mirror of
https://github.com/tcsenpai/pensieve.git
synced 2025-06-06 03:05:25 +00:00
refact(ml_backend): separate servers
This commit is contained in:
parent
ad779b1b58
commit
189b82739d
176
memos_ml_backends/florence2_server.py
Normal file
176
memos_ml_backends/florence2_server.py
Normal file
@ -0,0 +1,176 @@
|
|||||||
|
from fastapi import FastAPI, HTTPException
|
||||||
|
from pydantic import BaseModel
|
||||||
|
from typing import List, Dict, Any, Optional
|
||||||
|
import httpx
|
||||||
|
import torch
|
||||||
|
from PIL import Image
|
||||||
|
import base64
|
||||||
|
import io
|
||||||
|
from transformers import AutoProcessor, AutoModelForCausalLM
|
||||||
|
import time
|
||||||
|
from memos_ml_backends.schemas import (
|
||||||
|
ChatCompletionRequest,
|
||||||
|
ChatCompletionResponse,
|
||||||
|
ModelData,
|
||||||
|
ModelsResponse,
|
||||||
|
get_image_from_url,
|
||||||
|
)
|
||||||
|
|
||||||
|
MODEL_INFO = {"name": "florence2-base-ft", "max_model_len": 2048}
|
||||||
|
|
||||||
|
# 检测可用的设备
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda")
|
||||||
|
elif torch.backends.mps.is_available():
|
||||||
|
device = torch.device("mps")
|
||||||
|
else:
|
||||||
|
device = torch.device("cpu")
|
||||||
|
|
||||||
|
torch_dtype = (
|
||||||
|
torch.float32
|
||||||
|
if (torch.cuda.is_available() and torch.cuda.get_device_capability()[0] <= 6)
|
||||||
|
or (not torch.cuda.is_available() and not torch.backends.mps.is_available())
|
||||||
|
else torch.float16
|
||||||
|
)
|
||||||
|
print(f"Using device: {device}")
|
||||||
|
|
||||||
|
# Load Florence-2 model
|
||||||
|
florence_model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
"microsoft/Florence-2-base-ft",
|
||||||
|
torch_dtype=torch_dtype,
|
||||||
|
attn_implementation="sdpa",
|
||||||
|
trust_remote_code=True,
|
||||||
|
).to(device, torch_dtype)
|
||||||
|
florence_processor = AutoProcessor.from_pretrained(
|
||||||
|
"microsoft/Florence-2-base-ft", trust_remote_code=True
|
||||||
|
)
|
||||||
|
|
||||||
|
app = FastAPI()
|
||||||
|
|
||||||
|
|
||||||
|
async def generate_florence_result(text_input, image_input, max_tokens):
|
||||||
|
task_prompt = "<MORE_DETAILED_CAPTION>"
|
||||||
|
prompt = task_prompt + ""
|
||||||
|
|
||||||
|
inputs = florence_processor(
|
||||||
|
text=prompt, images=image_input, return_tensors="pt"
|
||||||
|
).to(device, torch_dtype)
|
||||||
|
|
||||||
|
generated_ids = florence_model.generate(
|
||||||
|
input_ids=inputs["input_ids"],
|
||||||
|
pixel_values=inputs["pixel_values"],
|
||||||
|
max_new_tokens=max_tokens or 1024,
|
||||||
|
do_sample=False,
|
||||||
|
num_beams=3,
|
||||||
|
)
|
||||||
|
|
||||||
|
generated_texts = florence_processor.batch_decode(
|
||||||
|
generated_ids, skip_special_tokens=False
|
||||||
|
)
|
||||||
|
|
||||||
|
parsed_answer = florence_processor.post_process_generation(
|
||||||
|
generated_texts[0],
|
||||||
|
task=task_prompt,
|
||||||
|
image_size=(image_input.width, image_input.height),
|
||||||
|
)
|
||||||
|
|
||||||
|
return parsed_answer.get(task_prompt, "")
|
||||||
|
|
||||||
|
|
||||||
|
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
|
||||||
|
async def chat_completions(request: ChatCompletionRequest):
|
||||||
|
try:
|
||||||
|
last_message = request.messages[-1]
|
||||||
|
text_input = last_message.get("content", "")
|
||||||
|
image_input = None
|
||||||
|
|
||||||
|
if isinstance(text_input, list):
