mirror of
https://github.com/tcsenpai/pensieve.git
synced 2025-06-06 03:05:25 +00:00
feat: remove local inference for ocr and vlm
This commit is contained in:
parent
bd27bbae25
commit
228cdee66f
@ -19,8 +19,6 @@ class VLMSettings(BaseModel):
|
||||
token: str = ""
|
||||
concurrency: int = 1
|
||||
force_jpeg: bool = False
|
||||
use_local: bool = True
|
||||
use_modelscope: bool = False
|
||||
|
||||
|
||||
class OCRSettings(BaseModel):
|
||||
@ -28,8 +26,6 @@ class OCRSettings(BaseModel):
|
||||
endpoint: str = "http://localhost:5555/predict"
|
||||
token: str = ""
|
||||
concurrency: int = 1
|
||||
use_local: bool = True
|
||||
use_gpu: bool = False
|
||||
force_jpeg: bool = False
|
||||
|
||||
|
||||
|
@ -6,11 +6,6 @@ import httpx
|
||||
import json
|
||||
import base64
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
from rapidocr_onnxruntime import RapidOCR
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from functools import partial
|
||||
import yaml
|
||||
|
||||
from fastapi import APIRouter, FastAPI, Request, HTTPException
|
||||
from memos.schemas import Entity, MetadataType
|
||||
@ -23,10 +18,6 @@ endpoint = None
|
||||
token = None
|
||||
concurrency = None
|
||||
semaphore = None
|
||||
use_local = False
|
||||
use_gpu = False
|
||||
ocr = None
|
||||
thread_pool = None
|
||||
|
||||
# Configure logger
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
@ -58,39 +49,7 @@ async def fetch(endpoint: str, client, image_base64, headers: Optional[dict] = N
|
||||
return response.json()
|
||||
|
||||
|
||||
def convert_ocr_results(results):
|
||||
if results is None:
|
||||
return []
|
||||
|
||||
converted = []
|
||||
for result in results:
|
||||
item = {"dt_boxes": result[0], "rec_txt": result[1], "score": result[2]}
|
||||
converted.append(item)
|
||||
return converted
|
||||
|
||||
|
||||
def predict_local(img_path):
|
||||
try:
|
||||
with Image.open(img_path) as img:
|
||||
img_array = np.array(img)
|
||||
results, _ = ocr(img_array)
|
||||
return convert_ocr_results(results)
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing image {img_path}: {str(e)}")
|
||||
return None
|
||||
|
||||
|
||||
async def async_predict_local(img_path):
|
||||
loop = asyncio.get_running_loop()
|
||||
results = await loop.run_in_executor(thread_pool, partial(predict_local, img_path))
|
||||
return results
|
||||
|
||||
|
||||
# Modify the predict function to use semaphore
|
||||
async def predict(img_path):
|
||||
if use_local:
|
||||
return await async_predict_local(img_path)
|
||||
|
||||
image_base64 = image2base64(img_path)
|
||||
if not image_base64:
|
||||
return None
|
||||
@ -170,41 +129,16 @@ async def ocr(entity: Entity, request: Request):
|
||||
|
||||
|
||||
def init_plugin(config):
|
||||
global endpoint, token, concurrency, semaphore, use_local, use_gpu, ocr, thread_pool
|
||||
global endpoint, token, concurrency, semaphore
|
||||
endpoint = config.endpoint
|
||||
token = config.token
|
||||
concurrency = config.concurrency
|
||||
use_local = config.use_local
|
||||
use_gpu = config.use_gpu
|
||||
semaphore = asyncio.Semaphore(concurrency)
|
||||
|
||||
if use_local:
|
||||
config_path = os.path.join(os.path.dirname(__file__), "ppocr-gpu.yaml" if use_gpu else "ppocr.yaml")
|
||||
|
||||
# Load and update the config file with absolute model paths
|
||||
with open(config_path, 'r') as f:
|
||||
ocr_config = yaml.safe_load(f)
|
||||
|
||||
model_dir = os.path.join(os.path.dirname(__file__), "models")
|
||||
ocr_config['Det']['model_path'] = os.path.join(model_dir, os.path.basename(ocr_config['Det']['model_path']))
|
||||
ocr_config['Cls']['model_path'] = os.path.join(model_dir, os.path.basename(ocr_config['Cls']['model_path']))
|
||||
ocr_config['Rec']['model_path'] = os.path.join(model_dir, os.path.basename(ocr_config['Rec']['model_path']))
|
||||
|
||||
# Save the updated config to a temporary file with strings wrapped in double quotes
|
||||
temp_config_path = os.path.join(os.path.dirname(__file__), "temp_ppocr.yaml")
|
||||
with open(temp_config_path, 'w') as f:
|
||||
yaml.safe_dump(ocr_config, f)
|
||||
|
||||
ocr = RapidOCR(config_path=temp_config_path)
|
||||
thread_pool = ThreadPoolExecutor(max_workers=concurrency)
|
||||
|
||||
logger.info("OCR plugin initialized")
|
||||
logger.info(f"Endpoint: {endpoint}")
|
||||
logger.info(f"Token: {token}")
|
||||
logger.info(f"Concurrency: {concurrency}")
|
||||
logger.info(f"Use local: {use_local}")
|
||||
logger.info(f"Use GPU: {use_gpu}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
