This commit is contained in:
Josh Yan 2024-08-23 13:01:23 -07:00
parent 30dd74930d
commit a62817d677
4 changed files with 38 additions and 33 deletions

View File

@ -1272,7 +1272,7 @@ struct llama_server_context
} }
} }
bool process_images_paligemma(server_slot &slot, int n_batch) /* bool process_images_paligemma(server_slot &slot, int n_batch)
{ {
// set_off_embeds(ctx); // set_off_embeds(ctx);
int n_past = 0; int n_past = 0;
@ -1288,8 +1288,8 @@ struct llama_server_context
if (ctx) if (ctx)
{ {
set_image_embeds(ctx, data); // set_image_embeds(ctx, data);
// print_image_embeds(ctx); // print_embeds(ctx);
} }
else else
{ {
@ -1367,7 +1367,7 @@ struct llama_server_context
printf("done processing images paligemma\n"); printf("done processing images paligemma\n");
// llama_batch_clear(batch); // llama_batch_clear(batch);
return true; return true;
} } */
bool prepare_pali(server_slot &slot, int n_batch) bool prepare_pali(server_slot &slot, int n_batch)
{ {
@ -1382,21 +1382,12 @@ struct llama_server_context
{ {
data[i] = data[i] / sqrt(2048); data[i] = data[i] / sqrt(2048);
} }
if (ctx)
{
set_image_embeds(ctx, data); set_image_embeds(ctx, data);
// print_image_embeds(ctx);
}
else
{
printf("ctx is null");
}
// generate user_prompt -> this should contain image tokens prepended and a new line appended: // generate user_prompt -> this should contain image tokens prepended and a new line appended:
// batch.n_tokens += (int)slot.images.size() * llama_n_embd(model); // batch.n_tokens += (int)slot.images.size() * llama_n_embd(model);
std::vector<llama_token> tokens; std::vector<llama_token> tokens;
std::string prompt = "caption es"; std::string prompt = "How much ketchup is in this image?";
std::vector<llama_token> text = ::llama_tokenize(ctx, prompt, false, true); std::vector<llama_token> text = ::llama_tokenize(ctx, prompt, false, true);
for (int i = 0; i < (int)slot.images.size() * 256; i++) for (int i = 0; i < (int)slot.images.size() * 256; i++)

View File

@ -9,8 +9,8 @@ set -o pipefail
echo "Starting darwin generate script" echo "Starting darwin generate script"
source $(dirname $0)/gen_common.sh source $(dirname $0)/gen_common.sh
init_vars init_vars
git_module_setup #git_module_setup
apply_patches #apply_patches
sign() { sign() {
if [ -n "$APPLE_IDENTITY" ]; then if [ -n "$APPLE_IDENTITY" ]; then
@ -97,5 +97,5 @@ case "${GOARCH}" in
;; ;;
esac esac
cleanup #cleanup
echo "go generate completed. LLM runners: $(cd ${BUILD_DIR}/..; echo *)" echo "go generate completed. LLM runners: $(cd ${BUILD_DIR}/..; echo *)"