|
||||||
|
for content in text_input:
|
||||||
|
if content.get("type") == "image_url":
|
||||||
|
image_url = content["image_url"].get("url")
|
||||||
|
image_input = await get_image_from_url(image_url)
|
||||||
|
break
|
||||||
|
text_input = " ".join(
|
||||||
|
[
|
||||||
|
content["text"]
|
||||||
|
for content in text_input
|
||||||
|
if content.get("type") == "text"
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
if image_input is None:
|
||||||
|
raise ValueError("Image input is required")
|
||||||
|
|
||||||
|
parsed_answer = await generate_florence_result(
|
||||||
|
text_input, image_input, request.max_tokens
|
||||||
|
)
|
||||||
|
|
||||||
|
result = ChatCompletionResponse(
|
||||||
|
id=str(int(time.time())),
|
||||||
|
object="chat.completion",
|
||||||
|
created=int(time.time()),
|
||||||
|
model=request.model,
|
||||||
|
choices=[
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"message": {
|
||||||
|
"role": "assistant",
|
||||||
|
"content": parsed_answer,
|
||||||
|
},
|
||||||
|
"finish_reason": "stop",
|
||||||
|
}
|
||||||
|
],
|
||||||
|
usage={
|
||||||
|
"prompt_tokens": 0,
|
||||||
|
"total_tokens": 0,
|
||||||
|
"completion_tokens": 0,
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
return result
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error generating chat completion: {str(e)}")
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=500, detail=f"Error generating chat completion: {str(e)}"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@app.get("/v1/models", response_model=ModelsResponse)
|
||||||
|
async def get_models():
|
||||||
|
model_data = ModelData(
|
||||||
|
id=MODEL_INFO["name"],
|
||||||
|
created=int(time.time()),
|
||||||
|
max_model_len=MODEL_INFO["max_model_len"],
|
||||||
|
permission=[
|
||||||
|
{
|
||||||
|
"id": f"modelperm-{MODEL_INFO['name']}",
|
||||||
|
"object": "model_permission",
|
||||||
|
"created": int(time.time()),
|
||||||
|
"allow_create_engine": False,
|
||||||
|
"allow_sampling": False,
|
||||||
|
"allow_logprobs": False,
|
||||||
|
"allow_search_indices": False,
|
||||||
|
"allow_view": False,
|
||||||
|
"allow_fine_tuning": False,
|
||||||
|
"organization": "*",
|
||||||
|
"group": None,
|
||||||
|
"is_blocking": False,
|
||||||
|
}
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
return ModelsResponse(data=[model_data])
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import argparse
|
||||||
|
import uvicorn
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description="Run the Florence-2 server")
|
||||||
|
parser.add_argument(
|
||||||
|
"--port", type=int, default=8000, help="Port to run the server on"
|
||||||
|
)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
print("Using Florence-2 model")
|
||||||
|
uvicorn.run(app, host="0.0.0.0", port=args.port)
|
182
memos_ml_backends/qwen2vl_server.py
Normal file
182
memos_ml_backends/qwen2vl_server.py
Normal file
@ -0,0 +1,182 @@
|
|||||||
|
from fastapi import FastAPI, HTTPException
|
||||||
|
import torch
|
||||||
|
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
|
||||||
|
from qwen_vl_utils import process_vision_info
|
||||||
|
import time
|
||||||
|
from memos_ml_backends.schemas import (
|
||||||
|
ChatCompletionRequest,
|
||||||
|
ChatCompletionResponse,
|
||||||
|
ModelData,
|
||||||
|
ModelsResponse,
|
||||||
|
get_image_from_url,
|
||||||
|
)
|
||||||
|
|
||||||
|
