feat: make embedding a default plugin

This commit is contained in:
arkohut 2024-09-09 19:43:17 +08:00
parent 57110db73f
commit 69aca0153a
6 changed files with 179 additions and 73 deletions

View File

@ -32,9 +32,10 @@ class OCRSettings(BaseModel):
class EmbeddingSettings(BaseModel):
enabled: bool = True
num_dim: int = 768
ollama_endpoint: str = "http://localhost:11434"
ollama_model: str = "nextfire/paraphrase-multilingual-minilm"
endpoint: str = "http://localhost:11434/api/embed"
model: str = "jinaai/jina-embeddings-v2-base-zh"
class Settings(BaseSettings):

View File

@ -46,14 +46,19 @@ def parse_date_fields(entity):
}
def get_embeddings(texts: List[str]) -> List[List[float]]:
async def get_embeddings(texts: List[str]) -> List[List[float]]:
print(f"Getting embeddings for {len(texts)} texts")
ollama_endpoint = settings.embedding.ollama_endpoint
ollama_model = settings.embedding.ollama_model
with httpx.Client() as client:
response = client.post(
f"{ollama_endpoint}/api/embed",
json={"model": ollama_model, "input": texts},
if settings.embedding.enabled:
endpoint = f"http://{settings.server_host}:{settings.server_port}/plugins/embed"
else:
endpoint = settings.embedding.endpoint
model = settings.embedding.model
async with httpx.AsyncClient() as client:
response = await client.post(
endpoint,
json={"model": model, "input": texts},
timeout=30
)
if response.status_code == 200:
@ -99,7 +104,7 @@ def generate_metadata_text(metadata_entries):
return metadata_text
def bulk_upsert(client, entities):
async def bulk_upsert(client, entities):
documents = []
metadata_texts = []
entities_with_metadata = []
@ -142,7 +147,7 @@ def bulk_upsert(client, entities):
).model_dump(mode="json")
)
embeddings = get_embeddings(metadata_texts)
embeddings = await get_embeddings(metadata_texts)
for doc, embedding, entity in zip(documents, embeddings, entities):
if entity in entities_with_metadata:
doc["embedding"] = embedding
@ -259,7 +264,7 @@ def list_all_entities(
)
def search_entities(
async def search_entities(
client,
q: str,
library_ids: List[int] = None,
@ -287,7 +292,7 @@ def search_entities(
filter_by_str = " && ".join(filter_by) if filter_by else ""
# Convert q to embedding using get_embeddings and take the first embedding
embedding = get_embeddings([q])[0]
embedding = (await get_embeddings([q]))[0]
common_search_params = {
"collection": TYPESENSE_COLLECTION_NAME,

View File

@ -0,0 +1,131 @@
import asyncio
from typing import List
from fastapi import APIRouter, HTTPException
import logging
import uvicorn
from sentence_transformers import SentenceTransformer
import torch
import numpy as np
from pydantic import BaseModel
PLUGIN_NAME = "embedding"
router = APIRouter(tags=[PLUGIN_NAME], responses={404: {"description": "Not found"}})
# Global variables
enabled = False
model = None
num_dim = None
endpoint = None
model_name = None
device = None
# Configure logger
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def init_embedding_model():
global model, device
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
model = SentenceTransformer(model_name, trust_remote_code=True)
model.to(device)
logger.info(f"Embedding model initialized on device: {device}")
def generate_embeddings(input_texts: List[str]) -> List[List[float]]:
embeddings = model.encode(input_texts, convert_to_tensor=True)
embeddings = embeddings.cpu().numpy()
# Normalize embeddings
norms = np.linalg.norm(embeddings, ord=2, axis=1, keepdims=True)
norms[norms == 0] = 1
embeddings = embeddings / norms
return embeddings.tolist()
class EmbeddingRequest(BaseModel):
input: List[str]
class EmbeddingResponse(BaseModel):
embeddings: List[List[float]]
@router.get("/")
async def read_root():
return {"healthy": True, "enabled": enabled}
@router.post("", include_in_schema=False)
@router.post("/", response_model=EmbeddingResponse)
async def embed(request: EmbeddingRequest):
try:
if not request.input:
return EmbeddingResponse(embeddings=[])
# Run the embedding generation in a separate thread to avoid blocking
loop = asyncio.get_event_loop()
embeddings = await loop.run_in_executor(None, generate_embeddings, request.input)
return EmbeddingResponse(embeddings=embeddings)
except Exception as e:
raise HTTPException(
status_code=500, detail=f"Error generating embeddings: {str(e)}"
)
def init_plugin(config):
global enabled, num_dim, endpoint, model_name
enabled = config.enabled
num_dim = config.num_dim
endpoint = config.endpoint
model_name = config.model
if enabled:
init_embedding_model()
logger.info("Embedding plugin initialized")
logger.info(f"Enabled: {enabled}")
logger.info(f"Number of dimensions: {num_dim}")
logger.info(f"Endpoint: {endpoint}")
logger.info(f"Model: {model_name}")
if __name__ == "__main__":
import argparse
from fastapi import FastAPI
parser = argparse.ArgumentParser(description="Embedding Plugin Configuration")
parser.add_argument(
"--num-dim", type=int, default=768, help="Number of embedding dimensions"
)
parser.add_argument(
"--model",
type=str,
default="jinaai/jina-embeddings-v2-base-zh",
help="Embedding model name",
)
parser.add_argument(
"--port", type=int, default=8000, help="Port to run the server on"
)
args = parser.parse_args()
class Config:
def __init__(self, args):
self.enabled = True
self.num_dim = args.num_dim
self.endpoint = "what ever"
self.model = args.model
init_plugin(Config(args))
app = FastAPI()
app.include_router(router)
uvicorn.run(app, host="0.0.0.0", port=args.port)

