feat: remove local inference for ocr and vlm

This commit is contained in:
arkohut 2024-09-27 23:29:52 +08:00
parent bd27bbae25
commit 228cdee66f
3 changed files with 3 additions and 159 deletions

View File

@ -19,8 +19,6 @@ class VLMSettings(BaseModel):
token: str = ""
concurrency: int = 1
force_jpeg: bool = False
use_local: bool = True
use_modelscope: bool = False
class OCRSettings(BaseModel):
@ -28,8 +26,6 @@ class OCRSettings(BaseModel):
endpoint: str = "http://localhost:5555/predict"
token: str = ""
concurrency: int = 1
use_local: bool = True
use_gpu: bool = False
force_jpeg: bool = False

View File

@ -6,11 +6,6 @@ import httpx
import json
import base64
from PIL import Image
import numpy as np
from rapidocr_onnxruntime import RapidOCR
from concurrent.futures import ThreadPoolExecutor
from functools import partial
import yaml
from fastapi import APIRouter, FastAPI, Request, HTTPException
from memos.schemas import Entity, MetadataType
@ -23,10 +18,6 @@ endpoint = None
token = None
concurrency = None
semaphore = None
use_local = False
use_gpu = False
ocr = None
thread_pool = None
# Configure logger
logging.basicConfig(level=logging.INFO)
@ -58,39 +49,7 @@ async def fetch(endpoint: str, client, image_base64, headers: Optional[dict] = N
return response.json()
def convert_ocr_results(results):
if results is None:
return []
converted = []
for result in results:
item = {"dt_boxes": result[0], "rec_txt": result[1], "score": result[2]}
converted.append(item)
return converted
def predict_local(img_path):
try:
with Image.open(img_path) as img:
img_array = np.array(img)
results, _ = ocr(img_array)
return convert_ocr_results(results)
except Exception as e:
logger.error(f"Error processing image {img_path}: {str(e)}")
return None
async def async_predict_local(img_path):
loop = asyncio.get_running_loop()
results = await loop.run_in_executor(thread_pool, partial(predict_local, img_path))
return results
# Modify the predict function to use semaphore
async def predict(img_path):
if use_local:
return await async_predict_local(img_path)
image_base64 = image2base64(img_path)
if not image_base64:
return None
@ -170,41 +129,16 @@ async def ocr(entity: Entity, request: Request):
def init_plugin(config):
global endpoint, token, concurrency, semaphore, use_local, use_gpu, ocr, thread_pool
global endpoint, token, concurrency, semaphore
endpoint = config.endpoint
token = config.token
concurrency = config.concurrency
use_local = config.use_local
use_gpu = config.use_gpu
semaphore = asyncio.Semaphore(concurrency)
if use_local:
config_path = os.path.join(os.path.dirname(__file__), "ppocr-gpu.yaml" if use_gpu else "ppocr.yaml")
# Load and update the config file with absolute model paths
with open(config_path, 'r') as f:
ocr_config = yaml.safe_load(f)
model_dir = os.path.join(os.path.dirname(__file__), "models")
ocr_config['Det']['model_path'] = os.path.join(model_dir, os.path.basename(ocr_config['Det']['model_path']))
ocr_config['Cls']['model_path'] = os.path.join(model_dir, os.path.basename(ocr_config['Cls']['model_path']))
ocr_config['Rec']['model_path'] = os.path.join(model_dir, os.path.basename(ocr_config['Rec']['model_path']))
# Save the updated config to a temporary file with strings wrapped in double quotes
temp_config_path = os.path.join(os.path.dirname(__file__), "temp_ppocr.yaml")
with open(temp_config_path, 'w') as f:
yaml.safe_dump(ocr_config, f)
ocr = RapidOCR(config_path=temp_config_path)
thread_pool = ThreadPoolExecutor(max_workers=concurrency)
logger.info("OCR plugin initialized")
logger.info(f"Endpoint: {endpoint}")
logger.info(f"Token: {token}")
logger.info(f"Concurrency: {concurrency}")
logger.info(f"Use local: {use_local}")
logger.info(f"Use GPU: {use_gpu}")
if __name__ == "__main__":
import uvicorn
@ -227,12 +161,6 @@ if __name__ == "__main__":
parser.add_argument(
"--port", type=int, default=8000, help="The port number to run the server on"
)
parser.add_argument(
"--use-local", action="store_true", help="Use local OCR processing"
)
parser.add_argument(
"--use-gpu", action="store_true", help="Use GPU for local OCR processing"
)
args = parser.parse_args()

