The total number of bytes of the formatted prompt. If is it larger than the size of buffer, you may need to re-alloc it and then re-apply the template. + LLAMA_API int32_t llama_chat_apply_template( + const struct llama_model * model, + const char * tmpl, + const struct llama_chat_message * chat, + size_t n_msg, + bool add_ass, + char * buf, + int32_t length); + + // + // Grammar + // + + LLAMA_API struct llama_grammar * llama_grammar_init( + const llama_grammar_element ** rules, + size_t n_rules, + size_t start_rule_index); + + LLAMA_API void llama_grammar_free(struct llama_grammar * grammar); + + LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar); + + // + // Sampling functions + // + + // Sets the current rng seed. + LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed); + + /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix. + /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details. + LLAMA_API void llama_sample_repetition_penalties( + struct llama_context * ctx, + llama_token_data_array * candidates, + const llama_token * last_tokens, + size_t penalty_last_n, + float penalty_repeat, + float penalty_freq, + float penalty_present); + + /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806 + /// @param logits Logits extracted from the original generation context. + /// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context. + /// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance. + LLAMA_API void llama_sample_apply_guidance( + struct llama_context * ctx, + float * logits, + float * logits_guidance, + float scale); + + /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits. + LLAMA_API void llama_sample_softmax( + struct llama_context * ctx, + llama_token_data_array * candidates); + + /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 + LLAMA_API void llama_sample_top_k( + struct llama_context * ctx, + llama_token_data_array * candidates, + int32_t k, + size_t min_keep); + + /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751 + LLAMA_API void llama_sample_top_p( + struct llama_context * ctx, + llama_token_data_array * candidates, + float p, + size_t min_keep); + + /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841 + LLAMA_API void llama_sample_min_p( + struct llama_context * ctx, + llama_token_data_array * candidates, + float p, + size_t min_keep); + + /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/. + LLAMA_API void llama_sample_tail_free( + struct llama_context * ctx, + llama_token_data_array * candidates, + float z, + size_t min_keep); + + /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666. + LLAMA_API void llama_sample_typical( + struct llama_context * ctx, + llama_token_data_array * candidates, + float p, + size_t min_keep); + + /// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772. + LLAMA_API void llama_sample_entropy( + struct llama_context * ctx, + llama_token_data_array * candidates_p, + float min_temp, + float max_temp, + float exponent_val); + + LLAMA_API void llama_sample_temp( + struct llama_context * ctx, + llama_token_data_array * candidates, + float temp); + + /// @details Apply constraints from grammar + LLAMA_API void llama_sample_grammar( + struct llama_context * ctx, + llama_token_data_array * candidates, + const struct llama_grammar * grammar); + + /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. + /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. + /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. + /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates. + /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm. + /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal. + LLAMA_API llama_token llama_sample_token_mirostat( + struct llama_context * ctx, + llama_token_data_array * candidates, + float tau, + float eta, + int32_t m, + float * mu); + + /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words. + /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text. + /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text. + /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates. + /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal. + LLAMA_API llama_token llama_sample_token_mirostat_v2( + struct llama_context * ctx, + llama_token_data_array * candidates, + float tau, + float eta, + float * mu); + + /// @details Selects the token with the highest probability. + /// Does not compute the token probabilities. Use llama_sample_softmax() instead. + LLAMA_API llama_token llama_sample_token_greedy( + struct llama_context * ctx, + llama_token_data_array * candidates); + + /// @details Randomly selects a token from the candidates based on their probabilities. + LLAMA_API llama_token llama_sample_token( + struct llama_context * ctx, + llama_token_data_array * candidates); + + /// @details Accepts the sampled token into the grammar + LLAMA_API void llama_grammar_accept_token( + struct llama_context * ctx, + struct llama_grammar * grammar, + llama_token token); + + // + // Beam search + // + + struct llama_beam_view { + const llama_token * tokens; + + size_t n_tokens; + float p; // Cumulative beam probability (renormalized relative to all beams) + bool eob; // Callback should set this to true when a beam is at end-of-beam. + }; + + // Passed to beam_search_callback function. + // Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams + // (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks. + // These pointers are valid only during the synchronous callback, so should not be saved. + struct llama_beams_state { + struct llama_beam_view * beam_views; + + size_t n_beams; // Number of elements in beam_views[]. + size_t common_prefix_length; // Current max length of prefix tokens shared by all beams. + bool last_call; // True iff this is the last callback invocation. + }; + + // Type of pointer to the beam_search_callback function. + // void* callback_data is any custom data passed to llama_beam_search, that is subsequently + // passed back to beam_search_callback. This avoids having to use global variables in the callback. + typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, struct llama_beams_state); + + /// @details Deterministically returns entire sentence constructed by a beam search. + /// @param ctx Pointer to the llama_context. + /// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state. + /// @param callback_data A pointer that is simply passed back to callback. + /// @param n_beams Number of beams to use. + /// @param n_past Number of tokens already evaluated. + /// @param n_predict Maximum number of tokens to predict. EOS may occur earlier. + LLAMA_API void llama_beam_search( + struct llama_context * ctx, + llama_beam_search_callback_fn_t callback, + void * callback_data, + size_t n_beams, + int32_t n_past, + int32_t n_predict); + + /// @details Build a split GGUF final path for this chunk. + /// llama_split_path(split_path, sizeof(split_path), "/models/ggml-model-q4_0", 2, 4) => split_path = "/models/ggml-model-q4_0-00002-of-00004.gguf" + // Returns the split_path length. + LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count); + + /// @details Extract the path prefix from the split_path if and only if the split_no and split_count match. + /// llama_split_prefix(split_prefix, 64, "/models/ggml-model-q4_0-00002-of-00004.gguf", 2, 4) => split_prefix = "/models/ggml-model-q4_0" + // Returns the split_prefix length. + LLAMA_API int llama_split_prefix(char * split_prefix, size_t maxlen, const char * split_path, int split_no, int split_count); + + // Performance information + LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx); + + LLAMA_API void llama_print_timings(struct llama_context * ctx); + LLAMA_API void llama_reset_timings(struct llama_context * ctx); + + // Print system information + LLAMA_API const char * llama_print_system_info(void); + + // Set callback for all future logging events. + // If this is not called, or NULL is supplied, everything is output on stderr. + LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data); + + LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx); + +#ifdef __cplusplus +} +#endif + +// Internal API to be implemented by llama.cpp and used by tests/benchmarks only +#ifdef LLAMA_API_INTERNAL + +#include +#include + +struct ggml_tensor; + +struct llama_partial_utf8 { + uint32_t value; // bit value so far (unshifted) + int n_remain; // num bytes remaining; -1 indicates invalid sequence +}; + +struct llama_grammar { + const std::vector> rules; + std::vector> stacks; + + // buffer for partially generated UTF-8 sequence from accepted tokens + llama_partial_utf8 partial_utf8; +}; + +struct llama_grammar_candidate { + size_t index; + const uint32_t * code_points; + llama_partial_utf8 partial_utf8; +}; + +const std::vector> & llama_internal_get_tensor_map( + struct llama_context * ctx +); + +void llama_grammar_accept( + const std::vector> & rules, + const std::vector> & stacks, + const uint32_t chr, + std::vector> & new_stacks); + +std::pair, llama_partial_utf8> decode_utf8( + const std::string & src, + llama_partial_utf8 partial_start); + +#endif // LLAMA_API_INTERNAL + +#endif // LLAMA_H diff --git a/llama/metal.sh b/llama/metal.sh new file mode 100755 index 00000000..5fb035ee --- /dev/null +++ b/llama/metal.sh @@ -0,0 +1,10 @@ +sed -e '/#include "ggml-common.h"/r ggml-common.h' -e '/#include "ggml-common.h"/d' < ggml-metal.metal > ggml-metal-embed.metal +TEMP_ASSEMBLY=$(mktemp) +echo ".section __DATA, __ggml_metallib" > $TEMP_ASSEMBLY +echo ".globl _ggml_metallib_start" >> $TEMP_ASSEMBLY +echo "_ggml_metallib_start:" >> $TEMP_ASSEMBLY +echo ".incbin \"ggml-metal-embed.metal\"" >> $TEMP_ASSEMBLY +echo ".globl _ggml_metallib_end" >> $TEMP_ASSEMBLY +echo "_ggml_metallib_end:" >> $TEMP_ASSEMBLY +as $TEMP_ASSEMBLY -o ggml-metal-embed.o +rm -f $TEMP_ASSEMBLY diff --git a/llama/sgemm.cpp b/llama/sgemm.cpp new file mode 100644 index 00000000..6900f04c --- /dev/null +++ b/llama/sgemm.cpp @@ -0,0 +1,1148 @@ +// -*- mode:c++;indent-tabs-mode:nil;c-basic-offset:4;coding:utf-8 -*- +// vi: set et ft=c++ ts=4 sts=4 sw=4 fenc=utf-8 :vi +// +// Copyright 2024 Mozilla Foundation +// +// Permission is hereby granted, free of charge, to any person obtaining +// a copy of this software and associated documentation files (the +// "Software"), to deal in the Software without restriction, including +// without limitation the rights to use, copy, modify, merge, publish, +// distribute, sublicense, and/or sell copies of the Software, and to +// permit persons to whom the Software is furnished to do so, subject to +// the following conditions: +// +// The above copyright notice and this permission notice shall be +// included in all copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +// MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS +// BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +// ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN +// CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +// SOFTWARE. + +// +// _ _ ___ _ _ ___ +// | |_(_)_ _ _ _| _ ) | /_\ / __| +// | _| | ' \ || | _ \ |__ / _ \\__ \. +// \__|_|_||_\_, |___/____/_/ \_\___/ +// |__/ +// +// BASIC LINEAR ALGEBRA SUBPROGRAMS +// +// +// This file implements multithreaded CPU matrix multiplication for the +// common contiguous use case C = Aᵀ * B. These kernels are designed to +// have excellent performance[1] for matrices that fit in the CPU cache +// without imposing any overhead such as cache filling or malloc calls. +// +// This implementation does not guarantee any upper bound with rounding +// errors, which grow along with k. Our goal's to maximally exploit the +// hardware for performance, and then use whatever resources remain for +// improving numerical accuracy. +// +// [1] J. Tunney, ‘LLaMA Now Goes Faster on CPUs’, Mar. 2024. [Online]. +// Available: https://justine.lol/matmul/. [Accessed: 29-Mar-2024]. + +#pragma GCC diagnostic ignored "-Wpedantic" +#pragma GCC diagnostic ignored "-Wignored-attributes" + +#include "sgemm.h" +#include "ggml-impl.h" +#include "ggml-quants.h" + +#ifdef _MSC_VER +#define NOINLINE __declspec(noinline) +#else +#define NOINLINE __attribute__((__noinline__)) +#endif + +#if defined(__ARM_NEON) || defined(__AVX512F__) +#define VECTOR_REGISTERS 32 +#else +#define VECTOR_REGISTERS 16 +#endif + +// there will be blocks +#define BEGIN_KERNEL(RM, RN) \ + int ytiles = (m - m0) / RM; \ + int xtiles = (n - n0) / RN; \ + int tiles = ytiles * xtiles; \ + int duty = (tiles + nth - 1) / nth; \ + int start = duty * ith; \ + int end = start + duty; \ + if (end > tiles) \ + end = tiles; \ + for (int job = start; job < end; ++job) { \ + int i = m0 + job / xtiles * RM; \ + int j = n0 + job % xtiles * RN; + +#define END_KERNEL() } + +#define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1) + +namespace { + +inline float unhalf(ggml_fp16_t d) { + return GGML_FP16_TO_FP32(d); +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +// VECTORIZED ARITHMETIC OPERATIONS + +#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) +inline __m128 add(__m128 x, __m128 y) { return _mm_add_ps(x, y); } +inline __m128 sub(__m128 x, __m128 y) { return _mm_sub_ps(x, y); } +inline __m128 mul(__m128 x, __m128 y) { return _mm_mul_ps(x, y); } +#endif // __SSE__ + +#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) +inline __m256 add(__m256 x, __m256 y) { return _mm256_add_ps(x, y); } +inline __m256 sub(__m256 x, __m256 y) { return _mm256_sub_ps(x, y); } +inline __m256 mul(__m256 x, __m256 y) { return _mm256_mul_ps(x, y); } +#endif // __AVX__ + +#if defined(__AVX512F__) +inline __m512 add(__m512 x, __m512 y) { return _mm512_add_ps(x, y); } +inline __m512 sub(__m512 x, __m512 y) { return _mm512_sub_ps(x, y); } +inline __m512 mul(__m512 x, __m512 y) { return _mm512_mul_ps(x, y); } +#endif // __AVX512F__ + +#if defined(__ARM_NEON) +inline float32x4_t add(float32x4_t x, float32x4_t y) { return vaddq_f32(x, y); } +inline float32x4_t sub(float32x4_t x, float32x4_t y) { return vsubq_f32(x, y); } +inline float32x4_t mul(float32x4_t x, float32x4_t y) { return vmulq_f32(x, y); } +#endif // __ARM_NEON + +#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) +inline float16x8_t add(float16x8_t x, float16x8_t y) { return vaddq_f16(x, y); } +inline float16x8_t sub(float16x8_t x, float16x8_t y) { return vsubq_f16(x, y); } +inline float16x8_t mul(float16x8_t x, float16x8_t y) { return vmulq_f16(x, y); } +#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC + +//////////////////////////////////////////////////////////////////////////////////////////////////// +// VECTORIZED HORIZONTAL SUM + +#if defined(__ARM_NEON) +inline float hsum(float32x4_t x) { + return vaddvq_f32(x); +} +#endif // __ARM_NEON + +#if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER) +inline float hsum(float16x8_t x) { + return vaddvq_f32(vaddq_f32(vcvt_f32_f16(vget_low_f16(x)), + vcvt_f32_f16(vget_high_f16(x)))); +} +#endif // __ARM_FEATURE_FP16_VECTOR_ARITHMETIC + +#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) +inline float hsum(__m128 x) { +#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) + x = _mm_add_ps(x, _mm_movehl_ps(x, x)); + x = _mm_add_ss(x, _mm_movehdup_ps(x)); +#else + __m128 t; + t = _mm_shuffle_ps(x, x, _MM_SHUFFLE(2, 3, 0, 1)); + x = _mm_add_ps(x, t); + t = _mm_movehl_ps(t, x); + x = _mm_add_ss(x, t); +#endif + return _mm_cvtss_f32(x); +} +#endif + +#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) +inline float hsum(__m256 x) { + return hsum(_mm_add_ps(_mm256_extractf128_ps(x, 1), + _mm256_castps256_ps128(x))); +} +#endif // __AVX__ + +#if defined(__AVX512F__) +inline float hsum(__m512 x) { + return _mm512_reduce_add_ps(x); +} +#endif // __AVX512F__ + +//////////////////////////////////////////////////////////////////////////////////////////////////// +// VECTORIZED MEMORY LOADING + +template T load(const U *); + +#if defined(__ARM_NEON) +template <> inline float32x4_t load(const float *p) { + return vld1q_f32(p); +} +#if !defined(_MSC_VER) +template <> inline float16x8_t load(const ggml_fp16_t *p) { + return vld1q_f16((const float16_t *)p); +} +template <> inline float32x4_t load(const ggml_fp16_t *p) { + return vcvt_f32_f16(vld1_f16((const float16_t *)p)); +} +#endif // _MSC_VER +#endif // __ARM_NEON + +#if defined(__SSE__) || defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) +template <> inline __m128 load(const float *p) { + return _mm_loadu_ps(p); +} +#endif // __SSE__ + +#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) +template <> inline __m256 load(const float *p) { + return _mm256_loadu_ps(p); +} +#endif // __AVX__ + +#if defined(__F16C__) +template <> inline __m256 load(const ggml_fp16_t *p) { + return _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)p)); +} +#endif // __F16C__ + +#if defined(__AVX512F__) +template <> inline __m512 load(const float *p) { + return _mm512_loadu_ps(p); +} +template <> inline __m512 load(const ggml_fp16_t *p) { + return _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)p)); +} +#endif // __AVX512F__ + +//////////////////////////////////////////////////////////////////////////////////////////////////// +// ABSTRACTIONS + +/** + * Computes a * b + c. + * + * This operation will become fused into a single arithmetic instruction + * if the hardware has support for this feature, e.g. Intel Haswell+ (c. + * 2013), AMD Bulldozer+ (c. 2011), etc. + */ +template +inline U madd(T a, T b, U c) { + return add(mul(a, b), c); +} + +/** + * Computes a * b + c with error correction. + * + * @see W. Kahan, "Further remarks on reducing truncation errors," + * Communications of the ACM, vol. 8, no. 1, p. 40, Jan. 1965, + * doi: 10.1145/363707.363723. + */ +template +inline U madder(T a, T b, U c, U *e) { + U y = sub(mul(a, b), *e); + U t = add(c, y); + *e = sub(sub(t, c), y); + return t; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +// FLOATING POINT MATRIX MULTIPLICATION + +template +class tinyBLAS { + public: + tinyBLAS(int k, + const TA *A, int lda, + const TB *B, int ldb, + TC *C, int ldc, + int ith, int nth) + : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) { + } + + void matmul(int m, int n, int task) { + if (task == GGML_TASK_TYPE_COMPUTE) + mnpack(0, m, 0, n); + } + + private: + NOINLINE void mnpack(int m0, int m, int n0, int n) { + int mc, nc, mp, np; + if (m - m0 <= 0 || n - n0 <= 0) + return; + if (VECTOR_REGISTERS >= 32 && n - n0 >= 5 && m - m0 >= 5) { + mc = 5; + nc = 5; + gemm5x5(m0, m, n0, n); + } else if (n - n0 >= 4 && m - m0 >= 3) { + mc = 3; + nc = 4; + gemm3x4(m0, m, n0, n); + } else if (n - n0 >= 4) { + mc = 1; + nc = 4; + gemm1x4(m0, m, n0, n); + } else if (m - m0 >= 4) { + mc = 4; + nc = 1; + gemm4x1(m0, m, n0, n); + } else { + mc = 1; + nc = 1; + gemm1x1(m0, m, n0, n); + } + mp = m0 + (m - m0) / mc * mc; + np = n0 + (n - n0) / nc * nc; + mnpack(mp, m, n0, np); + mnpack(m0, mp, np, n); + mnpack(mp, m, np, n); + } + + NOINLINE void gemm5x5(int m0, int m, int n0, int n) { + BEGIN_KERNEL(5, 5) + D c00 = {0}; + D c01 = {0}; + D c02 = {0}; + D c03 = {0}; + D c04 = {0}; + D c10 = {0}; + D c11 = {0}; + D c12 = {0}; + D c13 = {0}; + D c14 = {0}; + D c20 = {0}; + D c21 = {0}; + D c22 = {0}; + D c23 = {0}; + D c24 = {0}; + D c30 = {0}; + D c31 = {0}; + D c32 = {0}; + D c33 = {0}; + D c34 = {0}; + D c40 = {0}; + D c41 = {0}; + D c42 = {0}; + D c43 = {0}; + D c44 = {0}; + for (int l = 0; l < k; l += KN) { + V k0 = load(B + ldb * (j + 0) + l); + V k1 = load(B + ldb * (j + 1) + l); + V k2 = load(B + ldb * (j + 2) + l); + V k3 = load(B + ldb * (j + 3) + l); + V k4 = load(B + ldb * (j + 4) + l); + V a0 = load(A + lda * (i + 0) + l); + c00 = madd(a0, k0, c00); + c01 = madd(a0, k1, c01); + c02 = madd(a0, k2, c02); + c03 = madd(a0, k3, c03); + c04 = madd(a0, k4, c04); + V a1 = load(A + lda * (i + 1) + l); + c10 = madd(a1, k0, c10); + c11 = madd(a1, k1, c11); + c12 = madd(a1, k2, c12); + c13 = madd(a1, k3, c13); + c14 = madd(a1, k4, c14); + V a2 = load(A + lda * (i + 2) + l); + c20 = madd(a2, k0, c20); + c21 = madd(a2, k1, c21); + c22 = madd(a2, k2, c22); + c23 = madd(a2, k3, c23); + c24 = madd(a2, k4, c24); + V a3 = load(A + lda * (i + 3) + l); + c30 = madd(a3, k0, c30); + c31 = madd(a3, k1, c31); + c32 = madd(a3, k2, c32); + c33 = madd(a3, k3, c33); + c34 = madd(a3, k4, c34); + V a4 = load(A + lda * (i + 4) + l); + c40 = madd(a4, k0, c40); + c41 = madd(a4, k1, c41); + c42 = madd(a4, k2, c42); + c43 = madd(a4, k3, c43); + c44 = madd(a4, k4, c44); + } + C[ldc * (j + 0) + (i + 0)] = hsum(c00); + C[ldc * (j + 0) + (i + 1)] = hsum(c10); + C[ldc * (j + 0) + (i + 2)] = hsum(c20); + C[ldc * (j + 0) + (i + 3)] = hsum(c30); + C[ldc * (j + 0) + (i + 4)] = hsum(c40); + C[ldc * (j + 1) + (i + 0)] = hsum(c01); + C[ldc * (j + 1) + (i + 1)] = hsum(c11); + C[ldc * (j + 1) + (i + 2)] = hsum(c21); + C[ldc * (j + 1) + (i + 3)] = hsum(c31); + C[ldc * (j + 1) + (i + 4)] = hsum(c41); + C[ldc * (j + 2) + (i + 0)] = hsum(c02); + C[ldc * (j + 2) + (i + 1)] = hsum(c12); + C[ldc * (j + 2) + (i + 2)] = hsum(c22); + C[ldc * (j + 2) + (i + 3)] = hsum(c32); + C[ldc * (j + 2) + (i + 4)] = hsum(c42); + C[ldc * (j + 3) + (i + 0)] = hsum(c03); + C[ldc * (j + 3) + (i + 1)] = hsum(c13); + C[ldc * (j + 3) + (i + 2)] = hsum(c23); + C[ldc * (j + 3) + (i + 3)] = hsum(c33); + C[ldc * (j + 3) + (i + 4)] = hsum(c43); + C[ldc * (j + 4) + (i + 0)] = hsum(c04); + C[ldc * (j + 4) + (i + 1)] = hsum(c14); + C[ldc * (j + 4) + (i + 2)] = hsum(c24); + C[ldc * (j + 4) + (i + 3)] = hsum(c34); + C[ldc * (j + 4) + (i + 4)] = hsum(c44); + END_KERNEL() + } + + NOINLINE void gemm3x4(int m0, int m, int n0, int n) { + BEGIN_KERNEL(3, 4) + D c00 = {0}; + D c01 = {0}; + D c02 = {0}; + D c03 = {0}; + D c10 = {0}; + D c11 = {0}; + D c12 = {0}; + D c13 = {0}; + D c20 = {0}; + D c21 = {0}; + D c22 = {0}; + D c23 = {0}; + for (int l = 0; l < k; l += KN) { + V k0 = load(B + ldb * (j + 0) + l); + V k1 = load(B + ldb * (j + 1) + l); + V k2 = load(B + ldb * (j + 2) + l); + V k3 = load(B + ldb * (j + 3) + l); + V a0 = load(A + lda * (i + 0) + l); + c00 = madd(a0, k0, c00); + c01 = madd(a0, k1, c01); + c02 = madd(a0, k2, c02); + c03 = madd(a0, k3, c03); + V a1 = load(A + lda * (i + 1) + l); + c10 = madd(a1, k0, c10); + c11 = madd(a1, k1, c11); + c12 = madd(a1, k2, c12); + c13 = madd(a1, k3, c13); + V a2 = load(A + lda * (i + 2) + l); + c20 = madd(a2, k0, c20); + c21 = madd(a2, k1, c21); + c22 = madd(a2, k2, c22); + c23 = madd(a2, k3, c23); + } + C[ldc * (j + 0) + (i + 0)] = hsum(c00); + C[ldc * (j + 0) + (i + 1)] = hsum(c10); + C[ldc * (j + 0) + (i + 2)] = hsum(c20); + C[ldc * (j + 1) + (i + 0)] = hsum(c01); + C[ldc * (j + 1) + (i + 1)] = hsum(c11); + C[ldc * (j + 1) + (i + 2)] = hsum(c21); + C[ldc * (j + 2) + (i + 0)] = hsum(c02); + C[ldc * (j + 2) + (i + 1)] = hsum(c12); + C[ldc * (j + 2) + (i + 2)] = hsum(c22); + C[ldc * (j + 3) + (i + 0)] = hsum(c03); + C[ldc * (j + 3) + (i + 1)] = hsum(c13); + C[ldc * (j + 3) + (i + 2)] = hsum(c23); + END_KERNEL() + } + + NOINLINE void gemm1x4(int m0, int m, int n0, int n) { + BEGIN_KERNEL(1, 4) + D c00 = {0}, e00 = {0}; + D c01 = {0}, e01 = {0}; + D c02 = {0}, e02 = {0}; + D c03 = {0}, e03 = {0}; + for (int l = 0; l < k; l += KN) { + V a = load(A + lda * (i + 0) + l); + c00 = madder(a, load(B + ldb * (j + 0) + l), c00, &e00); + c01 = madder(a, load(B + ldb * (j + 1) + l), c01, &e01); + c02 = madder(a, load(B + ldb * (j + 2) + l), c02, &e02); + c03 = madder(a, load(B + ldb * (j + 3) + l), c03, &e03); + } + C[ldc * (j + 0) + (i + 0)] = hsum(c00); + C[ldc * (j + 1) + (i + 0)] = hsum(c01); + C[ldc * (j + 2) + (i + 0)] = hsum(c02); + C[ldc * (j + 3) + (i + 0)] = hsum(c03); + END_KERNEL() + } + + NOINLINE void gemm4x1(int m0, int m, int n0, int n) { + BEGIN_KERNEL(4, 1) + D c00 = {0}, e00 = {0}; + D c10 = {0}, e10 = {0}; + D c20 = {0}, e20 = {0}; + D c30 = {0}, e30 = {0}; + for (int l = 0; l < k; l += KN) { + V b = load(B + ldb * (j + 0) + l); + c00 = madder(load(A + lda * (i + 0) + l), b, c00, &e00); + c10 = madder(load(A + lda * (i + 1) + l), b, c10, &e10); + c20 = madder(load(A + lda * (i + 2) + l), b, c20, &e20); + c30 = madder(load(A + lda * (i + 3) + l), b, c30, &e30); + } + C[ldc * (j + 0) + (i + 0)] = hsum(c00); + C[ldc * (j + 0) + (i + 1)] = hsum(c10); + C[ldc * (j + 0) + (i + 2)] = hsum(c20); + C[ldc * (j + 0) + (i + 3)] = hsum(c30); + END_KERNEL() + } + + NOINLINE void gemm1x1(int m0, int m, int n0, int n) { + BEGIN_KERNEL(1, 1) + D c = {0}, e = {0}; + for (int l = 0; l < k; l += KN) + c = madder(load(A + lda * i + l), + load(B + ldb * j + l), c, &e); + C[ldc * j + i] = hsum(c); + END_KERNEL() + } + + const TA *const A; + const TB *const B; + TC *const C; + const int k; + const int lda; + const int ldb; + const int ldc; + const int ith; + const int nth; +}; + +////////////////////////////////////////////////////////////////////////////////////////// +// QUANT ZERO MATRIX MULTIPLICATION + +#if defined(__ARM_FEATURE_DOTPROD) +template +class tinyBLAS_Q0_ARM { + public: + tinyBLAS_Q0_ARM(int k, + const TA *A, int lda, + const block_q8_0 *B, int ldb, + float *C, int ldc, + int ith, int nth) + : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) { + } + + void matmul(int m, int n, int task) { + if (task == GGML_TASK_TYPE_COMPUTE) + mnpack(0, m, 0, n); + } + + private: + NOINLINE void mnpack(int m0, int m, int n0, int n) { + int mc, nc, mp, np; + if (m - m0 <= 0 || n - n0 <= 0) + return; + if (m - m0 >= 3 && n - n0 >= 3) { + mc = 3; + nc = 3; + gemm3x3(m0, m, n0, n); + } else { + mc = 1; + nc = 1; + gemm1x1(m0, m, n0, n); + } + mp = m0 + (m - m0) / mc * mc; + np = n0 + (n - n0) / nc * nc; + mnpack(mp, m, n0, np); + mnpack(m0, mp, np, n); + mnpack(mp, m, np, n); + } + + NOINLINE void gemm3x3(int m0, int m, int n0, int n) { + BEGIN_KERNEL(3, 3) + int32x4_t zero = vdupq_n_s32(0); + float32x4_t c00 = vdupq_n_f32(0.f); + float32x4_t c01 = vdupq_n_f32(0.f); + float32x4_t c02 = vdupq_n_f32(0.f); + float32x4_t c10 = vdupq_n_f32(0.f); + float32x4_t c11 = vdupq_n_f32(0.f); + float32x4_t c12 = vdupq_n_f32(0.f); + float32x4_t c20 = vdupq_n_f32(0.f); + float32x4_t c21 = vdupq_n_f32(0.f); + float32x4_t c22 = vdupq_n_f32(0.f); + const TA *Ap0 = A + lda * (i + 0); + const TA *Ap1 = A + lda * (i + 1); + const TA *Ap2 = A + lda * (i + 2); + const block_q8_0 *Bp0 = B + ldb * (j + 0); + const block_q8_0 *Bp1 = B + ldb * (j + 1); + const block_q8_0 *Bp2 = B + ldb * (j + 2); + for (int l = 0; l < k; ++l) { + c00 = vmlaq_n_f32( + c00, + vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap0 + l), load_lo(Bp0 + l)), + load_hi(Ap0 + l), load_hi(Bp0 + l))), + unhalf(Ap0[l].d) * unhalf(Bp0[l].d)); + c01 = vmlaq_n_f32( + c01, + vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap0 + l), load_lo(Bp1 + l)), + load_hi(Ap0 + l), load_hi(Bp1 + l))), + unhalf(Ap0[l].d) * unhalf(Bp1[l].d)); + c02 = vmlaq_n_f32( + c02, + vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap0 + l), load_lo(Bp2 + l)), + load_hi(Ap0 + l), load_hi(Bp2 + l))), + unhalf(Ap0[l].d) * unhalf(Bp2[l].d)); + c10 = vmlaq_n_f32( + c10, + vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap1 + l), load_lo(Bp0 + l)), + load_hi(Ap1 + l), load_hi(Bp0 + l))), + unhalf(Ap1[l].d) * unhalf(Bp0[l].d)); + c11 = vmlaq_n_f32( + c11, + vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap1 + l), load_lo(Bp1 + l)), + load_hi(Ap1 + l), load_hi(Bp1 + l))), + unhalf(Ap1[l].d) * unhalf(Bp1[l].d)); + c12 = vmlaq_n_f32( + c12, + vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap1 + l), load_lo(Bp2 + l)), + load_hi(Ap1 + l), load_hi(Bp2 + l))), + unhalf(Ap1[l].d) * unhalf(Bp2[l].d)); + c20 = vmlaq_n_f32( + c20, + vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap2 + l), load_lo(Bp0 + l)), + load_hi(Ap2 + l), load_hi(Bp0 + l))), + unhalf(Ap2[l].d) * unhalf(Bp0[l].d)); + c21 = vmlaq_n_f32( + c21, + vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap2 + l), load_lo(Bp1 + l)), + load_hi(Ap2 + l), load_hi(Bp1 + l))), + unhalf(Ap2[l].d) * unhalf(Bp1[l].d)); + c22 = vmlaq_n_f32( + c22, + vcvtq_f32_s32(vdotq_s32(vdotq_s32(zero, load_lo(Ap2 + l), load_lo(Bp2 + l)), + load_hi(Ap2 + l), load_hi(Bp2 + l))), + unhalf(Ap2[l].d) * unhalf(Bp2[l].d)); + } + C[ldc * (j + 0) + (i + 0)] = hsum(c00); + C[ldc * (j + 0) + (i + 1)] = hsum(c10); + C[ldc * (j + 0) + (i + 2)] = hsum(c20); + C[ldc * (j + 1) + (i + 0)] = hsum(c01); + C[ldc * (j + 1) + (i + 1)] = hsum(c11); + C[ldc * (j + 1) + (i + 2)] = hsum(c21); + C[ldc * (j + 2) + (i + 0)] = hsum(c02); + C[ldc * (j + 2) + (i + 1)] = hsum(c12); + C[ldc * (j + 2) + (i + 2)] = hsum(c22); + END_KERNEL() + } + + NOINLINE void gemm1x1(int m0, int m, int n0, int