mirror of
https://github.com/tcsenpai/ollama.git
synced 2025-06-08 04:05:20 +00:00
298 lines
10 KiB
Diff
298 lines
10 KiB
Diff
diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp
|
|
index 54aa822c..45d03982 100644
|
|
--- a/examples/llava/clip.cpp
|
|
+++ b/examples/llava/clip.cpp
|
|
@@ -765,9 +765,12 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
|
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
|
|
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
|
|
|
|
- embeddings = ggml_gelu(ctx0, embeddings);
|
|
- embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
|
|
- embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
|
|
+ // paligemma missing second linear layer
|
|
+ if (model.mm_2_w) {
|
|
+ embeddings = ggml_gelu(ctx0, embeddings);
|
|
+ embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
|
|
+ embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
|
|
+ }
|
|
|
|
} else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
|
|
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
|
|
@@ -2542,7 +2545,10 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
|
|
return ctx->vision_model.mm_model_peg_0_b->ne[0];
|
|
}
|
|
if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
|
|
- return ctx->vision_model.mm_2_b->ne[0];
|
|
+ // paligemma missing second linear layer
|
|
+ if (ctx->vision_model.mm_2_b == nullptr) {
|
|
+ return ctx->vision_model.mm_0_b->ne[0];
|
|
+ }
|
|
}
|
|
if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
|
|
return ctx->vision_model.mm_3_b->ne[0];
|
|
diff --git a/examples/llava/llava-cli.cpp b/examples/llava/llava-cli.cpp
|
|
index 8c7dd2ae..3fe4759c 100644
|
|
--- a/examples/llava/llava-cli.cpp
|
|
+++ b/examples/llava/llava-cli.cpp
|
|
@@ -18,7 +18,10 @@ static bool eval_tokens(struct llama_context * ctx_llama, std::vector<llama_toke
|
|
if (n_eval > n_batch) {
|
|
n_eval = n_batch;
|
|
}
|
|
- if (llama_decode(ctx_llama, llama_batch_get_one(&tokens[i], n_eval, *n_past, 0))) {
|
|
+
|
|
+ llama_batch my_batch = llama_batch_get_one(&tokens[i], n_eval, *n_past, 0);
|
|
+ if (llama_decode(ctx_llama, my_batch))
|
|
+ {
|
|
LOG_TEE("%s : failed to eval. token %d/%d (batch size %d, n_past %d)\n", __func__, i, N, n_batch, *n_past);
|
|
return false;
|
|
}
|
|
@@ -36,6 +39,11 @@ static bool eval_id(struct llama_context * ctx_llama, int id, int * n_past) {
|
|
static bool eval_string(struct llama_context * ctx_llama, const char* str, int n_batch, int * n_past, bool add_bos){
|
|
std::string str2 = str;
|
|
std::vector<llama_token> embd_inp = ::llama_tokenize(ctx_llama, str2, add_bos, true);
|
|
+ embd_inp.push_back(108);
|
|
+ for (int i = 0; i < embd_inp.size(); i++)
|
|
+ {
|
|
+ printf("token[%d]: %d\n", i, embd_inp[i]);
|
|
+ }
|
|
eval_tokens(ctx_llama, embd_inp, n_batch, n_past);
|
|
return true;
|
|
}
|
|
@@ -183,9 +191,17 @@ static void process_prompt(struct llava_context * ctx_llava, struct llava_image_
|
|
}
|
|
}
|
|
|
|
- eval_string(ctx_llava->ctx_llama, system_prompt.c_str(), params->n_batch, &n_past, true);
|
|
- llava_eval_image_embed(ctx_llava->ctx_llama, image_embed, params->n_batch, &n_past);
|
|
- eval_string(ctx_llava->ctx_llama, user_prompt.c_str(), params->n_batch, &n_past, false);
|
|
+ // build user prompt with 256 image tokens
|
|
+ user_prompt = "caption es";
