ollama/llm/patches/12-paligemma.diff
Josh Yan 30dd74930d mid
2024-08-21 16:03:15 -07:00

298 lines
10 KiB
Diff

diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
index 54aa822c..45d03982 100644
--- a/examples/llava/clip.cpp
+++ b/examples/llava/clip.cpp
@@ -765,9 +765,12 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
- embeddings = ggml_gelu(ctx0, embeddings);
- embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
+ // paligemma missing second linear layer
+ if (model.mm_2_w) {
+ embeddings = ggml_gelu(ctx0, embeddings);
+ embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
+ embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
+ }
} else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
@@ -2542,7 +2545,10 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
return ctx->vision_model.mm_model_peg_0_b->ne[0];
}
if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
- return ctx->vision_model.mm_2_b->ne[0];
+ // paligemma missing second linear layer
+ if (ctx->vision_model.mm_2_b == nullptr) {
+ return ctx->vision_model.mm_0_b->ne[0];
+ }
}
if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
return ctx->vision_model.mm_3_b->ne[0];
diff --git a/examples/llava/llava-cli.cpp b/examples/llava/llava-cli.cpp
index 8c7dd2ae..3fe4759c 100644
--- a/examples/llava/llava-cli.cpp
+++ b/examples/llava/llava-cli.cpp
@@ -18,7 +18,10 @@ static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_toke
if (n_eval > n_batch) {
n_eval = n_batch;
}
- if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
+
+ llama_batch my_batch = llama_batch_get_one(&tokens[i], n_eval, *n_past, 0);
+ if (llama_decode(ctx_llama, my_batch))
+ {
LOG_TEE("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
return false;
}
@@ -36,6 +39,11 @@ static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
std::string str2 = str;
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos, true);
+ embd_inp.push_back(108);
+ for (int i = 0; i < embd_inp.size(); i++)
+ {
+ printf("token[%d]: %d\n", i, embd_inp[i]);
+ }
eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
return true;
}
@@ -183,9 +191,17 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
}
}
- eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, true);
- llava_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past);
- eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);
+ // build user prompt with 256 image tokens
+ user_prompt = "caption es";
+ std::string image_token_prefix = "";
+ for (int i = 0; i < 256; i++) {
+ image_token_prefix += "<image>";
+ }
+ std::string user_prompt_with_images = image_token_prefix + "<bos>" + user_prompt;
+
+ llama_set_causal_attn(ctx_llava->ctx_llama, true);
+ eval_string(ctx_llava->ctx_llama, user_prompt_with_images.c_str(), params->n_batch, &n_past, false);
+ // llama_set_causal_attn(ctx_llava->ctx_llama, true);
// generate the response
@@ -324,6 +340,19 @@ int main(int argc, char ** argv) {
return 1;
}
+ if (!image_embed || !image_embed->embed) {
+ std::cerr << "Error: image_embed or image_embed->embed is null." << std::endl;
+ return 1;
+ }
+
+ // image feature scaling
+ float *data = image_embed->embed;
+ for (int i = 0; i < 2048 * 256; i++) {
+ data[i] = data[i] / sqrt(2048);
+ }
+
+ set_image_embeds(ctx_llava->ctx_llama, image_embed->embed);
+
// process the prompt
process_prompt(ctx_llava, image_embed, &params, params.prompt);
diff --git a/include/llama.h b/include/llama.h
index ce07f4fa..09cfe207 100644
--- a/include/llama.h
+++ b/include/llama.h
@@ -444,6 +444,11 @@ extern "C" {
// Frees all allocated memory
LLAMA_API void llama_free(struct llama_context * ctx);
+ // save image embeddings
+ LLAMA_API void set_image_embeds(struct llama_context *ctx, float *data);
+
+ LLAMA_API void print_causal(struct llama_context *ctx);
+
LLAMA_API int64_t llama_time_us(void);
LLAMA_API size_t llama_max_devices(void);
diff --git a/src/llama.cpp b/src/llama.cpp
index 7f2f0003..74498632 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -2677,6 +2677,7 @@ struct llama_context {