View File

@ -23,6 +23,7 @@ import typesense
from .config import get_database_path, settings
from memos.plugins.vlm import main as vlm_main
from memos.plugins.ocr import main as ocr_main
from memos.plugins.embedding import main as embedding_main
from . import crud
from . import indexing
from .schemas import (
@ -84,18 +85,6 @@ app.mount(
"/_app", StaticFiles(directory=os.path.join(current_dir, "static/_app"), html=True)
)
# Add VLM plugin router
if settings.vlm.enabled:
print("VLM plugin is enabled")
vlm_main.init_plugin(settings.vlm)
app.include_router(vlm_main.router, prefix="/plugins/vlm")
# Add OCR plugin router
if settings.ocr.enabled:
print("OCR plugin is enabled")
ocr_main.init_plugin(settings.ocr)
app.include_router(ocr_main.router, prefix="/plugins/ocr")
@app.get("/favicon.png", response_class=FileResponse)
async def favicon_png():
@ -411,7 +400,7 @@ async def batch_sync_entities_to_typesense(
)
try:
indexing.bulk_upsert(client, entities)
await indexing.bulk_upsert(client, entities)
except Exception as e:
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
@ -481,7 +470,7 @@ def list_entitiy_indices_in_folder(
@app.get("/search", response_model=SearchResult, tags=["search"])
async def search_entities(
async def search_entities_route(
q: str,
library_ids: str = Query(None, description="Comma-separated list of library IDs"),
folder_ids: str = Query(None, description="Comma-separated list of folder IDs"),
@ -502,7 +491,7 @@ async def search_entities(
[date.strip() for date in created_dates.split(",")] if created_dates else None
)
try:
return indexing.search_entities(
return await indexing.search_entities(
client,
q,
library_ids,
@ -727,6 +716,24 @@ def run_server():
print(f"VLM plugin enabled: {settings.vlm}")
print(f"OCR plugin enabled: {settings.ocr}")
# Add VLM plugin router
if settings.vlm.enabled:
print("VLM plugin is enabled")
vlm_main.init_plugin(settings.vlm)
app.include_router(vlm_main.router, prefix="/plugins/vlm")
# Add OCR plugin router
if settings.ocr.enabled:
print("OCR plugin is enabled")
ocr_main.init_plugin(settings.ocr)
app.include_router(ocr_main.router, prefix="/plugins/ocr")
# Add Embedding plugin router
if settings.embedding.enabled:
print("Embedding plugin is enabled")
embedding_main.init_plugin(settings.embedding)
app.include_router(embedding_main.router, prefix="/plugins/embed")
uvicorn.run(
"memos.server:app",
host=settings.server_host, # Use the new server_host setting

View File

@ -1,7 +1,6 @@
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List, Dict, Any, Optional
from sentence_transformers import SentenceTransformer
import numpy as np
import httpx
import torch
@ -34,27 +33,6 @@ torch_dtype = (
print(f"Using device: {device}")
def init_embedding_model():
model = SentenceTransformer(
"jinaai/jina-embeddings-v2-base-zh", trust_remote_code=True
)
model.to(device)
return model
embedding_model = init_embedding_model()
def generate_embeddings(input_texts: List[str]) -> List[List[float]]:
embeddings = embedding_model.encode(input_texts, convert_to_tensor=True)
embeddings = embeddings.cpu().numpy()
# normalized embeddings
norms = np.linalg.norm(embeddings, ord=2, axis=1, keepdims=True)
norms[norms == 0] = 1
embeddings = embeddings / norms
return embeddings.tolist()
# Add a configuration option to choose the model
parser = argparse.ArgumentParser(description="Run the server with specified model")
parser.add_argument("--florence", action="store_true", help="Use Florence-2 model")
@ -68,7 +46,10 @@ use_florence_model = args.florence if (args.florence or args.qwen2vl) else True
if use_florence_model:
# Load Florence-2 model
florence_model = AutoModelForCausalLM.from_pretrained(
"microsoft/Florence-2-base-ft", torch_dtype=torch_dtype, trust_remote_code=True
"microsoft/Florence-2-base-ft",
torch_dtype=torch_dtype,
attn_implementation="sdpa",
trust_remote_code=True,
).to(device)
florence_processor = AutoProcessor.from_pretrained(
"microsoft/Florence-2-base-ft", trust_remote_code=True
@ -175,28 +156,6 @@ async def generate_qwen2vl_result(text_input, image_input, max_tokens):
app = FastAPI()
class EmbeddingRequest(BaseModel):
input: List[str]
class EmbeddingResponse(BaseModel):
embeddings: List[List[float]]
@app.post("/api/embed", response_model=EmbeddingResponse)
async def create_embeddings(request: EmbeddingRequest):
try:
if not request.input:
return EmbeddingResponse(embeddings=[])
embeddings = generate_embeddings(request.input) # 使用新方法
return EmbeddingResponse(embeddings=embeddings)
except Exception as e:
raise HTTPException(
status_code=500, detail=f"Error generating embeddings: {str(e)}"
)
class ChatCompletionRequest(BaseModel):
model: str
messages: List[Dict[str, Any]]

View File

@ -36,6 +36,9 @@ dependencies = [
"pyobjc; sys_platform == 'darwin'",
"pyobjc-core; sys_platform == 'darwin'",
"pyobjc-framework-Quartz; sys_platform == 'darwin'",
"sentence-transformers",
"torch",
"numpy",
]
[project.urls]