n) { + BEGIN_KERNEL(1, 1) + float32x4_t acc = vdupq_n_f32(0.f); + const TA *Ap = A + lda * i; + const block_q8_0 *Bp = B + ldb * j; + for (int l = 0; l < k; ++l) { + acc = vmlaq_n_f32(acc, + vcvtq_f32_s32(vdotq_s32( + vdotq_s32(vdupq_n_s32(0), load_lo(Ap + l), load_lo(Bp + l)), + load_hi(Ap + l), load_hi(Bp + l))), + unhalf(Ap[l].d) * unhalf(Bp[l].d)); + } + C[ldc * j + i] = hsum(acc); + END_KERNEL() + } + + inline int8x16_t load_lo(const block_q8_0 *b) { + return vld1q_s8(b->qs); + } + inline int8x16_t load_hi(const block_q8_0 *b) { + return vld1q_s8(b->qs + 16); + } + + inline int8x16_t load_lo(const block_q4_0 *b) { + return vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vld1q_u8(b->qs), + vdupq_n_u8(0x0f))), + vdupq_n_s8(0x8)); + } + inline int8x16_t load_hi(const block_q4_0 *b) { + return vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(vld1q_u8(b->qs), 4)), + vdupq_n_s8(0x8)); + } + + const TA *const A; + const block_q8_0 *const B; + float *const C; + const int k; + const int lda; + const int ldb; + const int ldc; + const int ith; + const int nth; +}; +#endif // __ARM_FEATURE_DOTPROD + +#if defined(__AVX2__) || defined(__AVX512F__) +template +class tinyBLAS_Q0_AVX2 { + public: + tinyBLAS_Q0_AVX2(int k, + const TA *A, int lda, + const TB *B, int ldb, + TC *C, int ldc, + int ith, int nth) + : A(A), B(B), C(C), k(k), lda(lda), ldb(ldb), ldc(ldc), ith(ith), nth(nth) { + } + + void matmul(int m, int n, int task) { + if (task == GGML_TASK_TYPE_COMPUTE) + mnpack(0, m, 0, n); + } + + private: + NOINLINE void mnpack(int m0, int m, int n0, int n) { + int mc, nc, mp, np; + if (m - m0 <= 0 || n - n0 <= 0) + return; + if (m - m0 >= 4 && n - n0 >= 3) { + mc = 4; + nc = 3; + gemm4x3(m0, m, n0, n); + } else if (m - m0 >= 4 && n - n0 >= 1) { + mc = 4; + nc = 1; + gemm4x1(m0, m, n0, n); + } else if (m - m0 >= 1 && n - n0 >= 4) { + mc = 1; + nc = 4; + gemm1x4(m0, m, n0, n); + } else { + mc = 1; + nc = 1; + gemm1x1(m0, m, n0, n); + } + mp = m0 + (m - m0) / mc * mc; + np = n0 + (n - n0) / nc * nc; + mnpack(mp, m, n0, np); + mnpack(m0, mp, np, n); + mnpack(mp, m, np, n); + } + + NOINLINE void gemm4x3(int m0, int m, int n0, int n) { + BEGIN_KERNEL(4, 3) + __m256 c00 = _mm256_setzero_ps(); + __m256 c10 = _mm256_setzero_ps(); + __m256 c20 = _mm256_setzero_ps(); + __m256 c30 = _mm256_setzero_ps(); + __m256 c01 = _mm256_setzero_ps(); + __m256 c11 = _mm256_setzero_ps(); + __m256 c21 = _mm256_setzero_ps(); + __m256 c31 = _mm256_setzero_ps(); + __m256 c02 = _mm256_setzero_ps(); + __m256 c12 = _mm256_setzero_ps(); + __m256 c22 = _mm256_setzero_ps(); + __m256 c32 = _mm256_setzero_ps(); + const TA *Ap0 = A + lda * (i + 0); + const TA *Ap1 = A + lda * (i + 1); + const TA *Ap2 = A + lda * (i + 2); + const TA *Ap3 = A + lda * (i + 3); + const TB *Bp0 = B + ldb * (j + 0); + const TB *Bp1 = B + ldb * (j + 1); + const TB *Bp2 = B + ldb * (j + 2); + for (int l = 0; l < k; ++l) { + float da0 = unhalf(Ap0[l].d); + float da1 = unhalf(Ap1[l].d); + float da2 = unhalf(Ap2[l].d); + float da3 = unhalf(Ap3[l].d); + __m256i e0 = load(Ap0 + l); + __m256i e1 = load(Ap1 + l); + __m256i e2 = load(Ap2 + l); + __m256i e3 = load(Ap3 + l); + float db0 = unhalf(Bp0[l].d); + __m256 d00 = _mm256_set1_ps(da0 * db0); + __m256 d10 = _mm256_set1_ps(da1 * db0); + __m256 d20 = _mm256_set1_ps(da2 * db0); + __m256 d30 = _mm256_set1_ps(da3 * db0); + __m256i f0 = load(Bp0 + l); + __m256i u0 = _mm256_sign_epi8(f0, f0); + __m256i s00 = _mm256_sign_epi8(e0, f0); + __m256i s10 = _mm256_sign_epi8(e1, f0); + __m256i s20 = _mm256_sign_epi8(e2, f0); + __m256i s30 = _mm256_sign_epi8(e3, f0); + c00 = madd(d00, updot(u0, s00), c00); + c10 = madd(d10, updot(u0, s10), c10); + c20 = madd(d20, updot(u0, s20), c20); + c30 = madd(d30, updot(u0, s30), c30); + float db1 = unhalf(Bp1[l].d); + __m256 d01 = _mm256_set1_ps(da0 * db1); + __m256 d11 = _mm256_set1_ps(da1 * db1); + __m256 d21 = _mm256_set1_ps(da2 * db1); + __m256 d31 = _mm256_set1_ps(da3 * db1); + __m256i f1 = load(Bp1 + l); + __m256i u1 = _mm256_sign_epi8(f1, f1); + __m256i s01 = _mm256_sign_epi8(e0, f1); + __m256i s11 = _mm256_sign_epi8(e1, f1); + __m256i s21 = _mm256_sign_epi8(e2, f1); + __m256i s31 = _mm256_sign_epi8(e3, f1); + c01 = madd(d01, updot(u1, s01), c01); + c11 = madd(d11, updot(u1, s11), c11); + c21 = madd(d21, updot(u1, s21), c21); + c31 = madd(d31, updot(u1, s31), c31); + float db2 = unhalf(Bp2[l].d); + __m256 d02 = _mm256_set1_ps(da0 * db2); + __m256 d12 = _mm256_set1_ps(da1 * db2); + __m256 d22 = _mm256_set1_ps(da2 * db2); + __m256 d32 = _mm256_set1_ps(da3 * db2); + __m256i f2 = load(Bp2 + l); + __m256i u2 = _mm256_sign_epi8(f2, f2); + __m256i s02 = _mm256_sign_epi8(e0, f2); + __m256i s12 = _mm256_sign_epi8(e1, f2); + __m256i s22 = _mm256_sign_epi8(e2, f2); + __m256i s32 = _mm256_sign_epi8(e3, f2); + c02 = madd(d02, updot(u2, s02), c02); + c12 = madd(d12, updot(u2, s12), c12); + c22 = madd(d22, updot(u2, s22), c22); + c32 = madd(d32, updot(u2, s32), c32); + } + C[ldc * (j + 0) + (i + 0)] = hsum(c00); + C[ldc * (j + 0) + (i + 1)] = hsum(c10); + C[ldc * (j + 0) + (i + 2)] = hsum(c20); + C[ldc * (j + 0) + (i + 3)] = hsum(c30); + C[ldc * (j + 1) + (i + 0)] = hsum(c01); + C[ldc * (j + 1) + (i + 1)] = hsum(c11); + C[ldc * (j + 1) + (i + 2)] = hsum(c21); + C[ldc * (j + 1) + (i + 3)] = hsum(c31); + C[ldc * (j + 2) + (i + 0)] = hsum(c02); + C[ldc * (j + 2) + (i + 1)] = hsum(c12); + C[ldc * (j + 2) + (i + 2)] = hsum(c22); + C[ldc * (j + 2) + (i + 3)] = hsum(c32); + END_KERNEL() + } + + NOINLINE void gemm4x1(int m0, int m, int n0, int n) { + BEGIN_KERNEL(4, 1) + __m256 c0 = _mm256_setzero_ps(); + __m256 c1 = _mm256_setzero_ps(); + __m256 c2 = _mm256_setzero_ps(); + __m256 c3 = _mm256_setzero_ps(); + const TA *Ap0 = A + lda * (i + 0); + const TA *Ap1 = A + lda * (i + 1); + const TA *Ap2 = A + lda * (i + 2); + const TA *Ap3 = A + lda * (i + 3); + const TB *Bp = B + ldb * j; + for (int l = 0; l < k; ++l) { + float db0 = unhalf(Bp[l].d); + __m256i f = load(Bp + l); + __m256i u = _mm256_sign_epi8(f, f); + __m256 d0 = _mm256_set1_ps(unhalf(Ap0[l].d) * db0); + __m256 d1 = _mm256_set1_ps(unhalf(Ap1[l].d) * db0); + __m256 d2 = _mm256_set1_ps(unhalf(Ap2[l].d) * db0); + __m256 d3 = _mm256_set1_ps(unhalf(Ap3[l].d) * db0); + __m256i e0 = load(Ap0 + l); + __m256i e1 = load(Ap1 + l); + __m256i e2 = load(Ap2 + l); + __m256i e3 = load(Ap3 + l); + __m256i s0 = _mm256_sign_epi8(e0, f); + __m256i s1 = _mm256_sign_epi8(e1, f); + __m256i s2 = _mm256_sign_epi8(e2, f); + __m256i s3 = _mm256_sign_epi8(e3, f); + __m256 g0 = updot(u, s0); + __m256 g1 = updot(u, s1); + __m256 g2 = updot(u, s2); + __m256 g3 = updot(u, s3); + c0 = madd(d0, g0, c0); + c1 = madd(d1, g1, c1); + c2 = madd(d2, g2, c2); + c3 = madd(d3, g3, c3); + } + C[ldc * j + (i + 0)] = hsum(c0); + C[ldc * j + (i + 1)] = hsum(c1); + C[ldc * j + (i + 2)] = hsum(c2); + C[ldc * j + (i + 3)] = hsum(c3); + END_KERNEL() + } + + NOINLINE void gemm1x4(int m0, int m, int n0, int n) { + BEGIN_KERNEL(1, 4) + __m256 c0 = _mm256_setzero_ps(); + __m256 c1 = _mm256_setzero_ps(); + __m256 c2 = _mm256_setzero_ps(); + __m256 c3 = _mm256_setzero_ps(); + const TB *Bp0 = B + ldb * (j + 0); + const TB *Bp1 = B + ldb * (j + 1); + const TB *Bp2 = B + ldb * (j + 2); + const TB *Bp3 = B + ldb * (j + 3); + const TA *Ap = A + lda * i; + for (int l = 0; l < k; ++l) { + float da0 = unhalf(Ap[l].d); + __m256i f = load(Ap + l); + __m256i u = _mm256_sign_epi8(f, f); + __m256 d0 = _mm256_set1_ps(unhalf(Bp0[l].d) * da0); + __m256 d1 = _mm256_set1_ps(unhalf(Bp1[l].d) * da0); + __m256 d2 = _mm256_set1_ps(unhalf(Bp2[l].d) * da0); + __m256 d3 = _mm256_set1_ps(unhalf(Bp3[l].d) * da0); + __m256 g0 = updot(u, _mm256_sign_epi8(load(Bp0 + l), f)); + __m256 g1 = updot(u, _mm256_sign_epi8(load(Bp1 + l), f)); + __m256 g2 = updot(u, _mm256_sign_epi8(load(Bp2 + l), f)); + __m256 g3 = updot(u, _mm256_sign_epi8(load(Bp3 + l), f)); + c0 = madd(d0, g0, c0); + c1 = madd(d1, g1, c1); + c2 = madd(d2, g2, c2); + c3 = madd(d3, g3, c3); + } + C[ldc * (j + 0) + i] = hsum(c0); + C[ldc * (j + 1) + i] = hsum(c1); + C[ldc * (j + 2) + i] = hsum(c2); + C[ldc * (j + 3) + i] = hsum(c3); + END_KERNEL() + } + + NOINLINE void gemm1x1(int m0, int m, int n0, int n) { + BEGIN_KERNEL(1, 1) + __m256 c = _mm256_setzero_ps(); + const TA *Ap = A + lda * i; + const TB *Bp = B + ldb * j; + for (int l = 0; l < k; ++l) { + __m256 d = _mm256_set1_ps(unhalf(Ap[l].d) * unhalf(Bp[l].d)); + __m256i e = load(Ap + l); + __m256i f = load(Bp + l); + __m256 g = updot(_mm256_sign_epi8(e, e), _mm256_sign_epi8(f, e)); + c = madd(d, g, c); + } + C[ldc * j + i] = hsum(c); + END_KERNEL() + } + + inline __m256i load(const block_q8_0 *b) { + return _mm256_loadu_si256((const __m256i *)b->qs); + } + + inline __m256i load(const block_q4_0 *b) { + return _mm256_sub_epi8(denibble(b->qs), _mm256_set1_epi8(8)); + } + + inline __m256 updot(__m256i u, __m256i s) { + __m256i res; +#if defined(__AVXVNNI__) || (defined(__AVX512VNNI__) && defined(__AVX512VL__)) + res = _mm256_dpbusd_epi32(_mm256_setzero_si256(), u, s); +#else + res = _mm256_madd_epi16(_mm256_set1_epi16(1), _mm256_maddubs_epi16(u, s)); +#endif + return _mm256_cvtepi32_ps(res); + } + + static inline __m256i denibble(const uint8_t *p) { + const __m128i tmp = _mm_loadu_si128((const __m128i *)p); + const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp); + const __m256i lowMask = _mm256_set1_epi8(15); + return _mm256_and_si256(lowMask, bytes); + } + + const TA *const A; + const TB *const B; + TC *const C; + const int k; + const int lda; + const int ldb; + const int ldc; + const int ith; + const int nth; +}; +#endif // __AVX2__ + +} // namespace + +/** + * Performs optimized matrix multiplication on CPU. + * + * This subroutine may compute C = Aᵀ * B with column major ordering. + * Despite its name, this isn't a generalized implementation. Work is + * only performed when a handwritten kernel is written and available. + * Otherwise the caller should fall back to a general matmul routine. + * + * For example, for single-threaded single-precision GEMM you can say + * + * llamafile_sgemm(m, n, k, A, lda, B, ldb, C, ldc, + * 0, 1, GGML_TASK_TYPE_COMPUTE, + * GGML_TYPE_F32, GGML_TYPE_F32, GGML_TYPE_F32); + * + * @param m is rows in `A` and `C` + * @param n is cols in `B` and `C` + * @param k is cols in `A` and rows in `B` + * @param A is first input matrix (always transposed) + * @param lda is row stride of `A` + * @param B is second input matrix (never transposed) + * @param ldb is row stride of `B` + * @param C is input/output array of output matrices + * @param ldc is row stride of `C` + * @param ith is thread id (must be less than `nth`) + * @param nth is number of threads (must be greater than zero) + * @param task is GGML task type + * @param Atype is GGML data type of `A` + * @param Btype is GGML data type of `B` + * @param Ctype is GGML data type of `C` + * @return true if this function was able to service the matmul request + */ +bool llamafile_sgemm(int m, int n, int k, const void *A, int lda, const void *B, int ldb, void *C, + int ldc, int ith, int nth, int task, int Atype, int Btype, int Ctype) { + + assert(m >= 0); + assert(n >= 0); + assert(k >= 0); + assert(lda >= k); + assert(ldb >= k); + assert(ldc >= m); + assert(nth > 0); + assert(ith < nth); + assert(1ll * lda * m <= 0x7fffffff); + assert(1ll * ldb * n <= 0x7fffffff); + assert(1ll * ldc * n <= 0x7fffffff); + + if (Ctype != GGML_TYPE_F32) + return false; + + switch (Atype) { + + case GGML_TYPE_F32: { + if (Btype != GGML_TYPE_F32) + return false; +#if defined(__AVX512F__) + if (k % 16) + return false; + tinyBLAS<16, __m512, __m512, float, float, float> tb{ + k, (const float *)A, lda, + (const float *)B, ldb, + (float *)C, ldc, + ith, nth}; + tb.matmul(m, n, task); + return true; +#elif defined(__AVX__) || defined(__AVX2__) + if (k % 8) + return false; + tinyBLAS<8, __m256, __m256, float, float, float> tb{ + k, (const float *)A, lda, + (const float *)B, ldb, + (float *)C, ldc, + ith, nth}; + tb.matmul(m, n, task); + return true; +#elif defined(__ARM_NEON) + if (n < 4) + return false; + if (k % 4) + return false; + tinyBLAS<4, float32x4_t, float32x4_t, float, float, float> tb{ + k, (const float *)A, lda, + (const float *)B, ldb, + (float *)C, ldc, + ith, nth}; + tb.matmul(m, n, task); + return true; +#else + return false; +#endif + } + + case GGML_TYPE_F16: { +#if defined(__AVX512F__) + if (k % 16) + return false; + if (Btype != GGML_TYPE_F32) + return false; + tinyBLAS<16, __m512, __m512, ggml_fp16_t, float, float> tb{ + k, (const ggml_fp16_t *)A, lda, + (const float *)B, ldb, + (float *)C, ldc, + ith, nth}; + tb.matmul(m, n, task); + return true; +#elif (defined(__AVX__) || defined(__AVX2__)) && defined(__F16C__) + if (k % 8) + return false; + if (Btype != GGML_TYPE_F32) + return false; + tinyBLAS<8, __m256, __m256, ggml_fp16_t, float, float> tb{ + k, (const ggml_fp16_t *)A, lda, + (const float *)B, ldb, + (float *)C, ldc, + ith, nth}; + tb.matmul(m, n, task); + return true; +#elif defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) && !defined(_MSC_VER) + if (n < 8) + return false; + if (k % 8) + return false; + if (Btype != GGML_TYPE_F16) + return false; + tinyBLAS<8, float16x8_t, float16x8_t, ggml_fp16_t, ggml_fp16_t, float> tb{ + k, (const ggml_fp16_t *)A, lda, + (const ggml_fp16_t *)B, ldb, + (float *)C, ldc, + ith, nth}; + tb.matmul(m, n, task); + return true; +#elif defined(__ARM_NEON) && !defined(_MSC_VER) + if (k % 4) + return false; + if (Btype != GGML_TYPE_F32) + return false; + tinyBLAS<4, float32x4_t, float32x4_t, ggml_fp16_t, float, float> tb{ + k, (const ggml_fp16_t *)A, lda, + (const float *)B, ldb, + (float *)C, ldc, + ith, nth}; + tb.matmul(m, n, task); + return true; +#else + return false; +#endif + } + + case GGML_TYPE_Q8_0: { + if (Btype != GGML_TYPE_Q8_0) + return false; +#if defined(__AVX2__) || defined(__AVX512F__) + tinyBLAS_Q0_AVX2 tb{ + k, (const block_q8_0 *)A, lda, + (const block_q8_0 *)B, ldb, + (float *)C, ldc, + ith, nth}; + tb.matmul(m, n, task); + return true; +#elif defined(__ARM_FEATURE_DOTPROD) + tinyBLAS_Q0_ARM tb{ + k, (const block_q8_0 *)A, lda, + (const block_q8_0 *)B, ldb, + (float *)C, ldc, + ith, nth}; + tb.matmul(m, n, task); + return true; +#else + return false; +#endif + } + + case GGML_TYPE_Q4_0: { + if (Btype != GGML_TYPE_Q8_0) + return false; +#if defined(__AVX2__) || defined(__AVX512F__) + tinyBLAS_Q0_AVX2 tb{ + k, (const block_q4_0 *)A, lda, + (const block_q8_0 *)B, ldb, + (float *)C, ldc, + ith, nth}; + tb.matmul(m, n, task); + return true; +#elif defined(__ARM_FEATURE_DOTPROD) + tinyBLAS_Q0_ARM tb{ + k, (const block_q4_0 *)A, lda, + (const block_q8_0 *)B, ldb, + (float *)C, ldc, + ith, nth}; + tb.matmul(m, n, task); + return true; +#else + return false; +#endif + } + + default: + return false; + } + + (void)m; + (void)n; + (void)k; + (void)A; + (void)lda; + (void)B; + (void)ldb; + (void)C; + (void)ldc; + (void)ith; + (void)nth; + (void)task; + (void)Atype; + (void)Btype; + (void)Ctype; +} diff --git a/llama/sgemm.h b/llama/sgemm.h new file mode 100644 index 00000000..da23b209 --- /dev/null +++ b/llama/sgemm.h @@ -0,0 +1,12 @@ +#pragma once +#include +#ifdef __cplusplus +extern "C" { +#endif + +bool llamafile_sgemm(int, int, int, const void *, int, const void *, int, + void *, int, int, int, int, int, int, int); + +#ifdef __cplusplus +} +#endif diff --git a/llama/sync.sh b/llama/sync.sh new file mode 100755 index 00000000..584796e0 --- /dev/null +++ b/llama/sync.sh @@ -0,0 +1,35 @@ +#!/bin/bash + +# Set the source directory +src_dir="../../llama.cpp" + +# Set the destination directory (current directory) +dst_dir="." + +# llama.cpp +cp $src_dir/unicode.cpp $dst_dir/unicode.cpp +cp $src_dir/unicode.h $dst_dir/unicode.h +cp $src_dir/unicode-data.cpp $dst_dir/unicode-data.cpp +cp $src_dir/unicode-data.h $dst_dir/unicode-data.h +cp $src_dir/llama.cpp $dst_dir/llama.cpp +cp $src_dir/llama.h $dst_dir/llama.h +cp $src_dir/sgemm.cpp $dst_dir/sgemm.cpp +cp $src_dir/sgemm.h $dst_dir/sgemm.h + +# ggml +cp $src_dir/ggml.c $dst_dir/ggml.c +cp $src_dir/ggml.h $dst_dir/ggml.h +cp $src_dir/ggml-quants.c $dst_dir/ggml-quants.c +cp $src_dir/ggml-quants.h $dst_dir/ggml-quants.h +cp $src_dir/ggml-metal.metal $dst_dir/ggml-metal.metal +cp $src_dir/ggml-metal.h $dst_dir/ggml-metal.h +cp $src_dir/ggml-metal.m $dst_dir/ggml-metal.m +cp $src_dir/ggml-impl.h $dst_dir/ggml-impl.h +cp $src_dir/ggml-cuda.h $dst_dir/ggml-cuda.h +cp $src_dir/ggml-cuda.cu $dst_dir/ggml-cuda.cu +cp $src_dir/ggml-common.h $dst_dir/ggml-common.h +cp $src_dir/ggml-backend.h $dst_dir/ggml-backend.h +cp $src_dir/ggml-backend.c $dst_dir/ggml-backend.c +cp $src_dir/ggml-backend-impl.h $dst_dir/ggml-backend-impl.h +cp $src_dir/ggml-alloc.h $dst_dir/ggml-alloc.h +cp $src_dir/ggml-alloc.c $dst_dir/ggml-alloc.c diff --git a/llama/unicode-data.cpp b/llama/unicode-data.cpp new file mode 100644 index 00000000..22f8b0f0 --- /dev/null +++ b/llama/unicode-data.cpp @@ -0,0 +1,1651 @@ +#include "unicode-data.h" + +#include +#include +#include +#include + +const std::vector> unicode_ranges_digit = { +{0x00000030, 0x00000039}, {0x000000B2, 0x000000B3}, {0x000000B9, 0x000000B9}, {0x00000660, 0x00000669}, +{0x000006F0, 0x000006F9}, {0x000007C0, 0x000007C9}, {0x00000966, 0x0000096F}, {0x000009E6, 0x000009EF}, +{0x00000A66, 0x00000A6F}, {0x00000AE6, 0x00000AEF}, {0x00000B66, 0x00000B6F}, {0x00000BE6, 0x00000BEF}, +{0x00000C66, 0x00000C6F}, {0x00000CE6, 0x00000CEF}, {0x00000D66, 0x00000D6F}, {0x00000DE6, 0x00000DEF}, +{0x00000E50, 0x00000E59}, {0x00000ED0, 0x00000ED9}, {0x00000F20, 0x00000F29}, {0x00001040, 0x00001049}, +{0x00001090, 0x00001099}, {0x00001369, 0x00001371}, {0x000017E0, 0x000017E9}, {0x00001810, 0x00001819}, +{0x00001946, 0x0000194F}, {0x000019D0, 0x000019DA}, {0x00001A80, 0x00001A89}, {0x00001A90, 0x00001A99}, +{0x00001B50, 0x00001B59}, {0x00001BB0, 0x00001BB9}, {0x00001C40, 0x00001C49}, {0x00001C50, 0x00001C59}, +{0x00002070, 0x00002070}, {0x00002074, 0x00002079}, {0x00002080, 0x00002089}, {0x00002460, 0x00002468}, +{0x00002474, 0x0000247C}, {0x00002488, 0x00002490}, {0x000024EA, 0x000024EA}, {0x000024F5, 0x000024FD}, +{0x000024FF, 0x000024FF}, {0x00002776, 0x0000277E}, {0x00002780, 0x00002788}, {0x0000278A, 0x00002792}, +{0x0000A620, 0x0000A629}, {0x0000A8D0, 0x0000A8D9}, {0x0000A900, 0x0000A909}, {0x0000A9D0, 0x0000A9D9}, +{0x0000A9F0, 0x0000A9F9}, {0x0000AA50, 0x0000AA59}, {0x0000ABF0, 0x0000ABF9}, {0x0000FF10, 0x0000FF19}, +{0x000104A0, 0x000104A9}, {0x00010A40, 0x00010A43}, {0x00010D30, 0x00010D39}, {0x00010E60, 0x00010E68}, +{0x00011052, 0x0001105A}, {0x00011066, 0x0001106F}, {0x000110F0, 0x000110F9}, {0x00011136, 0x0001113F}, +{0x000111D0, 0x000111D9}, {0x000112F0, 0x000112F9}, {0x00011450, 0x00011459}, {0x000114D0, 0x000114D9}, +{0x00011650, 0x00011659}, {0x000116C0, 0x000116C9}, {0x00011730, 0x00011739}, {0x000118E0, 0x000118E9}, +{0x00011950, 0x00011959}, {0x00011C50, 0x00011C59}, {0x00011D50, 0x00011D59}, {0x00011DA0, 0x00011DA9}, +{0x00016A60, 0x00016A69}, {0x00016B50, 0x00016B59}, {0x0001D7CE, 0x0001D7FF}, {0x0001E140, 0x0001E149}, +{0x0001E2F0, 0x0001E2F9}, {0x0001E950, 0x0001E959}, {0x0001F100, 0x0001F10A}, {0x0001FBF0, 0x0001FBF9}, +}; + +const std::vector> unicode_ranges_letter = { +{0x00000041, 0x0000005A}, {0x00000061, 0x0000007A}, {0x000000AA, 0x000000AA}, {0x000000B5, 0x000000B5}, +{0x000000BA, 0x000000BA}, {0x000000C0, 0x000000D6}, {0x000000D8, 0x000000F6}, {0x000000F8, 0x000002C1}, +{0x000002C6, 0x000002D1}, {0x000002E0, 0x000002E4}, {0x000002EC, 0x000002EC}, {0x000002EE, 0x000002EE}, +{0x00000370, 0x00000374}, {0x00000376, 0x00000377}, {0x0000037A, 0x0000037D}, {0x0000037F, 0x0000037F}, +{0x00000386, 0x00000386}, {0x00000388, 0x0000038A}, {0x0000038C, 0x0000038C}, {0x0000038E, 0x000003A1}, +{0x000003A3, 0x000003F5}, {0x000003F7, 0x00000481}, {0x0000048A, 0x0000052F}, {0x00000531, 0x00000556}, +{0x00000559, 0x00000559}, {0x00000560, 0x00000588}, {0x000005D0, 0x000005EA}, {0x000005EF, 0x000005F2}, +{0x00000620, 0x0000064A}, {0x0000066E, 0x0000066F}, {0x00000671, 0x000006D3}, {0x000006D5, 0x000006D5}, +{0x000006E5, 0x000006E6}, {0x000006EE, 0x000006EF}, {0x000006FA, 0x000006FC}, {0x000006FF, 0x000006FF}, +{0x00000710, 0x00000710}, {0x00000712, 0x0000072F}, {0x0000074D, 0x000007A5}, {0x000007B1, 0x000007B1}, +{0x000007CA, 0x000007EA}, {0x000007F4, 0x000007F5}, {0x000007FA, 0x000007FA}, {0x00000800, 0x00000815}, +{0x0000081A, 0x0000081A}, {0x00000824, 0x00000824}, {0x00000828, 0x00000828}, {0x00000840, 0x00000858}, +{0x00000860, 0x0000086A}, {0x000008A0, 0x000008B4}, {0x000008B6, 0x000008C7}, {0x00000904, 0x00000939}, +{0x0000093D, 0x0000093D}, {0x00000950, 0x00000950}, {0x00000958, 0x00000961}, {0x00000971, 0x00000980}, +{0x00000985, 0x0000098C}, {0x0000098F, 0x00000990}, {0x00000993, 0x000009A8}, {0x000009AA, 0x000009B0}, +{0x000009B2, 0x000009B2}, {0x000009B6, 0x000009B9}, {0x000009BD, 0x000009BD}, {0x000009CE, 0x000009CE}, +{0x000009DC, 0x000009DD}, {0x000009DF, 0x000009E1}, {0x000009F0, 0x000009F1}, {0x000009FC, 0x000009FC}, +{0x00000A05, 0x00000A0A}, {0x00000A0F, 0x00000A10}, {0x00000A13, 0x00000A28}, {0x00000A2A, 0x00000A30}, +{0x00000A32, 0x00000A33}, {0x00000A35, 0x00000A36}, {0x00000A38, 0x00000A39}, {0x00000A59, 0x00000A5C}, +{0x00000A5E, 0x00000A5E}, {0x00000A72, 0x00000A74}, {0x00000A85, 0x00000A8D}, {0x00000A8F, 0x00000A91}, +{0x00000A93, 0x00000AA8}, {0x00000AAA, 0x00000AB0}, {0x00000AB2, 0x00000AB3}, {0x00000AB5, 0x00000AB9}, +{0x00000ABD, 0x00000ABD}, {0x00000AD0, 0x00000AD0}, {0x00000AE0, 0x00000AE1}, {0x00000AF9, 0x00000AF9}, +{0x00000B05, 0x00000B0C}, {0x00000B0F, 0x00000B10}, {0x00000B13, 0x00000B28}, {0x00000B2A, 0x00000B30}, +{0x00000B32, 0x00000B33}, {0x00000B35, 0x00000B39}, {0x00000B3D, 0x00000B3D}, {0x00000B5C, 0x00000B5D}, +{0x00000B5F, 0x00000B61}, {0x00000B71, 0x00000B71}, {0x00000B83, 0x00000B83}, {0x00000B85, 0x00000B8A}, +{0x00000B8E, 0x00000B90}, {0x00000B92, 0x00000B95}, {0x00000B99, 0x00000B9A}, {0x00000B9C, 0x00000B9C}, +{0x00000B9E, 0x00000B9F}, {0x00000BA3, 0x00000BA4}, {0x00000BA8, 0x00000BAA}, {0x00000BAE, 0x00000BB9}, +{0x00000BD0, 0x00000BD0}, {0x00000C05, 0x00000C0C}, {0x00000C0E, 0x00000C10}, {0x00000C12, 0x00000C28}, +{0x00000C2A, 0x00000C39}, {0x00000C3D, 0x00000C3D}, {0x00000C58, 0x00000C5A}, {0x00000C60, 0x00000C61}, +{0x00000C80, 0x00000C80}, {0x00000C85, 0x00000C8C}, {0x00000C8E, 0x00000C90}, {0x00000C92, 0x00000CA8}, +{0x00000CAA, 0x00000CB3}, {0x00000CB5, 0x00000CB9}, {0x00000CBD, 0x00000CBD}, {0x00000CDE, 0x00000CDE}, +{0x00000CE0, 0x00000CE1}, {0x00000CF1, 0x00000CF2}, {0x00000D04, 0x00000D0C}, {0x00000D0E, 0x00000D10}, +{0x00000D12, 0x00000D3A}, {0x00000D3D, 0x00000D3D}, {0x00000D4E, 0x00000D4E}, {0x00000D54, 0x00000D56}, +{0x00000D5F, 0x00000D61}, {0x00000D7A, 0x00000D7F}, {0x00000D85, 0x00000D96}, {0x00000D9A, 0x00000DB1}, +{0x00000DB3, 0x00000DBB}, {0x00000DBD, 0x00000DBD}, {0x00000DC0, 0x00000DC6}, {0x00000E01, 0x00000E30}, +{0x00000E32, 0x00000E33}, {0x00000E40, 0x00000E46}, {0x00000E81, 0x00000E82}, {0x00000E84, 0x00000E84}, +{0x00000E86, 0x00000E8A}, {0x00000E8C, 0x00000EA3}, {0x00000EA5, 0x00000EA5}, {0x00000EA7, 0x00000EB0}, +{0x00000EB2, 0x00000EB3}, {0x00000EBD, 0x00000EBD}, {0x00000EC0, 0x00000EC4}, {0x00000EC6, 0x00000EC6}, +{0x00000EDC, 0x00000EDF}, {0x00000F00, 0x00000F00}, {0x00000F40, 0x00000F47}, {0x00000F49, 0x00000F6C}, +{0x00000F88, 0x00000F8C}, {0x00001000, 0x0000102A}, {0x0000103F, 0x0000103F}, {0x00001050, 0x00001055}, +{0x0000105A, 0x0000105D}, {0x00001061, 0x00001061}, {0x00001065, 0x00001066}, {0x0000106E, 0x00001070}, +{0x00001075, 0x00001081}, {0x0000108E, 0x0000108E}, {0x000010A0, 0x000010C5}, {0x000010C7, 0x000010C7}, +{0x000010CD, 0x000010CD}, {0x000010D0, 0x000010FA}, {0x000010FC, 0x00001248}, {0x0000124A, 0x0000124D}, +{0x00001250, 0x00001256}, {0x00001258, 0x00001258}, {0x0000125A, 0x0000125D}, {0x00001260, 0x00001288}, +{0x0000128A, 0x0000128D}, {0x00001290, 0x000012B0}, {0x000012B2, 0x000012B5}, {0x000012B8, 0x000012BE}, +{0x000012C0, 0x000012C0}, {0x000012C2, 0x000012C5}, {0x000012C8, 0x000012D6}, {0x000012D8, 0x00001310}, +{0x00001312, 0x00001315}, {0x00001318, 0x0000135A}, {0x00001380, 0x0000138F}, {0x000013A0, 0x000013F5}, +{0x000013F8, 0x000013FD}, {0x00001401, 0x0000166C}, {0x0000166F, 0x0000167F}, {0x00001681, 0x0000169A}, +{0x000016A0, 0x000016EA}, {0x000016F1, 0x000016F8}, {0x00001700, 0x0000170C}, {0x0000170E, 0x00001711}, +{0x00001720, 0x00001731}, {0x00001740, 0x00001751}, {0x00001760, 0x0000176C}, {0x0000176E, 0x00001770}, +{0x00001780, 0x000017B3}, {0x000017D7, 0x000017D7}, {0x000017DC, 0x000017DC}, {0x00001820, 0x00001878}, +{0x00001880, 0x00001884}, {0x00001887, 0x000018A8}, {0x000018AA, 0x000018AA}, {0x000018B0, 0x000018F5}, +{0x00001900, 0x0000191E}, {0x00001950, 0x0000196D}, {0x00001970, 0x00001974}, {0x00001980, 0x000019AB}, +{0x000019B0, 0x000019C9}, {0x00001A00, 0x00001A16}, {0x00001A20, 0x00001A54}, {0x00001AA7, 0x00001AA7}, +{0x00001B05, 0x00001B33}, {0x00001B45, 0x00001B4B}, {0x00001B83, 0x00001BA0}, {0x00001BAE, 0x00001BAF}, +{0x00001BBA, 0x00001BE5}, {0x00001C00, 0x00001C23}, {0x00001C4D, 0x00001C4F}, {0x00001C5A, 0x00001C7D}, +{0x00001C80, 0x00001C88}, {0x00001C90, 0x00001CBA}, {0x00001CBD, 0x00001CBF}, {0x00001CE9, 0x00001CEC}, +{0x00001CEE, 0x00001CF3}, {0x00001CF5, 0x00001CF6}, {0x00001CFA, 0x00001CFA}, {0x00001D00, 0x00001DBF}, +{0x00001E00, 0x00001F15}, {0x00001F18, 0x00001F1D}, {0x00001F20, 0x00001F45}, {0x00001F48, 0x00001F4D}, +{0x00001F50, 0x00001F57}, {0x00001F59, 0x00001F59}, {0x00001F5B, 0x00001F5B}, {0x00001F5D, 0x00001F5D}, +{0x00001F5F, 0x00001F7D}, {0x00001F80, 0x00001FB4}, {0x00001FB6, 0x00001FBC}, {0x00001FBE, 0x00001FBE}, +{0x00001FC2, 0x00001FC4}, {0x00001FC6, 0x00001FCC}, {0x00001FD0, 0x00001FD3}, {0x00001FD6, 0x00001FDB}, +{0x00001FE0, 0x00001FEC}, {0x00001FF2, 0x00001FF4}, {0x00001FF6, 0x00001FFC}, {0x00002071, 0x00002071}, +{0x0000207F, 0x0000207F}, {0x00002090, 0x0000209C}, {0x00002102, 0x00002102}, {0x00002107, 0x00002107}, +{0x0000210A, 0x00002113}, {0x00002115, 0x00002115}, {0x00002119, 0x0000211D}, {0x00002124, 0x00002124}, +{0x00002126, 0x00002126}, {0x00002128, 0x00002128}, {0x0000212A, 0x0000212D}, {0x0000212F, 0x00002139}, +{0x0000213C, 0x0000213F}, {0x00002145, 0x00002149}, {0x0000214E, 0x0000214E}, {0x00002183, 0x00002184}, +{0x00002C00, 0x00002C2E}, {0x00002C30, 0x00002C5E}, {0x00002C60, 0x00002CE4}, {0x00002CEB, 0x00002CEE}, +{0x00002CF2, 0x00002CF3}, {0x00002D00, 0x00002D25}, {0x00002D27, 0x00002D27}, {0x00002D2D, 0x00002D2D}, +{0x00002D30, 0x00002D67}, {0x00002D6F, 0x00002D6F}, {0x00002D80, 0x00002D96}, {0x00002DA0, 0x00002DA6}, +{0x00002DA8, 0x00002DAE}, {0x00002DB0, 0x00002DB6}, {0x00002DB8, 0x00002DBE}, {0x00002DC0, 0x00002DC6}, +{0x00002DC8, 0x00002DCE}, {0x00002DD0, 0x00002DD6}, {0x00002DD8, 0x00002DDE}, {0x00002E2F, 0x00002E2F}, +{0x00003005, 0x00003006}, {0x00003031, 0x00003035}, {0x0000303B, 0x0000303C}, {0x00003041, 0x00003096}, +{0x0000309D, 0x0000309F}, {0x000030A1, 0x000030FA}, {0x000030FC, 0x000030FF}, {0x00003105, 0x0000312F}, +{0x00003131, 0x0000318E}, {0x000031A0, 0x000031BF}, {0x000031F0, 0x000031FF}, {0x00003400, 0x00004DBF}, +{0x00004E00, 0x00009FFC}, {0x0000A000, 0x0000A48C}, {0x0000A4D0, 0x0000A4FD}, {0x0000A500, 0x0000A60C}, +{0x0000A610, 0x0000A61F}, {0x0000A62A, 0x0000A62B}, {0x0000A640, 0x0000A66E}, {0x0000A67F, 0x0000A69D}, +{0x0000A6A0, 0x0000A6E5}, {0x0000A717, 0x0000A71F}, {0x0000A722, 0x0000A788}, {0x0000A78B, 0x0000A7BF}, +{0x0000A7C2, 0x0000A7CA}, {0x0000A7F5, 0x0000A801}, {0x0000A803, 0x0000A805}, {0x0000A807, 0x0000A80A}, +{0x0000A80C, 0x0000A822}, {0x0000A840, 0x0000A873}, {0x0000A882, 0x0000A8B3}, {0x0000A8F2, 0x0000A8F7}, +{0x0000A8FB, 0x0000A8FB}, {0x0000A8FD, 0x0000A8FE}, {0x0000A90A, 0x0000A925}, {0x0000A930, 0x0000A946}, +{0x0000A960, 0x0000A97C}, {0x0000A984, 0x0000A9B2}, {0x0000A9CF, 0x0000A9CF}, {0x0000A9E0, 0x0000A9E4}, +{0x0000A9E6, 0x0000A9EF}, {0x0000A9FA, 0x0000A9FE}, {0x0000AA00, 0x0000AA28}, {0x0000AA40, 0x0000AA42}, +{0x0000AA44, 0x0000AA4B}, {0x0000AA60, 0x0000AA76}, {0x0000AA7A, 0x0000AA7A}, {0x0000AA7E, 0x0000AAAF}, +{0x0000AAB1, 0x0000AAB1}, {0x0000AAB5, 0x0000AAB6}, {0x0000AAB9, 0x0000AABD}, {0x0000AAC0, 0x0000AAC0}, +{0x0000AAC2, 0x0000AAC2}, {0x0000AADB, 0x0000AADD}, {0x0000AAE0, 0x0000AAEA}, {0x0000AAF2, 0x0000AAF4}, +{0x0000AB01, 0x0000AB06}, {0x0000AB09, 0x0000AB0E}, {0x0000AB11, 0x0000AB16}, {0x0000AB20, 0x0000AB26}, +{0x0000AB28, 0x0000AB2E}, {0x0000AB30, 0x0000AB5A}, {0x0000AB5C, 0x0000AB69}, {0x0000AB70, 0x0000ABE2}, +{0x0000AC00, 0x0000D7A3}, {0x0000D7B0, 0x0000D7C6}, {0x0000D7CB, 0x0000D7FB}, {0x0000F900, 0x0000FA6D}, +{0x0000FA70, 0x0000FAD9}, {0x0000FB00, 