MODEL_INFO = {"name": "Qwen2-VL-2B-Instruct", "max_model_len": 32768}
|
||||||
|
|
||||||
|
# 检测可用的设备
|
||||||
|
if torch.cuda.is_available():
|
||||||
|
device = torch.device("cuda")
|
||||||
|
elif torch.backends.mps.is_available():
|
||||||
|
device = torch.device("mps")
|
||||||
|
else:
|
||||||
|
device = torch.device("cpu")
|
||||||
|
|
||||||
|
torch_dtype = (
|
||||||
|
torch.float32
|
||||||
|
if (torch.cuda.is_available() and torch.cuda.get_device_capability()[0] <= 6)
|
||||||
|
or (not torch.cuda.is_available() and not torch.backends.mps.is_available())
|
||||||
|
else torch.float16
|
||||||
|
)
|
||||||
|
print(f"Using device: {device}")
|
||||||
|
|
||||||
|
# Load Qwen2VL model
|
||||||
|
qwen2vl_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
||||||
|
"Qwen/Qwen2-VL-2B-Instruct",
|
||||||
|
torch_dtype=torch_dtype,
|
||||||
|
device_map="auto",
|
||||||
|
).to(device, torch_dtype)
|
||||||
|
qwen2vl_processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int4")
|
||||||
|
|
||||||
|
app = FastAPI()
|
||||||
|
|
||||||
|
|
||||||
|
async def generate_qwen2vl_result(text_input, image_input, max_tokens):
|
||||||
|
messages = [
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": [
|
||||||
|
{"type": "image", "image": image_input},
|
||||||
|
{"type": "text", "text": text_input},
|
||||||
|
],
|
||||||
|
}
|
||||||
|
]
|
||||||
|
|
||||||
|
text = qwen2vl_processor.apply_chat_template(
|
||||||
|
messages, tokenize=False, add_generation_prompt=True
|
||||||
|
)
|
||||||
|
|
||||||
|
image_inputs, video_inputs = process_vision_info(messages)
|
||||||
|
|
||||||
|
inputs = qwen2vl_processor(
|
||||||
|
text=[text],
|
||||||
|
images=image_inputs,
|
||||||
|
videos=video_inputs,
|
||||||
|
padding=True,
|
||||||
|
return_tensors="pt",
|
||||||
|
)
|
||||||
|
inputs = inputs.to(device)
|
||||||
|
|
||||||
|
generated_ids = qwen2vl_model.generate(**inputs, max_new_tokens=(max_tokens or 512))
|
||||||
|
|
||||||
|
generated_ids_trimmed = [
|
||||||
|
out_ids[len(in_ids) :]
|
||||||
|
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
||||||
|
]
|
||||||
|
|
||||||
|
output_text = qwen2vl_processor.batch_decode(
|
||||||
|
generated_ids_trimmed,
|
||||||
|
skip_special_tokens=True,
|
||||||
|
clean_up_tokenization_spaces=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
return output_text[0] if output_text else ""
|
||||||
|
|
||||||
|
|
||||||
|
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
|
||||||
|
async def chat_completions(request: ChatCompletionRequest):
|
||||||
|
try:
|
||||||
|
last_message = request.messages[-1]
|
||||||
|
text_input = last_message.get("content", "")
|
||||||
|
image_input = None
|
||||||
|
|
||||||
|
if isinstance(text_input, list):
|
||||||
|
for content in text_input:
|
||||||
|
if content.get("type") == "image_url":
|
||||||
|
image_url = content["image_url"].get("url")
|
||||||
|
image_input = await get_image_from_url(image_url)
|
||||||
|
break
|
||||||
|
text_input = " ".join(
|
||||||
|
[
|
||||||
|
content["text"]
|
||||||
|
for content in text_input
|
||||||
|
if content.get("type") == "text"
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
if image_input is None:
|
||||||
|
raise ValueError("Image input is required")
|
||||||
|
|
||||||
|
parsed_answer = await generate_qwen2vl_result(
|
||||||
|
text_input, image_input, request.max_tokens
|
||||||
|
)
|
||||||
|
|
||||||
|
result = ChatCompletionResponse(
|