View File

@ -31,7 +31,7 @@ index 54aa822c..45d03982 100644
if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) { if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
return ctx->vision_model.mm_3_b->ne[0]; return ctx->vision_model.mm_3_b->ne[0];
diff --git a/examples/llava/llava-cli.cpp b/examples/llava/llava-cli.cpp diff --git a/examples/llava/llava-cli.cpp b/examples/llava/llava-cli.cpp
index 8c7dd2ae..3fe4759c 100644 index 8c7dd2ae..38eeb305 100644
--- a/examples/llava/llava-cli.cpp --- a/examples/llava/llava-cli.cpp
+++ b/examples/llava/llava-cli.cpp +++ b/examples/llava/llava-cli.cpp
@@ -18,7 +18,10 @@ static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_toke @@ -18,7 +18,10 @@ static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_toke
@ -66,7 +66,7 @@ index 8c7dd2ae..3fe4759c 100644
- llava_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past); - llava_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past);
- eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false); - eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);
+ // build user prompt with 256 image tokens + // build user prompt with 256 image tokens
+ user_prompt = "caption es"; + user_prompt = "What is in this image?";
+ std::string image_token_prefix = ""; + std::string image_token_prefix = "";
+ for (int i = 0; i < 256; i++) { + for (int i = 0; i < 256; i++) {
+ image_token_prefix += "<image>"; + image_token_prefix += "<image>";
@ -100,23 +100,25 @@ index 8c7dd2ae..3fe4759c 100644
process_prompt(ctx_llava, image_embed, &params, params.prompt); process_prompt(ctx_llava, image_embed, &params, params.prompt);
diff --git a/include/llama.h b/include/llama.h diff --git a/include/llama.h b/include/llama.h
index ce07f4fa..09cfe207 100644 index ce07f4fa..c3465d68 100644
--- a/include/llama.h --- a/include/llama.h
+++ b/include/llama.h +++ b/include/llama.h
@@ -444,6 +444,11 @@ extern "C" { @@ -444,6 +444,13 @@ extern "C" {
// Frees all allocated memory // Frees all allocated memory
LLAMA_API void llama_free(struct llama_context * ctx); LLAMA_API void llama_free(struct llama_context * ctx);
+ // save image embeddings + // save image embeddings
+ LLAMA_API void set_image_embeds(struct llama_context *ctx, float *data); + LLAMA_API void set_image_embeds(struct llama_context *ctx, float *data);
+ +
+ LLAMA_API void print_embeds(struct llama_context *ctx);
+
+ LLAMA_API void print_causal(struct llama_context *ctx); + LLAMA_API void print_causal(struct llama_context *ctx);
+ +
LLAMA_API int64_t llama_time_us(void); LLAMA_API int64_t llama_time_us(void);
LLAMA_API size_t llama_max_devices(void); LLAMA_API size_t llama_max_devices(void);
diff --git a/src/llama.cpp b/src/llama.cpp diff --git a/src/llama.cpp b/src/llama.cpp
index 7f2f0003..74498632 100644 index 7f2f0003..d5926202 100644
--- a/src/llama.cpp --- a/src/llama.cpp
+++ b/src/llama.cpp +++ b/src/llama.cpp
@@ -2677,6 +2677,7 @@ struct llama_context { @@ -2677,6 +2677,7 @@ struct llama_context {
@ -127,7 +129,7 @@ index 7f2f0003..74498632 100644
struct llama_cparams cparams; struct llama_cparams cparams;
struct llama_sampling sampling; struct llama_sampling sampling;
struct llama_kv_cache kv_self; struct llama_kv_cache kv_self;
@@ -2760,6 +2761,22 @@ struct llama_context { @@ -2760,6 +2761,33 @@ struct llama_context {
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch] struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
}; };
@ -135,6 +137,17 @@ index 7f2f0003..74498632 100644
+ ctx->image_embeds = data; + ctx->image_embeds = data;
+} +}
+ +
+void print_embeds(struct llama_context *ctx)
+{
+ if (ctx->image_embeds)
+ {
+ for (int i = 0; i < 256; i++)
+ {
+ LLAMA_LOG_INFO("%f ", ctx->image_embeds[i]);
+ }
+ }
+}
+
+void print_causal(llama_context *ctx) +void print_causal(llama_context *ctx)