0x0000FB06}, {0x0000FB13, 0x0000FB17}, {0x0000FB1D, 0x0000FB1D}, +{0x0000FB1F, 0x0000FB28}, {0x0000FB2A, 0x0000FB36}, {0x0000FB38, 0x0000FB3C}, {0x0000FB3E, 0x0000FB3E}, +{0x0000FB40, 0x0000FB41}, {0x0000FB43, 0x0000FB44}, {0x0000FB46, 0x0000FBB1}, {0x0000FBD3, 0x0000FD3D}, +{0x0000FD50, 0x0000FD8F}, {0x0000FD92, 0x0000FDC7}, {0x0000FDF0, 0x0000FDFB}, {0x0000FE70, 0x0000FE74}, +{0x0000FE76, 0x0000FEFC}, {0x0000FF21, 0x0000FF3A}, {0x0000FF41, 0x0000FF5A}, {0x0000FF66, 0x0000FFBE}, +{0x0000FFC2, 0x0000FFC7}, {0x0000FFCA, 0x0000FFCF}, {0x0000FFD2, 0x0000FFD7}, {0x0000FFDA, 0x0000FFDC}, +{0x00010000, 0x0001000B}, {0x0001000D, 0x00010026}, {0x00010028, 0x0001003A}, {0x0001003C, 0x0001003D}, +{0x0001003F, 0x0001004D}, {0x00010050, 0x0001005D}, {0x00010080, 0x000100FA}, {0x00010280, 0x0001029C}, +{0x000102A0, 0x000102D0}, {0x00010300, 0x0001031F}, {0x0001032D, 0x00010340}, {0x00010342, 0x00010349}, +{0x00010350, 0x00010375}, {0x00010380, 0x0001039D}, {0x000103A0, 0x000103C3}, {0x000103C8, 0x000103CF}, +{0x00010400, 0x0001049D}, {0x000104B0, 0x000104D3}, {0x000104D8, 0x000104FB}, {0x00010500, 0x00010527}, +{0x00010530, 0x00010563}, {0x00010600, 0x00010736}, {0x00010740, 0x00010755}, {0x00010760, 0x00010767}, +{0x00010800, 0x00010805}, {0x00010808, 0x00010808}, {0x0001080A, 0x00010835}, {0x00010837, 0x00010838}, +{0x0001083C, 0x0001083C}, {0x0001083F, 0x00010855}, {0x00010860, 0x00010876}, {0x00010880, 0x0001089E}, +{0x000108E0, 0x000108F2}, {0x000108F4, 0x000108F5}, {0x00010900, 0x00010915}, {0x00010920, 0x00010939}, +{0x00010980, 0x000109B7}, {0x000109BE, 0x000109BF}, {0x00010A00, 0x00010A00}, {0x00010A10, 0x00010A13}, +{0x00010A15, 0x00010A17}, {0x00010A19, 0x00010A35}, {0x00010A60, 0x00010A7C}, {0x00010A80, 0x00010A9C}, +{0x00010AC0, 0x00010AC7}, {0x00010AC9, 0x00010AE4}, {0x00010B00, 0x00010B35}, {0x00010B40, 0x00010B55}, +{0x00010B60, 0x00010B72}, {0x00010B80, 0x00010B91}, {0x00010C00, 0x00010C48}, {0x00010C80, 0x00010CB2}, +{0x00010CC0, 0x00010CF2}, {0x00010D00, 0x00010D23}, {0x00010E80, 0x00010EA9}, {0x00010EB0, 0x00010EB1}, +{0x00010F00, 0x00010F1C}, {0x00010F27, 0x00010F27}, {0x00010F30, 0x00010F45}, {0x00010FB0, 0x00010FC4}, +{0x00010FE0, 0x00010FF6}, {0x00011003, 0x00011037}, {0x00011083, 0x000110AF}, {0x000110D0, 0x000110E8}, +{0x00011103, 0x00011126}, {0x00011144, 0x00011144}, {0x00011147, 0x00011147}, {0x00011150, 0x00011172}, +{0x00011176, 0x00011176}, {0x00011183, 0x000111B2}, {0x000111C1, 0x000111C4}, {0x000111DA, 0x000111DA}, +{0x000111DC, 0x000111DC}, {0x00011200, 0x00011211}, {0x00011213, 0x0001122B}, {0x00011280, 0x00011286}, +{0x00011288, 0x00011288}, {0x0001128A, 0x0001128D}, {0x0001128F, 0x0001129D}, {0x0001129F, 0x000112A8}, +{0x000112B0, 0x000112DE}, {0x00011305, 0x0001130C}, {0x0001130F, 0x00011310}, {0x00011313, 0x00011328}, +{0x0001132A, 0x00011330}, {0x00011332, 0x00011333}, {0x00011335, 0x00011339}, {0x0001133D, 0x0001133D}, +{0x00011350, 0x00011350}, {0x0001135D, 0x00011361}, {0x00011400, 0x00011434}, {0x00011447, 0x0001144A}, +{0x0001145F, 0x00011461}, {0x00011480, 0x000114AF}, {0x000114C4, 0x000114C5}, {0x000114C7, 0x000114C7}, +{0x00011580, 0x000115AE}, {0x000115D8, 0x000115DB}, {0x00011600, 0x0001162F}, {0x00011644, 0x00011644}, +{0x00011680, 0x000116AA}, {0x000116B8, 0x000116B8}, {0x00011700, 0x0001171A}, {0x00011800, 0x0001182B}, +{0x000118A0, 0x000118DF}, {0x000118FF, 0x00011906}, {0x00011909, 0x00011909}, {0x0001190C, 0x00011913}, +{0x00011915, 0x00011916}, {0x00011918, 0x0001192F}, {0x0001193F, 0x0001193F}, {0x00011941, 0x00011941}, +{0x000119A0, 0x000119A7}, {0x000119AA, 0x000119D0}, {0x000119E1, 0x000119E1}, {0x000119E3, 0x000119E3}, +{0x00011A00, 0x00011A00}, {0x00011A0B, 0x00011A32}, {0x00011A3A, 0x00011A3A}, {0x00011A50, 0x00011A50}, +{0x00011A5C, 0x00011A89}, {0x00011A9D, 0x00011A9D}, {0x00011AC0, 0x00011AF8}, {0x00011C00, 0x00011C08}, +{0x00011C0A, 0x00011C2E}, {0x00011C40, 0x00011C40}, {0x00011C72, 0x00011C8F}, {0x00011D00, 0x00011D06}, +{0x00011D08, 0x00011D09}, {0x00011D0B, 0x00011D30}, {0x00011D46, 0x00011D46}, {0x00011D60, 0x00011D65}, +{0x00011D67, 0x00011D68}, {0x00011D6A, 0x00011D89}, {0x00011D98, 0x00011D98}, {0x00011EE0, 0x00011EF2}, +{0x00011FB0, 0x00011FB0}, {0x00012000, 0x00012399}, {0x00012480, 0x00012543}, {0x00013000, 0x0001342E}, +{0x00014400, 0x00014646}, {0x00016800, 0x00016A38}, {0x00016A40, 0x00016A5E}, {0x00016AD0, 0x00016AED}, +{0x00016B00, 0x00016B2F}, {0x00016B40, 0x00016B43}, {0x00016B63, 0x00016B77}, {0x00016B7D, 0x00016B8F}, +{0x00016E40, 0x00016E7F}, {0x00016F00, 0x00016F4A}, {0x00016F50, 0x00016F50}, {0x00016F93, 0x00016F9F}, +{0x00016FE0, 0x00016FE1}, {0x00016FE3, 0x00016FE3}, {0x00017000, 0x000187F7}, {0x00018800, 0x00018CD5}, +{0x00018D00, 0x00018D08}, {0x0001B000, 0x0001B11E}, {0x0001B150, 0x0001B152}, {0x0001B164, 0x0001B167}, +{0x0001B170, 0x0001B2FB}, {0x0001BC00, 0x0001BC6A}, {0x0001BC70, 0x0001BC7C}, {0x0001BC80, 0x0001BC88}, +{0x0001BC90, 0x0001BC99}, {0x0001D400, 0x0001D454}, {0x0001D456, 0x0001D49C}, {0x0001D49E, 0x0001D49F}, +{0x0001D4A2, 0x0001D4A2}, {0x0001D4A5, 0x0001D4A6}, {0x0001D4A9, 0x0001D4AC}, {0x0001D4AE, 0x0001D4B9}, +{0x0001D4BB, 0x0001D4BB}, {0x0001D4BD, 0x0001D4C3}, {0x0001D4C5, 0x0001D505}, {0x0001D507, 0x0001D50A}, +{0x0001D50D, 0x0001D514}, {0x0001D516, 0x0001D51C}, {0x0001D51E, 0x0001D539}, {0x0001D53B, 0x0001D53E}, +{0x0001D540, 0x0001D544}, {0x0001D546, 0x0001D546}, {0x0001D54A, 0x0001D550}, {0x0001D552, 0x0001D6A5}, +{0x0001D6A8, 0x0001D6C0}, {0x0001D6C2, 0x0001D6DA}, {0x0001D6DC, 0x0001D6FA}, {0x0001D6FC, 0x0001D714}, +{0x0001D716, 0x0001D734}, {0x0001D736, 0x0001D74E}, {0x0001D750, 0x0001D76E}, {0x0001D770, 0x0001D788}, +{0x0001D78A, 0x0001D7A8}, {0x0001D7AA, 0x0001D7C2}, {0x0001D7C4, 0x0001D7CB}, {0x0001E100, 0x0001E12C}, +{0x0001E137, 0x0001E13D}, {0x0001E14E, 0x0001E14E}, {0x0001E2C0, 0x0001E2EB}, {0x0001E800, 0x0001E8C4}, +{0x0001E900, 0x0001E943}, {0x0001E94B, 0x0001E94B}, {0x0001EE00, 0x0001EE03}, {0x0001EE05, 0x0001EE1F}, +{0x0001EE21, 0x0001EE22}, {0x0001EE24, 0x0001EE24}, {0x0001EE27, 0x0001EE27}, {0x0001EE29, 0x0001EE32}, +{0x0001EE34, 0x0001EE37}, {0x0001EE39, 0x0001EE39}, {0x0001EE3B, 0x0001EE3B}, {0x0001EE42, 0x0001EE42}, +{0x0001EE47, 0x0001EE47}, {0x0001EE49, 0x0001EE49}, {0x0001EE4B, 0x0001EE4B}, {0x0001EE4D, 0x0001EE4F}, +{0x0001EE51, 0x0001EE52}, {0x0001EE54, 0x0001EE54}, {0x0001EE57, 0x0001EE57}, {0x0001EE59, 0x0001EE59}, +{0x0001EE5B, 0x0001EE5B}, {0x0001EE5D, 0x0001EE5D}, {0x0001EE5F, 0x0001EE5F}, {0x0001EE61, 0x0001EE62}, +{0x0001EE64, 0x0001EE64}, {0x0001EE67, 0x0001EE6A}, {0x0001EE6C, 0x0001EE72}, {0x0001EE74, 0x0001EE77}, +{0x0001EE79, 0x0001EE7C}, {0x0001EE7E, 0x0001EE7E}, {0x0001EE80, 0x0001EE89}, {0x0001EE8B, 0x0001EE9B}, +{0x0001EEA1, 0x0001EEA3}, {0x0001EEA5, 0x0001EEA9}, {0x0001EEAB, 0x0001EEBB}, {0x00020000, 0x0002A6DD}, +{0x0002A700, 0x0002B734}, {0x0002B740, 0x0002B81D}, {0x0002B820, 0x0002CEA1}, {0x0002CEB0, 0x0002EBE0}, +{0x0002F800, 0x0002FA1D}, {0x00030000, 0x0003134A}, +}; + +const std::vector> unicode_ranges_whitespace = { +{0x00000009, 0x0000000D}, {0x0000001C, 0x00000020}, {0x00000085, 0x00000085}, {0x000000A0, 0x000000A0}, +{0x00001680, 0x00001680}, {0x00002000, 0x0000200A}, {0x00002028, 0x00002029}, {0x0000202F, 0x0000202F}, +{0x0000205F, 0x0000205F}, {0x00003000, 0x00003000}, +}; + +const std::vector> unicode_ranges_accent_mark = { +{0x00000300, 0x0000036F}, {0x00000483, 0x00000489}, {0x00000591, 0x000005BD}, {0x000005BF, 0x000005BF}, +{0x000005C1, 0x000005C2}, {0x000005C4, 0x000005C5}, {0x000005C7, 0x000005C7}, {0x00000610, 0x0000061A}, +{0x0000064B, 0x0000065F}, {0x00000670, 0x00000670}, {0x000006D6, 0x000006DC}, {0x000006DF, 0x000006E4}, +{0x000006E7, 0x000006E8}, {0x000006EA, 0x000006ED}, {0x00000711, 0x00000711}, {0x00000730, 0x0000074A}, +{0x000007A6, 0x000007B0}, {0x000007EB, 0x000007F3}, {0x000007FD, 0x000007FD}, {0x00000816, 0x00000819}, +{0x0000081B, 0x00000823}, {0x00000825, 0x00000827}, {0x00000829, 0x0000082D}, {0x00000859, 0x0000085B}, +{0x000008D3, 0x000008E1}, {0x000008E3, 0x00000903}, {0x0000093A, 0x0000093C}, {0x0000093E, 0x0000094F}, +{0x00000951, 0x00000957}, {0x00000962, 0x00000963}, {0x00000981, 0x00000983}, {0x000009BC, 0x000009BC}, +{0x000009BE, 0x000009C4}, {0x000009C7, 0x000009C8}, {0x000009CB, 0x000009CD}, {0x000009D7, 0x000009D7}, +{0x000009E2, 0x000009E3}, {0x000009FE, 0x000009FE}, {0x00000A01, 0x00000A03}, {0x00000A3C, 0x00000A3C}, +{0x00000A3E, 0x00000A42}, {0x00000A47, 0x00000A48}, {0x00000A4B, 0x00000A4D}, {0x00000A51, 0x00000A51}, +{0x00000A70, 0x00000A71}, {0x00000A75, 0x00000A75}, {0x00000A81, 0x00000A83}, {0x00000ABC, 0x00000ABC}, +{0x00000ABE, 0x00000AC5}, {0x00000AC7, 0x00000AC9}, {0x00000ACB, 0x00000ACD}, {0x00000AE2, 0x00000AE3}, +{0x00000AFA, 0x00000AFF}, {0x00000B01, 0x00000B03}, {0x00000B3C, 0x00000B3C}, {0x00000B3E, 0x00000B44}, +{0x00000B47, 0x00000B48}, {0x00000B4B, 0x00000B4D}, {0x00000B55, 0x00000B57}, {0x00000B62, 0x00000B63}, +{0x00000B82, 0x00000B82}, {0x00000BBE, 0x00000BC2}, {0x00000BC6, 0x00000BC8}, {0x00000BCA, 0x00000BCD}, +{0x00000BD7, 0x00000BD7}, {0x00000C00, 0x00000C04}, {0x00000C3E, 0x00000C44}, {0x00000C46, 0x00000C48}, +{0x00000C4A, 0x00000C4D}, {0x00000C55, 0x00000C56}, {0x00000C62, 0x00000C63}, {0x00000C81, 0x00000C83}, +{0x00000CBC, 0x00000CBC}, {0x00000CBE, 0x00000CC4}, {0x00000CC6, 0x00000CC8}, {0x00000CCA, 0x00000CCD}, +{0x00000CD5, 0x00000CD6}, {0x00000CE2, 0x00000CE3}, {0x00000D00, 0x00000D03}, {0x00000D3B, 0x00000D3C}, +{0x00000D3E, 0x00000D44}, {0x00000D46, 0x00000D48}, {0x00000D4A, 0x00000D4D}, {0x00000D57, 0x00000D57}, +{0x00000D62, 0x00000D63}, {0x00000D81, 0x00000D83}, {0x00000DCA, 0x00000DCA}, {0x00000DCF, 0x00000DD4}, +{0x00000DD6, 0x00000DD6}, {0x00000DD8, 0x00000DDF}, {0x00000DF2, 0x00000DF3}, {0x00000E31, 0x00000E31}, +{0x00000E34, 0x00000E3A}, {0x00000E47, 0x00000E4E}, {0x00000EB1, 0x00000EB1}, {0x00000EB4, 0x00000EBC}, +{0x00000EC8, 0x00000ECD}, {0x00000F18, 0x00000F19}, {0x00000F35, 0x00000F35}, {0x00000F37, 0x00000F37}, +{0x00000F39, 0x00000F39}, {0x00000F3E, 0x00000F3F}, {0x00000F71, 0x00000F84}, {0x00000F86, 0x00000F87}, +{0x00000F8D, 0x00000F97}, {0x00000F99, 0x00000FBC}, {0x00000FC6, 0x00000FC6}, {0x0000102B, 0x0000103E}, +{0x00001056, 0x00001059}, {0x0000105E, 0x00001060}, {0x00001062, 0x00001064}, {0x00001067, 0x0000106D}, +{0x00001071, 0x00001074}, {0x00001082, 0x0000108D}, {0x0000108F, 0x0000108F}, {0x0000109A, 0x0000109D}, +{0x0000135D, 0x0000135F}, {0x00001712, 0x00001714}, {0x00001732, 0x00001734}, {0x00001752, 0x00001753}, +{0x00001772, 0x00001773}, {0x000017B4, 0x000017D3}, {0x000017DD, 0x000017DD}, {0x0000180B, 0x0000180D}, +{0x00001885, 0x00001886}, {0x000018A9, 0x000018A9}, {0x00001920, 0x0000192B}, {0x00001930, 0x0000193B}, +{0x00001A17, 0x00001A1B}, {0x00001A55, 0x00001A5E}, {0x00001A60, 0x00001A7C}, {0x00001A7F, 0x00001A7F}, +{0x00001AB0, 0x00001AC0}, {0x00001B00, 0x00001B04}, {0x00001B34, 0x00001B44}, {0x00001B6B, 0x00001B73}, +{0x00001B80, 0x00001B82}, {0x00001BA1, 0x00001BAD}, {0x00001BE6, 0x00001BF3}, {0x00001C24, 0x00001C37}, +{0x00001CD0, 0x00001CD2}, {0x00001CD4, 0x00001CE8}, {0x00001CED, 0x00001CED}, {0x00001CF4, 0x00001CF4}, +{0x00001CF7, 0x00001CF9}, {0x00001DC0, 0x00001DF9}, {0x00001DFB, 0x00001DFF}, {0x000020D0, 0x000020F0}, +{0x00002CEF, 0x00002CF1}, {0x00002D7F, 0x00002D7F}, {0x00002DE0, 0x00002DFF}, {0x0000302A, 0x0000302F}, +{0x00003099, 0x0000309A}, {0x0000A66F, 0x0000A672}, {0x0000A674, 0x0000A67D}, {0x0000A69E, 0x0000A69F}, +{0x0000A6F0, 0x0000A6F1}, {0x0000A802, 0x0000A802}, {0x0000A806, 0x0000A806}, {0x0000A80B, 0x0000A80B}, +{0x0000A823, 0x0000A827}, {0x0000A82C, 0x0000A82C}, {0x0000A880, 0x0000A881}, {0x0000A8B4, 0x0000A8C5}, +{0x0000A8E0, 0x0000A8F1}, {0x0000A8FF, 0x0000A8FF}, {0x0000A926, 0x0000A92D}, {0x0000A947, 0x0000A953}, +{0x0000A980, 0x0000A983}, {0x0000A9B3, 0x0000A9C0}, {0x0000A9E5, 0x0000A9E5}, {0x0000AA29, 0x0000AA36}, +{0x0000AA43, 0x0000AA43}, {0x0000AA4C, 0x0000AA4D}, {0x0000AA7B, 0x0000AA7D}, {0x0000AAB0, 0x0000AAB0}, +{0x0000AAB2, 0x0000AAB4}, {0x0000AAB7, 0x0000AAB8}, {0x0000AABE, 0x0000AABF}, {0x0000AAC1, 0x0000AAC1}, +{0x0000AAEB, 0x0000AAEF}, {0x0000AAF5, 0x0000AAF6}, {0x0000ABE3, 0x0000ABEA}, {0x0000ABEC, 0x0000ABED}, +{0x0000FB1E, 0x0000FB1E}, {0x0000FE00, 0x0000FE0F}, {0x0000FE20, 0x0000FE2F}, {0x000101FD, 0x000101FD}, +{0x000102E0, 0x000102E0}, {0x00010376, 0x0001037A}, {0x00010A01, 0x00010A03}, {0x00010A05, 0x00010A06}, +{0x00010A0C, 0x00010A0F}, {0x00010A38, 0x00010A3A}, {0x00010A3F, 0x00010A3F}, {0x00010AE5, 0x00010AE6}, +{0x00010D24, 0x00010D27}, {0x00010EAB, 0x00010EAC}, {0x00010F46, 0x00010F50}, {0x00011000, 0x00011002}, +{0x00011038, 0x00011046}, {0x0001107F, 0x00011082}, {0x000110B0, 0x000110BA}, {0x00011100, 0x00011102}, +{0x00011127, 0x00011134}, {0x00011145, 0x00011146}, {0x00011173, 0x00011173}, {0x00011180, 0x00011182}, +{0x000111B3, 0x000111C0}, {0x000111C9, 0x000111CC}, {0x000111CE, 0x000111CF}, {0x0001122C, 0x00011237}, +{0x0001123E, 0x0001123E}, {0x000112DF, 0x000112EA}, {0x00011300, 0x00011303}, {0x0001133B, 0x0001133C}, +{0x0001133E, 0x00011344}, {0x00011347, 0x00011348}, {0x0001134B, 0x0001134D}, {0x00011357, 0x00011357}, +{0x00011362, 0x00011363}, {0x00011366, 0x0001136C}, {0x00011370, 0x00011374}, {0x00011435, 0x00011446}, +{0x0001145E, 0x0001145E}, {0x000114B0, 0x000114C3}, {0x000115AF, 0x000115B5}, {0x000115B8, 0x000115C0}, +{0x000115DC, 0x000115DD}, {0x00011630, 0x00011640}, {0x000116AB, 0x000116B7}, {0x0001171D, 0x0001172B}, +{0x0001182C, 0x0001183A}, {0x00011930, 0x00011935}, {0x00011937, 0x00011938}, {0x0001193B, 0x0001193E}, +{0x00011940, 0x00011940}, {0x00011942, 0x00011943}, {0x000119D1, 0x000119D7}, {0x000119DA, 0x000119E0}, +{0x000119E4, 0x000119E4}, {0x00011A01, 0x00011A0A}, {0x00011A33, 0x00011A39}, {0x00011A3B, 0x00011A3E}, +{0x00011A47, 0x00011A47}, {0x00011A51, 0x00011A5B}, {0x00011A8A, 0x00011A99}, {0x00011C2F, 0x00011C36}, +{0x00011C38, 0x00011C3F}, {0x00011C92, 0x00011CA7}, {0x00011CA9, 0x00011CB6}, {0x00011D31, 0x00011D36}, +{0x00011D3A, 0x00011D3A}, {0x00011D3C, 0x00011D3D}, {0x00011D3F, 0x00011D45}, {0x00011D47, 0x00011D47}, +{0x00011D8A, 0x00011D8E}, {0x00011D90, 0x00011D91}, {0x00011D93, 0x00011D97}, {0x00011EF3, 0x00011EF6}, +{0x00016AF0, 0x00016AF4}, {0x00016B30, 0x00016B36}, {0x00016F4F, 0x00016F4F}, {0x00016F51, 0x00016F87}, +{0x00016F8F, 0x00016F92}, {0x00016FE4, 0x00016FE4}, {0x00016FF0, 0x00016FF1}, {0x0001BC9D, 0x0001BC9E}, +{0x0001D165, 0x0001D169}, {0x0001D16D, 0x0001D172}, {0x0001D17B, 0x0001D182}, {0x0001D185, 0x0001D18B}, +{0x0001D1AA, 0x0001D1AD}, {0x0001D242, 0x0001D244}, {0x0001DA00, 0x0001DA36}, {0x0001DA3B, 0x0001DA6C}, +{0x0001DA75, 0x0001DA75}, {0x0001DA84, 0x0001DA84}, {0x0001DA9B, 0x0001DA9F}, {0x0001DAA1, 0x0001DAAF}, +{0x0001E000, 0x0001E006}, {0x0001E008, 0x0001E018}, {0x0001E01B, 0x0001E021}, {0x0001E023, 0x0001E024}, +{0x0001E026, 0x0001E02A}, {0x0001E130, 0x0001E136}, {0x0001E2EC, 0x0001E2EF}, {0x0001E8D0, 0x0001E8D6}, +{0x0001E944, 0x0001E94A}, {0x000E0100, 0x000E01EF}, +}; + +const std::vector> unicode_ranges_punctuation = { +{0x00000021, 0x00000023}, {0x00000025, 0x0000002A}, {0x0000002C, 0x0000002F}, {0x0000003A, 0x0000003B}, +{0x0000003F, 0x00000040}, {0x0000005B, 0x0000005D}, {0x0000005F, 0x0000005F}, {0x0000007B, 0x0000007B}, +{0x0000007D, 0x0000007D}, {0x000000A1, 0x000000A1}, {0x000000A7, 0x000000A7}, {0x000000AB, 0x000000AB}, +{0x000000B6, 0x000000B7}, {0x000000BB, 0x000000BB}, {0x000000BF, 0x000000BF}, {0x0000037E, 0x0000037E}, +{0x00000387, 0x00000387}, {0x0000055A, 0x0000055F}, {0x00000589, 0x0000058A}, {0x000005BE, 0x000005BE}, +{0x000005C0, 0x000005C0}, {0x000005C3, 0x000005C3}, {0x000005C6, 0x000005C6}, {0x000005F3, 0x000005F4}, +{0x00000609, 0x0000060A}, {0x0000060C, 0x0000060D}, {0x0000061B, 0x0000061B}, {0x0000061E, 0x0000061F}, +{0x0000066A, 0x0000066D}, {0x000006D4, 0x000006D4}, {0x00000700, 0x0000070D}, {0x000007F7, 0x000007F9}, +{0x00000830, 0x0000083E}, {0x0000085E, 0x0000085E}, {0x00000964, 0x00000965}, {0x00000970, 0x00000970}, +{0x000009FD, 0x000009FD}, {0x00000A76, 0x00000A76}, {0x00000AF0, 0x00000AF0}, {0x00000C77, 0x00000C77}, +{0x00000C84, 0x00000C84}, {0x00000DF4, 0x00000DF4}, {0x00000E4F, 0x00000E4F}, {0x00000E5A, 0x00000E5B}, +{0x00000F04, 0x00000F12}, {0x00000F14, 0x00000F14}, {0x00000F3A, 0x00000F3D}, {0x00000F85, 0x00000F85}, +{0x00000FD0, 0x00000FD4}, {0x00000FD9, 0x00000FDA}, {0x0000104A, 0x0000104F}, {0x000010FB, 0x000010FB}, +{0x00001360, 0x00001368}, {0x00001400, 0x00001400}, {0x0000166E, 0x0000166E}, {0x0000169B, 0x0000169C}, +{0x000016EB, 0x000016ED}, {0x00001735, 0x00001736}, {0x000017D4, 0x000017D6}, {0x000017D8, 0x000017DA}, +{0x00001800, 0x0000180A}, {0x00001944, 0x00001945}, {0x00001A1E, 0x00001A1F}, {0x00001AA0, 0x00001AA6}, +{0x00001AA8, 0x00001AAD}, {0x00001B5A, 0x00001B60}, {0x00001BFC, 0x00001BFF}, {0x00001C3B, 0x00001C3F}, +{0x00001C7E, 0x00001C7F}, {0x00001CC0, 0x00001CC7}, {0x00001CD3, 0x00001CD3}, {0x00002010, 0x00002027}, +{0x00002030, 0x00002043}, {0x00002045, 0x00002051}, {0x00002053, 0x0000205E}, {0x0000207D, 0x0000207E}, +{0x0000208D, 0x0000208E}, {0x00002308, 0x0000230B}, {0x00002329, 0x0000232A}, {0x00002768, 0x00002775}, +{0x000027C5, 0x000027C6}, {0x000027E6, 0x000027EF}, {0x00002983, 0x00002998}, {0x000029D8, 0x000029DB}, +{0x000029FC, 0x000029FD}, {0x00002CF9, 0x00002CFC}, {0x00002CFE, 0x00002CFF}, {0x00002D70, 0x00002D70}, +{0x00002E00, 0x00002E2E}, {0x00002E30, 0x00002E4F}, {0x00002E52, 0x00002E52}, {0x00003001, 0x00003003}, +{0x00003008, 0x00003011}, {0x00003014, 0x0000301F}, {0x00003030, 0x00003030}, {0x0000303D, 0x0000303D}, +{0x000030A0, 0x000030A0}, {0x000030FB, 0x000030FB}, {0x0000A4FE, 0x0000A4FF}, {0x0000A60D, 0x0000A60F}, +{0x0000A673, 0x0000A673}, {0x0000A67E, 0x0000A67E}, {0x0000A6F2, 0x0000A6F7}, {0x0000A874, 0x0000A877}, +{0x0000A8CE, 0x0000A8CF}, {0x0000A8F8, 0x0000A8FA}, {0x0000A8FC, 0x0000A8FC}, {0x0000A92E, 0x0000A92F}, +{0x0000A95F, 0x0000A95F}, {0x0000A9C1, 0x0000A9CD}, {0x0000A9DE, 0x0000A9DF}, {0x0000AA5C, 0x0000AA5F}, +{0x0000AADE, 0x0000AADF}, {0x0000AAF0, 0x0000AAF1}, {0x0000ABEB, 0x0000ABEB}, {0x0000FD3E, 0x0000FD3F}, +{0x0000FE10, 0x0000FE19}, {0x0000FE30, 0x0000FE52}, {0x0000FE54, 0x0000FE61}, {0x0000FE63, 0x0000FE63}, +{0x0000FE68, 0x0000FE68}, {0x0000FE6A, 0x0000FE6B}, {0x0000FF01, 0x0000FF03}, {0x0000FF05, 0x0000FF0A}, +{0x0000FF0C, 0x0000FF0F}, {0x0000FF1A, 0x0000FF1B}, {0x0000FF1F, 0x0000FF20}, {0x0000FF3B, 0x0000FF3D}, +{0x0000FF3F, 0x0000FF3F}, {0x0000FF5B, 0x0000FF5B}, {0x0000FF5D, 0x0000FF5D}, {0x0000FF5F, 0x0000FF65}, +{0x00010100, 0x00010102}, {0x0001039F, 0x0001039F}, {0x000103D0, 0x000103D0}, {0x0001056F, 0x0001056F}, +{0x00010857, 0x00010857}, {0x0001091F, 0x0001091F}, {0x0001093F, 0x0001093F}, {0x00010A50, 0x00010A58}, +{0x00010A7F, 0x00010A7F}, {0x00010AF0, 0x00010AF6}, {0x00010B39, 0x00010B3F}, {0x00010B99, 0x00010B9C}, +{0x00010EAD, 0x00010EAD}, {0x00010F55, 0x00010F59}, {0x00011047, 0x0001104D}, {0x000110BB, 0x000110BC}, +{0x000110BE, 0x000110C1}, {0x00011140, 0x00011143}, {0x00011174, 0x00011175}, {0x000111C5, 0x000111C8}, +{0x000111CD, 0x000111CD}, {0x000111DB, 0x000111DB}, {0x000111DD, 0x000111DF}, {0x00011238, 0x0001123D}, +{0x000112A9, 0x000112A9}, {0x0001144B, 0x0001144F}, {0x0001145A, 0x0001145B}, {0x0001145D, 0x0001145D}, +{0x000114C6, 0x000114C6}, {0x000115C1, 0x000115D7}, {0x00011641, 0x00011643}, {0x00011660, 0x0001166C}, +{0x0001173C, 0x0001173E}, {0x0001183B, 0x0001183B}, {0x00011944, 0x00011946}, {0x000119E2, 0x000119E2}, +{0x00011A3F, 0x00011A46}, {0x00011A9A, 0x00011A9C}, {0x00011A9E, 0x00011AA2}, {0x00011C41, 0x00011C45}, +{0x00011C70, 0x00011C71}, {0x00011EF7, 0x00011EF8}, {0x00011FFF, 0x00011FFF}, {0x00012470, 0x00012474}, +{0x00016A6E, 0x00016A6F}, {0x00016AF5, 0x00016AF5}, {0x00016B37, 0x00016B3B}, {0x00016B44, 0x00016B44}, +{0x00016E97, 0x00016E9A}, {0x00016FE2, 0x00016FE2}, {0x0001BC9F, 0x0001BC9F}, {0x0001DA87, 0x0001DA8B}, +{0x0001E95E, 0x0001E95F}, +}; + +const std::vector> unicode_ranges_symbol = { +{0x00000024, 0x00000024}, {0x0000002B, 0x0000002B}, {0x0000003C, 0x0000003E}, {0x0000005E, 0x0000005E}, +{0x00000060, 0x00000060}, {0x0000007C, 0x0000007C}, {0x0000007E, 0x0000007E}, {0x000000A2, 0x000000A6}, +{0x000000A8, 0x000000A9}, {0x000000AC, 0x000000AC}, {0x000000AE, 0x000000B1}, {0x000000B4, 0x000000B4}, +{0x000000B8, 0x000000B8}, {0x000000D7, 0x000000D7}, {0x000000F7, 0x000000F7}, {0x000002C2, 0x000002C5}, +{0x000002D2, 0x000002DF}, {0x000002E5, 0x000002EB}, {0x000002ED, 0x000002ED}, {0x000002EF, 0x000002FF}, +{0x00000375, 0x00000375}, {0x00000384, 0x00000385}, {0x000003F6, 0x000003F6}, {0x00000482, 0x00000482}, +{0x0000058D, 0x0000058F}, {0x00000606, 0x00000608}, {0x0000060B, 0x0000060B}, {0x0000060E, 0x0000060F}, +{0x000006DE, 0x000006DE}, {0x000006E9, 0x000006E9}, {0x000006FD, 0x000006FE}, {0x000007F6, 0x000007F6}, +{0x000007FE, 0x000007FF}, {0x000009F2, 0x000009F3}, {0x000009FA, 0x000009FB}, {0x00000AF1, 0x00000AF1}, +{0x00000B70, 0x00000B70}, {0x00000BF3, 0x00000BFA}, {0x00000C7F, 0x00000C7F}, {0x00000D4F, 0x00000D4F}, +{0x00000D79, 0x00000D79}, {0x00000E3F, 0x00000E3F}, {0x00000F01, 0x00000F03}, {0x00000F13, 0x00000F13}, +{0x00000F15, 0x00000F17}, {0x00000F1A, 0x00000F1F}, {0x00000F34, 0x00000F34}, {0x00000F36, 0x00000F36}, +{0x00000F38, 0x00000F38}, {0x00000FBE, 0x00000FC5}, {0x00000FC7, 0x00000FCC}, {0x00000FCE, 0x00000FCF}, +{0x00000FD5, 0x00000FD8}, {0x0000109E, 0x0000109F}, {0x00001390, 0x00001399}, {0x0000166D, 0x0000166D}, +{0x000017DB, 0x000017DB}, {0x00001940, 0x00001940}, {0x000019DE, 0x000019FF}, {0x00001B61, 0x00001B6A}, +{0x00001B74, 0x00001B7C}, {0x00001FBD, 0x00001FBD}, {0x00001FBF, 0x00001FC1}, {0x00001FCD, 0x00001FCF}, +{0x00001FDD, 0x00001FDF}, {0x00001FED, 0x00001FEF}, {0x00001FFD, 0x00001FFE}, {0x00002044, 0x00002044}, +{0x00002052, 0x00002052}, {0x0000207A, 0x0000207C}, {0x0000208A, 0x0000208C}, {0x000020A0, 0x000020BF}, +{0x00002100, 0x00002101}, {0x00002103, 0x00002106}, {0x00002108, 0x00002109}, {0x00002114, 0x00002114}, +{0x00002116, 0x00002118}, {0x0000211E, 0x00002123}, {0x00002125, 0x00002125}, {0x00002127, 0x00002127}, +{0x00002129, 0x00002129}, {0x0000212E, 0x0000212E}, {0x0000213A, 0x0000213B}, {0x00002140, 0x00002144}, +{0x0000214A, 0x0000214D}, {0x0000214F, 0x0000214F}, {0x0000218A, 0x0000218B}, {0x00002190, 0x00002307}, +{0x0000230C, 0x00002328}, {0x0000232B, 0x00002426}, {0x00002440, 0x0000244A}, {0x0000249C, 0x000024E9}, +{0x00002500, 0x00002767}, {0x00002794, 0x000027C4}, {0x000027C7, 0x000027E5}, {0x000027F0, 0x00002982}, +{0x00002999, 0x000029D7}, {0x000029DC, 0x000029FB}, {0x000029FE, 0x00002B73}, {0x00002B76, 0x00002B95}, +{0x00002B97, 0x00002BFF}, {0x00002CE5, 0x00002CEA}, {0x00002E50, 0x00002E51}, {0x00002E80, 0x00002E99}, +{0x00002E9B, 0x00002EF3}, {0x00002F00, 0x00002FD5}, {0x00002FF0, 0x00002FFB}, {0x00003004, 0x00003004}, +{0x00003012, 0x00003013}, {0x00003020, 0x00003020}, {0x00003036, 0x00003037}, {0x0000303E, 0x0000303F}, +{0x0000309B, 0x0000309C}, {0x00003190, 0x00003191}, {0x00003196, 0x0000319F}, {0x000031C0, 0x000031E3}, +{0x00003200, 0x0000321E}, {0x0000322A, 0x00003247}, {0x00003250, 0x00003250}, {0x00003260, 0x0000327F}, +{0x0000328A, 0x000032B0}, {0x000032C0, 0x000033FF}, {0x00004DC0, 0x00004DFF}, {0x0000A490, 0x0000A4C6}, +{0x0000A700, 0x0000A716}, {0x0000A720, 0x0000A721}, {0x0000A789, 0x0000A78A}, {0x0000A828, 0x0000A82B}, +{0x0000A836, 0x0000A839}, {0x0000AA77, 0x0000AA79}, {0x0000AB5B, 0x0000AB5B}, {0x0000AB6A, 0x0000AB6B}, +{0x0000FB29, 0x0000FB29}, {0x0000FBB2, 0x0000FBC1}, {0x0000FDFC, 0x0000FDFD}, {0x0000FE62, 0x0000FE62}, +{0x0000FE64, 0x0000FE66}, {0x0000FE69, 0x0000FE69}, {0x0000FF04, 0x0000FF04}, {0x0000FF0B, 0x0000FF0B}, +{0x0000FF1C, 0x0000FF1E}, {0x0000FF3E, 0x0000FF3E}, {0x0000FF40, 0x0000FF40}, {0x0000FF5C, 0x0000FF5C}, +{0x0000FF5E, 0x0000FF5E}, {0x0000FFE0, 0x0000FFE6}, {0x0000FFE8, 0x0000FFEE}, {0x0000FFFC, 0x0000FFFD}, +{0x00010137, 0x0001013F}, {0x00010179, 0x00010189}, {0x0001018C, 0x0001018E}, {0x00010190, 0x0001019C}, +{0x000101A0, 0x000101A0}, {0x000101D0, 0x000101FC}, {0x00010877, 0x00010878}, {0x00010AC8, 0x00010AC8}, +{0x0001173F, 0x0001173F}, {0x00011FD5, 0x00011FF1}, {0x00016B3C, 0x00016B3F}, {0x00016B45, 0x00016B45}, +{0x0001BC9C, 0x0001BC9C}, {0x0001D000, 0x0001D0F5}, {0x0001D100, 0x0001D126}, {0x0001D129, 0x0001D164}, +{0x0001D16A, 0x0001D16C}, {0x0001D183, 0x0001D184}, {0x0001D18C, 0x0001D1A9}, {0x0001D1AE, 0x0001D1E8}, +{0x0001D200, 0x0001D241}, {0x0001D245, 0x0001D245}, {0x0001D300, 0x0001D356}, {0x0001D6C1, 0x0001D6C1}, +{0x0001D6DB, 0x0001D6DB}, {0x0001D6FB, 0x0001D6FB}, {0x0001D715, 0x0001D715}, {0x0001D735, 0x0001D735}, +{0x0001D74F, 0x0001D74F}, {0x0001D76F, 0x0001D76F}, {0x0001D789, 0x0001D789}, {0x0001D7A9, 0x0001D7A9}, +{0x0001D7C3, 0x0001D7C3}, {0x0001D800, 0x0001D9FF}, {0x0001DA37, 0x0001DA3A}, {0x0001DA6D, 0x0001DA74}, +{0x0001DA76, 0x0001DA83}, {0x0001DA85, 0x0001DA86}, {0x0001E14F, 0x0001E14F}, {0x0001E2FF, 0x0001E2FF}, +{0x0001ECAC, 0x0001ECAC}, {0x0001ECB0, 0x0001ECB0}, {0x0001ED2E, 0x0001ED2E}, {0x0001EEF0, 0x0001EEF1}, +{0x0001F000, 0x0001F02B}, {0x0001F030, 0x0001F093}, {0x0001F0A0, 0x0001F0AE}, {0x0001F0B1, 0x0001F0BF}, +{0x0001F0C1, 0x0001F0CF}, {0x0001F0D1, 0x0001F0F5}, {0x0001F10D, 0x0001F1AD}, {0x0001F1E6, 0x0001F202}, +{0x0001F210, 0x0001F23B}, {0x0001F240, 0x0001F248}, {0x0001F250, 0x0001F251}, {0x0001F260, 0x0001F265}, +{0x0001F300, 0x0001F6D7}, {0x0001F6E0, 0x0001F6EC}, {0x0001F6F0, 0x0001F6FC}, {0x0001F700, 0x0001F773}, +{0x0001F780, 0x0001F7D8}, {0x0001F7E0, 0x0001F7EB}, {0x0001F800, 0x0001F80B}, {0x0001F810, 0x0001F847}, +{0x0001F850, 0x0001F859}, {0x0001F860, 0x0001F887}, {0x0001F890, 0x0001F8AD}, {0x0001F8B0, 0x0001F8B1}, +{0x0001F900, 0x0001F978}, {0x0001F97A, 0x0001F9CB}, {0x0001F9CD, 0x0001FA53}, {0x0001FA60, 0x0001FA6D}, +{0x0001FA70, 0x0001FA74}, {0x0001FA78, 0x0001FA7A}, {0x0001FA80, 0x0001FA86}, {0x0001FA90, 0x0001FAA8}, +{0x0001FAB0, 0x0001FAB6}, {0x0001FAC0, 0x0001FAC2}, {0x0001FAD0, 0x0001FAD6}, {0x0001FB00, 0x0001FB92}, +{0x0001FB94, 0x0001FBCA}, +}; + +const std::vector> unicode_ranges_control = { +{0x00000000, 0x00000008}, {0x0000000E, 0x0000001B}, {0x0000007F, 0x00000084}, {0x00000086, 0x0000009F}, +{0x000000AD, 0x000000AD}, {0x00000378, 0x00000379}, {0x00000380, 0x00000383}, {0x0000038B, 0x0000038B}, +{0x0000038D, 0x0000038D}, {0x000003A2, 0x000003A2}, {0x00000530, 0x00000530}, {0x00000557, 0x00000558}, +{0x0000058B, 0x0000058C}, {0x00000590, 0x00000590}, {0x000005C8, 0x000005CF}, {0x000005EB, 0x000005EE}, +{0x000005F5, 0x00000605}, {0x0000061C, 0x0000061D}, {0x000006DD, 0x000006DD}, {0x0000070E, 0x0000070F}, +{0x0000074B, 0x0000074C}, {0x000007B2, 0x000007BF}, {0x000007FB, 0x000007FC}, {0x0000082E, 0x0000082F}, +{0x0000083F, 0x0000083F}, {0x0000085C, 0x0000085D}, {0x0000085F, 0x0000085F}, {0x0000086B, 0x0000089F}, +{0x000008B5, 0x000008B5}, {0x000008C8, 0x000008D2}, {0x000008E2, 0x000008E2}, {0x00000984, 0x00000984}, +{0x0000098D, 0x0000098E}, {0x00000991, 0x00000992}, {0x000009A9, 0x000009A9}, {0x000009B1, 0x000009B1}, +{0x000009B3, 0x000009B5}, {0x000009BA, 0x000009BB}, {0x000009C5, 0x000009C6}, {0x000009C9, 0x000009CA}, +{0x000009CF, 0x000009D6}, {0x000009D8, 0x000009DB}, {0x000009DE, 0x000009DE}, {0x000009E4, 0x000009E5}, +{0x000009FF, 0x00000A00}, {0x00000A04, 0x00000A04}, {0x00000A0B, 0x00000A0E}, {0x00000A11, 0x00000A12}, +{0x00000A29, 0x00000A29}, {0x00000A31, 0x00000A31}, {0x00000A34, 0x00000A34}, {0x00000A37, 0x00000A37}, +{0x00000A3A, 0x00000A3B}, {0x00000A3D, 0x00000A3D}, {0x00000A43, 0x00000A46}, {0x00000A49, 0x00000A4A}, +{0x00000A4E, 0x00000A50}, {0x00000A52, 0x00000A58}, {0x00000A5D, 0x00000A5D}, {0x00000A5F, 0x00000A65}, +{0x00000A77, 0x00000A80}, {0x00000A84, 0x00000A84}, {0x00000A8E, 0x00000A8E}, {0x00000A92, 0x00000A92}, +{0x00000AA9, 0x00000AA9}, {0x00000AB1, 0x00000AB1}, {0x00000AB4, 0x00000AB4}, {0x00000ABA, 0x00000ABB}, +{0x00000AC6, 0x00000AC6}, {0x00000ACA, 0x00000ACA}, {0x00000ACE, 0x00000ACF}, {0x00000AD1, 0x00000ADF}, +{0x00000AE4, 0x00000AE5}, {0x00000AF2, 0x00000AF8}, {0x00000B00, 0x00000B00}, {0x00000B04, 0x00000B04}, +{0x00000B0D, 0x00000B0E}, {0x00000B11, 0x00000B12}, {0x00000B29, 0x00000B29}, {0x00000B31, 0x00000B31}, +{0x00000B34, 0x00000B34}, {0x00000B3A, 0x00000B3B}, {0x00000B45, 0x00000B46}, {0x00000B49, 0x00000B4A}, +{0x00000B4E, 0x00000B54}, {0x00000B58, 0x00000B5B}, {0x00000B5E, 0x00000B5E}, {0x00000B64, 0x00000B65}, +{0x00000B78, 0x00000B81}, {0x00000B84, 0x00000B84}, {0x00000B8B, 0x00000B8D}, {0x00000B91, 0x00000B91}, +{0x00000B96, 0x00000B98}, {0x00000B9B, 0x00000B9B}, {0x00000B9D, 0x00000B9D}, {0x00000BA0, 0x00000BA2}, +{0x00000BA5, 0x00000BA7}, {0x00000BAB, 0x00000BAD}, {0x00000BBA, 0x00000BBD}, {0x00000BC3, 0x00000BC5}, +{0x00000BC9, 