||||||
|
id=str(int(time.time())),
|
||||||
|
object="chat.completion",
|
||||||
|
created=int(time.time()),
|
||||||
|
model=request.model,
|
||||||
|
choices=[
|
||||||
|
{
|
||||||
|
"index": 0,
|
||||||
|
"message": {
|
||||||
|
"role": "assistant",
|
||||||
|
"content": parsed_answer,
|
||||||
|
},
|
||||||
|
"finish_reason": "stop",
|
||||||
|
}
|
||||||
|
],
|
||||||
|
usage={
|
||||||
|
"prompt_tokens": 0,
|
||||||
|
"total_tokens": 0,
|
||||||
|
"completion_tokens": 0,
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
return result
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error generating chat completion: {str(e)}")
|
||||||
|
raise HTTPException(
|
||||||
|
status_code=500, detail=f"Error generating chat completion: {str(e)}"
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
# 添加新的 GET /v1/models 端点
|
||||||
|
@app.get("/v1/models", response_model=ModelsResponse)
|
||||||
|
async def get_models():
|
||||||
|
model_data = ModelData(
|
||||||
|
id=MODEL_INFO["name"],
|
||||||
|
created=int(time.time()),
|
||||||
|
max_model_len=MODEL_INFO["max_model_len"],
|
||||||
|
permission=[
|
||||||
|
{
|
||||||
|
"id": f"modelperm-{MODEL_INFO['name']}",
|
||||||
|
"object": "model_permission",
|
||||||
|
"created": int(time.time()),
|
||||||
|
"allow_create_engine": False,
|
||||||
|
"allow_sampling": False,
|
||||||
|
"allow_logprobs": False,
|
||||||
|
"allow_search_indices": False,
|
||||||
|
"allow_view": False,
|
||||||
|
"allow_fine_tuning": False,
|
||||||
|
"organization": "*",
|
||||||
|
"group": None,
|
||||||
|
"is_blocking": False,
|
||||||
|
}
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
return ModelsResponse(data=[model_data])
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import argparse
|
||||||
|
import uvicorn
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description="Run the Qwen2VL server")
|
||||||
|
parser.add_argument(
|
||||||
|
"--port", type=int, default=8000, help="Port to run the server on"
|
||||||
|
)
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
print("Using Qwen2VL model")
|
||||||
|
uvicorn.run(app, host="0.0.0.0", port=args.port)
|
@ -2,7 +2,6 @@ einops
|
|||||||
timm
|
timm
|
||||||
transformers
|
transformers
|
||||||
sentence-transformers
|
sentence-transformers
|
||||||
git+https://github.com/huggingface/transformers
|
transformers
|
||||||
qwen-vl-utils
|
qwen-vl-utils
|
||||||
auto-gptq
|
|
||||||
optimum
|
optimum
|
48
memos_ml_backends/schemas.py
Normal file
48
memos_ml_backends/schemas.py
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
from pydantic import BaseModel
|
||||||
|
from typing import List, Dict, Any, Optional
|
||||||
|
import httpx
|
||||||
|
from PIL import Image
|
||||||
|
import base64
|
||||||
|
import io
|
||||||
|
|
||||||
|
class ChatCompletionRequest(BaseModel):
|
||||||
|
model: str
|
||||||
|
messages: List[Dict[str, Any]]
|
||||||
|
max_tokens: Optional[int] = None
|
||||||
|
|
||||||
|
class ChatCompletionResponse(BaseModel):
|
||||||
|
id: str
|
||||||
|
object: str
|
||||||
|
created: int
|
||||||
|
model: str
|
||||||
|
choices: List[Dict[str, Any]]
|
||||||
|
usage: Dict[str, int]
|
||||||
|
|
||||||
|
class ModelData(BaseModel):
|
||||||
|
id: str
|
||||||
|
object: str = "model"
|
||||||
|
created: int
|
||||||
|
owned_by: str = "transformers"
|
||||||
|
root: str = "models"
|
||||||
|
parent: Optional[str] = None
|
||||||
|
max_model_len: int