+{ +{
+ if (ctx->cparams.causal_attn) + if (ctx->cparams.causal_attn)
@ -150,7 +163,7 @@ index 7f2f0003..74498632 100644
struct llama_lora_weight { struct llama_lora_weight {
struct ggml_tensor * a = nullptr; struct ggml_tensor * a = nullptr;
struct ggml_tensor * b = nullptr; struct ggml_tensor * b = nullptr;
@@ -3021,6 +3038,96 @@ static bool llama_kv_cache_init( @@ -3021,6 +3049,96 @@ static bool llama_kv_cache_init(
return true; return true;
} }
@ -247,7 +260,7 @@ index 7f2f0003..74498632 100644
// find an empty slot of size "n_tokens" in the cache // find an empty slot of size "n_tokens" in the cache
// updates the cache head // updates the cache head
// Note: On success, it's important that cache.head points // Note: On success, it's important that cache.head points
@@ -11660,6 +11767,17 @@ struct llm_build_context { @@ -11660,6 +11778,18 @@ struct llm_build_context {
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb); inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
@ -256,7 +269,8 @@ index 7f2f0003..74498632 100644
+ struct ggml_tensor *image_embeds = ggml_dup_tensor(ctx0, inpL); + struct ggml_tensor *image_embeds = ggml_dup_tensor(ctx0, inpL);
+ image_embeds->data = lctx.image_embeds; + image_embeds->data = lctx.image_embeds;
+ image_embeds->ne[1] = 256; + image_embeds->ne[1] = 256;
+ llama_log_tensor(image_embeds, "/Users/joshyan/ollama/tensordata"); + print_embeds(&lctx);
+ // llama_log_tensor(image_embeds, "/Users/joshyan/ollama/tensordata");
+ +
+ inpL = ggml_set_2d_inplace(ctx0, inpL, image_embeds, inpL->nb[1], 0); + inpL = ggml_set_2d_inplace(ctx0, inpL, image_embeds, inpL->nb[1], 0);
+ lctx.image_embeds = NULL; + lctx.image_embeds = NULL;
@ -265,7 +279,7 @@ index 7f2f0003..74498632 100644
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd)); inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1); cb(inpL, "inp_scaled", -1);
@@ -14678,7 +14796,7 @@ static int llama_decode_internal( @@ -14678,7 +14808,7 @@ static int llama_decode_internal(
} }
// non-causal masks do not use the KV cache // non-causal masks do not use the KV cache
@ -274,7 +288,7 @@ index 7f2f0003..74498632 100644
llama_kv_cache_update(&lctx); llama_kv_cache_update(&lctx);
// if we have enough unused cells before the current head -> // if we have enough unused cells before the current head ->
@@ -18565,6 +18683,12 @@ float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) { @@ -18565,6 +18695,12 @@ float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
if (ctx->logits == nullptr) { if (ctx->logits == nullptr) {
throw std::runtime_error("no logits"); throw std::runtime_error("no logits");
} }
@ -287,7 +301,7 @@ index 7f2f0003..74498632 100644
if (i < 0) { if (i < 0) {
j = ctx->n_outputs + i; j = ctx->n_outputs + i;
@@ -18577,6 +18701,7 @@ float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) { @@ -18577,6 +18713,7 @@ float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
j = ctx->output_ids[i]; j = ctx->output_ids[i];
} }

View File

@ -179,7 +179,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
} }
} }
} }
opts.NumGPU = 0
if len(servers) == 0 { if len(servers) == 0 {
return nil, fmt.Errorf("no servers found for %v", gpus) return nil, fmt.Errorf("no servers found for %v", gpus)
} }
@ -733,7 +733,7 @@ func (s *llmServer) Completion(ctx context.Context, req CompletionRequest, fn fu
"n_predict": req.Options.NumPredict, "n_predict": req.Options.NumPredict,
"n_keep": req.Options.NumKeep, "n_keep": req.Options.NumKeep,
"main_gpu": req.Options.MainGPU, "main_gpu": req.Options.MainGPU,
"temperature": req.Options.Temperature, "temperature": 0,
"top_k": req.Options.TopK, "top_k": req.Options.TopK,
"top_p": req.Options.TopP, "top_p": req.Options.TopP,
"min_p": req.Options.MinP, "min_p": req.Options.MinP,