0x00000BC9}, {0x00000BCE, 0x00000BCF}, {0x00000BD1, 0x00000BD6}, {0x00000BD8, 0x00000BE5}, +{0x00000BFB, 0x00000BFF}, {0x00000C0D, 0x00000C0D}, {0x00000C11, 0x00000C11}, {0x00000C29, 0x00000C29}, +{0x00000C3A, 0x00000C3C}, {0x00000C45, 0x00000C45}, {0x00000C49, 0x00000C49}, {0x00000C4E, 0x00000C54}, +{0x00000C57, 0x00000C57}, {0x00000C5B, 0x00000C5F}, {0x00000C64, 0x00000C65}, {0x00000C70, 0x00000C76}, +{0x00000C8D, 0x00000C8D}, {0x00000C91, 0x00000C91}, {0x00000CA9, 0x00000CA9}, {0x00000CB4, 0x00000CB4}, +{0x00000CBA, 0x00000CBB}, {0x00000CC5, 0x00000CC5}, {0x00000CC9, 0x00000CC9}, {0x00000CCE, 0x00000CD4}, +{0x00000CD7, 0x00000CDD}, {0x00000CDF, 0x00000CDF}, {0x00000CE4, 0x00000CE5}, {0x00000CF0, 0x00000CF0}, +{0x00000CF3, 0x00000CFF}, {0x00000D0D, 0x00000D0D}, {0x00000D11, 0x00000D11}, {0x00000D45, 0x00000D45}, +{0x00000D49, 0x00000D49}, {0x00000D50, 0x00000D53}, {0x00000D64, 0x00000D65}, {0x00000D80, 0x00000D80}, +{0x00000D84, 0x00000D84}, {0x00000D97, 0x00000D99}, {0x00000DB2, 0x00000DB2}, {0x00000DBC, 0x00000DBC}, +{0x00000DBE, 0x00000DBF}, {0x00000DC7, 0x00000DC9}, {0x00000DCB, 0x00000DCE}, {0x00000DD5, 0x00000DD5}, +{0x00000DD7, 0x00000DD7}, {0x00000DE0, 0x00000DE5}, {0x00000DF0, 0x00000DF1}, {0x00000DF5, 0x00000E00}, +{0x00000E3B, 0x00000E3E}, {0x00000E5C, 0x00000E80}, {0x00000E83, 0x00000E83}, {0x00000E85, 0x00000E85}, +{0x00000E8B, 0x00000E8B}, {0x00000EA4, 0x00000EA4}, {0x00000EA6, 0x00000EA6}, {0x00000EBE, 0x00000EBF}, +{0x00000EC5, 0x00000EC5}, {0x00000EC7, 0x00000EC7}, {0x00000ECE, 0x00000ECF}, {0x00000EDA, 0x00000EDB}, +{0x00000EE0, 0x00000EFF}, {0x00000F48, 0x00000F48}, {0x00000F6D, 0x00000F70}, {0x00000F98, 0x00000F98}, +{0x00000FBD, 0x00000FBD}, {0x00000FCD, 0x00000FCD}, {0x00000FDB, 0x00000FFF}, {0x000010C6, 0x000010C6}, +{0x000010C8, 0x000010CC}, {0x000010CE, 0x000010CF}, {0x00001249, 0x00001249}, {0x0000124E, 0x0000124F}, +{0x00001257, 0x00001257}, {0x00001259, 0x00001259}, {0x0000125E, 0x0000125F}, {0x00001289, 0x00001289}, +{0x0000128E, 0x0000128F}, {0x000012B1, 0x000012B1}, {0x000012B6, 0x000012B7}, {0x000012BF, 0x000012BF}, +{0x000012C1, 0x000012C1}, {0x000012C6, 0x000012C7}, {0x000012D7, 0x000012D7}, {0x00001311, 0x00001311}, +{0x00001316, 0x00001317}, {0x0000135B, 0x0000135C}, {0x0000137D, 0x0000137F}, {0x0000139A, 0x0000139F}, +{0x000013F6, 0x000013F7}, {0x000013FE, 0x000013FF}, {0x0000169D, 0x0000169F}, {0x000016F9, 0x000016FF}, +{0x0000170D, 0x0000170D}, {0x00001715, 0x0000171F}, {0x00001737, 0x0000173F}, {0x00001754, 0x0000175F}, +{0x0000176D, 0x0000176D}, {0x00001771, 0x00001771}, {0x00001774, 0x0000177F}, {0x000017DE, 0x000017DF}, +{0x000017EA, 0x000017EF}, {0x000017FA, 0x000017FF}, {0x0000180E, 0x0000180F}, {0x0000181A, 0x0000181F}, +{0x00001879, 0x0000187F}, {0x000018AB, 0x000018AF}, {0x000018F6, 0x000018FF}, {0x0000191F, 0x0000191F}, +{0x0000192C, 0x0000192F}, {0x0000193C, 0x0000193F}, {0x00001941, 0x00001943}, {0x0000196E, 0x0000196F}, +{0x00001975, 0x0000197F}, {0x000019AC, 0x000019AF}, {0x000019CA, 0x000019CF}, {0x000019DB, 0x000019DD}, +{0x00001A1C, 0x00001A1D}, {0x00001A5F, 0x00001A5F}, {0x00001A7D, 0x00001A7E}, {0x00001A8A, 0x00001A8F}, +{0x00001A9A, 0x00001A9F}, {0x00001AAE, 0x00001AAF}, {0x00001AC1, 0x00001AFF}, {0x00001B4C, 0x00001B4F}, +{0x00001B7D, 0x00001B7F}, {0x00001BF4, 0x00001BFB}, {0x00001C38, 0x00001C3A}, {0x00001C4A, 0x00001C4C}, +{0x00001C89, 0x00001C8F}, {0x00001CBB, 0x00001CBC}, {0x00001CC8, 0x00001CCF}, {0x00001CFB, 0x00001CFF}, +{0x00001DFA, 0x00001DFA}, {0x00001F16, 0x00001F17}, {0x00001F1E, 0x00001F1F}, {0x00001F46, 0x00001F47}, +{0x00001F4E, 0x00001F4F}, {0x00001F58, 0x00001F58}, {0x00001F5A, 0x00001F5A}, {0x00001F5C, 0x00001F5C}, +{0x00001F5E, 0x00001F5E}, {0x00001F7E, 0x00001F7F}, {0x00001FB5, 0x00001FB5}, {0x00001FC5, 0x00001FC5}, +{0x00001FD4, 0x00001FD5}, {0x00001FDC, 0x00001FDC}, {0x00001FF0, 0x00001FF1}, {0x00001FF5, 0x00001FF5}, +{0x00001FFF, 0x00001FFF}, {0x0000200B, 0x0000200F}, {0x0000202A, 0x0000202E}, {0x00002060, 0x0000206F}, +{0x00002072, 0x00002073}, {0x0000208F, 0x0000208F}, {0x0000209D, 0x0000209F}, {0x000020C0, 0x000020CF}, +{0x000020F1, 0x000020FF}, {0x0000218C, 0x0000218F}, {0x00002427, 0x0000243F}, {0x0000244B, 0x0000245F}, +{0x00002B74, 0x00002B75}, {0x00002B96, 0x00002B96}, {0x00002C2F, 0x00002C2F}, {0x00002C5F, 0x00002C5F}, +{0x00002CF4, 0x00002CF8}, {0x00002D26, 0x00002D26}, {0x00002D28, 0x00002D2C}, {0x00002D2E, 0x00002D2F}, +{0x00002D68, 0x00002D6E}, {0x00002D71, 0x00002D7E}, {0x00002D97, 0x00002D9F}, {0x00002DA7, 0x00002DA7}, +{0x00002DAF, 0x00002DAF}, {0x00002DB7, 0x00002DB7}, {0x00002DBF, 0x00002DBF}, {0x00002DC7, 0x00002DC7}, +{0x00002DCF, 0x00002DCF}, {0x00002DD7, 0x00002DD7}, {0x00002DDF, 0x00002DDF}, {0x00002E53, 0x00002E7F}, +{0x00002E9A, 0x00002E9A}, {0x00002EF4, 0x00002EFF}, {0x00002FD6, 0x00002FEF}, {0x00002FFC, 0x00002FFF}, +{0x00003040, 0x00003040}, {0x00003097, 0x00003098}, {0x00003100, 0x00003104}, {0x00003130, 0x00003130}, +{0x0000318F, 0x0000318F}, {0x000031E4, 0x000031EF}, {0x0000321F, 0x0000321F}, {0x00009FFD, 0x00009FFF}, +{0x0000A48D, 0x0000A48F}, {0x0000A4C7, 0x0000A4CF}, {0x0000A62C, 0x0000A63F}, {0x0000A6F8, 0x0000A6FF}, +{0x0000A7C0, 0x0000A7C1}, {0x0000A7CB, 0x0000A7F4}, {0x0000A82D, 0x0000A82F}, {0x0000A83A, 0x0000A83F}, +{0x0000A878, 0x0000A87F}, {0x0000A8C6, 0x0000A8CD}, {0x0000A8DA, 0x0000A8DF}, {0x0000A954, 0x0000A95E}, +{0x0000A97D, 0x0000A97F}, {0x0000A9CE, 0x0000A9CE}, {0x0000A9DA, 0x0000A9DD}, {0x0000A9FF, 0x0000A9FF}, +{0x0000AA37, 0x0000AA3F}, {0x0000AA4E, 0x0000AA4F}, {0x0000AA5A, 0x0000AA5B}, {0x0000AAC3, 0x0000AADA}, +{0x0000AAF7, 0x0000AB00}, {0x0000AB07, 0x0000AB08}, {0x0000AB0F, 0x0000AB10}, {0x0000AB17, 0x0000AB1F}, +{0x0000AB27, 0x0000AB27}, {0x0000AB2F, 0x0000AB2F}, {0x0000AB6C, 0x0000AB6F}, {0x0000ABEE, 0x0000ABEF}, +{0x0000ABFA, 0x0000ABFF}, {0x0000D7A4, 0x0000D7AF}, {0x0000D7C7, 0x0000D7CA}, {0x0000D7FC, 0x0000F8FF}, +{0x0000FA6E, 0x0000FA6F}, {0x0000FADA, 0x0000FAFF}, {0x0000FB07, 0x0000FB12}, {0x0000FB18, 0x0000FB1C}, +{0x0000FB37, 0x0000FB37}, {0x0000FB3D, 0x0000FB3D}, {0x0000FB3F, 0x0000FB3F}, {0x0000FB42, 0x0000FB42}, +{0x0000FB45, 0x0000FB45}, {0x0000FBC2, 0x0000FBD2}, {0x0000FD40, 0x0000FD4F}, {0x0000FD90, 0x0000FD91}, +{0x0000FDC8, 0x0000FDEF}, {0x0000FDFE, 0x0000FDFF}, {0x0000FE1A, 0x0000FE1F}, {0x0000FE53, 0x0000FE53}, +{0x0000FE67, 0x0000FE67}, {0x0000FE6C, 0x0000FE6F}, {0x0000FE75, 0x0000FE75}, {0x0000FEFD, 0x0000FF00}, +{0x0000FFBF, 0x0000FFC1}, {0x0000FFC8, 0x0000FFC9}, {0x0000FFD0, 0x0000FFD1}, {0x0000FFD8, 0x0000FFD9}, +{0x0000FFDD, 0x0000FFDF}, {0x0000FFE7, 0x0000FFE7}, {0x0000FFEF, 0x0000FFFB}, {0x0000FFFE, 0x0000FFFF}, +{0x0001000C, 0x0001000C}, {0x00010027, 0x00010027}, {0x0001003B, 0x0001003B}, {0x0001003E, 0x0001003E}, +{0x0001004E, 0x0001004F}, {0x0001005E, 0x0001007F}, {0x000100FB, 0x000100FF}, {0x00010103, 0x00010106}, +{0x00010134, 0x00010136}, {0x0001018F, 0x0001018F}, {0x0001019D, 0x0001019F}, {0x000101A1, 0x000101CF}, +{0x000101FE, 0x0001027F}, {0x0001029D, 0x0001029F}, {0x000102D1, 0x000102DF}, {0x000102FC, 0x000102FF}, +{0x00010324, 0x0001032C}, {0x0001034B, 0x0001034F}, {0x0001037B, 0x0001037F}, {0x0001039E, 0x0001039E}, +{0x000103C4, 0x000103C7}, {0x000103D6, 0x000103FF}, {0x0001049E, 0x0001049F}, {0x000104AA, 0x000104AF}, +{0x000104D4, 0x000104D7}, {0x000104FC, 0x000104FF}, {0x00010528, 0x0001052F}, {0x00010564, 0x0001056E}, +{0x00010570, 0x000105FF}, {0x00010737, 0x0001073F}, {0x00010756, 0x0001075F}, {0x00010768, 0x000107FF}, +{0x00010806, 0x00010807}, {0x00010809, 0x00010809}, {0x00010836, 0x00010836}, {0x00010839, 0x0001083B}, +{0x0001083D, 0x0001083E}, {0x00010856, 0x00010856}, {0x0001089F, 0x000108A6}, {0x000108B0, 0x000108DF}, +{0x000108F3, 0x000108F3}, {0x000108F6, 0x000108FA}, {0x0001091C, 0x0001091E}, {0x0001093A, 0x0001093E}, +{0x00010940, 0x0001097F}, {0x000109B8, 0x000109BB}, {0x000109D0, 0x000109D1}, {0x00010A04, 0x00010A04}, +{0x00010A07, 0x00010A0B}, {0x00010A14, 0x00010A14}, {0x00010A18, 0x00010A18}, {0x00010A36, 0x00010A37}, +{0x00010A3B, 0x00010A3E}, {0x00010A49, 0x00010A4F}, {0x00010A59, 0x00010A5F}, {0x00010AA0, 0x00010ABF}, +{0x00010AE7, 0x00010AEA}, {0x00010AF7, 0x00010AFF}, {0x00010B36, 0x00010B38}, {0x00010B56, 0x00010B57}, +{0x00010B73, 0x00010B77}, {0x00010B92, 0x00010B98}, {0x00010B9D, 0x00010BA8}, {0x00010BB0, 0x00010BFF}, +{0x00010C49, 0x00010C7F}, {0x00010CB3, 0x00010CBF}, {0x00010CF3, 0x00010CF9}, {0x00010D28, 0x00010D2F}, +{0x00010D3A, 0x00010E5F}, {0x00010E7F, 0x00010E7F}, {0x00010EAA, 0x00010EAA}, {0x00010EAE, 0x00010EAF}, +{0x00010EB2, 0x00010EFF}, {0x00010F28, 0x00010F2F}, {0x00010F5A, 0x00010FAF}, {0x00010FCC, 0x00010FDF}, +{0x00010FF7, 0x00010FFF}, {0x0001104E, 0x00011051}, {0x00011070, 0x0001107E}, {0x000110BD, 0x000110BD}, +{0x000110C2, 0x000110CF}, {0x000110E9, 0x000110EF}, {0x000110FA, 0x000110FF}, {0x00011135, 0x00011135}, +{0x00011148, 0x0001114F}, {0x00011177, 0x0001117F}, {0x000111E0, 0x000111E0}, {0x000111F5, 0x000111FF}, +{0x00011212, 0x00011212}, {0x0001123F, 0x0001127F}, {0x00011287, 0x00011287}, {0x00011289, 0x00011289}, +{0x0001128E, 0x0001128E}, {0x0001129E, 0x0001129E}, {0x000112AA, 0x000112AF}, {0x000112EB, 0x000112EF}, +{0x000112FA, 0x000112FF}, {0x00011304, 0x00011304}, {0x0001130D, 0x0001130E}, {0x00011311, 0x00011312}, +{0x00011329, 0x00011329}, {0x00011331, 0x00011331}, {0x00011334, 0x00011334}, {0x0001133A, 0x0001133A}, +{0x00011345, 0x00011346}, {0x00011349, 0x0001134A}, {0x0001134E, 0x0001134F}, {0x00011351, 0x00011356}, +{0x00011358, 0x0001135C}, {0x00011364, 0x00011365}, {0x0001136D, 0x0001136F}, {0x00011375, 0x000113FF}, +{0x0001145C, 0x0001145C}, {0x00011462, 0x0001147F}, {0x000114C8, 0x000114CF}, {0x000114DA, 0x0001157F}, +{0x000115B6, 0x000115B7}, {0x000115DE, 0x000115FF}, {0x00011645, 0x0001164F}, {0x0001165A, 0x0001165F}, +{0x0001166D, 0x0001167F}, {0x000116B9, 0x000116BF}, {0x000116CA, 0x000116FF}, {0x0001171B, 0x0001171C}, +{0x0001172C, 0x0001172F}, {0x00011740, 0x000117FF}, {0x0001183C, 0x0001189F}, {0x000118F3, 0x000118FE}, +{0x00011907, 0x00011908}, {0x0001190A, 0x0001190B}, {0x00011914, 0x00011914}, {0x00011917, 0x00011917}, +{0x00011936, 0x00011936}, {0x00011939, 0x0001193A}, {0x00011947, 0x0001194F}, {0x0001195A, 0x0001199F}, +{0x000119A8, 0x000119A9}, {0x000119D8, 0x000119D9}, {0x000119E5, 0x000119FF}, {0x00011A48, 0x00011A4F}, +{0x00011AA3, 0x00011ABF}, {0x00011AF9, 0x00011BFF}, {0x00011C09, 0x00011C09}, {0x00011C37, 0x00011C37}, +{0x00011C46, 0x00011C4F}, {0x00011C6D, 0x00011C6F}, {0x00011C90, 0x00011C91}, {0x00011CA8, 0x00011CA8}, +{0x00011CB7, 0x00011CFF}, {0x00011D07, 0x00011D07}, {0x00011D0A, 0x00011D0A}, {0x00011D37, 0x00011D39}, +{0x00011D3B, 0x00011D3B}, {0x00011D3E, 0x00011D3E}, {0x00011D48, 0x00011D4F}, {0x00011D5A, 0x00011D5F}, +{0x00011D66, 0x00011D66}, {0x00011D69, 0x00011D69}, {0x00011D8F, 0x00011D8F}, {0x00011D92, 0x00011D92}, +{0x00011D99, 0x00011D9F}, {0x00011DAA, 0x00011EDF}, {0x00011EF9, 0x00011FAF}, {0x00011FB1, 0x00011FBF}, +{0x00011FF2, 0x00011FFE}, {0x0001239A, 0x000123FF}, {0x0001246F, 0x0001246F}, {0x00012475, 0x0001247F}, +{0x00012544, 0x00012FFF}, {0x0001342F, 0x000143FF}, {0x00014647, 0x000167FF}, {0x00016A39, 0x00016A3F}, +{0x00016A5F, 0x00016A5F}, {0x00016A6A, 0x00016A6D}, {0x00016A70, 0x00016ACF}, {0x00016AEE, 0x00016AEF}, +{0x00016AF6, 0x00016AFF}, {0x00016B46, 0x00016B4F}, {0x00016B5A, 0x00016B5A}, {0x00016B62, 0x00016B62}, +{0x00016B78, 0x00016B7C}, {0x00016B90, 0x00016E3F}, {0x00016E9B, 0x00016EFF}, {0x00016F4B, 0x00016F4E}, +{0x00016F88, 0x00016F8E}, {0x00016FA0, 0x00016FDF}, {0x00016FE5, 0x00016FEF}, {0x00016FF2, 0x00016FFF}, +{0x000187F8, 0x000187FF}, {0x00018CD6, 0x00018CFF}, {0x00018D09, 0x0001AFFF}, {0x0001B11F, 0x0001B14F}, +{0x0001B153, 0x0001B163}, {0x0001B168, 0x0001B16F}, {0x0001B2FC, 0x0001BBFF}, {0x0001BC6B, 0x0001BC6F}, +{0x0001BC7D, 0x0001BC7F}, {0x0001BC89, 0x0001BC8F}, {0x0001BC9A, 0x0001BC9B}, {0x0001BCA0, 0x0001CFFF}, +{0x0001D0F6, 0x0001D0FF}, {0x0001D127, 0x0001D128}, {0x0001D173, 0x0001D17A}, {0x0001D1E9, 0x0001D1FF}, +{0x0001D246, 0x0001D2DF}, {0x0001D2F4, 0x0001D2FF}, {0x0001D357, 0x0001D35F}, {0x0001D379, 0x0001D3FF}, +{0x0001D455, 0x0001D455}, {0x0001D49D, 0x0001D49D}, {0x0001D4A0, 0x0001D4A1}, {0x0001D4A3, 0x0001D4A4}, +{0x0001D4A7, 0x0001D4A8}, {0x0001D4AD, 0x0001D4AD}, {0x0001D4BA, 0x0001D4BA}, {0x0001D4BC, 0x0001D4BC}, +{0x0001D4C4, 0x0001D4C4}, {0x0001D506, 0x0001D506}, {0x0001D50B, 0x0001D50C}, {0x0001D515, 0x0001D515}, +{0x0001D51D, 0x0001D51D}, {0x0001D53A, 0x0001D53A}, {0x0001D53F, 0x0001D53F}, {0x0001D545, 0x0001D545}, +{0x0001D547, 0x0001D549}, {0x0001D551, 0x0001D551}, {0x0001D6A6, 0x0001D6A7}, {0x0001D7CC, 0x0001D7CD}, +{0x0001DA8C, 0x0001DA9A}, {0x0001DAA0, 0x0001DAA0}, {0x0001DAB0, 0x0001DFFF}, {0x0001E007, 0x0001E007}, +{0x0001E019, 0x0001E01A}, {0x0001E022, 0x0001E022}, {0x0001E025, 0x0001E025}, {0x0001E02B, 0x0001E0FF}, +{0x0001E12D, 0x0001E12F}, {0x0001E13E, 0x0001E13F}, {0x0001E14A, 0x0001E14D}, {0x0001E150, 0x0001E2BF}, +{0x0001E2FA, 0x0001E2FE}, {0x0001E300, 0x0001E7FF}, {0x0001E8C5, 0x0001E8C6}, {0x0001E8D7, 0x0001E8FF}, +{0x0001E94C, 0x0001E94F}, {0x0001E95A, 0x0001E95D}, {0x0001E960, 0x0001EC70}, {0x0001ECB5, 0x0001ED00}, +{0x0001ED3E, 0x0001EDFF}, {0x0001EE04, 0x0001EE04}, {0x0001EE20, 0x0001EE20}, {0x0001EE23, 0x0001EE23}, +{0x0001EE25, 0x0001EE26}, {0x0001EE28, 0x0001EE28}, {0x0001EE33, 0x0001EE33}, {0x0001EE38, 0x0001EE38}, +{0x0001EE3A, 0x0001EE3A}, {0x0001EE3C, 0x0001EE41}, {0x0001EE43, 0x0001EE46}, {0x0001EE48, 0x0001EE48}, +{0x0001EE4A, 0x0001EE4A}, {0x0001EE4C, 0x0001EE4C}, {0x0001EE50, 0x0001EE50}, {0x0001EE53, 0x0001EE53}, +{0x0001EE55, 0x0001EE56}, {0x0001EE58, 0x0001EE58}, {0x0001EE5A, 0x0001EE5A}, {0x0001EE5C, 0x0001EE5C}, +{0x0001EE5E, 0x0001EE5E}, {0x0001EE60, 0x0001EE60}, {0x0001EE63, 0x0001EE63}, {0x0001EE65, 0x0001EE66}, +{0x0001EE6B, 0x0001EE6B}, {0x0001EE73, 0x0001EE73}, {0x0001EE78, 0x0001EE78}, {0x0001EE7D, 0x0001EE7D}, +{0x0001EE7F, 0x0001EE7F}, {0x0001EE8A, 0x0001EE8A}, {0x0001EE9C, 0x0001EEA0}, {0x0001EEA4, 0x0001EEA4}, +{0x0001EEAA, 0x0001EEAA}, {0x0001EEBC, 0x0001EEEF}, {0x0001EEF2, 0x0001EFFF}, {0x0001F02C, 0x0001F02F}, +{0x0001F094, 0x0001F09F}, {0x0001F0AF, 0x0001F0B0}, {0x0001F0C0, 0x0001F0C0}, {0x0001F0D0, 0x0001F0D0}, +{0x0001F0F6, 0x0001F0FF}, {0x0001F1AE, 0x0001F1E5}, {0x0001F203, 0x0001F20F}, {0x0001F23C, 0x0001F23F}, +{0x0001F249, 0x0001F24F}, {0x0001F252, 0x0001F25F}, {0x0001F266, 0x0001F2FF}, {0x0001F6D8, 0x0001F6DF}, +{0x0001F6ED, 0x0001F6EF}, {0x0001F6FD, 0x0001F6FF}, {0x0001F774, 0x0001F77F}, {0x0001F7D9, 0x0001F7DF}, +{0x0001F7EC, 0x0001F7FF}, {0x0001F80C, 0x0001F80F}, {0x0001F848, 0x0001F84F}, {0x0001F85A, 0x0001F85F}, +{0x0001F888, 0x0001F88F}, {0x0001F8AE, 0x0001F8AF}, {0x0001F8B2, 0x0001F8FF}, {0x0001F979, 0x0001F979}, +{0x0001F9CC, 0x0001F9CC}, {0x0001FA54, 0x0001FA5F}, {0x0001FA6E, 0x0001FA6F}, {0x0001FA75, 0x0001FA77}, +{0x0001FA7B, 0x0001FA7F}, {0x0001FA87, 0x0001FA8F}, {0x0001FAA9, 0x0001FAAF}, {0x0001FAB7, 0x0001FABF}, +{0x0001FAC3, 0x0001FACF}, {0x0001FAD7, 0x0001FAFF}, {0x0001FB93, 0x0001FB93}, {0x0001FBCB, 0x0001FBEF}, +{0x0001FBFA, 0x0001FFFF}, {0x0002A6DE, 0x0002A6FF}, {0x0002B735, 0x0002B73F}, {0x0002B81E, 0x0002B81F}, +{0x0002CEA2, 0x0002CEAF}, {0x0002EBE1, 0x0002F7FF}, {0x0002FA1E, 0x0002FFFF}, {0x0003134B, 0x000E00FF}, +{0x000E01F0, 0x0010FFFF}, +}; + +const std::multimap unicode_map_nfd = { +{0x000000C0, 0x00000041}, {0x000000C0, 0x00000300}, {0x000000C1, 0x00000041}, {0x000000C1, 0x00000301}, +{0x000000C2, 0x00000041}, {0x000000C2, 0x00000302}, {0x000000C3, 0x00000041}, {0x000000C3, 0x00000303}, +{0x000000C4, 0x00000041}, {0x000000C4, 0x00000308}, {0x000000C5, 0x00000041}, {0x000000C5, 0x0000030A}, +{0x000000C7, 0x00000043}, {0x000000C7, 0x00000327}, {0x000000C8, 0x00000045}, {0x000000C8, 0x00000300}, +{0x000000C9, 0x00000045}, {0x000000C9, 0x00000301}, {0x000000CA, 0x00000045}, {0x000000CA, 0x00000302}, +{0x000000CB, 0x00000045}, {0x000000CB, 0x00000308}, {0x000000CC, 0x00000049}, {0x000000CC, 0x00000300}, +{0x000000CD, 0x00000049}, {0x000000CD, 0x00000301}, {0x000000CE, 0x00000049}, {0x000000CE, 0x00000302}, +{0x000000CF, 0x00000049}, {0x000000CF, 0x00000308}, {0x000000D1, 0x0000004E}, {0x000000D1, 0x00000303}, +{0x000000D2, 0x0000004F}, {0x000000D2, 0x00000300}, {0x000000D3, 0x0000004F}, {0x000000D3, 0x00000301}, +{0x000000D4, 0x0000004F}, {0x000000D4, 0x00000302}, {0x000000D5, 0x0000004F}, {0x000000D5, 0x00000303}, +{0x000000D6, 0x0000004F}, {0x000000D6, 0x00000308}, {0x000000D9, 0x00000055}, {0x000000D9, 0x00000300}, +{0x000000DA, 0x00000055}, {0x000000DA, 0x00000301}, {0x000000DB, 0x00000055}, {0x000000DB, 0x00000302}, +{0x000000DC, 0x00000055}, {0x000000DC, 0x00000308}, {0x000000DD, 0x00000059}, {0x000000DD, 0x00000301}, +{0x000000E0, 0x00000061}, {0x000000E0, 0x00000300}, {0x000000E1, 0x00000061}, {0x000000E1, 0x00000301}, +{0x000000E2, 0x00000061}, {0x000000E2, 0x00000302}, {0x000000E3, 0x00000061}, {0x000000E3, 0x00000303}, +{0x000000E4, 0x00000061}, {0x000000E4, 0x00000308}, {0x000000E5, 0x00000061}, {0x000000E5, 0x0000030A}, +{0x000000E7, 0x00000063}, {0x000000E7, 0x00000327}, {0x000000E8, 0x00000065}, {0x000000E8, 0x00000300}, +{0x000000E9, 0x00000065}, {0x000000E9, 0x00000301}, {0x000000EA, 0x00000065}, {0x000000EA, 0x00000302}, +{0x000000EB, 0x00000065}, {0x000000EB, 0x00000308}, {0x000000EC, 0x00000069}, {0x000000EC, 0x00000300}, +{0x000000ED, 0x00000069}, {0x000000ED, 0x00000301}, {0x000000EE, 0x00000069}, {0x000000EE, 0x00000302}, +{0x000000EF, 0x00000069}, {0x000000EF, 0x00000308}, {0x000000F1, 0x0000006E}, {0x000000F1, 0x00000303}, +{0x000000F2, 0x0000006F}, {0x000000F2, 0x00000300}, {0x000000F3, 0x0000006F}, {0x000000F3, 0x00000301}, +{0x000000F4, 0x0000006F}, {0x000000F4, 0x00000302}, {0x000000F5, 0x0000006F}, {0x000000F5, 0x00000303}, +{0x000000F6, 0x0000006F}, {0x000000F6, 0x00000308}, {0x000000F9, 0x00000075}, {0x000000F9, 0x00000300}, +{0x000000FA, 0x00000075}, {0x000000FA, 0x00000301}, {0x000000FB, 0x00000075}, {0x000000FB, 0x00000302}, +{0x000000FC, 0x00000075}, {0x000000FC, 0x00000308}, {0x000000FD, 0x00000079}, {0x000000FD, 0x00000301}, +{0x000000FF, 0x00000079}, {0x000000FF, 0x00000308}, {0x00000100, 0x00000041}, {0x00000100, 0x00000304}, +{0x00000101, 0x00000061}, {0x00000101, 0x00000304}, {0x00000102, 0x00000041}, {0x00000102, 0x00000306}, +{0x00000103, 0x00000061}, {0x00000103, 0x00000306}, {0x00000104, 0x00000041}, {0x00000104, 0x00000328}, +{0x00000105, 0x00000061}, {0x00000105, 0x00000328}, {0x00000106, 0x00000043}, {0x00000106, 0x00000301}, +{0x00000107, 0x00000063}, {0x00000107, 0x00000301}, {0x00000108, 0x00000043}, {0x00000108, 0x00000302}, +{0x00000109, 0x00000063}, {0x00000109, 0x00000302}, {0x0000010A, 0x00000043}, {0x0000010A, 0x00000307}, +{0x0000010B, 0x00000063}, {0x0000010B, 0x00000307}, {0x0000010C, 0x00000043}, {0x0000010C, 0x0000030C}, +{0x0000010D, 0x00000063}, {0x0000010D, 0x0000030C}, {0x0000010E, 0x00000044}, {0x0000010E, 0x0000030C}, +{0x0000010F, 0x00000064}, {0x0000010F, 0x0000030C}, {0x00000112, 0x00000045}, {0x00000112, 0x00000304}, +{0x00000113, 0x00000065}, {0x00000113, 0x00000304}, {0x00000114, 0x00000045}, {0x00000114, 0x00000306}, +{0x00000115, 0x00000065}, {0x00000115, 0x00000306}, {0x00000116, 0x00000045}, {0x00000116, 0x00000307}, +{0x00000117, 0x00000065}, {0x00000117, 0x00000307}, {0x00000118, 0x00000045}, {0x00000118, 0x00000328}, +{0x00000119, 0x00000065}, {0x00000119, 0x00000328}, {0x0000011A, 0x00000045}, {0x0000011A, 0x0000030C}, +{0x0000011B, 0x00000065}, {0x0000011B, 0x0000030C}, {0x0000011C, 0x00000047}, {0x0000011C, 0x00000302}, +{0x0000011D, 0x00000067}, {0x0000011D, 0x00000302}, {0x0000011E, 0x00000047}, {0x0000011E, 0x00000306}, +{0x0000011F, 0x00000067}, {0x0000011F, 0x00000306}, {0x00000120, 0x00000047}, {0x00000120, 0x00000307}, +{0x00000121, 0x00000067}, {0x00000121, 0x00000307}, {0x00000122, 0x00000047}, {0x00000122, 0x00000327}, +{0x00000123, 0x00000067}, {0x00000123, 0x00000327}, {0x00000124, 0x00000048}, {0x00000124, 0x00000302}, +{0x00000125, 0x00000068}, {0x00000125, 0x00000302}, {0x00000128, 0x00000049}, {0x00000128, 0x00000303}, +{0x00000129, 0x00000069}, {0x00000129, 0x00000303}, {0x0000012A, 0x00000049}, {0x0000012A, 0x00000304}, +{0x0000012B, 0x00000069}, {0x0000012B, 0x00000304}, {0x0000012C, 0x00000049}, {0x0000012C, 0x00000306}, +{0x0000012D, 0x00000069}, {0x0000012D, 0x00000306}, {0x0000012E, 0x00000049}, {0x0000012E, 0x00000328}, +{0x0000012F, 0x00000069}, {0x0000012F, 0x00000328}, {0x00000130, 0x00000049}, {0x00000130, 0x00000307}, +{0x00000134, 0x0000004A}, {0x00000134, 0x00000302}, {0x00000135, 0x0000006A}, {0x00000135, 0x00000302}, +{0x00000136, 0x0000004B}, {0x00000136, 0x00000327}, {0x00000137, 0x0000006B}, {0x00000137, 0x00000327}, +{0x00000139, 0x0000004C}, {0x00000139, 0x00000301}, {0x0000013A, 0x0000006C}, {0x0000013A, 0x00000301}, +{0x0000013B, 0x0000004C}, {0x0000013B, 0x00000327}, {0x0000013C, 0x0000006C}, {0x0000013C, 0x00000327}, +{0x0000013D, 0x0000004C}, {0x0000013D, 0x0000030C}, {0x0000013E, 0x0000006C}, {0x0000013E, 0x0000030C}, +{0x00000143, 0x0000004E}, {0x00000143, 0x00000301}, {0x00000144, 0x0000006E}, {0x00000144, 0x00000301}, +{0x00000145, 0x0000004E}, {0x00000145, 0x00000327}, {0x00000146, 0x0000006E}, {0x00000146, 0x00000327}, +{0x00000147, 0x0000004E}, {0x00000147, 0x0000030C}, {0x00000148, 0x0000006E}, {0x00000148, 0x0000030C}, +{0x0000014C, 0x0000004F}, {0x0000014C, 0x00000304}, {0x0000014D, 0x0000006F}, {0x0000014D, 0x00000304}, +{0x0000014E, 0x0000004F}, {0x0000014E, 0x00000306}, {0x0000014F, 0x0000006F}, {0x0000014F, 0x00000306}, +{0x00000150, 0x0000004F}, {0x00000150, 0x0000030B}, {0x00000151, 0x0000006F}, {0x00000151, 0x0000030B}, +{0x00000154, 0x00000052}, {0x00000154, 0x00000301}, {0x00000155, 0x00000072}, {0x00000155, 0x00000301}, +{0x00000156, 0x00000052}, {0x00000156, 0x00000327}, {0x00000157, 0x00000072}, {0x00000157, 0x00000327}, +{0x00000158, 0x00000052}, {0x00000158, 0x0000030C}, {0x00000159, 0x00000072}, {0x00000159, 0x0000030C}, +{0x0000015A, 0x00000053}, {0x0000015A, 0x00000301}, {0x0000015B, 0x00000073}, {0x0000015B, 0x00000301}, +{0x0000015C, 0x00000053}, {0x0000015C, 0x00000302}, {0x0000015D, 0x00000073}, {0x0000015D, 0x00000302}, +{0x0000015E, 0x00000053}, {0x0000015E, 0x00000327}, {0x0000015F, 0x00000073}, {0x0000015F, 0x00000327}, +{0x00000160, 0x00000053}, {0x00000160, 0x0000030C}, {0x00000161, 0x00000073}, {0x00000161, 0x0000030C}, +{0x00000162, 0x00000054}, {0x00000162, 0x00000327}, {0x00000163, 0x00000074}, {0x00000163, 0x00000327}, +{0x00000164, 0x00000054}, {0x00000164, 0x0000030C}, {0x00000165, 0x00000074}, {0x00000165, 0x0000030C}, +{0x00000168, 0x00000055}, {0x00000168, 0x00000303}, {0x00000169, 0x00000075}, {0x00000169, 0x00000303}, +{0x0000016A, 0x00000055}, {0x0000016A, 0x00000304}, {0x0000016B, 0x00000075}, {0x0000016B, 0x00000304}, +{0x0000016C, 0x00000055}, {0x0000016C, 0x00000306}, {0x0000016D, 0x00000075}, {0x0000016D, 0x00000306}, +{0x0000016E, 0x00000055}, {0x0000016E, 0x0000030A}, {0x0000016F, 0x00000075}, {0x0000016F, 0x0000030A}, +{0x00000170, 0x00000055}, {0x00000170, 0x0000030B}, {0x00000171, 0x00000075}, {0x00000171, 0x0000030B}, +{0x00000172, 0x00000055}, {0x00000172, 0x00000328}, {0x00000173, 0x00000075}, {0x00000173, 0x00000328}, +{0x00000174, 0x00000057}, {0x00000174, 0x00000302}, {0x00000175, 0x00000077}, {0x00000175, 0x00000302}, +{0x00000176, 0x00000059}, {0x00000176, 0x00000302}, {0x00000177, 0x00000079}, {0x00000177, 0x00000302}, +{0x00000178, 0x00000059}, {0x00000178, 0x00000308}, {0x00000179, 0x0000005A}, {0x00000179, 0x00000301}, +{0x0000017A, 0x0000007A}, {0x0000017A, 0x00000301}, {0x0000017B, 0x0000005A}, {0x0000017B, 0x00000307}, +{0x0000017C, 0x0000007A}, {0x0000017C, 0x00000307}, {0x0000017D, 0x0000005A}, {0x0000017D, 0x0000030C}, +{0x0000017E, 0x0000007A}, {0x0000017E, 0x0000030C}, {0x000001A0, 0x0000004F}, {0x000001A0, 0x0000031B}, +{0x000001A1, 0x0000006F}, {0x000001A1, 0x0000031B}, {0x000001AF, 0x00000055}, {0x000001AF, 0x0000031B}, +{0x000001B0, 0x00000075}, {0x000001B0, 0x0000031B}, {0x000001CD, 0x00000041}, {0x000001CD, 0x0000030C}, +{0x000001CE, 0x00000061}, {0x000001CE, 0x0000030C}, {0x000001CF, 0x00000049}, {0x000001CF, 0x0000030C}, +{0x000001D0, 0x00000069}, {0x000001D0, 0x0000030C}, {0x000001D1, 0x0000004F}, {0x000001D1, 0x0000030C}, +{0x000001D2, 0x0000006F}, {0x000001D2, 0x0000030C}, {0x000001D3, 0x00000055}, {0x000001D3, 0x0000030C}, +{0x000001D4, 0x00000075}, {0x000001D4, 0x0000030C}, {0x000001D5, 0x00000055}, {0x000001D5, 0x00000308}, +{0x000001D5, 0x00000304}, {0x000001D6, 0x00000075}, {0x000001D6, 0x00000308}, {0x000001D6, 0x00000304}, +{0x000001D7, 0x00000055}, {0x000001D7, 0x00000308}, {0x000001D7, 0x00000301}, {0x000001D8, 0x00000075}, +{0x000001D8, 0x00000308}, {0x000001D8, 0x00000301}, {0x000001D9, 0x00000055}, {0x000001D9, 0x00000308}, +{0x000001D9, 0x0000030C}, {0x000001DA, 0x00000075}, {0x000001DA, 0x00000308}, {0x000001DA, 0x0000030C}, +{0x000001DB, 0x00000055}, {0x000001DB, 0x00000308}, {0x000001DB, 0x00000300}, {0x000001DC, 0x00000075}, +{0x000001DC, 0x00000308}, {0x000001DC, 0x00000300}, {0x000001DE, 0x00000041}, {0x000001DE, 0x00000308}, +{0x000001DE, 0x00000304}, {0x000001DF, 0x00000061}, {0x000001DF, 0x00000308}, {0x000001DF, 0x00000304}, +{0x000001E0, 0x00000041}, {0x000001E0, 0x00000307}, {0x000001E0, 0x00000304}, {0x000001E1, 0x00000061}, +{0x000001E1, 0x00000307}, {0x000001E1, 0x00000304}, {0x000001E2, 0x000000C6}, {0x000001E2, 0x00000304}, +{0x000001E3, 0x000000E6}, {0x000001E3, 0x00000304}, {0x000001E6, 0x00000047}, {0x000001E6, 0x0000030C}, +{0x000001E7, 0x00000067}, {0x000001E7, 0x0000030C}, {0x000001E8, 0x0000004B}, {0x000001E8, 0x0000030C}, +{0x000001E9, 0x0000006B}, {0x000001E9, 0x0000030C}, {0x000001EA, 0x0000004F}, {0x000001EA, 0x00000328}, +{0x000001EB, 0x0000006F}, {0x000001EB, 0x00000328}, {0x000001EC, 0x0000004F}, {0x000001EC, 0x00000328}, +{0x000001EC, 0x00000304}, {0x000001ED, 0x0000006F}, {0x000001ED, 0x00000328}, {0x000001ED, 0x00000304}, +{0x000001EE, 0x000001B7}, {0x000001EE, 0x0000030C}, {0x000001EF, 0x00000292}, {0x000001EF, 0x0000030C}, +{0x000001F0, 0x0000006A}, {0x000001F0, 0x0000030C}, {0x000001F4, 0x00000047}, {0x000001F4, 0x00000301}, +{0x000001F5, 0x00000067}, {0x000001F5, 0x00000301}, {0x000001F8, 0x0000004E}, {0x000001F8, 0x00000300}, +{0x000001F9, 0x0000006E}, {0x000001F9, 0x00000300}, {0x000001FA, 0x00000041}, {0x000001FA, 0x0000030A}, +{0x000001FA, 0x00000301}, {0x000001FB, 0x00000061}, {0x000001FB, 0x0000030A}, {0x000001FB, 0x00000301}, +{0x000001FC, 0x000000C6}, {0x000001FC, 0x00000301}, {0x000001FD, 0x000000E6}, {0x000001FD, 0x00000301}, +{0x000001FE, 0x000000D8}, {0x000001FE, 0x00000301}, {0x000001FF, 0x000000F8}, {0x000001FF, 0x00000301}, +{0x00000200, 0x00000041}, {0x00000200, 0x0000030F}, {0x00000201, 0x00000061}, {0x00000201, 0x0000030F}, +{0x00000202, 0x00000041}, {0x00000202, 0x00000311}, {0x00000203, 0x00000061}, {0x00000203, 0x00000311}, +{0x00000204, 0x00000045}, {0x00000204, 0x0000030F}, {0x00000205, 0x00000065}, {0x00000205, 0x0000030F}, +{0x00000206, 0x00000045}, {0x00000206, 0x00000311}, {0x00000207, 0x00000065}, {0x00000207, 0x00000311}, +{0x00000208, 0x00000049}, {0x00000208, 0x0000030F}, {0x00000209, 0x00000069}, {0x00000209, 0x0000030F}, +{0x0000020A, 0x00000049}, {0x0000020A, 0x00000311}, {0x0000020B, 0x00000069}, {0x0000020B, 0x00000311}, +{0x0000020C, 0x0000004F}, {0x0000020C, 0x0000030F}, {0x0000020D, 0x0000006F}, {0x0000020D, 0x0000030F}, +{0x0000020E, 0x0000004F}, {0x0000020E, 0x00000311}, {0x0000020F, 0x0000006F}, {0x0000020F, 0x00000311}, +{0x00000210, 0x00000052}, {0x00000210, 0x0000030F}, {0x00000211, 0x00000072}, {0x00000211, 0x0000030F}, +{0x00000212, 0x00000052}, {0x00000212, 0x00000311}, {0x00000213, 0x00000072}, {0x00000213, 0x00000311}, +{0x00000214, 0x00000055}, {0x00000214, 0x0000030F}, {0x00000215, 0x00000075}, {0x00000215, 0x0000030F}, +{0x00000216, 0x00000055}, {0x00000216, 0x00000311}, {0x00000217, 0x00000075}, {0x00000217, 0x00000311}, +{0x00000218, 0x00000053}, {0x00000218, 0x00000326}, {0x00000219, 0x00000073}, {0x00000219, 0x00000326}, +{0x0000021A, 0x00000054}, {0x0000021A, 0x00000326}, {0x0000021B, 0x00000074}, {0x0000021B, 0x00000326}, +{0x0000021E, 0x00000048}, {0x0000021E, 0x0000030C}, {0x0000021F, 0x00000068}, {0x0000021F, 0x0000030C}, +{0x00000226, 0x00000041}, {0x00000226, 0x00000307}, {0x00000227, 0x00000061}, {0x00000227, 0x00000307}, +{0x00000228, 0x00000045}, {0x00000228, 0x00000327}, {0x00000229, 0x00000065}, {0x00000229, 0x00000327}, +{0x0000022A, 0x0000004F}, {0x0000022A, 0x00000308}, {0x0000022A, 0x00000304}, {0x0000022B, 0x0000006F}, +{0x0000022B, 0x00000308}, {0x0000022B, 0x00000304}, {0x0000022C, 