|
||||||
|
permission: List[Dict[str, Any]]
|
||||||
|
|
||||||
|
class ModelsResponse(BaseModel):
|
||||||
|
object: str = "list"
|
||||||
|
data: List[ModelData]
|
||||||
|
|
||||||
|
async def get_image_from_url(image_url):
|
||||||
|
if image_url.startswith("data:image/"):
|
||||||
|
image_data = base64.b64decode(image_url.split(",")[1])
|
||||||
|
return Image.open(io.BytesIO(image_data))
|
||||||
|
elif image_url.startswith("file://"):
|
||||||
|
file_path = image_url[len("file://") :]
|
||||||
|
return Image.open(file_path)
|
||||||
|
else:
|
||||||
|
async with httpx.AsyncClient() as client:
|
||||||
|
response = await client.get(image_url)
|
||||||
|
response.raise_for_status()
|
||||||
|
image_data = response.content
|
||||||
|
return Image.open(io.BytesIO(image_data))
|
||||||
|
|
@ -1,260 +0,0 @@
|
|||||||
from fastapi import FastAPI, HTTPException
|
|
||||||
from pydantic import BaseModel
|
|
||||||
from typing import List, Dict, Any, Optional
|
|
||||||
import numpy as np
|
|
||||||
import httpx
|
|
||||||
import torch
|
|
||||||
from PIL import Image
|
|
||||||
import base64
|
|
||||||
import io
|
|
||||||
from transformers import (
|
|
||||||
AutoProcessor,
|
|
||||||
AutoModelForCausalLM,
|
|
||||||
Qwen2VLForConditionalGeneration,
|
|
||||||
)
|
|
||||||
from qwen_vl_utils import process_vision_info
|
|
||||||
import time
|
|
||||||
import argparse
|
|
||||||
|
|
||||||
# 检测可用的设备
|
|
||||||
if torch.cuda.is_available():
|
|
||||||
device = torch.device("cuda")
|
|
||||||
elif torch.backends.mps.is_available():
|
|
||||||
device = torch.device("mps")
|
|
||||||
else:
|
|
||||||
device = torch.device("cpu")
|
|
||||||
|
|
||||||
torch_dtype = (
|
|
||||||
torch.float32
|
|
||||||
if (torch.cuda.is_available() and torch.cuda.get_device_capability()[0] <= 6)
|
|
||||||
or (not torch.cuda.is_available() and not torch.backends.mps.is_available())
|
|
||||||
else torch.float16
|
|
||||||
)
|
|
||||||
print(f"Using device: {device}")
|
|
||||||
|
|
||||||
|
|
||||||
# Add a configuration option to choose the model
|
|
||||||
parser = argparse.ArgumentParser(description="Run the server with specified model")
|
|
||||||
parser.add_argument("--florence", action="store_true", help="Use Florence-2 model")
|
|
||||||
parser.add_argument("--qwen2vl", action="store_true", help="Use Qwen2VL model")
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
# Replace the USE_FLORANCE_MODEL configuration with this
|
|
||||||
use_florence_model = args.florence if (args.florence or args.qwen2vl) else True
|
|
||||||
|
|
||||||
# Initialize models based on the configuration
|
|
||||||
if use_florence_model:
|
|
||||||
# Load Florence-2 model
|
|
||||||
florence_model = AutoModelForCausalLM.from_pretrained(
|
|
||||||
"microsoft/Florence-2-base-ft",
|
|
||||||
torch_dtype=torch_dtype,
|
|
||||||
attn_implementation="sdpa",
|
|
||||||
trust_remote_code=True,
|
|
||||||
).to(device, torch_dtype)
|
|
||||||
florence_processor = AutoProcessor.from_pretrained(
|
|
||||||
"microsoft/Florence-2-base-ft", trust_remote_code=True
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
# Load Qwen2VL model
|
|
||||||
qwen2vl_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
||||||
"Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int4",
|
|
||||||
torch_dtype=torch_dtype,
|
|
||||||
device_map="auto",
|
|
||||||
).to(device, torch_dtype)
|
|
||||||
qwen2vl_processor = AutoProcessor.from_pretrained(