@ -227,12 +161,6 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--port", type=int, default=8000, help="The port number to run the server on"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use-local", action="store_true", help="Use local OCR processing"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use-gpu", action="store_true", help="Use GPU for local OCR processing"
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
|
@ -98,44 +98,7 @@ async def fetch(endpoint: str, client, request_data, headers: Optional[dict] = N
|
||||
async def predict(
|
||||
endpoint: str, modelname: str, img_path: str, token: Optional[str] = None
|
||||
) -> Optional[str]:
|
||||
if use_local:
|
||||
return await predict_local(img_path)
|
||||
else:
|
||||
return await predict_remote(endpoint, modelname, img_path, token)
|
||||
|
||||
|
||||
async def predict_local(img_path: str) -> Optional[str]:
|
||||
try:
|
||||
image = Image.open(img_path)
|
||||
task_prompt = "<MORE_DETAILED_CAPTION>"
|
||||
prompt = task_prompt + ""
|
||||
|
||||
inputs = florence_processor(text=prompt, images=image, return_tensors="pt").to(
|
||||
florence_model.device, torch_dtype
|
||||
)
|
||||
|
||||
generated_ids = florence_model.generate(
|
||||
input_ids=inputs["input_ids"],
|
||||
pixel_values=inputs["pixel_values"],
|
||||
max_new_tokens=1024,
|
||||
do_sample=False,
|
||||
num_beams=3,
|
||||
)
|
||||
|
||||
generated_texts = florence_processor.batch_decode(
|
||||
generated_ids, skip_special_tokens=False
|
||||
)
|
||||
|
||||
parsed_answer = florence_processor.post_process_generation(
|
||||
generated_texts[0],
|
||||
task=task_prompt,
|
||||
image_size=(image.width, image.height),
|
||||
)
|
||||
|
||||
return parsed_answer.get(task_prompt, "")
|
||||
except Exception as e:
|
||||
logger.error(f"Error processing image {img_path}: {str(e)}")
|
||||
return None
|
||||
return await predict_remote(endpoint, modelname, img_path, token)
|
||||
|
||||
|
||||
async def predict_remote(
|
||||
@ -262,55 +225,15 @@ async def vlm(entity: Entity, request: Request):
|
||||
|
||||
|
||||
def init_plugin(config):
|
||||
global modelname, endpoint, token, concurrency, semaphore, force_jpeg, use_local, florence_model, florence_processor, torch_dtype
|
||||
global modelname, endpoint, token, concurrency, semaphore, force_jpeg
|
||||
|
||||
modelname = config.modelname
|
||||
endpoint = config.endpoint
|
||||
token = config.token
|
||||
concurrency = config.concurrency
|
||||
force_jpeg = config.force_jpeg
|
||||
use_local = config.use_local
|
||||
use_modelscope = config.use_modelscope
|
||||
semaphore = asyncio.Semaphore(concurrency)
|
||||
|
||||
if use_local:
|
||||
# 检测可用的设备
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
elif torch.backends.mps.is_available():
|
||||
device = torch.device("mps")
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
|
||||
torch_dtype = (
|
||||
torch.float32
|
||||
if (
|
||||
torch.cuda.is_available() and torch.cuda.get_device_capability()[0] <= 6
|
||||
)
|
||||
or (not torch.cuda.is_available() and not torch.backends.mps.is_available())
|
||||
else torch.float16
|
||||
)
|
||||
logger.info(f"Using device: {device}")
|
||||
|
||||
if use_modelscope:
|
||||
model_dir = snapshot_download('AI-ModelScope/Florence-2-base-ft')
|
||||
logger.info(f"Model downloaded from ModelScope to: {model_dir}")
|
||||
else:
|
||||
model_dir = "microsoft/Florence-2-base-ft"
|
||||
logger.info(f"Using model: {model_dir}")
|
||||
|
||||
with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports):
|
||||
florence_model = AutoModelForCausalLM.from_pretrained(
|
||||
model_dir,
|
||||
torch_dtype=torch_dtype,
|
||||
attn_implementation="sdpa",
|
||||
trust_remote_code=True,
|
||||
).to(device)
|
||||
florence_processor = AutoProcessor.from_pretrained(
|
||||
model_dir, trust_remote_code=True
|
||||
)
|
||||
logger.info("Florence model and processor initialized")
|
||||
|
||||
# Print the parameters
|
||||
logger.info("VLM plugin initialized")
|
||||
logger.info(f"Model Name: {modelname}")
|
||||
@ -318,8 +241,6 @@ def init_plugin(config):
|
||||
logger.info(f"Token: {token}")
|
||||
logger.info(f"Concurrency: {concurrency}")
|
||||
logger.info(f"Force JPEG: {force_jpeg}")
|
||||
logger.info(f"Use Local: {use_local}")
|
||||
logger.info(f"Use ModelScope: {use_modelscope}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@ -338,7 +259,6 @@ if __name__ == "__main__":
|
||||
parser.add_argument(
|
||||
"--port", type=int, default=8000, help="Port to run the server on"
|
||||
)
|
||||
parser.add_argument("--use-modelscope", action="store_true", help="Use ModelScope to download the model")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user