diff --git a/llm/patches/12-paligemma.diff b/llm/patches/12-paligemma.diff new file mode 100644 index 00000000..1a7f3674 --- /dev/null +++ b/llm/patches/12-paligemma.diff @@ -0,0 +1,94 @@ +diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp +index 7cda5f10..50fbcf08 100644 +--- a/examples/llava/clip.cpp ++++ b/examples/llava/clip.cpp +@@ -709,9 +709,12 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 + embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); + embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); + +- embeddings = ggml_gelu(ctx0, embeddings); +- embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings); +- embeddings = ggml_add(ctx0, embeddings, model.mm_2_b); ++ // paligemma missing second linear layer ++ if (model.mm_2_w) { ++ embeddings = ggml_gelu(ctx0, embeddings); ++ embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings); ++ embeddings = ggml_add(ctx0, embeddings, model.mm_2_b); ++ } + + } else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) { + embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); +@@ -2076,7 +2079,10 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) { + return ctx->vision_model.mm_model_peg_0_b->ne[0]; + } + if (ctx->proj_type == PROJECTOR_TYPE_MLP) { +- return ctx->vision_model.mm_2_b->ne[0]; ++ // paligemma missing second linear layer ++ if (ctx->vision_model.mm_2_b == nullptr) { ++ return ctx->vision_model.mm_0_b->ne[0]; ++ } + } + if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) { + return ctx->vision_model.mm_3_b->ne[0]; +diff --git a/include/llama.h b/include/llama.h +index f23355a6..7c6301bf 100644 +--- a/include/llama.h ++++ b/include/llama.h +@@ -444,6 +444,9 @@ extern "C" { + // Frees all allocated memory + LLAMA_API void llama_free(struct llama_context * ctx); + ++ // save image embeddings ++ LLAMA_API void set_image_embeds(struct llama_context *ctx, float *data); ++ + LLAMA_API int64_t llama_time_us(void); + + LLAMA_API size_t llama_max_devices(void); +diff --git a/src/llama.cpp b/src/llama.cpp +index a7b1c9eb..b0a6bc27 100644 +--- a/src/llama.cpp ++++ b/src/llama.cpp +@@ -2668,6 +2668,7 @@ struct llama_context { + + const struct llama_model & model; + ++ float *image_embeds; + struct llama_cparams cparams; + struct llama_sampling sampling; + struct llama_kv_cache kv_self; +@@ -2751,6 +2752,10 @@ struct llama_context { + struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch] + }; + ++void set_image_embeds(llama_context *ctx, float *data) { ++ ctx->image_embeds = data; ++} ++ + struct llama_lora_weight { + struct ggml_tensor * a = nullptr; + struct ggml_tensor * b = nullptr; +@@ -11599,6 +11604,15 @@ struct llm_build_context { + + inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); + ++ // set the image embeddings in the input tensor ++ if (lctx.image_embeds) { ++ struct ggml_tensor *image_embeds = ggml_dup_tensor(ctx0, inpL); ++ image_embeds->data = lctx.image_embeds; ++ image_embeds->ne[1] = 256; ++ inpL = ggml_set_2d_inplace(ctx0, inpL, image_embeds, inpL->nb[1], 0); ++ lctx.image_embeds = NULL; ++ } ++ + inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd)); + cb(inpL, "inp_scaled", -1); + +@@ -14589,7 +14603,7 @@ static int llama_decode_internal( + } + + // non-causal masks do not use the KV cache +- if (hparams.causal_attn) { ++ if (hparams.causal_attn || lctx.image_embeds) { + llama_kv_cache_update(&lctx); + + // if we have enough unused cells before the current head ->