0x0000004F}, {0x0000022C, 0x00000303}, +{0x0000022C, 0x00000304}, {0x0000022D, 0x0000006F}, {0x0000022D, 0x00000303}, {0x0000022D, 0x00000304}, +{0x0000022E, 0x0000004F}, {0x0000022E, 0x00000307}, {0x0000022F, 0x0000006F}, {0x0000022F, 0x00000307}, +{0x00000230, 0x0000004F}, {0x00000230, 0x00000307}, {0x00000230, 0x00000304}, {0x00000231, 0x0000006F}, +{0x00000231, 0x00000307}, {0x00000231, 0x00000304}, {0x00000232, 0x00000059}, {0x00000232, 0x00000304}, +{0x00000233, 0x00000079}, {0x00000233, 0x00000304}, {0x00000340, 0x00000300}, {0x00000341, 0x00000301}, +{0x00000343, 0x00000313}, {0x00000344, 0x00000308}, {0x00000344, 0x00000301}, {0x00000374, 0x000002B9}, +{0x0000037E, 0x0000003B}, {0x00000385, 0x000000A8}, {0x00000385, 0x00000301}, {0x00000386, 0x00000391}, +{0x00000386, 0x00000301}, {0x00000387, 0x000000B7}, {0x00000388, 0x00000395}, {0x00000388, 0x00000301}, +{0x00000389, 0x00000397}, {0x00000389, 0x00000301}, {0x0000038A, 0x00000399}, {0x0000038A, 0x00000301}, +{0x0000038C, 0x0000039F}, {0x0000038C, 0x00000301}, {0x0000038E, 0x000003A5}, {0x0000038E, 0x00000301}, +{0x0000038F, 0x000003A9}, {0x0000038F, 0x00000301}, {0x00000390, 0x000003B9}, {0x00000390, 0x00000308}, +{0x00000390, 0x00000301}, {0x000003AA, 0x00000399}, {0x000003AA, 0x00000308}, {0x000003AB, 0x000003A5}, +{0x000003AB, 0x00000308}, {0x000003AC, 0x000003B1}, {0x000003AC, 0x00000301}, {0x000003AD, 0x000003B5}, +{0x000003AD, 0x00000301}, {0x000003AE, 0x000003B7}, {0x000003AE, 0x00000301}, {0x000003AF, 0x000003B9}, +{0x000003AF, 0x00000301}, {0x000003B0, 0x000003C5}, {0x000003B0, 0x00000308}, {0x000003B0, 0x00000301}, +{0x000003CA, 0x000003B9}, {0x000003CA, 0x00000308}, {0x000003CB, 0x000003C5}, {0x000003CB, 0x00000308}, +{0x000003CC, 0x000003BF}, {0x000003CC, 0x00000301}, {0x000003CD, 0x000003C5}, {0x000003CD, 0x00000301}, +{0x000003CE, 0x000003C9}, {0x000003CE, 0x00000301}, {0x000003D3, 0x000003D2}, {0x000003D3, 0x00000301}, +{0x000003D4, 0x000003D2}, {0x000003D4, 0x00000308}, {0x00000400, 0x00000415}, {0x00000400, 0x00000300}, +{0x00000401, 0x00000415}, {0x00000401, 0x00000308}, {0x00000403, 0x00000413}, {0x00000403, 0x00000301}, +{0x00000407, 0x00000406}, {0x00000407, 0x00000308}, {0x0000040C, 0x0000041A}, {0x0000040C, 0x00000301}, +{0x0000040D, 0x00000418}, {0x0000040D, 0x00000300}, {0x0000040E, 0x00000423}, {0x0000040E, 0x00000306}, +{0x00000419, 0x00000418}, {0x00000419, 0x00000306}, {0x00000439, 0x00000438}, {0x00000439, 0x00000306}, +{0x00000450, 0x00000435}, {0x00000450, 0x00000300}, {0x00000451, 0x00000435}, {0x00000451, 0x00000308}, +{0x00000453, 0x00000433}, {0x00000453, 0x00000301}, {0x00000457, 0x00000456}, {0x00000457, 0x00000308}, +{0x0000045C, 0x0000043A}, {0x0000045C, 0x00000301}, {0x0000045D, 0x00000438}, {0x0000045D, 0x00000300}, +{0x0000045E, 0x00000443}, {0x0000045E, 0x00000306}, {0x00000476, 0x00000474}, {0x00000476, 0x0000030F}, +{0x00000477, 0x00000475}, {0x00000477, 0x0000030F}, {0x000004C1, 0x00000416}, {0x000004C1, 0x00000306}, +{0x000004C2, 0x00000436}, {0x000004C2, 0x00000306}, {0x000004D0, 0x00000410}, {0x000004D0, 0x00000306}, +{0x000004D1, 0x00000430}, {0x000004D1, 0x00000306}, {0x000004D2, 0x00000410}, {0x000004D2, 0x00000308}, +{0x000004D3, 0x00000430}, {0x000004D3, 0x00000308}, {0x000004D6, 0x00000415}, {0x000004D6, 0x00000306}, +{0x000004D7, 0x00000435}, {0x000004D7, 0x00000306}, {0x000004DA, 0x000004D8}, {0x000004DA, 0x00000308}, +{0x000004DB, 0x000004D9}, {0x000004DB, 0x00000308}, {0x000004DC, 0x00000416}, {0x000004DC, 0x00000308}, +{0x000004DD, 0x00000436}, {0x000004DD, 0x00000308}, {0x000004DE, 0x00000417}, {0x000004DE, 0x00000308}, +{0x000004DF, 0x00000437}, {0x000004DF, 0x00000308}, {0x000004E2, 0x00000418}, {0x000004E2, 0x00000304}, +{0x000004E3, 0x00000438}, {0x000004E3, 0x00000304}, {0x000004E4, 0x00000418}, {0x000004E4, 0x00000308}, +{0x000004E5, 0x00000438}, {0x000004E5, 0x00000308}, {0x000004E6, 0x0000041E}, {0x000004E6, 0x00000308}, +{0x000004E7, 0x0000043E}, {0x000004E7, 0x00000308}, {0x000004EA, 0x000004E8}, {0x000004EA, 0x00000308}, +{0x000004EB, 0x000004E9}, {0x000004EB, 0x00000308}, {0x000004EC, 0x0000042D}, {0x000004EC, 0x00000308}, +{0x000004ED, 0x0000044D}, {0x000004ED, 0x00000308}, {0x000004EE, 0x00000423}, {0x000004EE, 0x00000304}, +{0x000004EF, 0x00000443}, {0x000004EF, 0x00000304}, {0x000004F0, 0x00000423}, {0x000004F0, 0x00000308}, +{0x000004F1, 0x00000443}, {0x000004F1, 0x00000308}, {0x000004F2, 0x00000423}, {0x000004F2, 0x0000030B}, +{0x000004F3, 0x00000443}, {0x000004F3, 0x0000030B}, {0x000004F4, 0x00000427}, {0x000004F4, 0x00000308}, +{0x000004F5, 0x00000447}, {0x000004F5, 0x00000308}, {0x000004F8, 0x0000042B}, {0x000004F8, 0x00000308}, +{0x000004F9, 0x0000044B}, {0x000004F9, 0x00000308}, {0x00000622, 0x00000627}, {0x00000622, 0x00000653}, +{0x00000623, 0x00000627}, {0x00000623, 0x00000654}, {0x00000624, 0x00000648}, {0x00000624, 0x00000654}, +{0x00000625, 0x00000627}, {0x00000625, 0x00000655}, {0x00000626, 0x0000064A}, {0x00000626, 0x00000654}, +{0x000006C0, 0x000006D5}, {0x000006C0, 0x00000654}, {0x000006C2, 0x000006C1}, {0x000006C2, 0x00000654}, +{0x000006D3, 0x000006D2}, {0x000006D3, 0x00000654}, {0x00000929, 0x00000928}, {0x00000929, 0x0000093C}, +{0x00000931, 0x00000930}, {0x00000931, 0x0000093C}, {0x00000934, 0x00000933}, {0x00000934, 0x0000093C}, +{0x00000958, 0x00000915}, {0x00000958, 0x0000093C}, {0x00000959, 0x00000916}, {0x00000959, 0x0000093C}, +{0x0000095A, 0x00000917}, {0x0000095A, 0x0000093C}, {0x0000095B, 0x0000091C}, {0x0000095B, 0x0000093C}, +{0x0000095C, 0x00000921}, {0x0000095C, 0x0000093C}, {0x0000095D, 0x00000922}, {0x0000095D, 0x0000093C}, +{0x0000095E, 0x0000092B}, {0x0000095E, 0x0000093C}, {0x0000095F, 0x0000092F}, {0x0000095F, 0x0000093C}, +{0x000009CB, 0x000009C7}, {0x000009CB, 0x000009BE}, {0x000009CC, 0x000009C7}, {0x000009CC, 0x000009D7}, +{0x000009DC, 0x000009A1}, {0x000009DC, 0x000009BC}, {0x000009DD, 0x000009A2}, {0x000009DD, 0x000009BC}, +{0x000009DF, 0x000009AF}, {0x000009DF, 0x000009BC}, {0x00000A33, 0x00000A32}, {0x00000A33, 0x00000A3C}, +{0x00000A36, 0x00000A38}, {0x00000A36, 0x00000A3C}, {0x00000A59, 0x00000A16}, {0x00000A59, 0x00000A3C}, +{0x00000A5A, 0x00000A17}, {0x00000A5A, 0x00000A3C}, {0x00000A5B, 0x00000A1C}, {0x00000A5B, 0x00000A3C}, +{0x00000A5E, 0x00000A2B}, {0x00000A5E, 0x00000A3C}, {0x00000B48, 0x00000B47}, {0x00000B48, 0x00000B56}, +{0x00000B4B, 0x00000B47}, {0x00000B4B, 0x00000B3E}, {0x00000B4C, 0x00000B47}, {0x00000B4C, 0x00000B57}, +{0x00000B5C, 0x00000B21}, {0x00000B5C, 0x00000B3C}, {0x00000B5D, 0x00000B22}, {0x00000B5D, 0x00000B3C}, +{0x00000B94, 0x00000B92}, {0x00000B94, 0x00000BD7}, {0x00000BCA, 0x00000BC6}, {0x00000BCA, 0x00000BBE}, +{0x00000BCB, 0x00000BC7}, {0x00000BCB, 0x00000BBE}, {0x00000BCC, 0x00000BC6}, {0x00000BCC, 0x00000BD7}, +{0x00000C48, 0x00000C46}, {0x00000C48, 0x00000C56}, {0x00000CC0, 0x00000CBF}, {0x00000CC0, 0x00000CD5}, +{0x00000CC7, 0x00000CC6}, {0x00000CC7, 0x00000CD5}, {0x00000CC8, 0x00000CC6}, {0x00000CC8, 0x00000CD6}, +{0x00000CCA, 0x00000CC6}, {0x00000CCA, 0x00000CC2}, {0x00000CCB, 0x00000CC6}, {0x00000CCB, 0x00000CC2}, +{0x00000CCB, 0x00000CD5}, {0x00000D4A, 0x00000D46}, {0x00000D4A, 0x00000D3E}, {0x00000D4B, 0x00000D47}, +{0x00000D4B, 0x00000D3E}, {0x00000D4C, 0x00000D46}, {0x00000D4C, 0x00000D57}, {0x00000DDA, 0x00000DD9}, +{0x00000DDA, 0x00000DCA}, {0x00000DDC, 0x00000DD9}, {0x00000DDC, 0x00000DCF}, {0x00000DDD, 0x00000DD9}, +{0x00000DDD, 0x00000DCF}, {0x00000DDD, 0x00000DCA}, {0x00000DDE, 0x00000DD9}, {0x00000DDE, 0x00000DDF}, +{0x00000F43, 0x00000F42}, {0x00000F43, 0x00000FB7}, {0x00000F4D, 0x00000F4C}, {0x00000F4D, 0x00000FB7}, +{0x00000F52, 0x00000F51}, {0x00000F52, 0x00000FB7}, {0x00000F57, 0x00000F56}, {0x00000F57, 0x00000FB7}, +{0x00000F5C, 0x00000F5B}, {0x00000F5C, 0x00000FB7}, {0x00000F69, 0x00000F40}, {0x00000F69, 0x00000FB5}, +{0x00000F73, 0x00000F71}, {0x00000F73, 0x00000F72}, {0x00000F75, 0x00000F71}, {0x00000F75, 0x00000F74}, +{0x00000F76, 0x00000FB2}, {0x00000F76, 0x00000F80}, {0x00000F78, 0x00000FB3}, {0x00000F78, 0x00000F80}, +{0x00000F81, 0x00000F71}, {0x00000F81, 0x00000F80}, {0x00000F93, 0x00000F92}, {0x00000F93, 0x00000FB7}, +{0x00000F9D, 0x00000F9C}, {0x00000F9D, 0x00000FB7}, {0x00000FA2, 0x00000FA1}, {0x00000FA2, 0x00000FB7}, +{0x00000FA7, 0x00000FA6}, {0x00000FA7, 0x00000FB7}, {0x00000FAC, 0x00000FAB}, {0x00000FAC, 0x00000FB7}, +{0x00000FB9, 0x00000F90}, {0x00000FB9, 0x00000FB5}, {0x00001026, 0x00001025}, {0x00001026, 0x0000102E}, +{0x00001B06, 0x00001B05}, {0x00001B06, 0x00001B35}, {0x00001B08, 0x00001B07}, {0x00001B08, 0x00001B35}, +{0x00001B0A, 0x00001B09}, {0x00001B0A, 0x00001B35}, {0x00001B0C, 0x00001B0B}, {0x00001B0C, 0x00001B35}, +{0x00001B0E, 0x00001B0D}, {0x00001B0E, 0x00001B35}, {0x00001B12, 0x00001B11}, {0x00001B12, 0x00001B35}, +{0x00001B3B, 0x00001B3A}, {0x00001B3B, 0x00001B35}, {0x00001B3D, 0x00001B3C}, {0x00001B3D, 0x00001B35}, +{0x00001B40, 0x00001B3E}, {0x00001B40, 0x00001B35}, {0x00001B41, 0x00001B3F}, {0x00001B41, 0x00001B35}, +{0x00001B43, 0x00001B42}, {0x00001B43, 0x00001B35}, {0x00001E00, 0x00000041}, {0x00001E00, 0x00000325}, +{0x00001E01, 0x00000061}, {0x00001E01, 0x00000325}, {0x00001E02, 0x00000042}, {0x00001E02, 0x00000307}, +{0x00001E03, 0x00000062}, {0x00001E03, 0x00000307}, {0x00001E04, 0x00000042}, {0x00001E04, 0x00000323}, +{0x00001E05, 0x00000062}, {0x00001E05, 0x00000323}, {0x00001E06, 0x00000042}, {0x00001E06, 0x00000331}, +{0x00001E07, 0x00000062}, {0x00001E07, 0x00000331}, {0x00001E08, 0x00000043}, {0x00001E08, 0x00000327}, +{0x00001E08, 0x00000301}, {0x00001E09, 0x00000063}, {0x00001E09, 0x00000327}, {0x00001E09, 0x00000301}, +{0x00001E0A, 0x00000044}, {0x00001E0A, 0x00000307}, {0x00001E0B, 0x00000064}, {0x00001E0B, 0x00000307}, +{0x00001E0C, 0x00000044}, {0x00001E0C, 0x00000323}, {0x00001E0D, 0x00000064}, {0x00001E0D, 0x00000323}, +{0x00001E0E, 0x00000044}, {0x00001E0E, 0x00000331}, {0x00001E0F, 0x00000064}, {0x00001E0F, 0x00000331}, +{0x00001E10, 0x00000044}, {0x00001E10, 0x00000327}, {0x00001E11, 0x00000064}, {0x00001E11, 0x00000327}, +{0x00001E12, 0x00000044}, {0x00001E12, 0x0000032D}, {0x00001E13, 0x00000064}, {0x00001E13, 0x0000032D}, +{0x00001E14, 0x00000045}, {0x00001E14, 0x00000304}, {0x00001E14, 0x00000300}, {0x00001E15, 0x00000065}, +{0x00001E15, 0x00000304}, {0x00001E15, 0x00000300}, {0x00001E16, 0x00000045}, {0x00001E16, 0x00000304}, +{0x00001E16, 0x00000301}, {0x00001E17, 0x00000065}, {0x00001E17, 0x00000304}, {0x00001E17, 0x00000301}, +{0x00001E18, 0x00000045}, {0x00001E18, 0x0000032D}, {0x00001E19, 0x00000065}, {0x00001E19, 0x0000032D}, +{0x00001E1A, 0x00000045}, {0x00001E1A, 0x00000330}, {0x00001E1B, 0x00000065}, {0x00001E1B, 0x00000330}, +{0x00001E1C, 0x00000045}, {0x00001E1C, 0x00000327}, {0x00001E1C, 0x00000306}, {0x00001E1D, 0x00000065}, +{0x00001E1D, 0x00000327}, {0x00001E1D, 0x00000306}, {0x00001E1E, 0x00000046}, {0x00001E1E, 0x00000307}, +{0x00001E1F, 0x00000066}, {0x00001E1F, 0x00000307}, {0x00001E20, 0x00000047}, {0x00001E20, 0x00000304}, +{0x00001E21, 0x00000067}, {0x00001E21, 0x00000304}, {0x00001E22, 0x00000048}, {0x00001E22, 0x00000307}, +{0x00001E23, 0x00000068}, {0x00001E23, 0x00000307}, {0x00001E24, 0x00000048}, {0x00001E24, 0x00000323}, +{0x00001E25, 0x00000068}, {0x00001E25, 0x00000323}, {0x00001E26, 0x00000048}, {0x00001E26, 0x00000308}, +{0x00001E27, 0x00000068}, {0x00001E27, 0x00000308}, {0x00001E28, 0x00000048}, {0x00001E28, 0x00000327}, +{0x00001E29, 0x00000068}, {0x00001E29, 0x00000327}, {0x00001E2A, 0x00000048}, {0x00001E2A, 0x0000032E}, +{0x00001E2B, 0x00000068}, {0x00001E2B, 0x0000032E}, {0x00001E2C, 0x00000049}, {0x00001E2C, 0x00000330}, +{0x00001E2D, 0x00000069}, {0x00001E2D, 0x00000330}, {0x00001E2E, 0x00000049}, {0x00001E2E, 0x00000308}, +{0x00001E2E, 0x00000301}, {0x00001E2F, 0x00000069}, {0x00001E2F, 0x00000308}, {0x00001E2F, 0x00000301}, +{0x00001E30, 0x0000004B}, {0x00001E30, 0x00000301}, {0x00001E31, 0x0000006B}, {0x00001E31, 0x00000301}, +{0x00001E32, 0x0000004B}, {0x00001E32, 0x00000323}, {0x00001E33, 0x0000006B}, {0x00001E33, 0x00000323}, +{0x00001E34, 0x0000004B}, {0x00001E34, 0x00000331}, {0x00001E35, 0x0000006B}, {0x00001E35, 0x00000331}, +{0x00001E36, 0x0000004C}, {0x00001E36, 0x00000323}, {0x00001E37, 0x0000006C}, {0x00001E37, 0x00000323}, +{0x00001E38, 0x0000004C}, {0x00001E38, 0x00000323}, {0x00001E38, 0x00000304}, {0x00001E39, 0x0000006C}, +{0x00001E39, 0x00000323}, {0x00001E39, 0x00000304}, {0x00001E3A, 0x0000004C}, {0x00001E3A, 0x00000331}, +{0x00001E3B, 0x0000006C}, {0x00001E3B, 0x00000331}, {0x00001E3C, 0x0000004C}, {0x00001E3C, 0x0000032D}, +{0x00001E3D, 0x0000006C}, {0x00001E3D, 0x0000032D}, {0x00001E3E, 0x0000004D}, {0x00001E3E, 0x00000301}, +{0x00001E3F, 0x0000006D}, {0x00001E3F, 0x00000301}, {0x00001E40, 0x0000004D}, {0x00001E40, 0x00000307}, +{0x00001E41, 0x0000006D}, {0x00001E41, 0x00000307}, {0x00001E42, 0x0000004D}, {0x00001E42, 0x00000323}, +{0x00001E43, 0x0000006D}, {0x00001E43, 0x00000323}, {0x00001E44, 0x0000004E}, {0x00001E44, 0x00000307}, +{0x00001E45, 0x0000006E}, {0x00001E45, 0x00000307}, {0x00001E46, 0x0000004E}, {0x00001E46, 0x00000323}, +{0x00001E47, 0x0000006E}, {0x00001E47, 0x00000323}, {0x00001E48, 0x0000004E}, {0x00001E48, 0x00000331}, +{0x00001E49, 0x0000006E}, {0x00001E49, 0x00000331}, {0x00001E4A, 0x0000004E}, {0x00001E4A, 0x0000032D}, +{0x00001E4B, 0x0000006E}, {0x00001E4B, 0x0000032D}, {0x00001E4C, 0x0000004F}, {0x00001E4C, 0x00000303}, +{0x00001E4C, 0x00000301}, {0x00001E4D, 0x0000006F}, {0x00001E4D, 0x00000303}, {0x00001E4D, 0x00000301}, +{0x00001E4E, 0x0000004F}, {0x00001E4E, 0x00000303}, {0x00001E4E, 0x00000308}, {0x00001E4F, 0x0000006F}, +{0x00001E4F, 0x00000303}, {0x00001E4F, 0x00000308}, {0x00001E50, 0x0000004F}, {0x00001E50, 0x00000304}, +{0x00001E50, 0x00000300}, {0x00001E51, 0x0000006F}, {0x00001E51, 0x00000304}, {0x00001E51, 0x00000300}, +{0x00001E52, 0x0000004F}, {0x00001E52, 0x00000304}, {0x00001E52, 0x00000301}, {0x00001E53, 0x0000006F}, +{0x00001E53, 0x00000304}, {0x00001E53, 0x00000301}, {0x00001E54, 0x00000050}, {0x00001E54, 0x00000301}, +{0x00001E55, 0x00000070}, {0x00001E55, 0x00000301}, {0x00001E56, 0x00000050}, {0x00001E56, 0x00000307}, +{0x00001E57, 0x00000070}, {0x00001E57, 0x00000307}, {0x00001E58, 0x00000052}, {0x00001E58, 0x00000307}, +{0x00001E59, 0x00000072}, {0x00001E59, 0x00000307}, {0x00001E5A, 0x00000052}, {0x00001E5A, 0x00000323}, +{0x00001E5B, 0x00000072}, {0x00001E5B, 0x00000323}, {0x00001E5C, 0x00000052}, {0x00001E5C, 0x00000323}, +{0x00001E5C, 0x00000304}, {0x00001E5D, 0x00000072}, {0x00001E5D, 0x00000323}, {0x00001E5D, 0x00000304}, +{0x00001E5E, 0x00000052}, {0x00001E5E, 0x00000331}, {0x00001E5F, 0x00000072}, {0x00001E5F, 0x00000331}, +{0x00001E60, 0x00000053}, {0x00001E60, 0x00000307}, {0x00001E61, 0x00000073}, {0x00001E61, 0x00000307}, +{0x00001E62, 0x00000053}, {0x00001E62, 0x00000323}, {0x00001E63, 0x00000073}, {0x00001E63, 0x00000323}, +{0x00001E64, 0x00000053}, {0x00001E64, 0x00000301}, {0x00001E64, 0x00000307}, {0x00001E65, 0x00000073}, +{0x00001E65, 0x00000301}, {0x00001E65, 0x00000307}, {0x00001E66, 0x00000053}, {0x00001E66, 0x0000030C}, +{0x00001E66, 0x00000307}, {0x00001E67, 0x00000073}, {0x00001E67, 0x0000030C}, {0x00001E67, 0x00000307}, +{0x00001E68, 0x00000053}, {0x00001E68, 0x00000323}, {0x00001E68, 0x00000307}, {0x00001E69, 0x00000073}, +{0x00001E69, 0x00000323}, {0x00001E69, 0x00000307}, {0x00001E6A, 0x00000054}, {0x00001E6A, 0x00000307}, +{0x00001E6B, 0x00000074}, {0x00001E6B, 0x00000307}, {0x00001E6C, 0x00000054}, {0x00001E6C, 0x00000323}, +{0x00001E6D, 0x00000074}, {0x00001E6D, 0x00000323}, {0x00001E6E, 0x00000054}, {0x00001E6E, 0x00000331}, +{0x00001E6F, 0x00000074}, {0x00001E6F, 0x00000331}, {0x00001E70, 0x00000054}, {0x00001E70, 0x0000032D}, +{0x00001E71, 0x00000074}, {0x00001E71, 0x0000032D}, {0x00001E72, 0x00000055}, {0x00001E72, 0x00000324}, +{0x00001E73, 0x00000075}, {0x00001E73, 0x00000324}, {0x00001E74, 0x00000055}, {0x00001E74, 0x00000330}, +{0x00001E75, 0x00000075}, {0x00001E75, 0x00000330}, {0x00001E76, 0x00000055}, {0x00001E76, 0x0000032D}, +{0x00001E77, 0x00000075}, {0x00001E77, 0x0000032D}, {0x00001E78, 0x00000055}, {0x00001E78, 0x00000303}, +{0x00001E78, 0x00000301}, {0x00001E79, 0x00000075}, {0x00001E79, 0x00000303}, {0x00001E79, 0x00000301}, +{0x00001E7A, 0x00000055}, {0x00001E7A, 0x00000304}, {0x00001E7A, 0x00000308}, {0x00001E7B, 0x00000075}, +{0x00001E7B, 0x00000304}, {0x00001E7B, 0x00000308}, {0x00001E7C, 0x00000056}, {0x00001E7C, 0x00000303}, +{0x00001E7D, 0x00000076}, {0x00001E7D, 0x00000303}, {0x00001E7E, 0x00000056}, {0x00001E7E, 0x00000323}, +{0x00001E7F, 0x00000076}, {0x00001E7F, 0x00000323}, {0x00001E80, 0x00000057}, {0x00001E80, 0x00000300}, +{0x00001E81, 0x00000077}, {0x00001E81, 0x00000300}, {0x00001E82, 0x00000057}, {0x00001E82, 0x00000301}, +{0x00001E83, 0x00000077}, {0x00001E83, 0x00000301}, {0x00001E84, 0x00000057}, {0x00001E84, 0x00000308}, +{0x00001E85, 0x00000077}, {0x00001E85, 0x00000308}, {0x00001E86, 0x00000057}, {0x00001E86, 0x00000307}, +{0x00001E87, 0x00000077}, {0x00001E87, 0x00000307}, {0x00001E88, 0x00000057}, {0x00001E88, 0x00000323}, +{0x00001E89, 0x00000077}, {0x00001E89, 0x00000323}, {0x00001E8A, 0x00000058}, {0x00001E8A, 0x00000307}, +{0x00001E8B, 0x00000078}, {0x00001E8B, 0x00000307}, {0x00001E8C, 0x00000058}, {0x00001E8C, 0x00000308}, +{0x00001E8D, 0x00000078}, {0x00001E8D, 0x00000308}, {0x00001E8E, 0x00000059}, {0x00001E8E, 0x00000307}, +{0x00001E8F, 0x00000079}, {0x00001E8F, 0x00000307}, {0x00001E90, 0x0000005A}, {0x00001E90, 0x00000302}, +{0x00001E91, 0x0000007A}, {0x00001E91, 0x00000302}, {0x00001E92, 0x0000005A}, {0x00001E92, 0x00000323}, +{0x00001E93, 0x0000007A}, {0x00001E93, 0x00000323}, {0x00001E94, 0x0000005A}, {0x00001E94, 0x00000331}, +{0x00001E95, 0x0000007A}, {0x00001E95, 0x00000331}, {0x00001E96, 0x00000068}, {0x00001E96, 0x00000331}, +{0x00001E97, 0x00000074}, {0x00001E97, 0x00000308}, {0x00001E98, 0x00000077}, {0x00001E98, 0x0000030A}, +{0x00001E99, 0x00000079}, {0x00001E99, 0x0000030A}, {0x00001E9B, 0x0000017F}, {0x00001E9B, 0x00000307}, +{0x00001EA0, 0x00000041}, {0x00001EA0, 0x00000323}, {0x00001EA1, 0x00000061}, {0x00001EA1, 0x00000323}, +{0x00001EA2, 0x00000041}, {0x00001EA2, 0x00000309}, {0x00001EA3, 0x00000061}, {0x00001EA3, 0x00000309}, +{0x00001EA4, 0x00000041}, {0x00001EA4, 0x00000302}, {0x00001EA4, 0x00000301}, {0x00001EA5, 0x00000061}, +{0x00001EA5, 0x00000302}, {0x00001EA5, 0x00000301}, {0x00001EA6, 0x00000041}, {0x00001EA6, 0x00000302}, +{0x00001EA6, 0x00000300}, {0x00001EA7, 0x00000061}, {0x00001EA7, 0x00000302}, {0x00001EA7, 0x00000300}, +{0x00001EA8, 0x00000041}, {0x00001EA8, 0x00000302}, {0x00001EA8, 0x00000309}, {0x00001EA9, 0x00000061}, +{0x00001EA9, 0x00000302}, {0x00001EA9, 0x00000309}, {0x00001EAA, 0x00000041}, {0x00001EAA, 0x00000302}, +{0x00001EAA, 0x00000303}, {0x00001EAB, 0x00000061}, {0x00001EAB, 0x00000302}, {0x00001EAB, 0x00000303}, +{0x00001EAC, 0x00000041}, {0x00001EAC, 0x00000323}, {0x00001EAC, 0x00000302}, {0x00001EAD, 0x00000061}, +{0x00001EAD, 0x00000323}, {0x00001EAD, 0x00000302}, {0x00001EAE, 0x00000041}, {0x00001EAE, 0x00000306}, +{0x00001EAE, 0x00000301}, {0x00001EAF, 0x00000061}, {0x00001EAF, 0x00000306}, {0x00001EAF, 0x00000301}, +{0x00001EB0, 0x00000041}, {0x00001EB0, 0x00000306}, {0x00001EB0, 0x00000300}, {0x00001EB1, 0x00000061}, +{0x00001EB1, 0x00000306}, {0x00001EB1, 0x00000300}, {0x00001EB2, 0x00000041}, {0x00001EB2, 0x00000306}, +{0x00001EB2, 0x00000309}, {0x00001EB3, 0x00000061}, {0x00001EB3, 0x00000306}, {0x00001EB3, 0x00000309}, +{0x00001EB4, 0x00000041}, {0x00001EB4, 0x00000306}, {0x00001EB4, 0x00000303}, {0x00001EB5, 0x00000061}, +{0x00001EB5, 0x00000306}, {0x00001EB5, 0x00000303}, {0x00001EB6, 0x00000041}, {0x00001EB6, 0x00000323}, +{0x00001EB6, 0x00000306}, {0x00001EB7, 0x00000061}, {0x00001EB7, 0x00000323}, {0x00001EB7, 0x00000306}, +{0x00001EB8, 0x00000045}, {0x00001EB8, 0x00000323}, {0x00001EB9, 0x00000065}, {0x00001EB9, 0x00000323}, +{0x00001EBA, 0x00000045}, {0x00001EBA, 0x00000309}, {0x00001EBB, 0x00000065}, {0x00001EBB, 0x00000309}, +{0x00001EBC, 0x00000045}, {0x00001EBC, 0x00000303}, {0x00001EBD, 0x00000065}, {0x00001EBD, 0x00000303}, +{0x00001EBE, 0x00000045}, {0x00001EBE, 0x00000302}, {0x00001EBE, 0x00000301}, {0x00001EBF, 0x00000065}, +{0x00001EBF, 0x00000302}, {0x00001EBF, 0x00000301}, {0x00001EC0, 0x00000045}, {0x00001EC0, 0x00000302}, +{0x00001EC0, 0x00000300}, {0x00001EC1, 0x00000065}, {0x00001EC1, 0x00000302}, {0x00001EC1, 0x00000300}, +{0x00001EC2, 0x00000045}, {0x00001EC2, 0x00000302}, {0x00001EC2, 0x00000309}, {0x00001EC3, 0x00000065}, +{0x00001EC3, 0x00000302}, {0x00001EC3, 0x00000309}, {0x00001EC4, 0x00000045}, {0x00001EC4, 0x00000302}, +{0x00001EC4, 0x00000303}, {0x00001EC5, 0x00000065}, {0x00001EC5, 0x00000302}, {0x00001EC5, 0x00000303}, +{0x00001EC6, 0x00000045}, {0x00001EC6, 0x00000323}, {0x00001EC6, 0x00000302}, {0x00001EC7, 0x00000065}, +{0x00001EC7, 0x00000323}, {0x00001EC7, 0x00000302}, {0x00001EC8, 0x00000049}, {0x00001EC8, 0x00000309}, +{0x00001EC9, 0x00000069}, {0x00001EC9, 0x00000309}, {0x00001ECA, 0x00000049}, {0x00001ECA, 0x00000323}, +{0x00001ECB, 0x00000069}, {0x00001ECB, 0x00000323}, {0x00001ECC, 0x0000004F}, {0x00001ECC, 0x00000323}, +{0x00001ECD, 0x0000006F}, {0x00001ECD, 0x00000323}, {0x00001ECE, 0x0000004F}, {0x00001ECE, 0x00000309}, +{0x00001ECF, 0x0000006F}, {0x00001ECF, 0x00000309}, {0x00001ED0, 0x0000004F}, {0x00001ED0, 0x00000302}, +{0x00001ED0, 0x00000301}, {0x00001ED1, 0x0000006F}, {0x00001ED1, 0x00000302}, {0x00001ED1, 0x00000301}, +{0x00001ED2, 0x0000004F}, {0x00001ED2, 0x00000302}, {0x00001ED2, 0x00000300}, {0x00001ED3, 0x0000006F}, +{0x00001ED3, 0x00000302}, {0x00001ED3, 0x00000300}, {0x00001ED4, 0x0000004F}, {0x00001ED4, 0x00000302}, +{0x00001ED4, 0x00000309}, {0x00001ED5, 0x0000006F}, {0x00001ED5, 0x00000302}, {0x00001ED5, 0x00000309}, +{0x00001ED6, 0x0000004F}, {0x00001ED6, 0x00000302}, {0x00001ED6, 0x00000303}, {0x00001ED7, 0x0000006F}, +{0x00001ED7, 0x00000302}, {0x00001ED7, 0x00000303}, {0x00001ED8, 0x0000004F}, {0x00001ED8, 0x00000323}, +{0x00001ED8, 0x00000302}, {0x00001ED9, 0x0000006F}, {0x00001ED9, 0x00000323}, {0x00001ED9, 0x00000302}, +{0x00001EDA, 0x0000004F}, {0x00001EDA, 0x0000031B}, {0x00001EDA, 0x00000301}, {0x00001EDB, 0x0000006F}, +{0x00001EDB, 0x0000031B}, {0x00001EDB, 0x00000301}, {0x00001EDC, 0x0000004F}, {0x00001EDC, 0x0000031B}, +{0x00001EDC, 0x00000300}, {0x00001EDD, 0x0000006F}, {0x00001EDD, 0x0000031B}, {0x00001EDD, 0x00000300}, +{0x00001EDE, 0x0000004F}, {0x00001EDE, 0x0000031B}, {0x00001EDE, 0x00000309}, {0x00001EDF, 0x0000006F}, +{0x00001EDF, 0x0000031B}, {0x00001EDF, 0x00000309}, {0x00001EE0, 0x0000004F}, {0x00001EE0, 0x0000031B}, +{0x00001EE0, 0x00000303}, {0x00001EE1, 0x0000006F}, {0x00001EE1, 0x0000031B}, {0x00001EE1, 0x00000303}, +{0x00001EE2, 0x0000004F}, {0x00001EE2, 0x0000031B}, {0x00001EE2, 0x00000323}, {0x00001EE3, 0x0000006F}, +{0x00001EE3, 0x0000031B}, {0x00001EE3, 0x00000323}, {0x00001EE4, 0x00000055}, {0x00001EE4, 0x00000323}, +{0x00001EE5, 0x00000075}, {0x00001EE5, 0x00000323}, {0x00001EE6, 0x00000055}, {0x00001EE6, 0x00000309}, +{0x00001EE7, 0x00000075}, {0x00001EE7, 0x00000309}, {0x00001EE8, 0x00000055}, {0x00001EE8, 0x0000031B}, +{0x00001EE8, 0x00000301}, {0x00001EE9, 0x00000075}, {0x00001EE9, 0x0000031B}, {0x00001EE9, 0x00000301}, +{0x00001EEA, 0x00000055}, {0x00001EEA, 0x0000031B}, {0x00001EEA, 0x00000300}, {0x00001EEB, 0x00000075}, +{0x00001EEB, 0x0000031B}, {0x00001EEB, 0x00000300}, {0x00001EEC, 0x00000055}, {0x00001EEC, 0x0000031B}, +{0x00001EEC, 0x00000309}, {0x00001EED, 0x00000075}, {0x00001EED, 0x0000031B}, {0x00001EED, 0x00000309}, +{0x00001EEE, 0x00000055}, {0x00001EEE, 0x0000031B}, {0x00001EEE, 0x00000303}, {0x00001EEF, 0x00000075}, +{0x00001EEF, 0x0000031B}, {0x00001EEF, 0x00000303}, {0x00001EF0, 0x00000055}, {0x00001EF0, 0x0000031B}, +{0x00001EF0, 0x00000323}, {0x00001EF1, 0x00000075}, {0x00001EF1, 0x0000031B}, {0x00001EF1, 0x00000323}, +{0x00001EF2, 0x00000059}, {0x00001EF2, 0x00000300}, {0x00001EF3, 0x00000079}, {0x00001EF3, 0x00000300}, +{0x00001EF4, 0x00000059}, {0x00001EF4, 0x00000323}, {0x00001EF5, 0x00000079}, {0x00001EF5, 0x00000323}, +{0x00001EF6, 0x00000059}, {0x00001EF6, 0x00000309}, {0x00001EF7, 0x00000079}, {0x00001EF7, 0x00000309}, +{0x00001EF8, 0x00000059}, {0x00001EF8, 0x00000303}, {0x00001EF9, 0x00000079}, {0x00001EF9, 0x00000303}, +{0x00001F00, 0x000003B1}, {0x00001F00, 0x00000313}, {0x00001F01, 0x000003B1}, {0x00001F01, 0x00000314}, +{0x00001F02, 0x000003B1}, {0x00001F02, 0x00000313}, {0x00001F02, 0x00000300}, {0x00001F03, 0x000003B1}, +{0x00001F03, 0x00000314}, {0x00001F03, 0x00000300}, {0x00001F04, 0x000003B1}, {0x00001F04, 0x00000313}, +{0x00001F04, 0x00000301}, {0x00001F05, 0x000003B1}, {0x00001F05, 0x00000314}, {0x00001F05, 0x00000301}, +{0x00001F06, 0x000003B1}, {0x00001F06, 0x00000313}, {0x00001F06, 0x00000342}, {0x00001F07, 0x000003B1}, +{0x00001F07, 0x00000314}, {0x00001F07, 0x00000342}, {0x00001F08, 0x00000391}, {0x00001F08, 0x00000313}, +{0x00001F09, 0x00000391}, {0x00001F09, 0x00000314}, {0x00001F0A, 0x00000391}, {0x00001F0A, 0x00000313}, +{0x00001F0A, 0x00000300}, {0x00001F0B, 0x00000391}, {0x00001F0B, 0x00000314}, {0x00001F0B, 0x00000300}, +{0x00001F0C, 0x00000391}, {0x00001F0C, 0x00000313}, {0x00001F0C, 0x00000301}, {0x00001F0D, 0x00000391}, +{0x00001F0D, 0x00000314}, {0x00001F0D, 0x00000301}, {0x00001F0E, 0x00000391}, {0x00001F0E, 0x00000313}, +{0x00001F0E, 0x00000342}, {0x00001F0F, 0x00000391}, {0x00001F0F, 0x00000314}, {0x00001F0F, 0x00000342}, +{0x00001F10, 0x000003B5}, {0x00001F10, 0x00000313}, {0x00001F11, 0x000003B5}, {0x00001F11, 0x00000314}, +{0x00001F12, 0x000003B5}, {0x00001F12, 0x00000313}, {0x00001F12, 0x00000300}, {0x00001F13, 0x000003B5}, +{0x00001F13, 0x00000314}, {0x00001F13, 0x00000300}, {0x00001F14, 0x000003B5}, {0x00001F14, 0x00000313}, +{0x00001F14, 0x00000301}, {0x00001F15, 0x000003B5}, {0x00001F15, 0x00000314}, {0x00001F15, 0x00000301}, +{0x00001F18, 0x00000395}, {0x00001F18, 0x00000313}, {0x00001F19, 0x00000395}, {0x00001F19, 0x00000314}, +{0x00001F1A, 0x00000395}, {0x00001F1A, 0x00000313}, {0x00001F1A, 0x00000300}, {0x00001F1B, 0x00000395}, +{0x00001F1B, 0x00000314}, {0x00001F1B, 0x00000300}, {0x00001F1C, 0x00000395}, {0x00001F1C, 0x00000313}, +{0x00001F1C, 0x00000301}, {0x00001F1D, 0x00000395}, {0x00001F1D, 0x00000314}, {0x00001F1D, 0x00000301}, +{0x00001F20, 0x000003B7}, {0x00001F20, 0x00000313}, {0x00001F21, 0x000003B7}, {0x00001F21, 0x00000314}, +{0x00001F22, 0x000003B7}, {0x00001F22, 0x00000313}, {0x00001F22, 0x00000300}, {0x00001F23, 0x000003B7}, +{0x00001F23, 0x00000314}, {0x00001F23, 0x00000300}, {0x00001F24, 0x000003B7}, {0x00001F24, 0x00000313}, +{0x00001F24, 0x00000301}, {0x00001F25, 0x000003B7}, {0x00001F25, 0x00000314}, {0x00001F25, 0x00000301}, +{0x00001F26, 0x000003B7}, {0x00001F26, 0x00000313}, {0x00001F26, 0x00000342}, {0x00001F27, 0x000003B7}, +{0x00001F27, 0x00000314}, {0x00001F27, 0x00000342}, {0x00001F28, 0x00000397}, {0x00001F28, 0x00000313}, +{0x00001F29, 0x00000397}, {0x00001F29, 0x00000314}, {0x00001F2A, 0x00000397}, {0x00001F2A, 0x00000313}, +{0x00001F2A, 0x00000300}, {0x00001F2B, 0x00000397}, {0x00001F2B, 0x00000314}, {0x00001F2B, 0x00000300}, +{0x00001F2C, 0x00000397}, {0x00001F2C, 0x00000313}, {0x00001F2C, 0x00000301}, {0x00001F2D, 0x00000397}, +{0x00001F2D, 0x00000314}, {0x00001F2D, 0x00000301}, {0x00001F2E, 0x00000397}, {0x00001F2E, 0x00000313}, +{0x00001F2E, 0x00000342}, {0x00001F2F, 0x00000397}, {0x00001F2F, 0x00000314}, {0x00001F2F, 0x00000342}, +{0x00001F30, 0x000003B9}, {0x00001F30, 0x00000313}, {0x00001F31, 0x000003B9}, {0x00001F31, 0x00000314}, +{0x00001F32, 0x000003B9}, {0x00001F32, 0x00000313}, {0x00001F32, 0x00000300}, {0x00001F33, 0x000003B9}, +{0x00001F33, 0x00000314}, {0x00001F33, 0x00000300}, {0x00001F34, 0x000003B9}, {0x00001F34, 0x00000313}, +{0x00001F34, 0x00000301}, {0x00001F35, 0x000003B9}, {0x00001F35, 0x00000314}, {0x00001F35, 0x00000301}, +{0x00001F36, 0x000003B9}, {0x00001F36, 0x00000313}, {0x00001F36, 0x00000342}, {0x00001F37, 0x000003B9}, +{0x00001F37, 0x00000314}, {0x00001F37, 0x00000342}, {0x00001F38, 0x00000399}, {0x00001F38, 0x00000313}, +{0x00001F39, 0x00000399}, {0x00001F39, 0x00000314}, {0x00001F3A, 0x00000399}, {0x00001F3A, 0x00000313}, +{0x00001F3A, 0x00000300}, {0x00001F3B, 0x00000399}, {0x00001F3B, 0x00000314}, {0x00001F3B, 0x00000300}, +{0x00001F3C, 0x00000399}, {0x00001F3C, 0x00000313}, {0x00001F3C, 0x00000301}, {0x00001F3D, 0x00000399}, +{0x00001F3D, 0x00000314}, {0x00001F3D, 0x00000301}, {0x00001F3E, 0x00000399}, {0x00001F3E, 0x00000313}, +{0x00001F3E, 0x00000342}, {0x00001F3F, 0x00000399}, {0x00001F3F, 0x00000314}, {0x00001F3F, 0x00000342}, +{0x00001F40, 