feat(ocr): support local paddleocr

This commit is contained in:
arkohut 2024-09-01 22:40:20 +08:00
parent d3b45ad197
commit 2b2d616775
2 changed files with 75 additions and 2 deletions

View File

@ -25,12 +25,14 @@ class OCRSettings(BaseModel):
endpoint: str = "http://localhost:5555/predict"
token: str = ""
concurrency: int = 4
use_local: bool = True
use_gpu: bool = False
class EmbeddingSettings(BaseModel):
num_dim: int = 768
ollama_endpoint: str = "http://localhost:11434"
ollama_model: str = "jina/jina-embeddings-v2-base-en"
ollama_model: str = "nextfire/paraphrase-multilingual-minilm"
class Settings(BaseSettings):

View File

@ -1,10 +1,16 @@
import asyncio
import logging
import os
from typing import Optional
import httpx
import json
import base64
from PIL import Image
import numpy as np
from rapidocr_onnxruntime import RapidOCR
from concurrent.futures import ThreadPoolExecutor
from functools import partial
import yaml
from fastapi import APIRouter, FastAPI, Request, HTTPException
from memos.schemas import Entity, MetadataType
@ -17,6 +23,10 @@ endpoint = None
token = None
concurrency = None
semaphore = None
use_local = False
use_gpu = False
ocr = None
thread_pool = None
# Configure logger
logging.basicConfig(level=logging.INFO)
@ -48,8 +58,39 @@ async def fetch(endpoint: str, client, image_base64, headers: Optional[dict] = N
return response.json()
def convert_ocr_results(results):
if results is None:
return []
converted = []
for result in results:
item = {"dt_boxes": result[0], "rec_txt": result[1], "score": result[2]}
converted.append(item)
return converted
def predict_local(img_path):
try:
with Image.open(img_path) as img:
img_array = np.array(img)
results, _ = ocr(img_array)
return convert_ocr_results(results)
except Exception as e:
logger.error(f"Error processing image {img_path}: {str(e)}")
return None
async def async_predict_local(img_path):
loop = asyncio.get_running_loop()
results = await loop.run_in_executor(thread_pool, partial(predict_local, img_path))
return results
# Modify the predict function to use semaphore
async def predict(img_path):
if use_local:
return await async_predict_local(img_path)
image_base64 = image2base64(img_path)
if not image_base64:
return None
@ -121,16 +162,40 @@ async def ocr(entity: Entity, request: Request):
def init_plugin(config):
global endpoint, token, concurrency, semaphore
global endpoint, token, concurrency, semaphore, use_local, use_gpu, ocr, thread_pool
endpoint = config.endpoint
token = config.token
concurrency = config.concurrency
use_local = config.use_local
use_gpu = config.use_gpu
semaphore = asyncio.Semaphore(concurrency)
if use_local:
config_path = os.path.join(os.path.dirname(__file__), "ppocr-gpu.yaml" if use_gpu else "ppocr.yaml")
# Load and update the config file with absolute model paths
with open(config_path, 'r') as f:
ocr_config = yaml.safe_load(f)
model_dir = os.path.join(os.path.dirname(__file__), "models")
ocr_config['Det']['model_path'] = os.path.join(model_dir, os.path.basename(ocr_config['Det']['model_path']))
ocr_config['Cls']['model_path'] = os.path.join(model_dir, os.path.basename(ocr_config['Cls']['model_path']))
ocr_config['Rec']['model_path'] = os.path.join(model_dir, os.path.basename(ocr_config['Rec']['model_path']))
# Save the updated config to a temporary file
temp_config_path = os.path.join(os.path.dirname(__file__), "temp_ppocr.yaml")
with open(temp_config_path, 'w') as f:
yaml.safe_dump(ocr_config, f)
ocr = RapidOCR(config_path=temp_config_path)
thread_pool = ThreadPoolExecutor(max_workers=concurrency)
logger.info("OCR plugin initialized")
logger.info(f"Endpoint: {endpoint}")
logger.info(f"Token: {token}")
logger.info(f"Concurrency: {concurrency}")
logger.info(f"Use local: {use_local}")
logger.info(f"Use GPU: {use_gpu}")
if __name__ == "__main__":
@ -154,6 +219,12 @@ if __name__ == "__main__":
parser.add_argument(
"--port", type=int, default=8000, help="The port number to run the server on"
)
parser.add_argument(
"--use-local", action="store_true", help="Use local OCR processing"
)
parser.add_argument(
"--use-gpu", action="store_true", help="Use GPU for local OCR processing"
)
args = parser.parse_args()