|
|
||||||
"Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int4"
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
async def get_image_from_url(image_url):
|
|
||||||
if image_url.startswith("data:image/"):
|
|
||||||
image_data = base64.b64decode(image_url.split(",")[1])
|
|
||||||
return Image.open(io.BytesIO(image_data))
|
|
||||||
elif image_url.startswith("file://"):
|
|
||||||
file_path = image_url[len("file://") :]
|
|
||||||
return Image.open(file_path)
|
|
||||||
else:
|
|
||||||
async with httpx.AsyncClient() as client:
|
|
||||||
response = await client.get(image_url)
|
|
||||||
response.raise_for_status()
|
|
||||||
image_data = response.content
|
|
||||||
return Image.open(io.BytesIO(image_data))
|
|
||||||
|
|
||||||
|
|
||||||
async def generate_florence_result(text_input, image_input, max_tokens):
|
|
||||||
task_prompt = "<MORE_DETAILED_CAPTION>"
|
|
||||||
prompt = task_prompt + ""
|
|
||||||
|
|
||||||
inputs = florence_processor(
|
|
||||||
text=prompt, images=image_input, return_tensors="pt"
|
|
||||||
).to(device, torch_dtype)
|
|
||||||
|
|
||||||
generated_ids = florence_model.generate(
|
|
||||||
input_ids=inputs["input_ids"],
|
|
||||||
pixel_values=inputs["pixel_values"],
|
|
||||||
max_new_tokens=max_tokens or 1024,
|
|
||||||
do_sample=False,
|
|
||||||
num_beams=3,
|
|
||||||
)
|
|
||||||
|
|
||||||
generated_texts = florence_processor.batch_decode(
|
|
||||||
generated_ids, skip_special_tokens=False
|
|
||||||
)
|
|
||||||
|
|
||||||
# 处理生成的文本
|
|
||||||
parsed_answer = florence_processor.post_process_generation(
|
|
||||||
generated_texts[0],
|
|
||||||
task=task_prompt,
|
|
||||||
image_size=(image_input.width, image_input.height),
|
|
||||||
)
|
|
||||||
|
|
||||||
return parsed_answer.get(task_prompt, "")
|
|
||||||
|
|
||||||
|
|
||||||
async def generate_qwen2vl_result(text_input, image_input, max_tokens):
|
|
||||||
messages = [
|
|
||||||
{
|
|
||||||
"role": "user",
|
|
||||||
"content": [
|
|
||||||
{"type": "image", "image": image_input},
|
|
||||||
{"type": "text", "text": text_input},
|
|
||||||
],
|
|
||||||
}
|
|
||||||
]
|
|
||||||
|
|
||||||
text = qwen2vl_processor.apply_chat_template(
|
|
||||||
messages, tokenize=False, add_generation_prompt=True
|
|
||||||
)
|
|
||||||
|
|
||||||
image_inputs, video_inputs = process_vision_info(messages)
|
|
||||||
|
|
||||||
inputs = qwen2vl_processor(
|
|
||||||
text=[text],
|
|
||||||
images=image_inputs,
|
|
||||||
videos=video_inputs,
|
|
||||||
padding=True,
|
|
||||||
return_tensors="pt",
|
|
||||||
)
|
|
||||||
inputs = inputs.to(device)
|
|
||||||
|
|
||||||
generated_ids = qwen2vl_model.generate(**inputs, max_new_tokens=(max_tokens or 512))
|
|
||||||
|
|
||||||
generated_ids_trimmed = [
|
|
||||||
out_ids[len(in_ids) :]
|
|
||||||
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
|
||||||
]
|
|
||||||
|
|
||||||
output_text = qwen2vl_processor.batch_decode(
|
|
||||||
generated_ids_trimmed,
|
|
||||||
skip_special_tokens=True,
|
|
||||||
clean_up_tokenization_spaces=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
return output_text[0] if output_text else ""
|
|
||||||
|
|
||||||
|
|
||||||
app = FastAPI()
|
|
||||||
|
|
||||||
|
|
||||||
class ChatCompletionRequest(BaseModel):
|
|
||||||
model: str
|
|
||||||
messages: List[Dict[str, Any]]
|
|
||||||
max_tokens: Optional[int] = None
|
|
||||||
|
|
||||||
|
|
||||||