0x000003BF}, {0x00001F40, 0x00000313}, {0x00001F41, 0x000003BF}, {0x00001F41, 0x00000314}, +{0x00001F42, 0x000003BF}, {0x00001F42, 0x00000313}, {0x00001F42, 0x00000300}, {0x00001F43, 0x000003BF}, +{0x00001F43, 0x00000314}, {0x00001F43, 0x00000300}, {0x00001F44, 0x000003BF}, {0x00001F44, 0x00000313}, +{0x00001F44, 0x00000301}, {0x00001F45, 0x000003BF}, {0x00001F45, 0x00000314}, {0x00001F45, 0x00000301}, +{0x00001F48, 0x0000039F}, {0x00001F48, 0x00000313}, {0x00001F49, 0x0000039F}, {0x00001F49, 0x00000314}, +{0x00001F4A, 0x0000039F}, {0x00001F4A, 0x00000313}, {0x00001F4A, 0x00000300}, {0x00001F4B, 0x0000039F}, +{0x00001F4B, 0x00000314}, {0x00001F4B, 0x00000300}, {0x00001F4C, 0x0000039F}, {0x00001F4C, 0x00000313}, +{0x00001F4C, 0x00000301}, {0x00001F4D, 0x0000039F}, {0x00001F4D, 0x00000314}, {0x00001F4D, 0x00000301}, +{0x00001F50, 0x000003C5}, {0x00001F50, 0x00000313}, {0x00001F51, 0x000003C5}, {0x00001F51, 0x00000314}, +{0x00001F52, 0x000003C5}, {0x00001F52, 0x00000313}, {0x00001F52, 0x00000300}, {0x00001F53, 0x000003C5}, +{0x00001F53, 0x00000314}, {0x00001F53, 0x00000300}, {0x00001F54, 0x000003C5}, {0x00001F54, 0x00000313}, +{0x00001F54, 0x00000301}, {0x00001F55, 0x000003C5}, {0x00001F55, 0x00000314}, {0x00001F55, 0x00000301}, +{0x00001F56, 0x000003C5}, {0x00001F56, 0x00000313}, {0x00001F56, 0x00000342}, {0x00001F57, 0x000003C5}, +{0x00001F57, 0x00000314}, {0x00001F57, 0x00000342}, {0x00001F59, 0x000003A5}, {0x00001F59, 0x00000314}, +{0x00001F5B, 0x000003A5}, {0x00001F5B, 0x00000314}, {0x00001F5B, 0x00000300}, {0x00001F5D, 0x000003A5}, +{0x00001F5D, 0x00000314}, {0x00001F5D, 0x00000301}, {0x00001F5F, 0x000003A5}, {0x00001F5F, 0x00000314}, +{0x00001F5F, 0x00000342}, {0x00001F60, 0x000003C9}, {0x00001F60, 0x00000313}, {0x00001F61, 0x000003C9}, +{0x00001F61, 0x00000314}, {0x00001F62, 0x000003C9}, {0x00001F62, 0x00000313}, {0x00001F62, 0x00000300}, +{0x00001F63, 0x000003C9}, {0x00001F63, 0x00000314}, {0x00001F63, 0x00000300}, {0x00001F64, 0x000003C9}, +{0x00001F64, 0x00000313}, {0x00001F64, 0x00000301}, {0x00001F65, 0x000003C9}, {0x00001F65, 0x00000314}, +{0x00001F65, 0x00000301}, {0x00001F66, 0x000003C9}, {0x00001F66, 0x00000313}, {0x00001F66, 0x00000342}, +{0x00001F67, 0x000003C9}, {0x00001F67, 0x00000314}, {0x00001F67, 0x00000342}, {0x00001F68, 0x000003A9}, +{0x00001F68, 0x00000313}, {0x00001F69, 0x000003A9}, {0x00001F69, 0x00000314}, {0x00001F6A, 0x000003A9}, +{0x00001F6A, 0x00000313}, {0x00001F6A, 0x00000300}, {0x00001F6B, 0x000003A9}, {0x00001F6B, 0x00000314}, +{0x00001F6B, 0x00000300}, {0x00001F6C, 0x000003A9}, {0x00001F6C, 0x00000313}, {0x00001F6C, 0x00000301}, +{0x00001F6D, 0x000003A9}, {0x00001F6D, 0x00000314}, {0x00001F6D, 0x00000301}, {0x00001F6E, 0x000003A9}, +{0x00001F6E, 0x00000313}, {0x00001F6E, 0x00000342}, {0x00001F6F, 0x000003A9}, {0x00001F6F, 0x00000314}, +{0x00001F6F, 0x00000342}, {0x00001F70, 0x000003B1}, {0x00001F70, 0x00000300}, {0x00001F71, 0x000003B1}, +{0x00001F71, 0x00000301}, {0x00001F72, 0x000003B5}, {0x00001F72, 0x00000300}, {0x00001F73, 0x000003B5}, +{0x00001F73, 0x00000301}, {0x00001F74, 0x000003B7}, {0x00001F74, 0x00000300}, {0x00001F75, 0x000003B7}, +{0x00001F75, 0x00000301}, {0x00001F76, 0x000003B9}, {0x00001F76, 0x00000300}, {0x00001F77, 0x000003B9}, +{0x00001F77, 0x00000301}, {0x00001F78, 0x000003BF}, {0x00001F78, 0x00000300}, {0x00001F79, 0x000003BF}, +{0x00001F79, 0x00000301}, {0x00001F7A, 0x000003C5}, {0x00001F7A, 0x00000300}, {0x00001F7B, 0x000003C5}, +{0x00001F7B, 0x00000301}, {0x00001F7C, 0x000003C9}, {0x00001F7C, 0x00000300}, {0x00001F7D, 0x000003C9}, +{0x00001F7D, 0x00000301}, {0x00001F80, 0x000003B1}, {0x00001F80, 0x00000313}, {0x00001F80, 0x00000345}, +{0x00001F81, 0x000003B1}, {0x00001F81, 0x00000314}, {0x00001F81, 0x00000345}, {0x00001F82, 0x000003B1}, +{0x00001F82, 0x00000313}, {0x00001F82, 0x00000300}, {0x00001F82, 0x00000345}, {0x00001F83, 0x000003B1}, +{0x00001F83, 0x00000314}, {0x00001F83, 0x00000300}, {0x00001F83, 0x00000345}, {0x00001F84, 0x000003B1}, +{0x00001F84, 0x00000313}, {0x00001F84, 0x00000301}, {0x00001F84, 0x00000345}, {0x00001F85, 0x000003B1}, +{0x00001F85, 0x00000314}, {0x00001F85, 0x00000301}, {0x00001F85, 0x00000345}, {0x00001F86, 0x000003B1}, +{0x00001F86, 0x00000313}, {0x00001F86, 0x00000342}, {0x00001F86, 0x00000345}, {0x00001F87, 0x000003B1}, +{0x00001F87, 0x00000314}, {0x00001F87, 0x00000342}, {0x00001F87, 0x00000345}, {0x00001F88, 0x00000391}, +{0x00001F88, 0x00000313}, {0x00001F88, 0x00000345}, {0x00001F89, 0x00000391}, {0x00001F89, 0x00000314}, +{0x00001F89, 0x00000345}, {0x00001F8A, 0x00000391}, {0x00001F8A, 0x00000313}, {0x00001F8A, 0x00000300}, +{0x00001F8A, 0x00000345}, {0x00001F8B, 0x00000391}, {0x00001F8B, 0x00000314}, {0x00001F8B, 0x00000300}, +{0x00001F8B, 0x00000345}, {0x00001F8C, 0x00000391}, {0x00001F8C, 0x00000313}, {0x00001F8C, 0x00000301}, +{0x00001F8C, 0x00000345}, {0x00001F8D, 0x00000391}, {0x00001F8D, 0x00000314}, {0x00001F8D, 0x00000301}, +{0x00001F8D, 0x00000345}, {0x00001F8E, 0x00000391}, {0x00001F8E, 0x00000313}, {0x00001F8E, 0x00000342}, +{0x00001F8E, 0x00000345}, {0x00001F8F, 0x00000391}, {0x00001F8F, 0x00000314}, {0x00001F8F, 0x00000342}, +{0x00001F8F, 0x00000345}, {0x00001F90, 0x000003B7}, {0x00001F90, 0x00000313}, {0x00001F90, 0x00000345}, +{0x00001F91, 0x000003B7}, {0x00001F91, 0x00000314}, {0x00001F91, 0x00000345}, {0x00001F92, 0x000003B7}, +{0x00001F92, 0x00000313}, {0x00001F92, 0x00000300}, {0x00001F92, 0x00000345}, {0x00001F93, 0x000003B7}, +{0x00001F93, 0x00000314}, {0x00001F93, 0x00000300}, {0x00001F93, 0x00000345}, {0x00001F94, 0x000003B7}, +{0x00001F94, 0x00000313}, {0x00001F94, 0x00000301}, {0x00001F94, 0x00000345}, {0x00001F95, 0x000003B7}, +{0x00001F95, 0x00000314}, {0x00001F95, 0x00000301}, {0x00001F95, 0x00000345}, {0x00001F96, 0x000003B7}, +{0x00001F96, 0x00000313}, {0x00001F96, 0x00000342}, {0x00001F96, 0x00000345}, {0x00001F97, 0x000003B7}, +{0x00001F97, 0x00000314}, {0x00001F97, 0x00000342}, {0x00001F97, 0x00000345}, {0x00001F98, 0x00000397}, +{0x00001F98, 0x00000313}, {0x00001F98, 0x00000345}, {0x00001F99, 0x00000397}, {0x00001F99, 0x00000314}, +{0x00001F99, 0x00000345}, {0x00001F9A, 0x00000397}, {0x00001F9A, 0x00000313}, {0x00001F9A, 0x00000300}, +{0x00001F9A, 0x00000345}, {0x00001F9B, 0x00000397}, {0x00001F9B, 0x00000314}, {0x00001F9B, 0x00000300}, +{0x00001F9B, 0x00000345}, {0x00001F9C, 0x00000397}, {0x00001F9C, 0x00000313}, {0x00001F9C, 0x00000301}, +{0x00001F9C, 0x00000345}, {0x00001F9D, 0x00000397}, {0x00001F9D, 0x00000314}, {0x00001F9D, 0x00000301}, +{0x00001F9D, 0x00000345}, {0x00001F9E, 0x00000397}, {0x00001F9E, 0x00000313}, {0x00001F9E, 0x00000342}, +{0x00001F9E, 0x00000345}, {0x00001F9F, 0x00000397}, {0x00001F9F, 0x00000314}, {0x00001F9F, 0x00000342}, +{0x00001F9F, 0x00000345}, {0x00001FA0, 0x000003C9}, {0x00001FA0, 0x00000313}, {0x00001FA0, 0x00000345}, +{0x00001FA1, 0x000003C9}, {0x00001FA1, 0x00000314}, {0x00001FA1, 0x00000345}, {0x00001FA2, 0x000003C9}, +{0x00001FA2, 0x00000313}, {0x00001FA2, 0x00000300}, {0x00001FA2, 0x00000345}, {0x00001FA3, 0x000003C9}, +{0x00001FA3, 0x00000314}, {0x00001FA3, 0x00000300}, {0x00001FA3, 0x00000345}, {0x00001FA4, 0x000003C9}, +{0x00001FA4, 0x00000313}, {0x00001FA4, 0x00000301}, {0x00001FA4, 0x00000345}, {0x00001FA5, 0x000003C9}, +{0x00001FA5, 0x00000314}, {0x00001FA5, 0x00000301}, {0x00001FA5, 0x00000345}, {0x00001FA6, 0x000003C9}, +{0x00001FA6, 0x00000313}, {0x00001FA6, 0x00000342}, {0x00001FA6, 0x00000345}, {0x00001FA7, 0x000003C9}, +{0x00001FA7, 0x00000314}, {0x00001FA7, 0x00000342}, {0x00001FA7, 0x00000345}, {0x00001FA8, 0x000003A9}, +{0x00001FA8, 0x00000313}, {0x00001FA8, 0x00000345}, {0x00001FA9, 0x000003A9}, {0x00001FA9, 0x00000314}, +{0x00001FA9, 0x00000345}, {0x00001FAA, 0x000003A9}, {0x00001FAA, 0x00000313}, {0x00001FAA, 0x00000300}, +{0x00001FAA, 0x00000345}, {0x00001FAB, 0x000003A9}, {0x00001FAB, 0x00000314}, {0x00001FAB, 0x00000300}, +{0x00001FAB, 0x00000345}, {0x00001FAC, 0x000003A9}, {0x00001FAC, 0x00000313}, {0x00001FAC, 0x00000301}, +{0x00001FAC, 0x00000345}, {0x00001FAD, 0x000003A9}, {0x00001FAD, 0x00000314}, {0x00001FAD, 0x00000301}, +{0x00001FAD, 0x00000345}, {0x00001FAE, 0x000003A9}, {0x00001FAE, 0x00000313}, {0x00001FAE, 0x00000342}, +{0x00001FAE, 0x00000345}, {0x00001FAF, 0x000003A9}, {0x00001FAF, 0x00000314}, {0x00001FAF, 0x00000342}, +{0x00001FAF, 0x00000345}, {0x00001FB0, 0x000003B1}, {0x00001FB0, 0x00000306}, {0x00001FB1, 0x000003B1}, +{0x00001FB1, 0x00000304}, {0x00001FB2, 0x000003B1}, {0x00001FB2, 0x00000300}, {0x00001FB2, 0x00000345}, +{0x00001FB3, 0x000003B1}, {0x00001FB3, 0x00000345}, {0x00001FB4, 0x000003B1}, {0x00001FB4, 0x00000301}, +{0x00001FB4, 0x00000345}, {0x00001FB6, 0x000003B1}, {0x00001FB6, 0x00000342}, {0x00001FB7, 0x000003B1}, +{0x00001FB7, 0x00000342}, {0x00001FB7, 0x00000345}, {0x00001FB8, 0x00000391}, {0x00001FB8, 0x00000306}, +{0x00001FB9, 0x00000391}, {0x00001FB9, 0x00000304}, {0x00001FBA, 0x00000391}, {0x00001FBA, 0x00000300}, +{0x00001FBB, 0x00000391}, {0x00001FBB, 0x00000301}, {0x00001FBC, 0x00000391}, {0x00001FBC, 0x00000345}, +{0x00001FBE, 0x000003B9}, {0x00001FC1, 0x000000A8}, {0x00001FC1, 0x00000342}, {0x00001FC2, 0x000003B7}, +{0x00001FC2, 0x00000300}, {0x00001FC2, 0x00000345}, {0x00001FC3, 0x000003B7}, {0x00001FC3, 0x00000345}, +{0x00001FC4, 0x000003B7}, {0x00001FC4, 0x00000301}, {0x00001FC4, 0x00000345}, {0x00001FC6, 0x000003B7}, +{0x00001FC6, 0x00000342}, {0x00001FC7, 0x000003B7}, {0x00001FC7, 0x00000342}, {0x00001FC7, 0x00000345}, +{0x00001FC8, 0x00000395}, {0x00001FC8, 0x00000300}, {0x00001FC9, 0x00000395}, {0x00001FC9, 0x00000301}, +{0x00001FCA, 0x00000397}, {0x00001FCA, 0x00000300}, {0x00001FCB, 0x00000397}, {0x00001FCB, 0x00000301}, +{0x00001FCC, 0x00000397}, {0x00001FCC, 0x00000345}, {0x00001FCD, 0x00001FBF}, {0x00001FCD, 0x00000300}, +{0x00001FCE, 0x00001FBF}, {0x00001FCE, 0x00000301}, {0x00001FCF, 0x00001FBF}, {0x00001FCF, 0x00000342}, +{0x00001FD0, 0x000003B9}, {0x00001FD0, 0x00000306}, {0x00001FD1, 0x000003B9}, {0x00001FD1, 0x00000304}, +{0x00001FD2, 0x000003B9}, {0x00001FD2, 0x00000308}, {0x00001FD2, 0x00000300}, {0x00001FD3, 0x000003B9}, +{0x00001FD3, 0x00000308}, {0x00001FD3, 0x00000301}, {0x00001FD6, 0x000003B9}, {0x00001FD6, 0x00000342}, +{0x00001FD7, 0x000003B9}, {0x00001FD7, 0x00000308}, {0x00001FD7, 0x00000342}, {0x00001FD8, 0x00000399}, +{0x00001FD8, 0x00000306}, {0x00001FD9, 0x00000399}, {0x00001FD9, 0x00000304}, {0x00001FDA, 0x00000399}, +{0x00001FDA, 0x00000300}, {0x00001FDB, 0x00000399}, {0x00001FDB, 0x00000301}, {0x00001FDD, 0x00001FFE}, +{0x00001FDD, 0x00000300}, {0x00001FDE, 0x00001FFE}, {0x00001FDE, 0x00000301}, {0x00001FDF, 0x00001FFE}, +{0x00001FDF, 0x00000342}, {0x00001FE0, 0x000003C5}, {0x00001FE0, 0x00000306}, {0x00001FE1, 0x000003C5}, +{0x00001FE1, 0x00000304}, {0x00001FE2, 0x000003C5}, {0x00001FE2, 0x00000308}, {0x00001FE2, 0x00000300}, +{0x00001FE3, 0x000003C5}, {0x00001FE3, 0x00000308}, {0x00001FE3, 0x00000301}, {0x00001FE4, 0x000003C1}, +{0x00001FE4, 0x00000313}, {0x00001FE5, 0x000003C1}, {0x00001FE5, 0x00000314}, {0x00001FE6, 0x000003C5}, +{0x00001FE6, 0x00000342}, {0x00001FE7, 0x000003C5}, {0x00001FE7, 0x00000308}, {0x00001FE7, 0x00000342}, +{0x00001FE8, 0x000003A5}, {0x00001FE8, 0x00000306}, {0x00001FE9, 0x000003A5}, {0x00001FE9, 0x00000304}, +{0x00001FEA, 0x000003A5}, {0x00001FEA, 0x00000300}, {0x00001FEB, 0x000003A5}, {0x00001FEB, 0x00000301}, +{0x00001FEC, 0x000003A1}, {0x00001FEC, 0x00000314}, {0x00001FED, 0x000000A8}, {0x00001FED, 0x00000300}, +{0x00001FEE, 0x000000A8}, {0x00001FEE, 0x00000301}, {0x00001FEF, 0x00000060}, {0x00001FF2, 0x000003C9}, +{0x00001FF2, 0x00000300}, {0x00001FF2, 0x00000345}, {0x00001FF3, 0x000003C9}, {0x00001FF3, 0x00000345}, +{0x00001FF4, 0x000003C9}, {0x00001FF4, 0x00000301}, {0x00001FF4, 0x00000345}, {0x00001FF6, 0x000003C9}, +{0x00001FF6, 0x00000342}, {0x00001FF7, 0x000003C9}, {0x00001FF7, 0x00000342}, {0x00001FF7, 0x00000345}, +{0x00001FF8, 0x0000039F}, {0x00001FF8, 0x00000300}, {0x00001FF9, 0x0000039F}, {0x00001FF9, 0x00000301}, +{0x00001FFA, 0x000003A9}, {0x00001FFA, 0x00000300}, {0x00001FFB, 0x000003A9}, {0x00001FFB, 0x00000301}, +{0x00001FFC, 0x000003A9}, {0x00001FFC, 0x00000345}, {0x00001FFD, 0x000000B4}, {0x00002000, 0x00002002}, +{0x00002001, 0x00002003}, {0x00002126, 0x000003A9}, {0x0000212A, 0x0000004B}, {0x0000212B, 0x00000041}, +{0x0000212B, 0x0000030A}, {0x0000219A, 0x00002190}, {0x0000219A, 0x00000338}, {0x0000219B, 0x00002192}, +{0x0000219B, 0x00000338}, {0x000021AE, 0x00002194}, {0x000021AE, 0x00000338}, {0x000021CD, 0x000021D0}, +{0x000021CD, 0x00000338}, {0x000021CE, 0x000021D4}, {0x000021CE, 0x00000338}, {0x000021CF, 0x000021D2}, +{0x000021CF, 0x00000338}, {0x00002204, 0x00002203}, {0x00002204, 0x00000338}, {0x00002209, 0x00002208}, +{0x00002209, 0x00000338}, {0x0000220C, 0x0000220B}, {0x0000220C, 0x00000338}, {0x00002224, 0x00002223}, +{0x00002224, 0x00000338}, {0x00002226, 0x00002225}, {0x00002226, 0x00000338}, {0x00002241, 0x0000223C}, +{0x00002241, 0x00000338}, {0x00002244, 0x00002243}, {0x00002244, 0x00000338}, {0x00002247, 0x00002245}, +{0x00002247, 0x00000338}, {0x00002249, 0x00002248}, {0x00002249, 0x00000338}, {0x00002260, 0x0000003D}, +{0x00002260, 0x00000338}, {0x00002262, 0x00002261}, {0x00002262, 0x00000338}, {0x0000226D, 0x0000224D}, +{0x0000226D, 0x00000338}, {0x0000226E, 0x0000003C}, {0x0000226E, 0x00000338}, {0x0000226F, 0x0000003E}, +{0x0000226F, 0x00000338}, {0x00002270, 0x00002264}, {0x00002270, 0x00000338}, {0x00002271, 0x00002265}, +{0x00002271, 0x00000338}, {0x00002274, 0x00002272}, {0x00002274, 0x00000338}, {0x00002275, 0x00002273}, +{0x00002275, 0x00000338}, {0x00002278, 0x00002276}, {0x00002278, 0x00000338}, {0x00002279, 0x00002277}, +{0x00002279, 0x00000338}, {0x00002280, 0x0000227A}, {0x00002280, 0x00000338}, {0x00002281, 0x0000227B}, +{0x00002281, 0x00000338}, {0x00002284, 0x00002282}, {0x00002284, 0x00000338}, {0x00002285, 0x00002283}, +{0x00002285, 0x00000338}, {0x00002288, 0x00002286}, {0x00002288, 0x00000338}, {0x00002289, 0x00002287}, +{0x00002289, 0x00000338}, {0x000022AC, 0x000022A2}, {0x000022AC, 0x00000338}, {0x000022AD, 0x000022A8}, +{0x000022AD, 0x00000338}, {0x000022AE, 0x000022A9}, {0x000022AE, 0x00000338}, {0x000022AF, 0x000022AB}, +{0x000022AF, 0x00000338}, {0x000022E0, 0x0000227C}, {0x000022E0, 0x00000338}, {0x000022E1, 0x0000227D}, +{0x000022E1, 0x00000338}, {0x000022E2, 0x00002291}, {0x000022E2, 0x00000338}, {0x000022E3, 0x00002292}, +{0x000022E3, 0x00000338}, {0x000022EA, 0x000022B2}, {0x000022EA, 0x00000338}, {0x000022EB, 0x000022B3}, +{0x000022EB, 0x00000338}, {0x000022EC, 0x000022B4}, {0x000022EC, 0x00000338}, {0x000022ED, 0x000022B5}, +{0x000022ED, 0x00000338}, {0x00002329, 0x00003008}, {0x0000232A, 0x00003009}, {0x00002ADC, 0x00002ADD}, +{0x00002ADC, 0x00000338}, {0x0000304C, 0x0000304B}, {0x0000304C, 0x00003099}, {0x0000304E, 0x0000304D}, +{0x0000304E, 0x00003099}, {0x00003050, 0x0000304F}, {0x00003050, 0x00003099}, {0x00003052, 0x00003051}, +{0x00003052, 0x00003099}, {0x00003054, 0x00003053}, {0x00003054, 0x00003099}, {0x00003056, 0x00003055}, +{0x00003056, 0x00003099}, {0x00003058, 0x00003057}, {0x00003058, 0x00003099}, {0x0000305A, 0x00003059}, +{0x0000305A, 0x00003099}, {0x0000305C, 0x0000305B}, {0x0000305C, 0x00003099}, {0x0000305E, 0x0000305D}, +{0x0000305E, 0x00003099}, {0x00003060, 0x0000305F}, {0x00003060, 0x00003099}, {0x00003062, 0x00003061}, +{0x00003062, 0x00003099}, {0x00003065, 0x00003064}, {0x00003065, 0x00003099}, {0x00003067, 0x00003066}, +{0x00003067, 0x00003099}, {0x00003069, 0x00003068}, {0x00003069, 0x00003099}, {0x00003070, 0x0000306F}, +{0x00003070, 0x00003099}, {0x00003071, 0x0000306F}, {0x00003071, 0x0000309A}, {0x00003073, 0x00003072}, +{0x00003073, 0x00003099}, {0x00003074, 0x00003072}, {0x00003074, 0x0000309A}, {0x00003076, 0x00003075}, +{0x00003076, 0x00003099}, {0x00003077, 0x00003075}, {0x00003077, 0x0000309A}, {0x00003079, 0x00003078}, +{0x00003079, 0x00003099}, {0x0000307A, 0x00003078}, {0x0000307A, 0x0000309A}, {0x0000307C, 0x0000307B}, +{0x0000307C, 0x00003099}, {0x0000307D, 0x0000307B}, {0x0000307D, 0x0000309A}, {0x00003094, 0x00003046}, +{0x00003094, 0x00003099}, {0x0000309E, 0x0000309D}, {0x0000309E, 0x00003099}, {0x000030AC, 0x000030AB}, +{0x000030AC, 0x00003099}, {0x000030AE, 0x000030AD}, {0x000030AE, 0x00003099}, {0x000030B0, 0x000030AF}, +{0x000030B0, 0x00003099}, {0x000030B2, 0x000030B1}, {0x000030B2, 0x00003099}, {0x000030B4, 0x000030B3}, +{0x000030B4, 0x00003099}, {0x000030B6, 0x000030B5}, {0x000030B6, 0x00003099}, {0x000030B8, 0x000030B7}, +{0x000030B8, 0x00003099}, {0x000030BA, 0x000030B9}, {0x000030BA, 0x00003099}, {0x000030BC, 0x000030BB}, +{0x000030BC, 0x00003099}, {0x000030BE, 0x000030BD}, {0x000030BE, 0x00003099}, {0x000030C0, 0x000030BF}, +{0x000030C0, 0x00003099}, {0x000030C2, 0x000030C1}, {0x000030C2, 0x00003099}, {0x000030C5, 0x000030C4}, +{0x000030C5, 0x00003099}, {0x000030C7, 0x000030C6}, {0x000030C7, 0x00003099}, {0x000030C9, 0x000030C8}, +{0x000030C9, 0x00003099}, {0x000030D0, 0x000030CF}, {0x000030D0, 0x00003099}, {0x000030D1, 0x000030CF}, +{0x000030D1, 0x0000309A}, {0x000030D3, 0x000030D2}, {0x000030D3, 0x00003099}, {0x000030D4, 0x000030D2}, +{0x000030D4, 0x0000309A}, {0x000030D6, 0x000030D5}, {0x000030D6, 0x00003099}, {0x000030D7, 0x000030D5}, +{0x000030D7, 0x0000309A}, {0x000030D9, 0x000030D8}, {0x000030D9, 0x00003099}, {0x000030DA, 0x000030D8}, +{0x000030DA, 0x0000309A}, {0x000030DC, 0x000030DB}, {0x000030DC, 0x00003099}, {0x000030DD, 0x000030DB}, +{0x000030DD, 0x0000309A}, {0x000030F4, 0x000030A6}, {0x000030F4, 0x00003099}, {0x000030F7, 0x000030EF}, +{0x000030F7, 0x00003099}, {0x000030F8, 0x000030F0}, {0x000030F8, 0x00003099}, {0x000030F9, 0x000030F1}, +{0x000030F9, 0x00003099}, {0x000030FA, 0x000030F2}, {0x000030FA, 0x00003099}, {0x000030FE, 0x000030FD}, +{0x000030FE, 0x00003099}, {0x0000F900, 0x00008C48}, {0x0000F901, 0x000066F4}, {0x0000F902, 0x00008ECA}, +{0x0000F903, 0x00008CC8}, {0x0000F904, 0x00006ED1}, {0x0000F905, 0x00004E32}, {0x0000F906, 0x000053E5}, +{0x0000F907, 0x00009F9C}, {0x0000F908, 0x00009F9C}, {0x0000F909, 0x00005951}, {0x0000F90A, 0x000091D1}, +{0x0000F90B, 0x00005587}, {0x0000F90C, 0x00005948}, {0x0000F90D, 0x000061F6}, {0x0000F90E, 0x00007669}, +{0x0000F90F, 0x00007F85}, {0x0000F910, 0x0000863F}, {0x0000F911, 0x000087BA}, {0x0000F912, 0x000088F8}, +{0x0000F913, 0x0000908F}, {0x0000F914, 0x00006A02}, {0x0000F915, 0x00006D1B}, {0x0000F916, 0x000070D9}, +{0x0000F917, 0x000073DE}, {0x0000F918, 0x0000843D}, {0x0000F919, 0x0000916A}, {0x0000F91A, 0x000099F1}, +{0x0000F91B, 0x00004E82}, {0x0000F91C, 0x00005375}, {0x0000F91D, 0x00006B04}, {0x0000F91E, 0x0000721B}, +{0x0000F91F, 0x0000862D}, {0x0000F920, 0x00009E1E}, {0x0000F921, 0x00005D50}, {0x0000F922, 0x00006FEB}, +{0x0000F923, 0x000085CD}, {0x0000F924, 0x00008964}, {0x0000F925, 0x000062C9}, {0x0000F926, 0x000081D8}, +{0x0000F927, 0x0000881F}, {0x0000F928, 0x00005ECA}, {0x0000F929, 0x00006717}, {0x0000F92A, 0x00006D6A}, +{0x0000F92B, 0x000072FC}, {0x0000F92C, 0x000090CE}, {0x0000F92D, 0x00004F86}, {0x0000F92E, 0x000051B7}, +{0x0000F92F, 0x000052DE}, {0x0000F930, 0x000064C4}, {0x0000F931, 0x00006AD3}, {0x0000F932, 0x00007210}, +{0x0000F933, 0x000076E7}, {0x0000F934, 0x00008001}, {0x0000F935, 0x00008606}, {0x0000F936, 0x0000865C}, +{0x0000F937, 0x00008DEF}, {0x0000F938, 0x00009732}, {0x0000F939, 0x00009B6F}, {0x0000F93A, 0x00009DFA}, +{0x0000F93B, 0x0000788C}, {0x0000F93C, 0x0000797F}, {0x0000F93D, 0x00007DA0}, {0x0000F93E, 0x000083C9}, +{0x0000F93F, 0x00009304}, {0x0000F940, 0x00009E7F}, {0x0000F941, 0x00008AD6}, {0x0000F942, 0x000058DF}, +{0x0000F943, 0x00005F04}, {0x0000F944, 0x00007C60}, {0x0000F945, 0x0000807E}, {0x0000F946, 0x00007262}, +{0x0000F947, 0x000078CA}, {0x0000F948, 0x00008CC2}, {0x0000F949, 0x000096F7}, {0x0000F94A, 0x000058D8}, +{0x0000F94B, 0x00005C62}, {0x0000F94C, 0x00006A13}, {0x0000F94D, 0x00006DDA}, {0x0000F94E, 0x00006F0F}, +{0x0000F94F, 0x00007D2F}, {0x0000F950, 0x00007E37}, {0x0000F951, 0x0000964B}, {0x0000F952, 0x000052D2}, +{0x0000F953, 0x0000808B}, {0x0000F954, 0x000051DC}, {0x0000F955, 0x000051CC}, {0x0000F956, 0x00007A1C}, +{0x0000F957, 0x00007DBE}, {0x0000F958, 0x000083F1}, {0x0000F959, 0x00009675}, {0x0000F95A, 0x00008B80}, +{0x0000F95B, 0x000062CF}, {0x0000F95C, 0x00006A02}, {0x0000F95D, 0x00008AFE}, {0x0000F95E, 0x00004E39}, +{0x0000F95F, 0x00005BE7}, {0x0000F960, 0x00006012}, {0x0000F961, 0x00007387}, {0x0000F962, 0x00007570}, +{0x0000F963, 0x00005317}, {0x0000F964, 0x000078FB}, {0x0000F965, 0x00004FBF}, {0x0000F966, 0x00005FA9}, +{0x0000F967, 0x00004E0D}, {0x0000F968, 0x00006CCC}, {0x0000F969, 0x00006578}, {0x0000F96A, 0x00007D22}, +{0x0000F96B, 0x000053C3}, {0x0000F96C, 0x0000585E}, {0x0000F96D, 0x00007701}, {0x0000F96E, 0x00008449}, +{0x0000F96F, 0x00008AAA}, {0x0000F970, 0x00006BBA}, {0x0000F971, 0x00008FB0}, {0x0000F972, 0x00006C88}, +{0x0000F973, 0x000062FE}, {0x0000F974, 0x000082E5}, {0x0000F975, 0x000063A0}, {0x0000F976, 0x00007565}, +{0x0000F977, 0x00004EAE}, {0x0000F978, 0x00005169}, {0x0000F979, 0x000051C9}, {0x0000F97A, 0x00006881}, +{0x0000F97B, 0x00007CE7}, {0x0000F97C, 0x0000826F}, {0x0000F97D, 0x00008AD2}, {0x0000F97E, 0x000091CF}, +{0x0000F97F, 0x000052F5}, {0x0000F980, 0x00005442}, {0x0000F981, 0x00005973}, {0x0000F982, 0x00005EEC}, +{0x0000F983, 0x000065C5}, {0x0000F984, 0x00006FFE}, {0x0000F985, 0x0000792A}, {0x0000F986, 0x000095AD}, +{0x0000F987, 0x00009A6A}, {0x0000F988, 0x00009E97}, {0x0000F989, 0x00009ECE}, {0x0000F98A, 0x0000529B}, +{0x0000F98B, 0x000066C6}, {0x0000F98C, 0x00006B77}, {0x0000F98D, 0x00008F62}, {0x0000F98E, 0x00005E74}, +{0x0000F98F, 0x00006190}, {0x0000F990, 0x00006200}, {0x0000F991, 0x0000649A}, {0x0000F992, 0x00006F23}, +{0x0000F993, 0x00007149}, {0x0000F994, 0x00007489}, {0x0000F995, 0x000079CA}, {0x0000F996, 0x00007DF4}, +{0x0000F997, 0x0000806F}, {0x0000F998, 0x00008F26}, {0x0000F999, 0x000084EE}, {0x0000F99A, 0x00009023}, +{0x0000F99B, 0x0000934A}, {0x0000F99C, 0x00005217}, {0x0000F99D, 0x000052A3}, {0x0000F99E, 0x000054BD}, +{0x0000F99F, 0x000070C8}, {0x0000F9A0, 0x000088C2}, {0x0000F9A1, 0x00008AAA}, {0x0000F9A2, 0x00005EC9}, +{0x0000F9A3, 0x00005FF5}, {0x0000F9A4, 0x0000637B}, {0x0000F9A5, 0x00006BAE}, {0x0000F9A6, 0x00007C3E}, +{0x0000F9A7, 0x00007375}, {0x0000F9A8, 0x00004EE4}, {0x0000F9A9, 0x000056F9}, {0x0000F9AA, 0x00005BE7}, +{0x0000F9AB, 0x00005DBA}, {0x0000F9AC, 0x0000601C}, {0x0000F9AD, 0x000073B2}, {0x0000F9AE, 0x00007469}, +{0x0000F9AF, 0x00007F9A}, {0x0000F9B0, 0x00008046}, {0x0000F9B1, 0x00009234}, {0x0000F9B2, 0x000096F6}, +{0x0000F9B3, 0x00009748}, {0x0000F9B4, 0x00009818}, {0x0000F9B5, 0x00004F8B}, {0x0000F9B6, 0x000079AE}, +{0x0000F9B7, 0x000091B4}, {0x0000F9B8, 0x000096B8}, {0x0000F9B9, 0x000060E1}, {0x0000F9BA, 0x00004E86}, +{0x0000F9BB, 0x000050DA}, {0x0000F9BC, 0x00005BEE}, {0x0000F9BD, 0x00005C3F}, {0x0000F9BE, 0x00006599}, +{0x0000F9BF, 0x00006A02}, {0x0000F9C0, 0x000071CE}, {0x0000F9C1, 0x00007642}, {0x0000F9C2, 0x000084FC}, +{0x0000F9C3, 0x0000907C}, {0x0000F9C4, 0x00009F8D}, {0x0000F9C5, 0x00006688}, {0x0000F9C6, 0x0000962E}, +{0x0000F9C7, 0x00005289}, {0x0000F9C8, 0x0000677B}, {0x0000F9C9, 0x000067F3}, {0x0000F9CA, 0x00006D41}, +{0x0000F9CB, 0x00006E9C}, {0x0000F9CC, 0x00007409}, {0x0000F9CD, 0x00007559}, {0x0000F9CE, 0x0000786B}, +{0x0000F9CF, 0x00007D10}, {0x0000F9D0, 0x0000985E}, {0x0000F9D1, 0x0000516D}, {0x0000F9D2, 0x0000622E}, +{0x0000F9D3, 0x00009678}, {0x0000F9D4, 0x0000502B}, {0x0000F9D5, 0x00005D19}, {0x0000F9D6, 0x00006DEA}, +{0x0000F9D7, 0x00008F2A}, {0x0000F9D8, 0x00005F8B}, {0x0000F9D9, 0x00006144}, {0x0000F9DA, 0x00006817}, +{0x0000F9DB, 0x00007387}, {0x0000F9DC, 0x00009686}, {0x0000F9DD, 0x00005229}, {0x0000F9DE, 0x0000540F}, +{0x0000F9DF, 0x00005C65}, {0x0000F9E0, 0x00006613}, {0x0000F9E1, 0x0000674E}, {0x0000F9E2, 0x000068A8}, +{0x0000F9E3, 0x00006CE5}, {0x0000F9E4, 0x00007406}, {0x0000F9E5, 0x000075E2}, {0x0000F9E6, 0x00007F79}, +{0x0000F9E7, 0x000088CF}, {0x0000F9E8, 0x000088E1}, {0x0000F9E9, 0x000091CC}, {0x0000F9EA, 0x000096E2}, +{0x0000F9EB, 0x0000533F}, {0x0000F9EC, 0x00006EBA}, {0x0000F9ED, 0x0000541D}, {0x0000F9EE, 0x000071D0}, +{0x0000F9EF, 0x00007498}, {0x0000F9F0, 0x000085FA}, {0x0000F9F1, 0x000096A3}, {0x0000F9F2, 0x00009C57}, +{0x0000F9F3, 0x00009E9F}, {0x0000F9F4, 0x00006797}, {0x0000F9F5, 0x00006DCB}, {0x0000F9F6, 0x000081E8}, +{0x0000F9F7, 0x00007ACB}, {0x0000F9F8, 0x00007B20}, {0x0000F9F9, 0x00007C92}, {0x0000F9FA, 0x000072C0}, +{0x0000F9FB, 0x00007099}, {0x0000F9FC, 0x00008B58}, {0x0000F9FD, 0x00004EC0}, {0x0000F9FE, 0x00008336}, +{0x0000F9FF, 0x0000523A}, {0x0000FA00, 0x00005207}, {0x0000FA01, 0x00005EA6}, {0x0000FA02, 0x000062D3}, +{0x0000FA03, 0x00007CD6}, {0x0000FA04, 0x00005B85}, {0x0000FA05, 0x00006D1E}, {0x0000FA06, 0x000066B4}, +{0x0000FA07, 0x00008F3B}, {0x0000FA08, 0x0000884C}, {0x0000FA09, 0x0000964D}, {0x0000FA0A, 0x0000898B}, +{0x0000FA0B, 0x00005ED3}, {0x0000FA0C, 0x00005140}, {0x0000FA0D, 0x000055C0}, {0x0000FA10, 0x0000585A}, +{0x0000FA12, 0x00006674}, {0x0000FA15, 0x000051DE}, {0x0000FA16, 0x0000732A}, {0x0000FA17, 0x000076CA}, +{0x0000FA18, 0x0000793C}, {0x0000FA19, 0x0000795E}, {0x0000FA1A, 0x00007965}, {0x0000FA1B, 0x0000798F}, +{0x0000FA1C, 0x00009756}, {0x0000FA1D, 0x00007CBE}, {0x0000FA1E, 0x00007FBD}, {0x0000FA20, 0x00008612}, +{0x0000FA22, 0x00008AF8}, {0x0000FA25, 0x00009038}, {0x0000FA26, 0x000090FD}, {0x0000FA2A, 0x000098EF}, +{0x0000FA2B, 0x000098FC}, {0x0000FA2C, 0x00009928}, {0x0000FA2D, 0x00009DB4}, {0x0000FA2E, 0x000090DE}, +{0x0000FA2F, 0x000096B7}, {0x0000FA30, 0x00004FAE}, {0x0000FA31, 0x000050E7}, {0x0000FA32, 0x0000514D}, +{0x0000FA33, 0x000052C9}, {0x0000FA34, 0x000052E4}, {0x0000FA35, 0x00005351}, {0x0000FA36, 0x0000559D}, +{0x0000FA37, 0x00005606}, {0x0000FA38, 0x00005668}, {0x0000FA39, 0x00005840}, {0x0000FA3A, 0x000058A8}, +{0x0000FA3B, 0x00005C64}, {0x0000FA3C, 0x00005C6E}, {0x0000FA3D, 0x00006094}, {0x0000FA3E, 0x00006168}, +{0x0000FA3F, 0x0000618E}, {0x0000FA40, 0x000061F2}, {0x0000FA41, 0x0000654F}, {0x0000FA42, 0x000065E2}, +{0x0000FA43, 0x00006691}, {0x0000FA44, 0x00006885}, {0x0000FA45, 0x00006D77}, {0x0000FA46, 0x00006E1A}, +{0x0000FA47, 0x00006F22}, {0x0000FA48, 0x0000716E}, {0x0000FA49, 0x0000722B}, {0x0000FA4A, 0x00007422}, +{0x0000FA4B, 0x00007891}, {0x0000FA4C, 0x0000793E}, {0x0000FA4D, 0x00007949}, {0x0000FA4E, 0x00007948}, +{0x0000FA4F, 0x00007950}, {0x0000FA50, 0x00007956}, {0x0000FA51, 0x0000795D}, {0x0000FA52, 0x0000798D}, +{0x0000FA53, 0x0000798E}, {0x0000FA54, 0x00007A40}, {0x0000FA55, 0x00007A81}, {0x0000FA56, 0x00007BC0}, +{0x0000FA57, 0x00007DF4}, {0x0000FA58, 0x00007E09}, {0x0000FA59, 0x00007E41}, {0x0000FA5A, 0x00007F72}, +{0x0000FA5B, 0x00008005}, {0x0000FA5C, 0x000081ED}, {0x0000FA5D, 0x00008279}, {0x0000FA5E, 0x00008279}, +{0x0000FA5F, 0x00008457}, {0x0000FA60, 0x00008910}, {0x0000FA61, 0x00008996}, {0x0000FA62, 0x00008B01}, +{0x0000FA63, 0x00008B39}, {0x0000FA64, 0x00008CD3}, {0x0000FA65, 0x00008D08}, {0x0000FA66, 0x00008FB6}, +{0x0000FA67, 0x00009038}, {0x0000FA68, 0x000096E3}, {0x0000FA69, 0x000097FF}, {0x0000FA6A, 0x0000983B}, +{0x0000FA6B, 0x00006075}, {0x0000FA6C, 0x000242EE}, {0x0000FA6D, 0x00008218}, {0x0000FA70, 0x00004E26}, +{0x0000FA71, 0x000051B5}, {0x0000FA72, 0x00005168}, {0x0000FA73, 0x00004F80}, {0x0000FA74, 0x00005145}, +{0x0000FA75, 0x00005180}, {0x0000FA76, 0x000052C7}, {0x0000FA77, 0x000052FA}, {0x0000FA78, 0x0000559D}, +{0x0000FA79, 0x00005555}, {0x0000FA7A, 0x00005599}, {0x0000FA7B, 0x000055E2}, {0x0000FA7C, 0x0000585A}, +{0x0000FA7D, 0x000058B3}, {0x0000FA7E, 0x00005944}, {0x0000FA7F, 0x00005954}, {0x0000FA80, 0x00005A62}, +{0x0000FA81, 0x00005B28}, {0x0000FA82, 0x00005ED2}, {0x0000FA83, 0x00005ED9}, {0x0000FA84, 0x00005F69}, +{0x0000FA85, 0x00005FAD}, {0x0000FA86, 0x000060D8}, {0x0000FA87, 0x0000614E}, {0x0000FA88, 0x00006108}, +{0x0000FA89, 0x0000618E}, {0x0000FA8A, 0x00006160}, {0x0000FA8B, 0x000061F2}, {0x0000FA8C, 0x00006234}, +{0x0000FA8D, 0x000063C4}, {0x0000FA8E, 0x0000641C}, {0x0000FA8F, 0x00006452}, {0x0000FA90, 0x00006556}, +{0x0000FA91, 0x00006674}, {0x0000FA92, 0x00006717}, {0x0000FA93, 0x0000671B}, {0x0000FA94, 0x00006756}, +{0x0000FA95, 0x00006B79}, {0x0000FA96, 0x00006BBA}, {0x0000FA97, 0x00006D41}, {0x0000FA98, 0x00006EDB}, +{0x0000FA99, 0x00006ECB}, {0x0000FA9A, 0x00006F22}, {0x0000FA9B, 0x0000701E}, {0x0000FA9C, 0x0000716E}, +{0x0000FA9D, 0x000077A7}, {0x0000FA9E, 0x00007235}, {0x0000FA9F, 0x000072AF}, {0x0000FAA0, 0x0000732A}, +{0x0000FAA1, 0x00007471}, {0x0000FAA2, 0x00007506}, {0x0000FAA3, 0x0000753B}, {0x0000FAA4, 0x0000761D}, +{0x0000FAA5, 0x0000761F}, {0x0000FAA6, 0x000076CA}, {0x0000FAA7, 0x000076DB}, {0x0000FAA8, 0x000076F4}, +{0x0000FAA9, 0x0000774A}, {0x0000FAAA, 