const struct llama_model & model;
+ float *image_embeds;
struct llama_cparams cparams;
struct llama_sampling sampling;
struct llama_kv_cache kv_self;
@@ -2760,6 +2761,22 @@ struct llama_context {
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
};
+void set_image_embeds(llama_context *ctx, float *data) {
+ ctx->image_embeds = data;
+}
+
+void print_causal(llama_context *ctx)
+{
+ if (ctx->cparams.causal_attn)
+ {
+ LLAMA_LOG_INFO("causal attn is true\n");
+ }
+ else
+ {
+ LLAMA_LOG_INFO("causal attn is false\n");
+ }
+}
+
struct llama_lora_weight {
struct ggml_tensor * a = nullptr;
struct ggml_tensor * b = nullptr;
@@ -3021,6 +3038,96 @@ static bool llama_kv_cache_init(
return true;
}
+void llama_log_tensor(ggml_tensor *tensor, char *filename)
+{
+ if (tensor == NULL)
+ {
+ fprintf(stderr, "Tensor is NULL\n");
+ return;
+ }
+
+ FILE *fp = fopen(filename, "wb");
+ if (fp == NULL)
+ {
+ fprintf(stderr, "Failed to open file '%s'\n", filename);
+ return;
+ }
+
+ LLAMA_LOG_INFO("Tensor name: %s\n", tensor->name);
+ LLAMA_LOG_INFO("Tensor type: ");
+ switch (tensor->type)
+ {
+ case GGML_TYPE_F32:
+ LLAMA_LOG_INFO("GGML_TYPE_F32\n");
+ break;
+ case GGML_TYPE_F16:
+ printf("GGML_TYPE_F16\n");
+ break;
+ case GGML_TYPE_Q4_0:
+ printf("GGML_TYPE_Q4_0\n");
+ break;
+ case GGML_TYPE_Q4_1:
+ printf("GGML_TYPE_Q4_1\n");
+ break;
+ default:
+ printf("Unknown\n");
+ }
+
+ LLAMA_LOG_INFO("Tensor dimensions: ");
+ for (int i = 0; i < GGML_MAX_DIMS; i++)
+ {
+ if (tensor->ne[i] == 1)
+ break;
+ printf("%ld ", tensor->ne[i]);
+ }
+ printf("\n");
+
+ size_t num_elements = ggml_nelements(tensor);
+ LLAMA_LOG_INFO("num elements: %zu\n", num_elements);
+
+ LLAMA_LOG_INFO("Tensor data:\n");
+ switch (tensor->type)
+ {
+ case GGML_TYPE_F32:
+ {
+ float *data = (float *)tensor->data;
+ for (size_t i = 0; i < num_elements; i++)
+ {
+ fprintf(fp, "%f ", data[i]);
+ if (i % 2048 == 0 && i != 0)
+ {
+ fprintf(fp, "\n");
+ }
+ }
+ /* for (size_t i = 0; i < 25; i++)
+ {
+ LLAMA_LOG_INFO("%f ", data[i]);
+ if (i % 2048 == 0 && i != 0)
+ {
+ LLAMA_LOG_INFO("\n");
+ }
+ } */
+ }
+ break;
+ case GGML_TYPE_F16:
+ {
+ // Implement custom printing for fp16 data
+ fprintf(fp, "F16 data (not shown)\n");
+ }
+ break;
+ // For quantized types, you might need to implement custom printing logic
+ case GGML_TYPE_Q4_0:
+ case GGML_TYPE_Q4_1:
+ fprintf(fp, "Quantized data (not shown)\n");
+ break;
+ default:
+ fprintf(fp, "Unknown data type\n");
+ }
+ fprintf(fp, "\n");
+
+ fclose(fp);
+}
+
// find an empty slot of size "n_tokens" in the cache
// updates the cache head
// Note: On success, it's important that cache.head points
@@ -11660,6 +11767,17 @@ struct llm_build_context {
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
+ // set the image embeddings in the input tensor
+ if (lctx.image_embeds) {
+ struct ggml_tensor *image_embeds = ggml_dup_tensor(ctx0, inpL);
+ image_embeds->data = lctx.image_embeds;
+ image_embeds->ne[1] = 256;
+ llama_log_tensor(image_embeds, "/Users/joshyan/ollama/tensordata");
+
+ inpL = ggml_set_2d_inplace(ctx0, inpL, image_embeds, inpL->nb[1], 0);
+ lctx.image_embeds = NULL;
+ }
+
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
cb(inpL, "inp_scaled", -1);
@@ -14678,7 +14796,7 @@ static int llama_decode_internal(
}
// non-causal masks do not use the KV cache
- if (hparams.causal_attn) {
+ if (hparams.causal_attn || lctx.image_embeds) {
llama_kv_cache_update(&lctx);
// if we have enough unused cells before the current head ->
@@ -18565,6 +18683,12 @@ float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
if (ctx->logits == nullptr) {
throw std::runtime_error("no logits");
}
+ // LLAMA_LOG_INFO("CURRENTLY, I IS %d\n", i);
+ // printf("currently, i is: %d", i);
+ /* for (int i = 0; i < 263; i++)
+ {
+ printf("output_ids[%d]: %d\n", i, ctx->output_ids[i]);
+ } */
if (i < 0) {
j = ctx->n_outputs + i;
@@ -18577,6 +18701,7 @@ float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
j = ctx->output_ids[i];
}
+ j = 0;
if (j < 0) {
throw std::runtime_error(format("batch.logits[%d] != true", i));
}