class ChatCompletionResponse(BaseModel):
|
|
||||||
id: str
|
|
||||||
object: str
|
|
||||||
created: int
|
|
||||||
model: str
|
|
||||||
choices: List[Dict[str, Any]]
|
|
||||||
usage: Dict[str, int]
|
|
||||||
|
|
||||||
|
|
||||||
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
|
|
||||||
async def chat_completions(request: ChatCompletionRequest):
|
|
||||||
try:
|
|
||||||
last_message = request.messages[-1]
|
|
||||||
text_input = last_message.get("content", "")
|
|
||||||
image_input = None
|
|
||||||
|
|
||||||
# Process text and image input
|
|
||||||
if isinstance(text_input, list):
|
|
||||||
for content in text_input:
|
|
||||||
if content.get("type") == "image_url":
|
|
||||||
image_url = content["image_url"].get("url")
|
|
||||||
image_input = await get_image_from_url(image_url)
|
|
||||||
break
|
|
||||||
text_input = " ".join(
|
|
||||||
[
|
|
||||||
content["text"]
|
|
||||||
for content in text_input
|
|
||||||
if content.get("type") == "text"
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
if image_input is None:
|
|
||||||
raise ValueError("Image input is required")
|
|
||||||
|
|
||||||
# Use the selected model for generation
|
|
||||||
if use_florence_model:
|
|
||||||
parsed_answer = await generate_florence_result(
|
|
||||||
text_input, image_input, request.max_tokens
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
parsed_answer = await generate_qwen2vl_result(
|
|
||||||
text_input, image_input, request.max_tokens
|
|
||||||
)
|
|
||||||
|
|
||||||
result = ChatCompletionResponse(
|
|
||||||
id=str(int(time.time())),
|
|
||||||
object="chat.completion",
|
|
||||||
created=int(time.time()),
|
|
||||||
model=request.model,
|
|
||||||
choices=[
|
|
||||||
{
|
|
||||||
"index": 0,
|
|
||||||
"message": {
|
|
||||||
"role": "assistant",
|
|
||||||
"content": parsed_answer,
|
|
||||||
},
|
|
||||||
"finish_reason": "stop",
|
|
||||||
}
|
|
||||||
],
|
|
||||||
usage={
|
|
||||||
"prompt_tokens": 0,
|
|
||||||
"total_tokens": 0,
|
|
||||||
"completion_tokens": 0,
|
|
||||||
},
|
|
||||||
)
|
|
||||||
|
|
||||||
return result
|
|
||||||
except Exception as e:
|
|
||||||
print(f"Error generating chat completion: {str(e)}")
|
|
||||||
raise HTTPException(
|
|
||||||
status_code=500, detail=f"Error generating chat completion: {str(e)}"
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
import uvicorn
|
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(
|
|
||||||
description="Run the server with specified model and port"
|
|
||||||
)
|
|
||||||
parser.add_argument("--florence", action="store_true", help="Use Florence-2 model")
|
|
||||||
parser.add_argument("--qwen2vl", action="store_true", help="Use Qwen2VL model")
|
|
||||||
parser.add_argument(
|
|
||||||
"--port", type=int, default=8000, help="Port to run the server on"
|
|
||||||
)
|
|
||||||
args = parser.parse_args()
|
|
||||||
|
|
||||||
if args.florence and args.qwen2vl:
|
|
||||||
print("Error: Please specify only one model (--florence or --qwen2vl)")
|
|
||||||
exit(1)
|
|
||||||
elif not args.florence and not args.qwen2vl:
|
|
||||||
print("No model specified, using default (Florence-2)")
|
|
||||||
|
|
||||||
use_florence_model = args.florence if (args.florence or args.qwen2vl) else True
|
|
||||||
print(f"Using {'Florence-2' if use_florence_model else 'Qwen2VL'} model")
|
|
||||||
uvicorn.run(app, host="0.0.0.0", port=args.port)
|
|
Loading…
x
Reference in New Issue
Block a user