0x00007740}, {0x0000FAAB, 0x000078CC}, {0x0000FAAC, 0x00007AB1}, +{0x0000FAAD, 0x00007BC0}, {0x0000FAAE, 0x00007C7B}, {0x0000FAAF, 0x00007D5B}, {0x0000FAB0, 0x00007DF4}, +{0x0000FAB1, 0x00007F3E}, {0x0000FAB2, 0x00008005}, {0x0000FAB3, 0x00008352}, {0x0000FAB4, 0x000083EF}, +{0x0000FAB5, 0x00008779}, {0x0000FAB6, 0x00008941}, {0x0000FAB7, 0x00008986}, {0x0000FAB8, 0x00008996}, +{0x0000FAB9, 0x00008ABF}, {0x0000FABA, 0x00008AF8}, {0x0000FABB, 0x00008ACB}, {0x0000FABC, 0x00008B01}, +{0x0000FABD, 0x00008AFE}, {0x0000FABE, 0x00008AED}, {0x0000FABF, 0x00008B39}, {0x0000FAC0, 0x00008B8A}, +{0x0000FAC1, 0x00008D08}, {0x0000FAC2, 0x00008F38}, {0x0000FAC3, 0x00009072}, {0x0000FAC4, 0x00009199}, +{0x0000FAC5, 0x00009276}, {0x0000FAC6, 0x0000967C}, {0x0000FAC7, 0x000096E3}, {0x0000FAC8, 0x00009756}, +{0x0000FAC9, 0x000097DB}, {0x0000FACA, 0x000097FF}, {0x0000FACB, 0x0000980B}, {0x0000FACC, 0x0000983B}, +{0x0000FACD, 0x00009B12}, {0x0000FACE, 0x00009F9C}, {0x0000FACF, 0x0002284A}, {0x0000FAD0, 0x00022844}, +{0x0000FAD1, 0x000233D5}, {0x0000FAD2, 0x00003B9D}, {0x0000FAD3, 0x00004018}, {0x0000FAD4, 0x00004039}, +{0x0000FAD5, 0x00025249}, {0x0000FAD6, 0x00025CD0}, {0x0000FAD7, 0x00027ED3}, {0x0000FAD8, 0x00009F43}, +{0x0000FAD9, 0x00009F8E}, {0x0000FB1D, 0x000005D9}, {0x0000FB1D, 0x000005B4}, {0x0000FB1F, 0x000005F2}, +{0x0000FB1F, 0x000005B7}, {0x0000FB2A, 0x000005E9}, {0x0000FB2A, 0x000005C1}, {0x0000FB2B, 0x000005E9}, +{0x0000FB2B, 0x000005C2}, {0x0000FB2C, 0x000005E9}, {0x0000FB2C, 0x000005BC}, {0x0000FB2C, 0x000005C1}, +{0x0000FB2D, 0x000005E9}, {0x0000FB2D, 0x000005BC}, {0x0000FB2D, 0x000005C2}, {0x0000FB2E, 0x000005D0}, +{0x0000FB2E, 0x000005B7}, {0x0000FB2F, 0x000005D0}, {0x0000FB2F, 0x000005B8}, {0x0000FB30, 0x000005D0}, +{0x0000FB30, 0x000005BC}, {0x0000FB31, 0x000005D1}, {0x0000FB31, 0x000005BC}, {0x0000FB32, 0x000005D2}, +{0x0000FB32, 0x000005BC}, {0x0000FB33, 0x000005D3}, {0x0000FB33, 0x000005BC}, {0x0000FB34, 0x000005D4}, +{0x0000FB34, 0x000005BC}, {0x0000FB35, 0x000005D5}, {0x0000FB35, 0x000005BC}, {0x0000FB36, 0x000005D6}, +{0x0000FB36, 0x000005BC}, {0x0000FB38, 0x000005D8}, {0x0000FB38, 0x000005BC}, {0x0000FB39, 0x000005D9}, +{0x0000FB39, 0x000005BC}, {0x0000FB3A, 0x000005DA}, {0x0000FB3A, 0x000005BC}, {0x0000FB3B, 0x000005DB}, +{0x0000FB3B, 0x000005BC}, {0x0000FB3C, 0x000005DC}, {0x0000FB3C, 0x000005BC}, {0x0000FB3E, 0x000005DE}, +{0x0000FB3E, 0x000005BC}, {0x0000FB40, 0x000005E0}, {0x0000FB40, 0x000005BC}, {0x0000FB41, 0x000005E1}, +{0x0000FB41, 0x000005BC}, {0x0000FB43, 0x000005E3}, {0x0000FB43, 0x000005BC}, {0x0000FB44, 0x000005E4}, +{0x0000FB44, 0x000005BC}, {0x0000FB46, 0x000005E6}, {0x0000FB46, 0x000005BC}, {0x0000FB47, 0x000005E7}, +{0x0000FB47, 0x000005BC}, {0x0000FB48, 0x000005E8}, {0x0000FB48, 0x000005BC}, {0x0000FB49, 0x000005E9}, +{0x0000FB49, 0x000005BC}, {0x0000FB4A, 0x000005EA}, {0x0000FB4A, 0x000005BC}, {0x0000FB4B, 0x000005D5}, +{0x0000FB4B, 0x000005B9}, {0x0000FB4C, 0x000005D1}, {0x0000FB4C, 0x000005BF}, {0x0000FB4D, 0x000005DB}, +{0x0000FB4D, 0x000005BF}, {0x0000FB4E, 0x000005E4}, {0x0000FB4E, 0x000005BF}, {0x0001109A, 0x00011099}, +{0x0001109A, 0x000110BA}, {0x0001109C, 0x0001109B}, {0x0001109C, 0x000110BA}, {0x000110AB, 0x000110A5}, +{0x000110AB, 0x000110BA}, {0x0001112E, 0x00011131}, {0x0001112E, 0x00011127}, {0x0001112F, 0x00011132}, +{0x0001112F, 0x00011127}, {0x0001134B, 0x00011347}, {0x0001134B, 0x0001133E}, {0x0001134C, 0x00011347}, +{0x0001134C, 0x00011357}, {0x000114BB, 0x000114B9}, {0x000114BB, 0x000114BA}, {0x000114BC, 0x000114B9}, +{0x000114BC, 0x000114B0}, {0x000114BE, 0x000114B9}, {0x000114BE, 0x000114BD}, {0x000115BA, 0x000115B8}, +{0x000115BA, 0x000115AF}, {0x000115BB, 0x000115B9}, {0x000115BB, 0x000115AF}, {0x0001D15E, 0x0001D157}, +{0x0001D15E, 0x0001D165}, {0x0001D15F, 0x0001D158}, {0x0001D15F, 0x0001D165}, {0x0001D160, 0x0001D158}, +{0x0001D160, 0x0001D165}, {0x0001D160, 0x0001D16E}, {0x0001D161, 0x0001D158}, {0x0001D161, 0x0001D165}, +{0x0001D161, 0x0001D16F}, {0x0001D162, 0x0001D158}, {0x0001D162, 0x0001D165}, {0x0001D162, 0x0001D170}, +{0x0001D163, 0x0001D158}, {0x0001D163, 0x0001D165}, {0x0001D163, 0x0001D171}, {0x0001D164, 0x0001D158}, +{0x0001D164, 0x0001D165}, {0x0001D164, 0x0001D172}, {0x0001D1BB, 0x0001D1B9}, {0x0001D1BB, 0x0001D165}, +{0x0001D1BC, 0x0001D1BA}, {0x0001D1BC, 0x0001D165}, {0x0001D1BD, 0x0001D1B9}, {0x0001D1BD, 0x0001D165}, +{0x0001D1BD, 0x0001D16E}, {0x0001D1BE, 0x0001D1BA}, {0x0001D1BE, 0x0001D165}, {0x0001D1BE, 0x0001D16E}, +{0x0001D1BF, 0x0001D1B9}, {0x0001D1BF, 0x0001D165}, {0x0001D1BF, 0x0001D16F}, {0x0001D1C0, 0x0001D1BA}, +{0x0001D1C0, 0x0001D165}, {0x0001D1C0, 0x0001D16F}, {0x0002F800, 0x00004E3D}, {0x0002F801, 0x00004E38}, +{0x0002F802, 0x00004E41}, {0x0002F803, 0x00020122}, {0x0002F804, 0x00004F60}, {0x0002F805, 0x00004FAE}, +{0x0002F806, 0x00004FBB}, {0x0002F807, 0x00005002}, {0x0002F808, 0x0000507A}, {0x0002F809, 0x00005099}, +{0x0002F80A, 0x000050E7}, {0x0002F80B, 0x000050CF}, {0x0002F80C, 0x0000349E}, {0x0002F80D, 0x0002063A}, +{0x0002F80E, 0x0000514D}, {0x0002F80F, 0x00005154}, {0x0002F810, 0x00005164}, {0x0002F811, 0x00005177}, +{0x0002F812, 0x0002051C}, {0x0002F813, 0x000034B9}, {0x0002F814, 0x00005167}, {0x0002F815, 0x0000518D}, +{0x0002F816, 0x0002054B}, {0x0002F817, 0x00005197}, {0x0002F818, 0x000051A4}, {0x0002F819, 0x00004ECC}, +{0x0002F81A, 0x000051AC}, {0x0002F81B, 0x000051B5}, {0x0002F81C, 0x000291DF}, {0x0002F81D, 0x000051F5}, +{0x0002F81E, 0x00005203}, {0x0002F81F, 0x000034DF}, {0x0002F820, 0x0000523B}, {0x0002F821, 0x00005246}, +{0x0002F822, 0x00005272}, {0x0002F823, 0x00005277}, {0x0002F824, 0x00003515}, {0x0002F825, 0x000052C7}, +{0x0002F826, 0x000052C9}, {0x0002F827, 0x000052E4}, {0x0002F828, 0x000052FA}, {0x0002F829, 0x00005305}, +{0x0002F82A, 0x00005306}, {0x0002F82B, 0x00005317}, {0x0002F82C, 0x00005349}, {0x0002F82D, 0x00005351}, +{0x0002F82E, 0x0000535A}, {0x0002F82F, 0x00005373}, {0x0002F830, 0x0000537D}, {0x0002F831, 0x0000537F}, +{0x0002F832, 0x0000537F}, {0x0002F833, 0x0000537F}, {0x0002F834, 0x00020A2C}, {0x0002F835, 0x00007070}, +{0x0002F836, 0x000053CA}, {0x0002F837, 0x000053DF}, {0x0002F838, 0x00020B63}, {0x0002F839, 0x000053EB}, +{0x0002F83A, 0x000053F1}, {0x0002F83B, 0x00005406}, {0x0002F83C, 0x0000549E}, {0x0002F83D, 0x00005438}, +{0x0002F83E, 0x00005448}, {0x0002F83F, 0x00005468}, {0x0002F840, 0x000054A2}, {0x0002F841, 0x000054F6}, +{0x0002F842, 0x00005510}, {0x0002F843, 0x00005553}, {0x0002F844, 0x00005563}, {0x0002F845, 0x00005584}, +{0x0002F846, 0x00005584}, {0x0002F847, 0x00005599}, {0x0002F848, 0x000055AB}, {0x0002F849, 0x000055B3}, +{0x0002F84A, 0x000055C2}, {0x0002F84B, 0x00005716}, {0x0002F84C, 0x00005606}, {0x0002F84D, 0x00005717}, +{0x0002F84E, 0x00005651}, {0x0002F84F, 0x00005674}, {0x0002F850, 0x00005207}, {0x0002F851, 0x000058EE}, +{0x0002F852, 0x000057CE}, {0x0002F853, 0x000057F4}, {0x0002F854, 0x0000580D}, {0x0002F855, 0x0000578B}, +{0x0002F856, 0x00005832}, {0x0002F857, 0x00005831}, {0x0002F858, 0x000058AC}, {0x0002F859, 0x000214E4}, +{0x0002F85A, 0x000058F2}, {0x0002F85B, 0x000058F7}, {0x0002F85C, 0x00005906}, {0x0002F85D, 0x0000591A}, +{0x0002F85E, 0x00005922}, {0x0002F85F, 0x00005962}, {0x0002F860, 0x000216A8}, {0x0002F861, 0x000216EA}, +{0x0002F862, 0x000059EC}, {0x0002F863, 0x00005A1B}, {0x0002F864, 0x00005A27}, {0x0002F865, 0x000059D8}, +{0x0002F866, 0x00005A66}, {0x0002F867, 0x000036EE}, {0x0002F868, 0x000036FC}, {0x0002F869, 0x00005B08}, +{0x0002F86A, 0x00005B3E}, {0x0002F86B, 0x00005B3E}, {0x0002F86C, 0x000219C8}, {0x0002F86D, 0x00005BC3}, +{0x0002F86E, 0x00005BD8}, {0x0002F86F, 0x00005BE7}, {0x0002F870, 0x00005BF3}, {0x0002F871, 0x00021B18}, +{0x0002F872, 0x00005BFF}, {0x0002F873, 0x00005C06}, {0x0002F874, 0x00005F53}, {0x0002F875, 0x00005C22}, +{0x0002F876, 0x00003781}, {0x0002F877, 0x00005C60}, {0x0002F878, 0x00005C6E}, {0x0002F879, 0x00005CC0}, +{0x0002F87A, 0x00005C8D}, {0x0002F87B, 0x00021DE4}, {0x0002F87C, 0x00005D43}, {0x0002F87D, 0x00021DE6}, +{0x0002F87E, 0x00005D6E}, {0x0002F87F, 0x00005D6B}, {0x0002F880, 0x00005D7C}, {0x0002F881, 0x00005DE1}, +{0x0002F882, 0x00005DE2}, {0x0002F883, 0x0000382F}, {0x0002F884, 0x00005DFD}, {0x0002F885, 0x00005E28}, +{0x0002F886, 0x00005E3D}, {0x0002F887, 0x00005E69}, {0x0002F888, 0x00003862}, {0x0002F889, 0x00022183}, +{0x0002F88A, 0x0000387C}, {0x0002F88B, 0x00005EB0}, {0x0002F88C, 0x00005EB3}, {0x0002F88D, 0x00005EB6}, +{0x0002F88E, 0x00005ECA}, {0x0002F88F, 0x0002A392}, {0x0002F890, 0x00005EFE}, {0x0002F891, 0x00022331}, +{0x0002F892, 0x00022331}, {0x0002F893, 0x00008201}, {0x0002F894, 0x00005F22}, {0x0002F895, 0x00005F22}, +{0x0002F896, 0x000038C7}, {0x0002F897, 0x000232B8}, {0x0002F898, 0x000261DA}, {0x0002F899, 0x00005F62}, +{0x0002F89A, 0x00005F6B}, {0x0002F89B, 0x000038E3}, {0x0002F89C, 0x00005F9A}, {0x0002F89D, 0x00005FCD}, +{0x0002F89E, 0x00005FD7}, {0x0002F89F, 0x00005FF9}, {0x0002F8A0, 0x00006081}, {0x0002F8A1, 0x0000393A}, +{0x0002F8A2, 0x0000391C}, {0x0002F8A3, 0x00006094}, {0x0002F8A4, 0x000226D4}, {0x0002F8A5, 0x000060C7}, +{0x0002F8A6, 0x00006148}, {0x0002F8A7, 0x0000614C}, {0x0002F8A8, 0x0000614E}, {0x0002F8A9, 0x0000614C}, +{0x0002F8AA, 0x0000617A}, {0x0002F8AB, 0x0000618E}, {0x0002F8AC, 0x000061B2}, {0x0002F8AD, 0x000061A4}, +{0x0002F8AE, 0x000061AF}, {0x0002F8AF, 0x000061DE}, {0x0002F8B0, 0x000061F2}, {0x0002F8B1, 0x000061F6}, +{0x0002F8B2, 0x00006210}, {0x0002F8B3, 0x0000621B}, {0x0002F8B4, 0x0000625D}, {0x0002F8B5, 0x000062B1}, +{0x0002F8B6, 0x000062D4}, {0x0002F8B7, 0x00006350}, {0x0002F8B8, 0x00022B0C}, {0x0002F8B9, 0x0000633D}, +{0x0002F8BA, 0x000062FC}, {0x0002F8BB, 0x00006368}, {0x0002F8BC, 0x00006383}, {0x0002F8BD, 0x000063E4}, +{0x0002F8BE, 0x00022BF1}, {0x0002F8BF, 0x00006422}, {0x0002F8C0, 0x000063C5}, {0x0002F8C1, 0x000063A9}, +{0x0002F8C2, 0x00003A2E}, {0x0002F8C3, 0x00006469}, {0x0002F8C4, 0x0000647E}, {0x0002F8C5, 0x0000649D}, +{0x0002F8C6, 0x00006477}, {0x0002F8C7, 0x00003A6C}, {0x0002F8C8, 0x0000654F}, {0x0002F8C9, 0x0000656C}, +{0x0002F8CA, 0x0002300A}, {0x0002F8CB, 0x000065E3}, {0x0002F8CC, 0x000066F8}, {0x0002F8CD, 0x00006649}, +{0x0002F8CE, 0x00003B19}, {0x0002F8CF, 0x00006691}, {0x0002F8D0, 0x00003B08}, {0x0002F8D1, 0x00003AE4}, +{0x0002F8D2, 0x00005192}, {0x0002F8D3, 0x00005195}, {0x0002F8D4, 0x00006700}, {0x0002F8D5, 0x0000669C}, +{0x0002F8D6, 0x000080AD}, {0x0002F8D7, 0x000043D9}, {0x0002F8D8, 0x00006717}, {0x0002F8D9, 0x0000671B}, +{0x0002F8DA, 0x00006721}, {0x0002F8DB, 0x0000675E}, {0x0002F8DC, 0x00006753}, {0x0002F8DD, 0x000233C3}, +{0x0002F8DE, 0x00003B49}, {0x0002F8DF, 0x000067FA}, {0x0002F8E0, 0x00006785}, {0x0002F8E1, 0x00006852}, +{0x0002F8E2, 0x00006885}, {0x0002F8E3, 0x0002346D}, {0x0002F8E4, 0x0000688E}, {0x0002F8E5, 0x0000681F}, +{0x0002F8E6, 0x00006914}, {0x0002F8E7, 0x00003B9D}, {0x0002F8E8, 0x00006942}, {0x0002F8E9, 0x000069A3}, +{0x0002F8EA, 0x000069EA}, {0x0002F8EB, 0x00006AA8}, {0x0002F8EC, 0x000236A3}, {0x0002F8ED, 0x00006ADB}, +{0x0002F8EE, 0x00003C18}, {0x0002F8EF, 0x00006B21}, {0x0002F8F0, 0x000238A7}, {0x0002F8F1, 0x00006B54}, +{0x0002F8F2, 0x00003C4E}, {0x0002F8F3, 0x00006B72}, {0x0002F8F4, 0x00006B9F}, {0x0002F8F5, 0x00006BBA}, +{0x0002F8F6, 0x00006BBB}, {0x0002F8F7, 0x00023A8D}, {0x0002F8F8, 0x00021D0B}, {0x0002F8F9, 0x00023AFA}, +{0x0002F8FA, 0x00006C4E}, {0x0002F8FB, 0x00023CBC}, {0x0002F8FC, 0x00006CBF}, {0x0002F8FD, 0x00006CCD}, +{0x0002F8FE, 0x00006C67}, {0x0002F8FF, 0x00006D16}, {0x0002F900, 0x00006D3E}, {0x0002F901, 0x00006D77}, +{0x0002F902, 0x00006D41}, {0x0002F903, 0x00006D69}, {0x0002F904, 0x00006D78}, {0x0002F905, 0x00006D85}, +{0x0002F906, 0x00023D1E}, {0x0002F907, 0x00006D34}, {0x0002F908, 0x00006E2F}, {0x0002F909, 0x00006E6E}, +{0x0002F90A, 0x00003D33}, {0x0002F90B, 0x00006ECB}, {0x0002F90C, 0x00006EC7}, {0x0002F90D, 0x00023ED1}, +{0x0002F90E, 0x00006DF9}, {0x0002F90F, 0x00006F6E}, {0x0002F910, 0x00023F5E}, {0x0002F911, 0x00023F8E}, +{0x0002F912, 0x00006FC6}, {0x0002F913, 0x00007039}, {0x0002F914, 0x0000701E}, {0x0002F915, 0x0000701B}, +{0x0002F916, 0x00003D96}, {0x0002F917, 0x0000704A}, {0x0002F918, 0x0000707D}, {0x0002F919, 0x00007077}, +{0x0002F91A, 0x000070AD}, {0x0002F91B, 0x00020525}, {0x0002F91C, 0x00007145}, {0x0002F91D, 0x00024263}, +{0x0002F91E, 0x0000719C}, {0x0002F91F, 0x000243AB}, {0x0002F920, 0x00007228}, {0x0002F921, 0x00007235}, +{0x0002F922, 0x00007250}, {0x0002F923, 0x00024608}, {0x0002F924, 0x00007280}, {0x0002F925, 0x00007295}, +{0x0002F926, 0x00024735}, {0x0002F927, 0x00024814}, {0x0002F928, 0x0000737A}, {0x0002F929, 0x0000738B}, +{0x0002F92A, 0x00003EAC}, {0x0002F92B, 0x000073A5}, {0x0002F92C, 0x00003EB8}, {0x0002F92D, 0x00003EB8}, +{0x0002F92E, 0x00007447}, {0x0002F92F, 0x0000745C}, {0x0002F930, 0x00007471}, {0x0002F931, 0x00007485}, +{0x0002F932, 0x000074CA}, {0x0002F933, 0x00003F1B}, {0x0002F934, 0x00007524}, {0x0002F935, 0x00024C36}, +{0x0002F936, 0x0000753E}, {0x0002F937, 0x00024C92}, {0x0002F938, 0x00007570}, {0x0002F939, 0x0002219F}, +{0x0002F93A, 0x00007610}, {0x0002F93B, 0x00024FA1}, {0x0002F93C, 0x00024FB8}, {0x0002F93D, 0x00025044}, +{0x0002F93E, 0x00003FFC}, {0x0002F93F, 0x00004008}, {0x0002F940, 0x000076F4}, {0x0002F941, 0x000250F3}, +{0x0002F942, 0x000250F2}, {0x0002F943, 0x00025119}, {0x0002F944, 0x00025133}, {0x0002F945, 0x0000771E}, +{0x0002F946, 0x0000771F}, {0x0002F947, 0x0000771F}, {0x0002F948, 0x0000774A}, {0x0002F949, 0x00004039}, +{0x0002F94A, 0x0000778B}, {0x0002F94B, 0x00004046}, {0x0002F94C, 0x00004096}, {0x0002F94D, 0x0002541D}, +{0x0002F94E, 0x0000784E}, {0x0002F94F, 0x0000788C}, {0x0002F950, 0x000078CC}, {0x0002F951, 0x000040E3}, +{0x0002F952, 0x00025626}, {0x0002F953, 0x00007956}, {0x0002F954, 0x0002569A}, {0x0002F955, 0x000256C5}, +{0x0002F956, 0x0000798F}, {0x0002F957, 0x000079EB}, {0x0002F958, 0x0000412F}, {0x0002F959, 0x00007A40}, +{0x0002F95A, 0x00007A4A}, {0x0002F95B, 0x00007A4F}, {0x0002F95C, 0x0002597C}, {0x0002F95D, 0x00025AA7}, +{0x0002F95E, 0x00025AA7}, {0x0002F95F, 0x00007AEE}, {0x0002F960, 0x00004202}, {0x0002F961, 0x00025BAB}, +{0x0002F962, 0x00007BC6}, {0x0002F963, 0x00007BC9}, {0x0002F964, 0x00004227}, {0x0002F965, 0x00025C80}, +{0x0002F966, 0x00007CD2}, {0x0002F967, 0x000042A0}, {0x0002F968, 0x00007CE8}, {0x0002F969, 0x00007CE3}, +{0x0002F96A, 0x00007D00}, {0x0002F96B, 0x00025F86}, {0x0002F96C, 0x00007D63}, {0x0002F96D, 0x00004301}, +{0x0002F96E, 0x00007DC7}, {0x0002F96F, 0x00007E02}, {0x0002F970, 0x00007E45}, {0x0002F971, 0x00004334}, +{0x0002F972, 0x00026228}, {0x0002F973, 0x00026247}, {0x0002F974, 0x00004359}, {0x0002F975, 0x000262D9}, +{0x0002F976, 0x00007F7A}, {0x0002F977, 0x0002633E}, {0x0002F978, 0x00007F95}, {0x0002F979, 0x00007FFA}, +{0x0002F97A, 0x00008005}, {0x0002F97B, 0x000264DA}, {0x0002F97C, 0x00026523}, {0x0002F97D, 0x00008060}, +{0x0002F97E, 0x000265A8}, {0x0002F97F, 0x00008070}, {0x0002F980, 0x0002335F}, {0x0002F981, 0x000043D5}, +{0x0002F982, 0x000080B2}, {0x0002F983, 0x00008103}, {0x0002F984, 0x0000440B}, {0x0002F985, 0x0000813E}, +{0x0002F986, 0x00005AB5}, {0x0002F987, 0x000267A7}, {0x0002F988, 0x000267B5}, {0x0002F989, 0x00023393}, +{0x0002F98A, 0x0002339C}, {0x0002F98B, 0x00008201}, {0x0002F98C, 0x00008204}, {0x0002F98D, 0x00008F9E}, +{0x0002F98E, 0x0000446B}, {0x0002F98F, 0x00008291}, {0x0002F990, 0x0000828B}, {0x0002F991, 0x0000829D}, +{0x0002F992, 0x000052B3}, {0x0002F993, 0x000082B1}, {0x0002F994, 0x000082B3}, {0x0002F995, 0x000082BD}, +{0x0002F996, 0x000082E6}, {0x0002F997, 0x00026B3C}, {0x0002F998, 0x000082E5}, {0x0002F999, 0x0000831D}, +{0x0002F99A, 0x00008363}, {0x0002F99B, 0x000083AD}, {0x0002F99C, 0x00008323}, {0x0002F99D, 0x000083BD}, +{0x0002F99E, 0x000083E7}, {0x0002F99F, 0x00008457}, {0x0002F9A0, 0x00008353}, {0x0002F9A1, 0x000083CA}, +{0x0002F9A2, 0x000083CC}, {0x0002F9A3, 0x000083DC}, {0x0002F9A4, 0x00026C36}, {0x0002F9A5, 0x00026D6B}, +{0x0002F9A6, 0x00026CD5}, {0x0002F9A7, 0x0000452B}, {0x0002F9A8, 0x000084F1}, {0x0002F9A9, 0x000084F3}, +{0x0002F9AA, 0x00008516}, {0x0002F9AB, 0x000273CA}, {0x0002F9AC, 0x00008564}, {0x0002F9AD, 0x00026F2C}, +{0x0002F9AE, 0x0000455D}, {0x0002F9AF, 0x00004561}, {0x0002F9B0, 0x00026FB1}, {0x0002F9B1, 0x000270D2}, +{0x0002F9B2, 0x0000456B}, {0x0002F9B3, 0x00008650}, {0x0002F9B4, 0x0000865C}, {0x0002F9B5, 0x00008667}, +{0x0002F9B6, 0x00008669}, {0x0002F9B7, 0x000086A9}, {0x0002F9B8, 0x00008688}, {0x0002F9B9, 0x0000870E}, +{0x0002F9BA, 0x000086E2}, {0x0002F9BB, 0x00008779}, {0x0002F9BC, 0x00008728}, {0x0002F9BD, 0x0000876B}, +{0x0002F9BE, 0x00008786}, {0x0002F9BF, 0x000045D7}, {0x0002F9C0, 0x000087E1}, {0x0002F9C1, 0x00008801}, +{0x0002F9C2, 0x000045F9}, {0x0002F9C3, 0x00008860}, {0x0002F9C4, 0x00008863}, {0x0002F9C5, 0x00027667}, +{0x0002F9C6, 0x000088D7}, {0x0002F9C7, 0x000088DE}, {0x0002F9C8, 0x00004635}, {0x0002F9C9, 0x000088FA}, +{0x0002F9CA, 0x000034BB}, {0x0002F9CB, 0x000278AE}, {0x0002F9CC, 0x00027966}, {0x0002F9CD, 0x000046BE}, +{0x0002F9CE, 0x000046C7}, {0x0002F9CF, 0x00008AA0}, {0x0002F9D0, 0x00008AED}, {0x0002F9D1, 0x00008B8A}, +{0x0002F9D2, 0x00008C55}, {0x0002F9D3, 0x00027CA8}, {0x0002F9D4, 0x00008CAB}, {0x0002F9D5, 0x00008CC1}, +{0x0002F9D6, 0x00008D1B}, {0x0002F9D7, 0x00008D77}, {0x0002F9D8, 0x00027F2F}, {0x0002F9D9, 0x00020804}, +{0x0002F9DA, 0x00008DCB}, {0x0002F9DB, 0x00008DBC}, {0x0002F9DC, 0x00008DF0}, {0x0002F9DD, 0x000208DE}, +{0x0002F9DE, 0x00008ED4}, {0x0002F9DF, 0x00008F38}, {0x0002F9E0, 0x000285D2}, {0x0002F9E1, 0x000285ED}, +{0x0002F9E2, 0x00009094}, {0x0002F9E3, 0x000090F1}, {0x0002F9E4, 0x00009111}, {0x0002F9E5, 0x0002872E}, +{0x0002F9E6, 0x0000911B}, {0x0002F9E7, 0x00009238}, {0x0002F9E8, 0x000092D7}, {0x0002F9E9, 0x000092D8}, +{0x0002F9EA, 0x0000927C}, {0x0002F9EB, 0x000093F9}, {0x0002F9EC, 0x00009415}, {0x0002F9ED, 0x00028BFA}, +{0x0002F9EE, 0x0000958B}, {0x0002F9EF, 0x00004995}, {0x0002F9F0, 0x000095B7}, {0x0002F9F1, 0x00028D77}, +{0x0002F9F2, 0x000049E6}, {0x0002F9F3, 0x000096C3}, {0x0002F9F4, 0x00005DB2}, {0x0002F9F5, 0x00009723}, +{0x0002F9F6, 0x00029145}, {0x0002F9F7, 0x0002921A}, {0x0002F9F8, 0x00004A6E}, {0x0002F9F9, 0x00004A76}, +{0x0002F9FA, 0x000097E0}, {0x0002F9FB, 0x0002940A}, {0x0002F9FC, 0x00004AB2}, {0x0002F9FD, 0x00029496}, +{0x0002F9FE, 0x0000980B}, {0x0002F9FF, 0x0000980B}, {0x0002FA00, 0x00009829}, {0x0002FA01, 0x000295B6}, +{0x0002FA02, 0x000098E2}, {0x0002FA03, 0x00004B33}, {0x0002FA04, 0x00009929}, {0x0002FA05, 0x000099A7}, +{0x0002FA06, 0x000099C2}, {0x0002FA07, 0x000099FE}, {0x0002FA08, 0x00004BCE}, {0x0002FA09, 0x00029B30}, +{0x0002FA0A, 0x00009B12}, {0x0002FA0B, 0x00009C40}, {0x0002FA0C, 0x00009CFD}, {0x0002FA0D, 0x00004CCE}, +{0x0002FA0E, 0x00004CED}, {0x0002FA0F, 0x00009D67}, {0x0002FA10, 0x0002A0CE}, {0x0002FA11, 0x00004CF8}, +{0x0002FA12, 0x0002A105}, {0x0002FA13, 0x0002A20E}, {0x0002FA14, 0x0002A291}, {0x0002FA15, 0x00009EBB}, +{0x0002FA16, 0x00004D56}, {0x0002FA17, 0x00009EF9}, {0x0002FA18, 0x00009EFE}, {0x0002FA19, 0x00009F05}, +{0x0002FA1A, 0x00009F0F}, {0x0002FA1B, 0x00009F16}, {0x0002FA1D, 0x0002A600}, +}; + +const std::map unicode_map_lowercase = { +{0x00041, 0x00061}, {0x00042, 0x00062}, {0x00043, 0x00063}, {0x00044, 0x00064}, {0x00045, 0x00065}, {0x00046, 0x00066}, +{0x00047, 0x00067}, {0x00048, 0x00068}, {0x00049, 0x00069}, {0x0004A, 0x0006A}, {0x0004B, 0x0006B}, {0x0004C, 0x0006C}, +{0x0004D, 0x0006D}, {0x0004E, 0x0006E}, {0x0004F, 0x0006F}, {0x00050, 0x00070}, {0x00051, 0x00071}, {0x00052, 0x00072}, +{0x00053, 0x00073}, {0x00054, 0x00074}, {0x00055, 0x00075}, {0x00056, 0x00076}, {0x00057, 0x00077}, {0x00058, 0x00078}, +{0x00059, 0x00079}, {0x0005A, 0x0007A}, {0x000C0, 0x000E0}, {0x000C1, 0x000E1}, {0x000C2, 0x000E2}, {0x000C3, 0x000E3}, +{0x000C4, 0x000E4}, {0x000C5, 0x000E5}, {0x000C6, 0x000E6}, {0x000C7, 0x000E7}, {0x000C8, 0x000E8}, {0x000C9, 0x000E9}, +{0x000CA, 0x000EA}, {0x000CB, 0x000EB}, {0x000CC, 0x000EC}, {0x000CD, 0x000ED}, {0x000CE, 0x000EE}, {0x000CF, 0x000EF}, +{0x000D0, 0x000F0}, {0x000D1, 0x000F1}, {0x000D2, 0x000F2}, {0x000D3, 0x000F3}, {0x000D4, 0x000F4}, {0x000D5, 0x000F5}, +{0x000D6, 0x000F6}, {0x000D8, 0x000F8}, {0x000D9, 0x000F9}, {0x000DA, 0x000FA}, {0x000DB, 0x000FB}, {0x000DC, 0x000FC}, +{0x000DD, 0x000FD}, {0x000DE, 0x000FE}, {0x00100, 0x00101}, {0x00102, 0x00103}, {0x00104, 0x00105}, {0x00106, 0x00107}, +{0x00108, 0x00109}, {0x0010A, 0x0010B}, {0x0010C, 0x0010D}, {0x0010E, 0x0010F}, {0x00110, 0x00111}, {0x00112, 0x00113}, +{0x00114, 0x00115}, {0x00116, 0x00117}, {0x00118, 0x00119}, {0x0011A, 0x0011B}, {0x0011C, 0x0011D}, {0x0011E, 0x0011F}, +{0x00120, 0x00121}, {0x00122, 0x00123}, {0x00124, 0x00125}, {0x00126, 0x00127}, {0x00128, 0x00129}, {0x0012A, 0x0012B}, +{0x0012C, 0x0012D}, {0x0012E, 0x0012F}, {0x00130, 0x00069}, {0x00132, 0x00133}, {0x00134, 0x00135}, {0x00136, 0x00137}, +{0x00139, 0x0013A}, {0x0013B, 0x0013C}, {0x0013D, 0x0013E}, {0x0013F, 0x00140}, {0x00141, 0x00142}, {0x00143, 0x00144}, +{0x00145, 0x00146}, {0x00147, 0x00148}, {0x0014A, 0x0014B}, {0x0014C, 0x0014D}, {0x0014E, 0x0014F}, {0x00150, 0x00151}, +{0x00152, 0x00153}, {0x00154, 0x00155}, {0x00156, 0x00157}, {0x00158, 0x00159}, {0x0015A, 0x0015B}, {0x0015C, 0x0015D}, +{0x0015E, 0x0015F}, {0x00160, 0x00161}, {0x00162, 0x00163}, {0x00164, 0x00165}, {0x00166, 0x00167}, {0x00168, 0x00169}, +{0x0016A, 0x0016B}, {0x0016C, 0x0016D}, {0x0016E, 0x0016F}, {0x00170, 0x00171}, {0x00172, 0x00173}, {0x00174, 0x00175}, +{0x00176, 0x00177}, {0x00178, 0x000FF}, {0x00179, 0x0017A}, {0x0017B, 0x0017C}, {0x0017D, 0x0017E}, {0x00181, 0x00253}, +{0x00182, 0x00183}, {0x00184, 0x00185}, {0x00186, 0x00254}, {0x00187, 0x00188}, {0x00189, 0x00256}, {0x0018A, 0x00257}, +{0x0018B, 0x0018C}, {0x0018E, 0x001DD}, {0x0018F, 0x00259}, {0x00190, 0x0025B}, {0x00191, 0x00192}, {0x00193, 0x00260}, +{0x00194, 0x00263}, {0x00196, 0x00269}, {0x00197, 0x00268}, {0x00198, 0x00199}, {0x0019C, 0x0026F}, {0x0019D, 0x00272}, +{0x0019F, 0x00275}, {0x001A0, 0x001A1}, {0x001A2, 0x001A3}, {0x001A4, 0x001A5}, {0x001A6, 0x00280}, {0x001A7, 0x001A8}, +{0x001A9, 0x00283}, {0x001AC, 0x001AD}, {0x001AE, 0x00288}, {0x001AF, 0x001B0}, {0x001B1, 0x0028A}, {0x001B2, 0x0028B}, +{0x001B3, 0x001B4}, {0x001B5, 0x001B6}, {0x001B7, 0x00292}, {0x001B8, 0x001B9}, {0x001BC, 0x001BD}, {0x001C4, 0x001C6}, +{0x001C5, 0x001C6}, {0x001C7, 0x001C9}, {0x001C8, 0x001C9}, {0x001CA, 0x001CC}, {0x001CB, 0x001CC}, {0x001CD, 0x001CE}, +{0x001CF, 0x001D0}, {0x001D1, 0x001D2}, {0x001D3, 0x001D4}, {0x001D5, 0x001D6}, {0x001D7, 0x001D8}, {0x001D9, 0x001DA}, +{0x001DB, 0x001DC}, {0x001DE, 0x001DF}, {0x001E0, 0x001E1}, {0x001E2, 0x001E3}, {0x001E4, 0x001E5}, {0x001E6, 0x001E7}, +{0x001E8, 0x001E9}, {0x001EA, 0x001EB}, {0x001EC, 0x001ED}, {0x001EE, 0x001EF}, {0x001F1, 0x001F3}, {0x001F2, 0x001F3}, +{0x001F4, 0x001F5}, {0x001F6, 0x00195}, {0x001F7, 0x001BF}, {0x001F8, 0x001F9}, {0x001FA, 0x001FB}, {0x001FC, 0x001FD}, +{0x001FE, 0x001FF}, {0x00200, 0x00201}, {0x00202, 0x00203}, {0x00204, 0x00205}, {0x00206, 0x00207}, {0x00208, 0x00209}, +{0x0020A, 0x0020B}, {0x0020C, 0x0020D}, {0x0020E, 0x0020F}, {0x00210, 0x00211}, {0x00212, 0x00213}, {0x00214, 0x00215}, +{0x00216, 0x00217}, {0x00218, 0x00219}, {0x0021A, 0x0021B}, {0x0021C, 0x0021D}, {0x0021E, 0x0021F}, {0x00220, 0x0019E}, +{0x00222, 0x00223}, {0x00224, 0x00225}, {0x00226, 0x00227}, {0x00228, 0x00229}, {0x0022A, 0x0022B}, {0x0022C, 0x0022D}, +{0x0022E, 0x0022F}, {0x00230, 0x00231}, {0x00232, 0x00233}, {0x0023A, 0x02C65}, {0x0023B, 0x0023C}, {0x0023D, 0x0019A}, +{0x0023E, 0x02C66}, {0x00241, 0x00242}, {0x00243, 0x00180}, {0x00244, 0x00289}, {0x00245, 0x0028C}, {0x00246, 0x00247}, +{0x00248, 0x00249}, {0x0024A, 0x0024B}, {0x0024C, 0x0024D}, {0x0024E, 0x0024F}, {0x00370, 0x00371}, {0x00372, 0x00373}, +{0x00376, 0x00377}, {0x0037F, 0x003F3}, {0x00386, 0x003AC}, {0x00388, 0x003AD}, {0x00389, 0x003AE}, {0x0038A, 0x003AF}, +{0x0038C, 0x003CC}, {0x0038E, 0x003CD}, {0x0038F, 0x003CE}, {0x00391, 0x003B1}, {0x00392, 0x003B2}, {0x00393, 0x003B3}, +{0x00394, 0x003B4}, {0x00395, 0x003B5}, {0x00396, 0x003B6}, {0x00397, 0x003B7}, {0x00398, 0x003B8}, {0x00399, 0x003B9}, +{0x0039A, 0x003BA}, {0x0039B, 0x003BB}, {0x0039C, 0x003BC}, {0x0039D, 0x003BD}, {0x0039E, 0x003BE}, {0x0039F, 0x003BF}, +{0x003A0, 0x003C0}, {0x003A1, 0x003C1}, {0x003A3, 0x003C3}, {0x003A4, 0x003C4}, {0x003A5, 0x003C5}, {0x003A6, 0x003C6}, +{0x003A7, 0x003C7}, {0x003A8, 0x003C8}, {0x003A9, 0x003C9}, {0x003AA, 0x003CA}, {0x003AB, 0x003CB}, {0x003CF, 0x003D7}, +{0x003D8, 0x003D9}, {0x003DA, 0x003DB}, {0x003DC, 0x003DD}, {0x003DE, 0x003DF}, {0x003E0, 0x003E1}, {0x003E2, 0x003E3}, +{0x003E4, 0x003E5}, {0x003E6, 0x003E7}, {0x003E8, 0x003E9}, {0x003EA, 0x003EB}, {0x003EC, 0x003ED}, {0x003EE, 0x003EF}, +{0x003F4, 0x003B8}, {0x003F7, 0x003F8}, {0x003F9, 0x003F2}, {0x003FA, 0x003FB}, {0x003FD, 0x0037B}, {0x003FE, 0x0037C}, +{0x003FF, 0x0037D}, {0x00400, 0x00450}, {0x00401, 0x00451}, {0x00402, 0x00452}, {0x00403, 0x00453}, {0x00404, 0x00454}, +{0x00405, 0x00455}, {0x00406, 0x00456}, {0x00407, 0x00457}, {0x00408, 0x00458}, {0x00409, 0x00459}, {0x0040A, 0x0045A}, +{0x0040B, 0x0045B}, {0x0040C, 0x0045C}, {0x0040D, 0x0045D}, {0x0040E, 0x0045E}, {0x0040F, 0x0045F}, {0x00410, 0x00430}, +{0x00411, 0x00431}, {0x00412, 0x00432}, {0x00413, 0x00433}, {0x00414, 0x00434}, {0x00415, 0x00435}, {0x00416, 0x00436}, +{0x00417, 0x00437}, {0x00418, 0x00438}, {0x00419, 0x00439}, {0x0041A, 0x0043A}, {0x0041B, 0x0043B}, {0x0041C, 0x0043C}, +{0x0041D, 0x0043D}, {0x0041E, 0x0043E}, {0x0041F, 0x0043F}, {0x00420, 0x00440}, {0x00421, 0x00441}, {0x00422, 0x00442}, +{0x00423, 0x00443}, {0x00424, 0x00444}, {0x00425, 0x00445}, {0x00426, 0x00446}, {0x00427, 0x00447}, {0x00428, 0x00448}, +{0x00429, 0x00449}, {0x0042A, 0x0044A}, {0x0042B, 0x0044B}, {0x0042C, 0x0044C}, {0x0042D, 0x0044D}, {0x0042E, 0x0044E}, +{0x0042F, 0x0044F}, {0x00460, 0x00461}, {0x00462, 0x00463}, {0x00464, 0x00465}, {0x00466, 0x00467}, {0x00468, 0x00469}, +{0x0046A, 0x0046B}, {0x0046C, 0x0046D}, {0x0046E, 0x0046F}, {0x00470, 0x00471}, {0x00472, 0x00473}, {0x00474, 0x00475}, +{0x00476, 0x00477}, {0x00478, 0x00479}, {0x0047A, 0x0047B}, {0x0047C, 0x0047D}, {0x0047E, 0x0047F}, {0x00480, 0x00481}, +{0x0048A, 0x0048B}, {0x0048C, 0x0048D}, {0x0048E, 0x0048F}, {0x00490, 0x00491}, {0x00492, 0x00493}, {0x00494, 0x00495}, +{0x00496, 0x00497}, {0x00498, 0x00499}, {0x0049A, 0x0049B}, {0x0049C, 0x0049D}, {0x0049E, 0x0049F}, {0x004A0, 0x004A1}, +{0x004A2, 0x004A3}, {0x004A4, 0x004A5}, {0x004A6, 0x004A7}, {0x004A8, 0x004A9}, {0x004AA, 0x004AB}, {0x004AC, 0x004AD}, +{0x004AE, 0x004AF}, {0x004B0, 0x004B1}, {0x004B2, 0x004B3}, {0x004B4, 0x004B5}, {0x004B6, 0x004B7}, {0x004B8, 0x004B9}, +{0x004BA, 0x004BB}, {0x004BC, 0x004BD}, {0x004BE, 0x004BF}, {0x004C0, 0x004CF}, {0x004C1, 0x004C2}, {0x004C3, 0x004C4}, +{0x004C5, 0x004C6}, {0x004C7, 0x004C8}, {0x004C9, 0x004CA}, {0x004CB, 0x004CC}, {0x004CD, 0x004CE}, {0x004D0, 0x004D1}, +{0x004D2, 0x004D3}, {0x004D4, 0x004D5}, {0x004D6, 0x004D7}, {0x004D8, 0x004D9}, {0x004DA, 0x004DB}, {0x004DC, 0x004DD}, +{0x004DE, 0x004DF}, {0x004E0, 0x004E1}, {0x004E2, 0x004E3}, {0x004E4, 0x004E5}, {0x004E6, 0x004E7}, {0x004E8, 0x004E9}, +{0x004EA, 0x004EB}, {0x004EC, 0x004ED}, {0x004EE, 0x004EF}, {0x004F0, 0x004F1}, {0x004F2, 0x004F3}, {0x004F4, 0x004F5}, +{0x004F6, 0x004F7}, {0x004F8, 0x004F9}, {0x004FA, 0x004FB}, {0x004FC, 0x004FD}, {0x004FE, 0x004FF}, {0x00500, 0x00501}, +{0x00502, 0x00503}, {0x00504, 0x00505}, {0x00506, 0x00507}, {0x00508, 0x00509}, {0x0050A, 0x0050B}, {0x0050C, 0x0050D}, +{0x0050E, 0x0050F}, {0x00510, 0x00511}, {0x00512, 0x00513}, {0x00514, 0x00515}, {0x00516, 0x00517}, {0x00518, 0x00519}, +{0x0051A, 0x0051B}, {0x0051C, 0x0051D}, {0x0051E, 0x0051F}, {0x00520, 0x00521}, {0x00522, 0x00523}, {0x00524, 0x00525}, +{0x00526, 0x00527}, {0x00528, 0x00529}, {0x0052A, 0x0052B}, {0x0052C, 0x0052D}, {0x0052E, 0x0052F}, {0x00531, 0x00561}, +{0x00532, 0x00562}, {0x00533, 0x00563}, {0x00534, 0x00564}, {0x00535, 0x00565}, {0x00536, 0x00566}, {0x00537, 0x00567}, +{0x00538, 0x00568}, {0x00539, 0x00569}, {0x0053A, 0x0056A}, {0x0053B, 0x0056B}, {0x0053C, 0x0056C}, {0x0053D, 0x0056D}, +{0x0053E, 0x0056E}, {0x0053F, 0x0056F}, {0x00540, 0x00570}, {0x00541, 0x00571}, {0x00542, 0x00572}, {0x00543, 0x00573}, +{0x00544, 0x00574}, {0x00545, 0x00575}, {0x00546, 0x00576}, {0x00547, 0x00577}, {0x00548, 0x00578}, {0x00549, 0x00579}, +{0x0054A, 0x0057A}, {0x0054B, 0x0057B}, {0x0054C, 0x0057C}, {0x0054D, 0x0057D}, {0x0054E, 0x0057E}, {0x0054F, 0x0057F}, +{0x00550, 0x00580}, {0x00551, 0x00581}, {0x00552, 0x00582}, {0x00553, 0x00583}, {0x00554, 0x00584}, {0x00555, 0x00585}, +{0x00556, 0x00586}, {0x010A0, 0x02D00}, {0x010A1, 0x02D01}, {0x010A2, 0x02D02}, {0x010A3, 0x02D03}, {0x010A4, 0x02D04}, +{0x010A5, 0x02D05}, {0x010A6, 0x02D06}, {0x010A7, 0x02D07}, {0x010A8, 0x02D08}, {0x010A9, 0x02D09}, {0x010AA, 0x02D0A}, +{0x010AB, 0x02D0B}, {0x010AC, 