|
|
+ std::string image_token_prefix = "";
|
|
+ for (int i = 0; i < 256; i++) {
|
|
+ image_token_prefix += "<image>";
|
|
+ }
|
|
+ std::string user_prompt_with_images = image_token_prefix + "<bos>" + user_prompt;
|
|
+
|
|
+ llama_set_causal_attn(ctx_llava->ctx_llama, true);
|
|
+ eval_string(ctx_llava->ctx_llama, user_prompt_with_images.c_str(), params->n_batch, &n_past, false);
|
|
+ // llama_set_causal_attn(ctx_llava->ctx_llama, true);
|
|
|
|
// generate the response
|
|
|
|
@@ -324,6 +340,19 @@ int main(int argc, char ** argv) {
|
|
return 1;
|
|
}
|
|
|
|
+ if (!image_embed || !image_embed->embed) {
|
|
+ std::cerr << "Error: image_embed or image_embed->embed is null." << std::endl;
|
|
+ return 1;
|
|
+ }
|
|
+
|
|
+ // image feature scaling
|
|
+ float *data = image_embed->embed;
|
|
+ for (int i = 0; i < 2048 * 256; i++) {
|
|
+ data[i] = data[i] / sqrt(2048);
|
|
+ }
|
|
+
|
|
+ set_image_embeds(ctx_llava->ctx_llama, image_embed->embed);
|
|
+
|
|
// process the prompt
|
|
process_prompt(ctx_llava, image_embed, ¶ms, params.prompt);
|
|
|
|
diff --git a/include/llama.h b/include/llama.h
|
|
index ce07f4fa..09cfe207 100644
|
|
--- a/include/llama.h
|
|
+++ b/include/llama.h
|
|
@@ -444,6 +444,11 @@ extern "C" {
|
|
// Frees all allocated memory
|
|
LLAMA_API void llama_free(struct llama_context * ctx);
|
|
|
|
+ // save image embeddings
|
|
+ LLAMA_API void set_image_embeds(struct llama_context *ctx, float *data);
|
|
+
|
|
+ LLAMA_API void print_causal(struct llama_context *ctx);
|
|
+
|
|
LLAMA_API int64_t llama_time_us(void);
|
|
|
|
LLAMA_API size_t llama_max_devices(void);
|
|
diff --git a/src/llama.cpp b/src/llama.cpp
|
|
index 7f2f0003..74498632 100644
|
|
--- a/src/llama.cpp
|
|
+++ b/src/llama.cpp
|
|
@@ -2677,6 +2677,7 @@ struct llama_context {
|
|
|
|
const struct llama_model & model;
|
|
|
|
+ float *image_embeds;
|
|
struct llama_cparams cparams;
|
|
struct llama_sampling sampling;
|
|
struct llama_kv_cache kv_self;
|
|
@@ -2760,6 +2761,22 @@ struct llama_context {
|
|
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
|
|
};
|
|
|
|
+void set_image_embeds(llama_context *ctx, float *data) {
|
|
+ ctx->image_embeds = data;
|
|
+}
|
|
+
|
|
+void print_causal(llama_context *ctx)
|
|
+{
|
|
+ if (ctx->cparams.causal_attn)
|
|
+ {
|
|
+ LLAMA_LOG_INFO("causal attn is true\n");
|
|
+ }
|
|
+ else
|
|
+ {
|
|
+ LLAMA_LOG_INFO("causal attn is false\n");
|
|
+ }
|
|
+}
|
|
+
|
|
struct llama_lora_weight {
|
|
struct ggml_tensor * a = nullptr;
|
|
struct ggml_tensor * b = nullptr;
|
|
@@ -3021,6 +3038,96 @@ static bool llama_kv_cache_init(
|
|
return true;
|
|
}
|
|
|
|
+void llama_log_tensor(ggml_tensor *tensor, char *filename)
|
|
+{
|
|
+ if (tensor == NULL)
|
|
+ {
|
|
+ fprintf(stderr, "Tensor is NULL\n");
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ FILE *fp = fopen(filename, "wb");
|
|
+ if (fp == NULL)
|
|
+ {
|
|
+ fprintf(stderr, "Failed to open file '%s'\n", filename);
|
|
+ return;
|
|
+ }
|
|
+
|
|
+ LLAMA_LOG_INFO("Tensor name: %s\n", tensor->name);
|
|
+ LLAMA_LOG_INFO("Tensor type: ");
|
|
+ switch (tensor->type)
|
|
+ {
|
|
+ case GGML_TYPE_F32:
|
|
+ LLAMA_LOG_INFO("GGML_TYPE_F32\n");
|
|
+ break;
|
|
+ case GGML_TYPE_F16:
|
|
+ printf("GGML_TYPE_F16\n");
|
|
+ break;
|
|
+ case GGML_TYPE_Q4_0:
|
|
+ printf("GGML_TYPE_Q4_0\n");
|
|
+ break;
|
|
+ case GGML_TYPE_Q4_1:
|
|
+ printf("GGML_TYPE_Q4_1\n");
|
|
+ break;
|
|
+ default:
|
|
+ printf("Unknown\n");
|
|
+ }
|
|
+
|
|
+ LLAMA_LOG_INFO("Tensor dimensions: ");
|
|
+ for (int i = 0; i < GGML_MAX_DIMS; i++)
|
|
+ {
|
|
+ if (tensor->ne[i] == 1)
|
|
+ break;
|
|
+ printf("%ld ", tensor->ne[i]);
|
|
+ }
|
|
+ printf("\n");
|
|
+
|
|
+ size_t num_elements = ggml_nelements(tensor);
|
|
+ LLAMA_LOG_INFO("num elements: %zu\n", num_elements);
|
|
+
|
|
+ LLAMA_LOG_INFO("Tensor data:\n");
|
|
+ switch (tensor->type)
|
|
+ {
|
|
+ case GGML_TYPE_F32:
|
|
+ {
|
|
+ float *data = (float *)tensor->data;
|
|
+ for (size_t i = 0; i < num_elements; i++)
|
|
+ {
|
|
+ fprintf(fp, "%f ", data[i]);
|
|
+ if (i % 2048 == 0 && i != 0)
|
|
+ {
|
|
+ fprintf(fp, "\n");
|
|
+ }
|
|
+ }
|
|
+ /* for (size_t i = 0; i < 25; i++)
|
|
+ {
|
|
+ LLAMA_LOG_INFO("%f ", data[i]);
|
|
+ if (i % 2048 == 0 && i != 0)
|
|
+ {
|
|
+ LLAMA_LOG_INFO("\n");
|
|
+ }
|
|
+ } */
|
|
+ }
|
|
+ break;
|
|
+ case GGML_TYPE_F16:
|
|
+ {
|
|
+ // Implement custom printing for fp16 data
|
|
+ fprintf(fp, "F16 data (not shown)\n");
|
|
+ }
|
|
+ break;
|
|
+ // For quantized types, you might need to implement custom printing logic
|
|
+ case GGML_TYPE_Q4_0:
|
|
+ case GGML_TYPE_Q4_1:
|
|
+ fprintf(fp, "Quantized data (not shown)\n");
|
|
+ break;
|
|
+ default:
|
|
+ fprintf(fp, "Unknown data type\n");
|
|
+ }
|
|
+ fprintf(fp, "\n");
|
|
+
|
|
+ fclose(fp);
|
|
+}
|
|
+
|
|
// find an empty slot of size "n_tokens" in the cache
|
|
// updates the cache head
|
|
// Note: On success, it's important that cache.head points
|
|
@@ -11660,6 +11767,17 @@ struct llm_build_context {
|
|
|
|
inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
|
|
|
+ // set the image embeddings in the input tensor
|
|
+ if (lctx.image_embeds) {
|
|
+ struct ggml_tensor *image_embeds = ggml_dup_tensor(ctx0, inpL);
|
|
+ image_embeds->data = lctx.image_embeds;
|
|
+ image_embeds->ne[1] = 256;
|
|
+ llama_log_tensor(image_embeds, "/Users/joshyan/ollama/tensordata");
|
|
+
|
|
+ inpL = ggml_set_2d_inplace(ctx0, inpL, image_embeds, inpL->nb[1], 0);
|
|
+ lctx.image_embeds = NULL;
|
|
+ }
|
|
+
|
|
inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
|
|
cb(inpL, "inp_scaled", -1);
|
|
|
|
@@ -14678,7 +14796,7 @@ static int llama_decode_internal(
|
|
}
|
|
|
|
// non-causal masks do not use the KV cache
|
|
- if (hparams.causal_attn) {
|
|
+ if (hparams.causal_attn || lctx.image_embeds) {
|
|
llama_kv_cache_update(&lctx);
|
|
|
|
// if we have enough unused cells before the current head ->
|
|
@@ -18565,6 +18683,12 @@ float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
|
|
if (ctx->logits == nullptr) {
|
|
throw std::runtime_error("no logits");
|
|
}
|
|
+ // LLAMA_LOG_INFO("CURRENTLY, I IS %d\n", i);
|
|
+ // printf("currently, i is: %d", i);
|
|
+ /* for (int i = 0; i < 263; i++)
|
|
+ {
|
|
+ printf("output_ids[%d]: %d\n", i, ctx->output_ids[i]);
|
|
+ } */
|
|
|
|
if (i < 0) {
|
|
j = ctx->n_outputs + i;
|
|
@@ -18577,6 +18701,7 @@ float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
|
|
j = ctx->output_ids[i];
|
|
}
|
|
|
|
+ j = 0;
|
|
if (j < 0) {
|
|
throw std::runtime_error(format("batch.logits[%d] != true", i));
|
|
}
|