View File

@ -98,44 +98,7 @@ async def fetch(endpoint: str, client, request_data, headers: Optional[dict] = N
async def predict(
endpoint: str, modelname: str, img_path: str, token: Optional[str] = None
) -> Optional[str]:
if use_local:
return await predict_local(img_path)
else:
return await predict_remote(endpoint, modelname, img_path, token)
async def predict_local(img_path: str) -> Optional[str]:
try:
image = Image.open(img_path)
task_prompt = "<MORE_DETAILED_CAPTION>"
prompt = task_prompt + ""
inputs = florence_processor(text=prompt, images=image, return_tensors="pt").to(
florence_model.device, torch_dtype
)
generated_ids = florence_model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
do_sample=False,
num_beams=3,
)
generated_texts = florence_processor.batch_decode(
generated_ids, skip_special_tokens=False
)
parsed_answer = florence_processor.post_process_generation(
generated_texts[0],
task=task_prompt,
image_size=(image.width, image.height),
)
return parsed_answer.get(task_prompt, "")
except Exception as e:
logger.error(f"Error processing image {img_path}: {str(e)}")
return None
return await predict_remote(endpoint, modelname, img_path, token)
async def predict_remote(
@ -262,55 +225,15 @@ async def vlm(entity: Entity, request: Request):
def init_plugin(config):
global modelname, endpoint, token, concurrency, semaphore, force_jpeg, use_local, florence_model, florence_processor, torch_dtype
global modelname, endpoint, token, concurrency, semaphore, force_jpeg
modelname = config.modelname
endpoint = config.endpoint
token = config.token
concurrency = config.concurrency
force_jpeg = config.force_jpeg
use_local = config.use_local
use_modelscope = config.use_modelscope
semaphore = asyncio.Semaphore(concurrency)
if use_local:
# 检测可用的设备
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
torch_dtype = (
torch.float32
if (
torch.cuda.is_available() and torch.cuda.get_device_capability()[0] <= 6
)
or (not torch.cuda.is_available() and not torch.backends.mps.is_available())
else torch.float16
)
logger.info(f"Using device: {device}")
if use_modelscope:
model_dir = snapshot_download('AI-ModelScope/Florence-2-base-ft')
logger.info(f"Model downloaded from ModelScope to: {model_dir}")
else:
model_dir = "microsoft/Florence-2-base-ft"
logger.info(f"Using model: {model_dir}")
with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports):
florence_model = AutoModelForCausalLM.from_pretrained(
model_dir,
torch_dtype=torch_dtype,
attn_implementation="sdpa",
trust_remote_code=True,
).to(device)
florence_processor = AutoProcessor.from_pretrained(
model_dir, trust_remote_code=True
)
logger.info("Florence model and processor initialized")
# Print the parameters
logger.info("VLM plugin initialized")
logger.info(f"Model Name: {modelname}")
@ -318,8 +241,6 @@ def init_plugin(config):
logger.info(f"Token: {token}")
logger.info(f"Concurrency: {concurrency}")
logger.info(f"Force JPEG: {force_jpeg}")
logger.info(f"Use Local: {use_local}")
logger.info(f"Use ModelScope: {use_modelscope}")
if __name__ == "__main__":
@ -338,7 +259,6 @@ if __name__ == "__main__":
parser.add_argument(
"--port", type=int, default=8000, help="Port to run the server on"
)
parser.add_argument("--use-modelscope", action="store_true", help="Use ModelScope to download the model")
args = parser.parse_args()