0x02D0C}, {0x010AD, 0x02D0D}, {0x010AE, 0x02D0E}, {0x010AF, 0x02D0F}, {0x010B0, 0x02D10}, +{0x010B1, 0x02D11}, {0x010B2, 0x02D12}, {0x010B3, 0x02D13}, {0x010B4, 0x02D14}, {0x010B5, 0x02D15}, {0x010B6, 0x02D16}, +{0x010B7, 0x02D17}, {0x010B8, 0x02D18}, {0x010B9, 0x02D19}, {0x010BA, 0x02D1A}, {0x010BB, 0x02D1B}, {0x010BC, 0x02D1C}, +{0x010BD, 0x02D1D}, {0x010BE, 0x02D1E}, {0x010BF, 0x02D1F}, {0x010C0, 0x02D20}, {0x010C1, 0x02D21}, {0x010C2, 0x02D22}, +{0x010C3, 0x02D23}, {0x010C4, 0x02D24}, {0x010C5, 0x02D25}, {0x010C7, 0x02D27}, {0x010CD, 0x02D2D}, {0x013A0, 0x0AB70}, +{0x013A1, 0x0AB71}, {0x013A2, 0x0AB72}, {0x013A3, 0x0AB73}, {0x013A4, 0x0AB74}, {0x013A5, 0x0AB75}, {0x013A6, 0x0AB76}, +{0x013A7, 0x0AB77}, {0x013A8, 0x0AB78}, {0x013A9, 0x0AB79}, {0x013AA, 0x0AB7A}, {0x013AB, 0x0AB7B}, {0x013AC, 0x0AB7C}, +{0x013AD, 0x0AB7D}, {0x013AE, 0x0AB7E}, {0x013AF, 0x0AB7F}, {0x013B0, 0x0AB80}, {0x013B1, 0x0AB81}, {0x013B2, 0x0AB82}, +{0x013B3, 0x0AB83}, {0x013B4, 0x0AB84}, {0x013B5, 0x0AB85}, {0x013B6, 0x0AB86}, {0x013B7, 0x0AB87}, {0x013B8, 0x0AB88}, +{0x013B9, 0x0AB89}, {0x013BA, 0x0AB8A}, {0x013BB, 0x0AB8B}, {0x013BC, 0x0AB8C}, {0x013BD, 0x0AB8D}, {0x013BE, 0x0AB8E}, +{0x013BF, 0x0AB8F}, {0x013C0, 0x0AB90}, {0x013C1, 0x0AB91}, {0x013C2, 0x0AB92}, {0x013C3, 0x0AB93}, {0x013C4, 0x0AB94}, +{0x013C5, 0x0AB95}, {0x013C6, 0x0AB96}, {0x013C7, 0x0AB97}, {0x013C8, 0x0AB98}, {0x013C9, 0x0AB99}, {0x013CA, 0x0AB9A}, +{0x013CB, 0x0AB9B}, {0x013CC, 0x0AB9C}, {0x013CD, 0x0AB9D}, {0x013CE, 0x0AB9E}, {0x013CF, 0x0AB9F}, {0x013D0, 0x0ABA0}, +{0x013D1, 0x0ABA1}, {0x013D2, 0x0ABA2}, {0x013D3, 0x0ABA3}, {0x013D4, 0x0ABA4}, {0x013D5, 0x0ABA5}, {0x013D6, 0x0ABA6}, +{0x013D7, 0x0ABA7}, {0x013D8, 0x0ABA8}, {0x013D9, 0x0ABA9}, {0x013DA, 0x0ABAA}, {0x013DB, 0x0ABAB}, {0x013DC, 0x0ABAC}, +{0x013DD, 0x0ABAD}, {0x013DE, 0x0ABAE}, {0x013DF, 0x0ABAF}, {0x013E0, 0x0ABB0}, {0x013E1, 0x0ABB1}, {0x013E2, 0x0ABB2}, +{0x013E3, 0x0ABB3}, {0x013E4, 0x0ABB4}, {0x013E5, 0x0ABB5}, {0x013E6, 0x0ABB6}, {0x013E7, 0x0ABB7}, {0x013E8, 0x0ABB8}, +{0x013E9, 0x0ABB9}, {0x013EA, 0x0ABBA}, {0x013EB, 0x0ABBB}, {0x013EC, 0x0ABBC}, {0x013ED, 0x0ABBD}, {0x013EE, 0x0ABBE}, +{0x013EF, 0x0ABBF}, {0x013F0, 0x013F8}, {0x013F1, 0x013F9}, {0x013F2, 0x013FA}, {0x013F3, 0x013FB}, {0x013F4, 0x013FC}, +{0x013F5, 0x013FD}, {0x01C90, 0x010D0}, {0x01C91, 0x010D1}, {0x01C92, 0x010D2}, {0x01C93, 0x010D3}, {0x01C94, 0x010D4}, +{0x01C95, 0x010D5}, {0x01C96, 0x010D6}, {0x01C97, 0x010D7}, {0x01C98, 0x010D8}, {0x01C99, 0x010D9}, {0x01C9A, 0x010DA}, +{0x01C9B, 0x010DB}, {0x01C9C, 0x010DC}, {0x01C9D, 0x010DD}, {0x01C9E, 0x010DE}, {0x01C9F, 0x010DF}, {0x01CA0, 0x010E0}, +{0x01CA1, 0x010E1}, {0x01CA2, 0x010E2}, {0x01CA3, 0x010E3}, {0x01CA4, 0x010E4}, {0x01CA5, 0x010E5}, {0x01CA6, 0x010E6}, +{0x01CA7, 0x010E7}, {0x01CA8, 0x010E8}, {0x01CA9, 0x010E9}, {0x01CAA, 0x010EA}, {0x01CAB, 0x010EB}, {0x01CAC, 0x010EC}, +{0x01CAD, 0x010ED}, {0x01CAE, 0x010EE}, {0x01CAF, 0x010EF}, {0x01CB0, 0x010F0}, {0x01CB1, 0x010F1}, {0x01CB2, 0x010F2}, +{0x01CB3, 0x010F3}, {0x01CB4, 0x010F4}, {0x01CB5, 0x010F5}, {0x01CB6, 0x010F6}, {0x01CB7, 0x010F7}, {0x01CB8, 0x010F8}, +{0x01CB9, 0x010F9}, {0x01CBA, 0x010FA}, {0x01CBD, 0x010FD}, {0x01CBE, 0x010FE}, {0x01CBF, 0x010FF}, {0x01E00, 0x01E01}, +{0x01E02, 0x01E03}, {0x01E04, 0x01E05}, {0x01E06, 0x01E07}, {0x01E08, 0x01E09}, {0x01E0A, 0x01E0B}, {0x01E0C, 0x01E0D}, +{0x01E0E, 0x01E0F}, {0x01E10, 0x01E11}, {0x01E12, 0x01E13}, {0x01E14, 0x01E15}, {0x01E16, 0x01E17}, {0x01E18, 0x01E19}, +{0x01E1A, 0x01E1B}, {0x01E1C, 0x01E1D}, {0x01E1E, 0x01E1F}, {0x01E20, 0x01E21}, {0x01E22, 0x01E23}, {0x01E24, 0x01E25}, +{0x01E26, 0x01E27}, {0x01E28, 0x01E29}, {0x01E2A, 0x01E2B}, {0x01E2C, 0x01E2D}, {0x01E2E, 0x01E2F}, {0x01E30, 0x01E31}, +{0x01E32, 0x01E33}, {0x01E34, 0x01E35}, {0x01E36, 0x01E37}, {0x01E38, 0x01E39}, {0x01E3A, 0x01E3B}, {0x01E3C, 0x01E3D}, +{0x01E3E, 0x01E3F}, {0x01E40, 0x01E41}, {0x01E42, 0x01E43}, {0x01E44, 0x01E45}, {0x01E46, 0x01E47}, {0x01E48, 0x01E49}, +{0x01E4A, 0x01E4B}, {0x01E4C, 0x01E4D}, {0x01E4E, 0x01E4F}, {0x01E50, 0x01E51}, {0x01E52, 0x01E53}, {0x01E54, 0x01E55}, +{0x01E56, 0x01E57}, {0x01E58, 0x01E59}, {0x01E5A, 0x01E5B}, {0x01E5C, 0x01E5D}, {0x01E5E, 0x01E5F}, {0x01E60, 0x01E61}, +{0x01E62, 0x01E63}, {0x01E64, 0x01E65}, {0x01E66, 0x01E67}, {0x01E68, 0x01E69}, {0x01E6A, 0x01E6B}, {0x01E6C, 0x01E6D}, +{0x01E6E, 0x01E6F}, {0x01E70, 0x01E71}, {0x01E72, 0x01E73}, {0x01E74, 0x01E75}, {0x01E76, 0x01E77}, {0x01E78, 0x01E79}, +{0x01E7A, 0x01E7B}, {0x01E7C, 0x01E7D}, {0x01E7E, 0x01E7F}, {0x01E80, 0x01E81}, {0x01E82, 0x01E83}, {0x01E84, 0x01E85}, +{0x01E86, 0x01E87}, {0x01E88, 0x01E89}, {0x01E8A, 0x01E8B}, {0x01E8C, 0x01E8D}, {0x01E8E, 0x01E8F}, {0x01E90, 0x01E91}, +{0x01E92, 0x01E93}, {0x01E94, 0x01E95}, {0x01E9E, 0x000DF}, {0x01EA0, 0x01EA1}, {0x01EA2, 0x01EA3}, {0x01EA4, 0x01EA5}, +{0x01EA6, 0x01EA7}, {0x01EA8, 0x01EA9}, {0x01EAA, 0x01EAB}, {0x01EAC, 0x01EAD}, {0x01EAE, 0x01EAF}, {0x01EB0, 0x01EB1}, +{0x01EB2, 0x01EB3}, {0x01EB4, 0x01EB5}, {0x01EB6, 0x01EB7}, {0x01EB8, 0x01EB9}, {0x01EBA, 0x01EBB}, {0x01EBC, 0x01EBD}, +{0x01EBE, 0x01EBF}, {0x01EC0, 0x01EC1}, {0x01EC2, 0x01EC3}, {0x01EC4, 0x01EC5}, {0x01EC6, 0x01EC7}, {0x01EC8, 0x01EC9}, +{0x01ECA, 0x01ECB}, {0x01ECC, 0x01ECD}, {0x01ECE, 0x01ECF}, {0x01ED0, 0x01ED1}, {0x01ED2, 0x01ED3}, {0x01ED4, 0x01ED5}, +{0x01ED6, 0x01ED7}, {0x01ED8, 0x01ED9}, {0x01EDA, 0x01EDB}, {0x01EDC, 0x01EDD}, {0x01EDE, 0x01EDF}, {0x01EE0, 0x01EE1}, +{0x01EE2, 0x01EE3}, {0x01EE4, 0x01EE5}, {0x01EE6, 0x01EE7}, {0x01EE8, 0x01EE9}, {0x01EEA, 0x01EEB}, {0x01EEC, 0x01EED}, +{0x01EEE, 0x01EEF}, {0x01EF0, 0x01EF1}, {0x01EF2, 0x01EF3}, {0x01EF4, 0x01EF5}, {0x01EF6, 0x01EF7}, {0x01EF8, 0x01EF9}, +{0x01EFA, 0x01EFB}, {0x01EFC, 0x01EFD}, {0x01EFE, 0x01EFF}, {0x01F08, 0x01F00}, {0x01F09, 0x01F01}, {0x01F0A, 0x01F02}, +{0x01F0B, 0x01F03}, {0x01F0C, 0x01F04}, {0x01F0D, 0x01F05}, {0x01F0E, 0x01F06}, {0x01F0F, 0x01F07}, {0x01F18, 0x01F10}, +{0x01F19, 0x01F11}, {0x01F1A, 0x01F12}, {0x01F1B, 0x01F13}, {0x01F1C, 0x01F14}, {0x01F1D, 0x01F15}, {0x01F28, 0x01F20}, +{0x01F29, 0x01F21}, {0x01F2A, 0x01F22}, {0x01F2B, 0x01F23}, {0x01F2C, 0x01F24}, {0x01F2D, 0x01F25}, {0x01F2E, 0x01F26}, +{0x01F2F, 0x01F27}, {0x01F38, 0x01F30}, {0x01F39, 0x01F31}, {0x01F3A, 0x01F32}, {0x01F3B, 0x01F33}, {0x01F3C, 0x01F34}, +{0x01F3D, 0x01F35}, {0x01F3E, 0x01F36}, {0x01F3F, 0x01F37}, {0x01F48, 0x01F40}, {0x01F49, 0x01F41}, {0x01F4A, 0x01F42}, +{0x01F4B, 0x01F43}, {0x01F4C, 0x01F44}, {0x01F4D, 0x01F45}, {0x01F59, 0x01F51}, {0x01F5B, 0x01F53}, {0x01F5D, 0x01F55}, +{0x01F5F, 0x01F57}, {0x01F68, 0x01F60}, {0x01F69, 0x01F61}, {0x01F6A, 0x01F62}, {0x01F6B, 0x01F63}, {0x01F6C, 0x01F64}, +{0x01F6D, 0x01F65}, {0x01F6E, 0x01F66}, {0x01F6F, 0x01F67}, {0x01F88, 0x01F80}, {0x01F89, 0x01F81}, {0x01F8A, 0x01F82}, +{0x01F8B, 0x01F83}, {0x01F8C, 0x01F84}, {0x01F8D, 0x01F85}, {0x01F8E, 0x01F86}, {0x01F8F, 0x01F87}, {0x01F98, 0x01F90}, +{0x01F99, 0x01F91}, {0x01F9A, 0x01F92}, {0x01F9B, 0x01F93}, {0x01F9C, 0x01F94}, {0x01F9D, 0x01F95}, {0x01F9E, 0x01F96}, +{0x01F9F, 0x01F97}, {0x01FA8, 0x01FA0}, {0x01FA9, 0x01FA1}, {0x01FAA, 0x01FA2}, {0x01FAB, 0x01FA3}, {0x01FAC, 0x01FA4}, +{0x01FAD, 0x01FA5}, {0x01FAE, 0x01FA6}, {0x01FAF, 0x01FA7}, {0x01FB8, 0x01FB0}, {0x01FB9, 0x01FB1}, {0x01FBA, 0x01F70}, +{0x01FBB, 0x01F71}, {0x01FBC, 0x01FB3}, {0x01FC8, 0x01F72}, {0x01FC9, 0x01F73}, {0x01FCA, 0x01F74}, {0x01FCB, 0x01F75}, +{0x01FCC, 0x01FC3}, {0x01FD8, 0x01FD0}, {0x01FD9, 0x01FD1}, {0x01FDA, 0x01F76}, {0x01FDB, 0x01F77}, {0x01FE8, 0x01FE0}, +{0x01FE9, 0x01FE1}, {0x01FEA, 0x01F7A}, {0x01FEB, 0x01F7B}, {0x01FEC, 0x01FE5}, {0x01FF8, 0x01F78}, {0x01FF9, 0x01F79}, +{0x01FFA, 0x01F7C}, {0x01FFB, 0x01F7D}, {0x01FFC, 0x01FF3}, {0x02126, 0x003C9}, {0x0212A, 0x0006B}, {0x0212B, 0x000E5}, +{0x02132, 0x0214E}, {0x02160, 0x02170}, {0x02161, 0x02171}, {0x02162, 0x02172}, {0x02163, 0x02173}, {0x02164, 0x02174}, +{0x02165, 0x02175}, {0x02166, 0x02176}, {0x02167, 0x02177}, {0x02168, 0x02178}, {0x02169, 0x02179}, {0x0216A, 0x0217A}, +{0x0216B, 0x0217B}, {0x0216C, 0x0217C}, {0x0216D, 0x0217D}, {0x0216E, 0x0217E}, {0x0216F, 0x0217F}, {0x02183, 0x02184}, +{0x024B6, 0x024D0}, {0x024B7, 0x024D1}, {0x024B8, 0x024D2}, {0x024B9, 0x024D3}, {0x024BA, 0x024D4}, {0x024BB, 0x024D5}, +{0x024BC, 0x024D6}, {0x024BD, 0x024D7}, {0x024BE, 0x024D8}, {0x024BF, 0x024D9}, {0x024C0, 0x024DA}, {0x024C1, 0x024DB}, +{0x024C2, 0x024DC}, {0x024C3, 0x024DD}, {0x024C4, 0x024DE}, {0x024C5, 0x024DF}, {0x024C6, 0x024E0}, {0x024C7, 0x024E1}, +{0x024C8, 0x024E2}, {0x024C9, 0x024E3}, {0x024CA, 0x024E4}, {0x024CB, 0x024E5}, {0x024CC, 0x024E6}, {0x024CD, 0x024E7}, +{0x024CE, 0x024E8}, {0x024CF, 0x024E9}, {0x02C00, 0x02C30}, {0x02C01, 0x02C31}, {0x02C02, 0x02C32}, {0x02C03, 0x02C33}, +{0x02C04, 0x02C34}, {0x02C05, 0x02C35}, {0x02C06, 0x02C36}, {0x02C07, 0x02C37}, {0x02C08, 0x02C38}, {0x02C09, 0x02C39}, +{0x02C0A, 0x02C3A}, {0x02C0B, 0x02C3B}, {0x02C0C, 0x02C3C}, {0x02C0D, 0x02C3D}, {0x02C0E, 0x02C3E}, {0x02C0F, 0x02C3F}, +{0x02C10, 0x02C40}, {0x02C11, 0x02C41}, {0x02C12, 0x02C42}, {0x02C13, 0x02C43}, {0x02C14, 0x02C44}, {0x02C15, 0x02C45}, +{0x02C16, 0x02C46}, {0x02C17, 0x02C47}, {0x02C18, 0x02C48}, {0x02C19, 0x02C49}, {0x02C1A, 0x02C4A}, {0x02C1B, 0x02C4B}, +{0x02C1C, 0x02C4C}, {0x02C1D, 0x02C4D}, {0x02C1E, 0x02C4E}, {0x02C1F, 0x02C4F}, {0x02C20, 0x02C50}, {0x02C21, 0x02C51}, +{0x02C22, 0x02C52}, {0x02C23, 0x02C53}, {0x02C24, 0x02C54}, {0x02C25, 0x02C55}, {0x02C26, 0x02C56}, {0x02C27, 0x02C57}, +{0x02C28, 0x02C58}, {0x02C29, 0x02C59}, {0x02C2A, 0x02C5A}, {0x02C2B, 0x02C5B}, {0x02C2C, 0x02C5C}, {0x02C2D, 0x02C5D}, +{0x02C2E, 0x02C5E}, {0x02C2F, 0x02C5F}, {0x02C60, 0x02C61}, {0x02C62, 0x0026B}, {0x02C63, 0x01D7D}, {0x02C64, 0x0027D}, +{0x02C67, 0x02C68}, {0x02C69, 0x02C6A}, {0x02C6B, 0x02C6C}, {0x02C6D, 0x00251}, {0x02C6E, 0x00271}, {0x02C6F, 0x00250}, +{0x02C70, 0x00252}, {0x02C72, 0x02C73}, {0x02C75, 0x02C76}, {0x02C7E, 0x0023F}, {0x02C7F, 0x00240}, {0x02C80, 0x02C81}, +{0x02C82, 0x02C83}, {0x02C84, 0x02C85}, {0x02C86, 0x02C87}, {0x02C88, 0x02C89}, {0x02C8A, 0x02C8B}, {0x02C8C, 0x02C8D}, +{0x02C8E, 0x02C8F}, {0x02C90, 0x02C91}, {0x02C92, 0x02C93}, {0x02C94, 0x02C95}, {0x02C96, 0x02C97}, {0x02C98, 0x02C99}, +{0x02C9A, 0x02C9B}, {0x02C9C, 0x02C9D}, {0x02C9E, 0x02C9F}, {0x02CA0, 0x02CA1}, {0x02CA2, 0x02CA3}, {0x02CA4, 0x02CA5}, +{0x02CA6, 0x02CA7}, {0x02CA8, 0x02CA9}, {0x02CAA, 0x02CAB}, {0x02CAC, 0x02CAD}, {0x02CAE, 0x02CAF}, {0x02CB0, 0x02CB1}, +{0x02CB2, 0x02CB3}, {0x02CB4, 0x02CB5}, {0x02CB6, 0x02CB7}, {0x02CB8, 0x02CB9}, {0x02CBA, 0x02CBB}, {0x02CBC, 0x02CBD}, +{0x02CBE, 0x02CBF}, {0x02CC0, 0x02CC1}, {0x02CC2, 0x02CC3}, {0x02CC4, 0x02CC5}, {0x02CC6, 0x02CC7}, {0x02CC8, 0x02CC9}, +{0x02CCA, 0x02CCB}, {0x02CCC, 0x02CCD}, {0x02CCE, 0x02CCF}, {0x02CD0, 0x02CD1}, {0x02CD2, 0x02CD3}, {0x02CD4, 0x02CD5}, +{0x02CD6, 0x02CD7}, {0x02CD8, 0x02CD9}, {0x02CDA, 0x02CDB}, {0x02CDC, 0x02CDD}, {0x02CDE, 0x02CDF}, {0x02CE0, 0x02CE1}, +{0x02CE2, 0x02CE3}, {0x02CEB, 0x02CEC}, {0x02CED, 0x02CEE}, {0x02CF2, 0x02CF3}, {0x0A640, 0x0A641}, {0x0A642, 0x0A643}, +{0x0A644, 0x0A645}, {0x0A646, 0x0A647}, {0x0A648, 0x0A649}, {0x0A64A, 0x0A64B}, {0x0A64C, 0x0A64D}, {0x0A64E, 0x0A64F}, +{0x0A650, 0x0A651}, {0x0A652, 0x0A653}, {0x0A654, 0x0A655}, {0x0A656, 0x0A657}, {0x0A658, 0x0A659}, {0x0A65A, 0x0A65B}, +{0x0A65C, 0x0A65D}, {0x0A65E, 0x0A65F}, {0x0A660, 0x0A661}, {0x0A662, 0x0A663}, {0x0A664, 0x0A665}, {0x0A666, 0x0A667}, +{0x0A668, 0x0A669}, {0x0A66A, 0x0A66B}, {0x0A66C, 0x0A66D}, {0x0A680, 0x0A681}, {0x0A682, 0x0A683}, {0x0A684, 0x0A685}, +{0x0A686, 0x0A687}, {0x0A688, 0x0A689}, {0x0A68A, 0x0A68B}, {0x0A68C, 0x0A68D}, {0x0A68E, 0x0A68F}, {0x0A690, 0x0A691}, +{0x0A692, 0x0A693}, {0x0A694, 0x0A695}, {0x0A696, 0x0A697}, {0x0A698, 0x0A699}, {0x0A69A, 0x0A69B}, {0x0A722, 0x0A723}, +{0x0A724, 0x0A725}, {0x0A726, 0x0A727}, {0x0A728, 0x0A729}, {0x0A72A, 0x0A72B}, {0x0A72C, 0x0A72D}, {0x0A72E, 0x0A72F}, +{0x0A732, 0x0A733}, {0x0A734, 0x0A735}, {0x0A736, 0x0A737}, {0x0A738, 0x0A739}, {0x0A73A, 0x0A73B}, {0x0A73C, 0x0A73D}, +{0x0A73E, 0x0A73F}, {0x0A740, 0x0A741}, {0x0A742, 0x0A743}, {0x0A744, 0x0A745}, {0x0A746, 0x0A747}, {0x0A748, 0x0A749}, +{0x0A74A, 0x0A74B}, {0x0A74C, 0x0A74D}, {0x0A74E, 0x0A74F}, {0x0A750, 0x0A751}, {0x0A752, 0x0A753}, {0x0A754, 0x0A755}, +{0x0A756, 0x0A757}, {0x0A758, 0x0A759}, {0x0A75A, 0x0A75B}, {0x0A75C, 0x0A75D}, {0x0A75E, 0x0A75F}, {0x0A760, 0x0A761}, +{0x0A762, 0x0A763}, {0x0A764, 0x0A765}, {0x0A766, 0x0A767}, {0x0A768, 0x0A769}, {0x0A76A, 0x0A76B}, {0x0A76C, 0x0A76D}, +{0x0A76E, 0x0A76F}, {0x0A779, 0x0A77A}, {0x0A77B, 0x0A77C}, {0x0A77D, 0x01D79}, {0x0A77E, 0x0A77F}, {0x0A780, 0x0A781}, +{0x0A782, 0x0A783}, {0x0A784, 0x0A785}, {0x0A786, 0x0A787}, {0x0A78B, 0x0A78C}, {0x0A78D, 0x00265}, {0x0A790, 0x0A791}, +{0x0A792, 0x0A793}, {0x0A796, 0x0A797}, {0x0A798, 0x0A799}, {0x0A79A, 0x0A79B}, {0x0A79C, 0x0A79D}, {0x0A79E, 0x0A79F}, +{0x0A7A0, 0x0A7A1}, {0x0A7A2, 0x0A7A3}, {0x0A7A4, 0x0A7A5}, {0x0A7A6, 0x0A7A7}, {0x0A7A8, 0x0A7A9}, {0x0A7AA, 0x00266}, +{0x0A7AB, 0x0025C}, {0x0A7AC, 0x00261}, {0x0A7AD, 0x0026C}, {0x0A7AE, 0x0026A}, {0x0A7B0, 0x0029E}, {0x0A7B1, 0x00287}, +{0x0A7B2, 0x0029D}, {0x0A7B3, 0x0AB53}, {0x0A7B4, 0x0A7B5}, {0x0A7B6, 0x0A7B7}, {0x0A7B8, 0x0A7B9}, {0x0A7BA, 0x0A7BB}, +{0x0A7BC, 0x0A7BD}, {0x0A7BE, 0x0A7BF}, {0x0A7C0, 0x0A7C1}, {0x0A7C2, 0x0A7C3}, {0x0A7C4, 0x0A794}, {0x0A7C5, 0x00282}, +{0x0A7C6, 0x01D8E}, {0x0A7C7, 0x0A7C8}, {0x0A7C9, 0x0A7CA}, {0x0A7D0, 0x0A7D1}, {0x0A7D6, 0x0A7D7}, {0x0A7D8, 0x0A7D9}, +{0x0A7F5, 0x0A7F6}, {0x0FF21, 0x0FF41}, {0x0FF22, 0x0FF42}, {0x0FF23, 0x0FF43}, {0x0FF24, 0x0FF44}, {0x0FF25, 0x0FF45}, +{0x0FF26, 0x0FF46}, {0x0FF27, 0x0FF47}, {0x0FF28, 0x0FF48}, {0x0FF29, 0x0FF49}, {0x0FF2A, 0x0FF4A}, {0x0FF2B, 0x0FF4B}, +{0x0FF2C, 0x0FF4C}, {0x0FF2D, 0x0FF4D}, {0x0FF2E, 0x0FF4E}, {0x0FF2F, 0x0FF4F}, {0x0FF30, 0x0FF50}, {0x0FF31, 0x0FF51}, +{0x0FF32, 0x0FF52}, {0x0FF33, 0x0FF53}, {0x0FF34, 0x0FF54}, {0x0FF35, 0x0FF55}, {0x0FF36, 0x0FF56}, {0x0FF37, 0x0FF57}, +{0x0FF38, 0x0FF58}, {0x0FF39, 0x0FF59}, {0x0FF3A, 0x0FF5A}, {0x10400, 0x10428}, {0x10401, 0x10429}, {0x10402, 0x1042A}, +{0x10403, 0x1042B}, {0x10404, 0x1042C}, {0x10405, 0x1042D}, {0x10406, 0x1042E}, {0x10407, 0x1042F}, {0x10408, 0x10430}, +{0x10409, 0x10431}, {0x1040A, 0x10432}, {0x1040B, 0x10433}, {0x1040C, 0x10434}, {0x1040D, 0x10435}, {0x1040E, 0x10436}, +{0x1040F, 0x10437}, {0x10410, 0x10438}, {0x10411, 0x10439}, {0x10412, 0x1043A}, {0x10413, 0x1043B}, {0x10414, 0x1043C}, +{0x10415, 0x1043D}, {0x10416, 0x1043E}, {0x10417, 0x1043F}, {0x10418, 0x10440}, {0x10419, 0x10441}, {0x1041A, 0x10442}, +{0x1041B, 0x10443}, {0x1041C, 0x10444}, {0x1041D, 0x10445}, {0x1041E, 0x10446}, {0x1041F, 0x10447}, {0x10420, 0x10448}, +{0x10421, 0x10449}, {0x10422, 0x1044A}, {0x10423, 0x1044B}, {0x10424, 0x1044C}, {0x10425, 0x1044D}, {0x10426, 0x1044E}, +{0x10427, 0x1044F}, {0x104B0, 0x104D8}, {0x104B1, 0x104D9}, {0x104B2, 0x104DA}, {0x104B3, 0x104DB}, {0x104B4, 0x104DC}, +{0x104B5, 0x104DD}, {0x104B6, 0x104DE}, {0x104B7, 0x104DF}, {0x104B8, 0x104E0}, {0x104B9, 0x104E1}, {0x104BA, 0x104E2}, +{0x104BB, 0x104E3}, {0x104BC, 0x104E4}, {0x104BD, 0x104E5}, {0x104BE, 0x104E6}, {0x104BF, 0x104E7}, {0x104C0, 0x104E8}, +{0x104C1, 0x104E9}, {0x104C2, 0x104EA}, {0x104C3, 0x104EB}, {0x104C4, 0x104EC}, {0x104C5, 0x104ED}, {0x104C6, 0x104EE}, +{0x104C7, 0x104EF}, {0x104C8, 0x104F0}, {0x104C9, 0x104F1}, {0x104CA, 0x104F2}, {0x104CB, 0x104F3}, {0x104CC, 0x104F4}, +{0x104CD, 0x104F5}, {0x104CE, 0x104F6}, {0x104CF, 0x104F7}, {0x104D0, 0x104F8}, {0x104D1, 0x104F9}, {0x104D2, 0x104FA}, +{0x104D3, 0x104FB}, {0x10570, 0x10597}, {0x10571, 0x10598}, {0x10572, 0x10599}, {0x10573, 0x1059A}, {0x10574, 0x1059B}, +{0x10575, 0x1059C}, {0x10576, 0x1059D}, {0x10577, 0x1059E}, {0x10578, 0x1059F}, {0x10579, 0x105A0}, {0x1057A, 0x105A1}, +{0x1057C, 0x105A3}, {0x1057D, 0x105A4}, {0x1057E, 0x105A5}, {0x1057F, 0x105A6}, {0x10580, 0x105A7}, {0x10581, 0x105A8}, +{0x10582, 0x105A9}, {0x10583, 0x105AA}, {0x10584, 0x105AB}, {0x10585, 0x105AC}, {0x10586, 0x105AD}, {0x10587, 0x105AE}, +{0x10588, 0x105AF}, {0x10589, 0x105B0}, {0x1058A, 0x105B1}, {0x1058C, 0x105B3}, {0x1058D, 0x105B4}, {0x1058E, 0x105B5}, +{0x1058F, 0x105B6}, {0x10590, 0x105B7}, {0x10591, 0x105B8}, {0x10592, 0x105B9}, {0x10594, 0x105BB}, {0x10595, 0x105BC}, +{0x10C80, 0x10CC0}, {0x10C81, 0x10CC1}, {0x10C82, 0x10CC2}, {0x10C83, 0x10CC3}, {0x10C84, 0x10CC4}, {0x10C85, 0x10CC5}, +{0x10C86, 0x10CC6}, {0x10C87, 0x10CC7}, {0x10C88, 0x10CC8}, {0x10C89, 0x10CC9}, {0x10C8A, 0x10CCA}, {0x10C8B, 0x10CCB}, +{0x10C8C, 0x10CCC}, {0x10C8D, 0x10CCD}, {0x10C8E, 0x10CCE}, {0x10C8F, 0x10CCF}, {0x10C90, 0x10CD0}, {0x10C91, 0x10CD1}, +{0x10C92, 0x10CD2}, {0x10C93, 0x10CD3}, {0x10C94, 0x10CD4}, {0x10C95, 0x10CD5}, {0x10C96, 0x10CD6}, {0x10C97, 0x10CD7}, +{0x10C98, 0x10CD8}, {0x10C99, 0x10CD9}, {0x10C9A, 0x10CDA}, {0x10C9B, 0x10CDB}, {0x10C9C, 0x10CDC}, {0x10C9D, 0x10CDD}, +{0x10C9E, 0x10CDE}, {0x10C9F, 0x10CDF}, {0x10CA0, 0x10CE0}, {0x10CA1, 0x10CE1}, {0x10CA2, 0x10CE2}, {0x10CA3, 0x10CE3}, +{0x10CA4, 0x10CE4}, {0x10CA5, 0x10CE5}, {0x10CA6, 0x10CE6}, {0x10CA7, 0x10CE7}, {0x10CA8, 0x10CE8}, {0x10CA9, 0x10CE9}, +{0x10CAA, 0x10CEA}, {0x10CAB, 0x10CEB}, {0x10CAC, 0x10CEC}, {0x10CAD, 0x10CED}, {0x10CAE, 0x10CEE}, {0x10CAF, 0x10CEF}, +{0x10CB0, 0x10CF0}, {0x10CB1, 0x10CF1}, {0x10CB2, 0x10CF2}, {0x118A0, 0x118C0}, {0x118A1, 0x118C1}, {0x118A2, 0x118C2}, +{0x118A3, 0x118C3}, {0x118A4, 0x118C4}, {0x118A5, 0x118C5}, {0x118A6, 0x118C6}, {0x118A7, 0x118C7}, {0x118A8, 0x118C8}, +{0x118A9, 0x118C9}, {0x118AA, 0x118CA}, {0x118AB, 0x118CB}, {0x118AC, 0x118CC}, {0x118AD, 0x118CD}, {0x118AE, 0x118CE}, +{0x118AF, 0x118CF}, {0x118B0, 0x118D0}, {0x118B1, 0x118D1}, {0x118B2, 0x118D2}, {0x118B3, 0x118D3}, {0x118B4, 0x118D4}, +{0x118B5, 0x118D5}, {0x118B6, 0x118D6}, {0x118B7, 0x118D7}, {0x118B8, 0x118D8}, {0x118B9, 0x118D9}, {0x118BA, 0x118DA}, +{0x118BB, 0x118DB}, {0x118BC, 0x118DC}, {0x118BD, 0x118DD}, {0x118BE, 0x118DE}, {0x118BF, 0x118DF}, {0x16E40, 0x16E60}, +{0x16E41, 0x16E61}, {0x16E42, 0x16E62}, {0x16E43, 0x16E63}, {0x16E44, 0x16E64}, {0x16E45, 0x16E65}, {0x16E46, 0x16E66}, +{0x16E47, 0x16E67}, {0x16E48, 0x16E68}, {0x16E49, 0x16E69}, {0x16E4A, 0x16E6A}, {0x16E4B, 0x16E6B}, {0x16E4C, 0x16E6C}, +{0x16E4D, 0x16E6D}, {0x16E4E, 0x16E6E}, {0x16E4F, 0x16E6F}, {0x16E50, 0x16E70}, {0x16E51, 0x16E71}, {0x16E52, 0x16E72}, +{0x16E53, 0x16E73}, {0x16E54, 0x16E74}, {0x16E55, 0x16E75}, {0x16E56, 0x16E76}, {0x16E57, 0x16E77}, {0x16E58, 0x16E78}, +{0x16E59, 0x16E79}, {0x16E5A, 0x16E7A}, {0x16E5B, 0x16E7B}, {0x16E5C, 0x16E7C}, {0x16E5D, 0x16E7D}, {0x16E5E, 0x16E7E}, +{0x16E5F, 0x16E7F}, {0x1E900, 0x1E922}, {0x1E901, 0x1E923}, {0x1E902, 0x1E924}, {0x1E903, 0x1E925}, {0x1E904, 0x1E926}, +{0x1E905, 0x1E927}, {0x1E906, 0x1E928}, {0x1E907, 0x1E929}, {0x1E908, 0x1E92A}, {0x1E909, 0x1E92B}, {0x1E90A, 0x1E92C}, +{0x1E90B, 0x1E92D}, {0x1E90C, 0x1E92E}, {0x1E90D, 0x1E92F}, {0x1E90E, 0x1E930}, {0x1E90F, 0x1E931}, {0x1E910, 0x1E932}, +{0x1E911, 0x1E933}, {0x1E912, 0x1E934}, {0x1E913, 0x1E935}, {0x1E914, 0x1E936}, {0x1E915, 0x1E937}, {0x1E916, 0x1E938}, +{0x1E917, 0x1E939}, {0x1E918, 0x1E93A}, {0x1E919, 0x1E93B}, {0x1E91A, 0x1E93C}, {0x1E91B, 0x1E93D}, {0x1E91C, 0x1E93E}, +{0x1E91D, 0x1E93F}, {0x1E91E, 0x1E940}, {0x1E91F, 0x1E941}, {0x1E920, 0x1E942}, {0x1E921, 0x1E943}, +}; diff --git a/llama/unicode-data.h b/llama/unicode-data.h new file mode 100644 index 00000000..b99500b8 --- /dev/null +++ b/llama/unicode-data.h @@ -0,0 +1,16 @@ +#pragma once + +#include +#include +#include +#include + +extern const std::vector> unicode_ranges_digit; +extern const std::vector> unicode_ranges_letter; +extern const std::vector> unicode_ranges_whitespace; +extern const std::vector> unicode_ranges_accent_mark; +extern const std::vector> unicode_ranges_punctuation; +extern const std::vector> unicode_ranges_symbol; +extern const std::vector> unicode_ranges_control; +extern const std::multimap unicode_map_nfd; +extern const std::map unicode_map_lowercase; diff --git a/llama/unicode.cpp b/llama/unicode.cpp new file mode 100644 index 00000000..df8c5f58 --- /dev/null +++ b/llama/unicode.cpp @@ -0,0 +1,277 @@ +#include "unicode.h" +#include "unicode-data.h" + +#include +#include +#include +#include +#include +#include +#include +#include +#include + +static std::string unicode_cpts_to_utf8(const std::vector & cps) { + std::string result; + for (size_t i = 0; i < cps.size(); ++i) { + result.append(unicode_cpt_to_utf8(cps[i])); + } + return result; +} + +static uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset) { + assert(offset < utf8.size()); + if (!(utf8[offset + 0] & 0x80)) { + auto result = utf8[offset + 0]; + offset += 1; + return result; + } + if (!(utf8[offset + 0] & 0x40)) { + throw std::invalid_argument("invalid character"); + } + if (!(utf8[offset + 0] & 0x20)) { + if (offset + 1 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80)) { + throw std::invalid_argument("invalid character"); + } + auto result = ((utf8[offset + 0] & 0x1f) << 6) | (utf8[offset + 1] & 0x3f); + offset += 2; + return result; + } + if (!(utf8[offset + 0] & 0x10)) { + if (offset + 2 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80)) { + throw std::invalid_argument("invalid character"); + } + auto result = ((utf8[offset + 0] & 0x0f) << 12) | ((utf8[offset + 1] & 0x3f) << 6) | (utf8[offset + 2] & 0x3f); + offset += 3; + return result; + } + if (!(utf8[offset + 0] & 0x08)) { + if (offset + 3 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80) || !((utf8[offset + 3] & 0xc0) == 0x80)) { + throw std::invalid_argument("invalid character"); + } + auto result = ((utf8[offset + 0] & 0x07) << 18) | ((utf8[offset + 1] & 0x3f) << 12) | ((utf8[offset + 2] & 0x3f) << 6) | (utf8[offset + 3] & 0x3f); + offset += 4; + return result; + } + throw std::invalid_argument("invalid string"); +} + +static std::vector unicode_cpt_to_utf16(uint32_t cp) { + std::vector result; + if (/* 0x0000 <= cp && */ cp <= 0xffff) { + result.emplace_back(cp); + } + else if (0x10000 <= cp && cp <= 0x10ffff) { + result.emplace_back(0xd800 | ((cp - 0x10000) >> 10)); + result.emplace_back(0xdc00 | ((cp - 0x10000) & 0x03ff)); + } + else { + throw std::invalid_argument("invalid cpt"); + } + return result; +} + +//static std::vector unicode_cpts_to_utf16(const std::vector & cps) { +// std::vector result; +// for (size_t i = 0; i < cps.size(); ++i) { +// auto temp = unicode_cpt_to_utf16(cps[i]); +// result.insert(result.end(), temp.begin(), temp.end()); +// } +// return result; +//} + +static uint32_t cpt_from_utf16(const std::vector & utf16, size_t & offset) { + assert(offset < utf16.size()); + if (((utf16[0] >> 10) << 10) != 0xd800) { + auto result = utf16[offset + 0]; + offset += 1; + return result; + } + + if (offset + 1 >= utf16.size() || !((utf16[1] & 0xdc00) == 0xdc00)) { + throw std::invalid_argument("invalid character"); + } + + auto result = 0x10000 + (((utf16[0] & 0x03ff) << 10) | (utf16[1] & 0x03ff)); + offset += 2; + return result; +} + +//static std::vector unicode_cpts_from_utf16(const std::vector & utf16) { +// std::vector result; +// size_t offset = 0; +// while (offset < utf16.size()) { +// result.push_back(cpt_from_utf16(utf16, offset)); +// } +// return result; +//} + +static std::unordered_map unicode_cpt_type_map() { + std::unordered_map cpt_types; + for (auto p : unicode_ranges_digit) { + for (auto i = p.first; i <= p.second; ++ i) { + cpt_types[i] = CODEPOINT_TYPE_DIGIT; + } + } + for (auto p : unicode_ranges_letter) { + for (auto i = p.first; i <= p.second; ++ i) { + cpt_types[i] = CODEPOINT_TYPE_LETTER; + } + } + for (auto p : unicode_ranges_whitespace) { + for (auto i = p.first; i <= p.second; ++ i) { + cpt_types[i] = CODEPOINT_TYPE_WHITESPACE; + } + } + for (auto p : unicode_ranges_accent_mark) { + for (auto i = p.first; i <= p.second; ++ i) { + cpt_types[i] = CODEPOINT_TYPE_ACCENT_MARK; + } + } + for (auto p : unicode_ranges_punctuation) { + for (auto i = p.first; i <= p.second; ++ i) { + cpt_types[i] = CODEPOINT_TYPE_PUNCTUATION; + } + } + for (auto p : unicode_ranges_symbol) { + for (auto i = p.first; i <= p.second; ++i) { + cpt_types[i] = CODEPOINT_TYPE_SYMBOL; + } + } + for (auto p : unicode_ranges_control) { + for (auto i = p.first; i <= p.second; ++ i) { + cpt_types[i] = CODEPOINT_TYPE_CONTROL; + } + } + return cpt_types; +} + +static std::unordered_map unicode_byte_to_utf8_map() { + std::unordered_map map; + for (int ch = u'!'; ch <= u'~'; ++ch) { + assert(0 <= ch && ch < 256); + map[ch] = unicode_cpt_to_utf8(ch); + } + for (int ch = u'¡'; ch <= u'¬'; ++ch) { + assert(0 <= ch && ch < 256); + map[ch] = unicode_cpt_to_utf8(ch); + } + for (int ch = u'®'; ch <= u'ÿ'; ++ch) { + assert(0 <= ch && ch < 256); + map[ch] = unicode_cpt_to_utf8(ch); + } + auto n = 0; + for (int ch = 0; ch < 256; ++ch) { + if (map.find(ch) == map.end()) { + map[ch] = unicode_cpt_to_utf8(256 + n); + ++n; + } + } + return map; +} + +static std::unordered_map unicode_utf8_to_byte_map() { + std::unordered_map map; + for (int ch = u'!'; ch <= u'~'; ++ch) { + assert(0 <= ch && ch < 256); + map[unicode_cpt_to_utf8(ch)] = ch; + } + for (int ch = u'¡'; ch <= u'¬'; ++ch) { + assert(0 <= ch && ch < 256); + map[unicode_cpt_to_utf8(ch)] = ch; + } + for (int ch = u'®'; ch <= u'ÿ'; ++ch) { + assert(0 <= ch && ch < 256); + map[unicode_cpt_to_utf8(ch)] = ch; + } + auto n = 0; + for (int ch = 0; ch < 256; ++ch) { + if (map.find(unicode_cpt_to_utf8(ch)) == map.end()) { + map[unicode_cpt_to_utf8(256 + n)] = ch; + ++n; + } + } + return map; +} + +// +// interface +// + +std::string unicode_cpt_to_utf8(uint32_t cp) { + std::string result; + if (/* 0x00 <= cp && */ cp <= 0x7f) { + result.push_back(cp); + } + else if (0x80 <= cp && cp <= 0x7ff) { + result.push_back(0xc0 | ((cp >> 6) & 0x1f)); + result.push_back(0x80 | (cp & 0x3f)); + } + else if (0x800 <= cp && cp <= 0xffff) { + result.push_back(0xe0 | ((cp >> 12) & 0x0f)); + result.push_back(0x80 | ((cp >> 6) & 0x3f)); + result.push_back(0x80 | (cp & 0x3f)); + } + else if (0x10000 <= cp && cp <= 0x10ffff) { + result.push_back(0xf0 | ((cp >> 18) & 0x07)); + result.push_back(0x80 | ((cp >> 12) & 0x3f)); + result.push_back(0x80 | ((cp >> 6) & 0x3f)); + result.push_back(0x80 | (cp & 0x3f)); + } + else { + throw std::invalid_argument("invalid codepoint"); + } + return result; +} + +std::vector unicode_cpts_normalize_nfd(const std::vector & cpts) { + std::vector result; + result.reserve(cpts.size()); + for (size_t i = 0; i < cpts.size(); ++i) { + auto it = unicode_map_nfd.find(cpts[i]); + if (it == unicode_map_nfd.end()) { + result.push_back(cpts[i]); + } else { + result.push_back(it->second); + } + } + return result; +} + +std::vector unicode_cpts_from_utf8(const std::string & utf8) { + std::vector result; + size_t offset = 0; + while (offset < utf8.size()) { + result.push_back(unicode_cpt_from_utf8(utf8, offset)); + } + return result; +} + +int unicode_cpt_type(uint32_t cp) { + static std::unordered_map cpt_types = unicode_cpt_type_map(); + const auto it = cpt_types.find(cp); + return it == cpt_types.end() ? CODEPOINT_TYPE_UNIDENTIFIED : it->second; +} + +int unicode_cpt_type(const std::string & utf8) { + if (utf8.length() == 0) { + return CODEPOINT_TYPE_UNIDENTIFIED; + } + size_t offset = 0; + return unicode_cpt_type(unicode_cpt_from_utf8(utf8, offset)); +} + +std::string unicode_byte_to_utf8(uint8_t byte) { + static std::unordered_map map = unicode_byte_to_utf8_map(); + return map.at(byte); +} + +uint8_t unicode_utf8_to_byte(const std::string & utf8) { + static std::unordered_map map = unicode_utf8_to_byte_map(); + return map.at(utf8); +} + +char32_t unicode_tolower(char32_t cp) { + auto it = unicode_map_lowercase.find(cp); + return it == unicode_map_lowercase.end() ? cp : it->second; +} diff --git a/llama/unicode.h b/llama/unicode.h new file mode 100644 index 00000000..6a0be393 --- /dev/null +++ b/llama/unicode.h @@ -0,0 +1,28 @@ +#pragma once + +#include +#include +#include + +#define CODEPOINT_TYPE_UNIDENTIFIED 0 +#define CODEPOINT_TYPE_DIGIT 1 +#define CODEPOINT_TYPE_LETTER 2 +#define CODEPOINT_TYPE_WHITESPACE 3 +#define CODEPOINT_TYPE_ACCENT_MARK 4 +#define CODEPOINT_TYPE_PUNCTUATION 5 +#define CODEPOINT_TYPE_SYMBOL 6 +#define CODEPOINT_TYPE_CONTROL 7 + +std::string unicode_cpt_to_utf8(uint32_t cp); +std::vector unicode_cpts_from_utf8(const std::string & utf8); + +std::vector unicode_cpts_normalize_nfd(const std::vector & cpts); + +int unicode_cpt_type(uint32_t cp); +int unicode_cpt_type(const std::string & utf8); + +std::string unicode_byte_to_utf8(uint8_t byte); +uint8_t unicode_utf8_to_byte(const std::string & utf8); + +// simple tolower that only implements one-to-one mapping, not one-to-many +char32_t unicode_tolower(char32_t cp);