mirror of
https://github.com/tcsenpai/ollama.git
synced 2025-06-07 03:35:21 +00:00
demo
This commit is contained in:
parent
30dd74930d
commit
a62817d677
23
llm/ext_server/server.cpp
vendored
23
llm/ext_server/server.cpp
vendored
@ -1272,7 +1272,7 @@ struct llama_server_context
|
||||
}
|
||||
}
|
||||
|
||||
bool process_images_paligemma(server_slot &slot, int n_batch)
|
||||
/* bool process_images_paligemma(server_slot &slot, int n_batch)
|
||||
{
|
||||
// set_off_embeds(ctx);
|
||||
int n_past = 0;
|
||||
@ -1288,8 +1288,8 @@ struct llama_server_context
|
||||
|
||||
if (ctx)
|
||||
{
|
||||
set_image_embeds(ctx, data);
|
||||
// print_image_embeds(ctx);
|
||||
// set_image_embeds(ctx, data);
|
||||
// print_embeds(ctx);
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -1366,8 +1366,8 @@ struct llama_server_context
|
||||
}
|
||||
printf("done processing images paligemma\n");
|
||||
// llama_batch_clear(batch);
|
||||
return true;
|
||||
}
|
||||
return true;
|
||||
} */
|
||||
|
||||
bool prepare_pali(server_slot &slot, int n_batch)
|
||||
{
|
||||
@ -1382,21 +1382,12 @@ struct llama_server_context
|
||||
{
|
||||
data[i] = data[i] / sqrt(2048);
|
||||
}
|
||||
|
||||
if (ctx)
|
||||
{
|
||||
set_image_embeds(ctx, data);
|
||||
// print_image_embeds(ctx);
|
||||
}
|
||||
else
|
||||
{
|
||||
printf("ctx is null");
|
||||
}
|
||||
set_image_embeds(ctx, data);
|
||||
|
||||
// generate user_prompt -> this should contain image tokens prepended and a new line appended:
|
||||
// batch.n_tokens += (int)slot.images.size() * llama_n_embd(model);
|
||||
std::vector<llama_token> tokens;
|
||||
std::string prompt = "caption es";
|
||||
std::string prompt = "How much ketchup is in this image?";
|
||||
std::vector<llama_token> text = ::llama_tokenize(ctx, prompt, false, true);
|
||||
|
||||
for (int i = 0; i < (int)slot.images.size() * 256; i++)
|
||||
|
@ -9,8 +9,8 @@ set -o pipefail
|
||||
echo "Starting darwin generate script"
|
||||
source $(dirname $0)/gen_common.sh
|
||||
init_vars
|
||||
git_module_setup
|
||||
apply_patches
|
||||
#git_module_setup
|
||||
#apply_patches
|
||||
|
||||
sign() {
|
||||
if [ -n "$APPLE_IDENTITY" ]; then
|
||||
@ -97,5 +97,5 @@ case "${GOARCH}" in
|
||||
;;
|
||||
esac
|
||||
|
||||
cleanup
|
||||
#cleanup
|
||||
echo "go generate completed. LLM runners: $(cd ${BUILD_DIR}/..; echo *)"
|
||||
|
@ -31,7 +31,7 @@ index 54aa822c..45d03982 100644
|
||||
if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
|
||||
return ctx->vision_model.mm_3_b->ne[0];
|
||||
diff --git a/examples/llava/llava-cli.cpp b/examples/llava/llava-cli.cpp
|
||||
index 8c7dd2ae..3fe4759c 100644
|
||||
index 8c7dd2ae..38eeb305 100644
|
||||
--- a/examples/llava/llava-cli.cpp
|
||||
+++ b/examples/llava/llava-cli.cpp
|
||||
@@ -18,7 +18,10 @@ static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_toke
|
||||
@ -66,7 +66,7 @@ index 8c7dd2ae..3fe4759c 100644
|
||||
- llava_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past);
|
||||
- eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);
|
||||
+ // build user prompt with 256 image tokens
|
||||
+ user_prompt = "caption es";
|
||||
+ user_prompt = "What is in this image?";
|
||||
+ std::string image_token_prefix = "";
|
||||
+ for (int i = 0; i < 256; i++) {
|
||||
+ image_token_prefix += "<image>";
|
||||
@ -100,23 +100,25 @@ index 8c7dd2ae..3fe4759c 100644
|
||||
process_prompt(ctx_llava, image_embed, ¶ms, params.prompt);
|
||||
|
||||
diff --git a/include/llama.h b/include/llama.h
|
||||
index ce07f4fa..09cfe207 100644
|
||||
index ce07f4fa..c3465d68 100644
|
||||
--- a/include/llama.h
|
||||
+++ b/include/llama.h
|
||||
@@ -444,6 +444,11 @@ extern "C" {
|
||||
@@ -444,6 +444,13 @@ extern "C" {
|
||||
// Frees all allocated memory
|
||||
LLAMA_API void llama_free(struct llama_context * ctx);
|
||||
|
||||
+ // save image embeddings
|
||||
+ LLAMA_API void set_image_embeds(struct llama_context *ctx, float *data);
|
||||
+
|
||||
+ LLAMA_API void print_embeds(struct llama_context *ctx);
|
||||
+
|
||||
+ LLAMA_API void print_causal(struct llama_context *ctx);
|
||||
+
|
||||
LLAMA_API int64_t llama_time_us(void);
|
||||
|
||||
LLAMA_API size_t llama_max_devices(void);
|
||||
diff --git a/src/llama.cpp b/src/llama.cpp
|
||||
index 7f2f0003..74498632 100644
|
||||
index 7f2f0003..d5926202 100644
|
||||
--- a/src/llama.cpp
|
||||
+++ b/src/llama.cpp
|
||||
@@ -2677,6 +2677,7 @@ struct llama_context {
|
||||
@ -127,7 +129,7 @@ index 7f2f0003..74498632 100644
|
||||
struct llama_cparams cparams;
|
||||
struct llama_sampling sampling;
|
||||
struct llama_kv_cache kv_self;
|
||||
@@ -2760,6 +2761,22 @@ struct llama_context {
|
||||
@@ -2760,6 +2761,33 @@ struct llama_context {
|
||||
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
|
||||
};
|
||||
|
||||
@ -135,6 +137,17 @@ index 7f2f0003..74498632 100644
|
||||
+ ctx->image_embeds = data;
|
||||
+}
|
||||
+
|
||||
+void print_embeds(struct llama_context *ctx)
|
||||
+{
|
||||
+ if (ctx->image_embeds)
|
||||
+ {
|
||||
+ for (int i = 0; i < 256; i++)
|
||||
+ {
|
||||
+ LLAMA_LOG_INFO("%f ", ctx->image_embeds[i]);
|
||||
+ }
|
||||
+ }
|
||||
+}
|
||||
+
|
||||
+void print_causal(llama_context *ctx)
|
||||
+{
|
||||
+ if (ctx->cparams.causal_attn)
|
||||
@ -150,7 +163,7 @@ index 7f2f0003..74498632 100644
|
||||
struct llama_lora_weight {
|
||||
struct ggml_tensor * a = nullptr;
|
||||
struct ggml_tensor * b = nullptr;
|
||||
@@ -3021,6 +3038,96 @@ static bool llama_kv_cache_init(
|
||||
@@ -3021,6 +3049,96 @@ static bool llama_kv_cache_init(
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -247,7 +260,7 @@ index 7f2f0003..74498632 100644
|
||||
// find an empty slot of size "n_tokens" in the cache
|
||||
// updates the cache head
|
||||
// Note: On success, it's important that cache.head points
|
||||
@@ -11660,6 +11767,17 @@ struct llm_build_context {
|
||||
@@ -11660,6 +11778,18 @@ struct llm_build_context {
|
||||
|
||||
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||||
|
||||
@ -256,7 +269,8 @@ index 7f2f0003..74498632 100644
|
||||
+ struct ggml_tensor *image_embeds = ggml_dup_tensor(ctx0, inpL);
|
||||
+ image_embeds->data = lctx.image_embeds;
|
||||
+ image_embeds->ne[1] = 256;
|
||||
+ llama_log_tensor(image_embeds, "/Users/joshyan/ollama/tensordata");
|
||||
+ print_embeds(&lctx);
|
||||
+ // llama_log_tensor(image_embeds, "/Users/joshyan/ollama/tensordata");
|
||||
+
|
||||
+ inpL = ggml_set_2d_inplace(ctx0, inpL, image_embeds, inpL->nb[1], 0);
|
||||
+ lctx.image_embeds = NULL;
|
||||
@ -265,7 +279,7 @@ index 7f2f0003..74498632 100644
|
||||
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
|
||||
cb(inpL, "inp_scaled", -1);
|
||||
|
||||
@@ -14678,7 +14796,7 @@ static int llama_decode_internal(
|
||||
@@ -14678,7 +14808,7 @@ static int llama_decode_internal(
|
||||
}
|
||||
|
||||
// non-causal masks do not use the KV cache
|
||||
@ -274,7 +288,7 @@ index 7f2f0003..74498632 100644
|
||||
llama_kv_cache_update(&lctx);
|
||||
|
||||
// if we have enough unused cells before the current head ->
|
||||
@@ -18565,6 +18683,12 @@ float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
|
||||
@@ -18565,6 +18695,12 @@ float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
|
||||
if (ctx->logits == nullptr) {
|
||||
throw std::runtime_error("no logits");
|
||||
}
|
||||
@ -287,7 +301,7 @@ index 7f2f0003..74498632 100644
|
||||
|
||||
if (i < 0) {
|
||||
j = ctx->n_outputs + i;
|
||||
@@ -18577,6 +18701,7 @@ float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
|
||||
@@ -18577,6 +18713,7 @@ float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
|
||||
j = ctx->output_ids[i];
|
||||
}
|
||||
|
||||
|
@ -179,7 +179,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
opts.NumGPU = 0
|
||||
if len(servers) == 0 {
|
||||
return nil, fmt.Errorf("no servers found for %v", gpus)
|
||||
}
|
||||
@ -733,7 +733,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
|
||||
"n_predict": req.Options.NumPredict,
|
||||
"n_keep": req.Options.NumKeep,
|
||||
"main_gpu": req.Options.MainGPU,
|
||||
"temperature": req.Options.Temperature,
|
||||
"temperature": 0,
|
||||
"top_k": req.Options.TopK,
|
||||
"top_p": req.Options.TopP,
|
||||
"min_p": req.Options.MinP,
|
||||
|
Loading…
x
Reference in New Issue
Block a user