mirror of
https://github.com/tcsenpai/pensieve.git
synced 2025-06-06 03:05:25 +00:00
feat(embedding): make embedding plugin to be a core function
This commit is contained in:
parent
279632cf38
commit
7b0635ebf6
54
memos/embedding.py
Normal file
54
memos/embedding.py
Normal file
@ -0,0 +1,54 @@
|
||||
from typing import List
|
||||
from sentence_transformers import SentenceTransformer
|
||||
import torch
|
||||
import numpy as np
|
||||
from modelscope import snapshot_download
|
||||
from .config import settings
|
||||
import logging
|
||||
|
||||
# Configure logger
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Global variables
|
||||
model = None
|
||||
device = None
|
||||
|
||||
def init_embedding_model():
|
||||
global model, device
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
elif torch.backends.mps.is_available():
|
||||
device = torch.device("mps")
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
|
||||
if settings.embedding.use_modelscope:
|
||||
model_dir = snapshot_download(settings.embedding.model)
|
||||
logger.info(f"Model downloaded from ModelScope to: {model_dir}")
|
||||
else:
|
||||
model_dir = settings.embedding.model
|
||||
logger.info(f"Using model: {model_dir}")
|
||||
|
||||
model = SentenceTransformer(model_dir, trust_remote_code=True)
|
||||
model.to(device)
|
||||
logger.info(f"Embedding model initialized on device: {device}")
|
||||
|
||||
def generate_embeddings(texts: List[str]) -> List[List[float]]:
|
||||
global model
|
||||
|
||||
if model is None:
|
||||
init_embedding_model()
|
||||
|
||||
if not texts:
|
||||
return []
|
||||
|
||||
embeddings = model.encode(texts, convert_to_tensor=True)
|
||||
embeddings = embeddings.cpu().numpy()
|
||||
|
||||
# Normalize embeddings
|
||||
norms = np.linalg.norm(embeddings, ord=2, axis=1, keepdims=True)
|
||||
norms[norms == 0] = 1
|
||||
embeddings = embeddings / norms
|
||||
|
||||
return embeddings.tolist()
|
@ -17,7 +17,7 @@ from .schemas import (
|
||||
RequestParams,
|
||||
)
|
||||
from .config import settings, TYPESENSE_COLLECTION_NAME
|
||||
|
||||
from .embedding import generate_embeddings
|
||||
|
||||
def convert_metadata_value(metadata: EntityMetadata):
|
||||
if metadata.data_type == MetadataType.JSON_DATA:
|
||||
@ -49,28 +49,15 @@ def parse_date_fields(entity):
|
||||
async def get_embeddings(texts: List[str]) -> List[List[float]]:
|
||||
print(f"Getting embeddings for {len(texts)} texts")
|
||||
|
||||
if settings.embedding.enabled:
|
||||
endpoint = f"http://{settings.server_host}:{settings.server_port}/plugins/embed"
|
||||
else:
|
||||
endpoint = settings.embedding.endpoint
|
||||
|
||||
model = settings.embedding.model
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.post(
|
||||
endpoint,
|
||||
json={"model": model, "input": texts},
|
||||
timeout=30
|
||||
)
|
||||
if response.status_code == 200:
|
||||
print("Successfully retrieved embeddings from the embedding service.")
|
||||
try:
|
||||
embeddings = generate_embeddings(texts)
|
||||
print("Successfully generated embeddings.")
|
||||
return [
|
||||
[round(float(x), 5) for x in embedding]
|
||||
for embedding in response.json()["embeddings"]
|
||||
for embedding in embeddings
|
||||
]
|
||||
else:
|
||||
raise Exception(
|
||||
f"Failed to get embeddings: {response.text} {response.status_code}"
|
||||
)
|
||||
except Exception as e:
|
||||
raise Exception(f"Failed to generate embeddings: {str(e)}")
|
||||
|
||||
|
||||
def generate_metadata_text(metadata_entries):
|
||||
|
@ -1,146 +0,0 @@
|
||||
import asyncio
|
||||
from typing import List
|
||||
from fastapi import APIRouter, HTTPException
|
||||
import logging
|
||||
import uvicorn
|
||||
from sentence_transformers import SentenceTransformer
|
||||
import torch
|
||||
import numpy as np
|
||||
from pydantic import BaseModel
|
||||
from modelscope import snapshot_download
|
||||
|
||||
PLUGIN_NAME = "embedding"
|
||||
|
||||
router = APIRouter(tags=[PLUGIN_NAME], responses={404: {"description": "Not found"}})
|
||||
|
||||
# Global variables
|
||||
enabled = False
|
||||
model = None
|
||||
num_dim = None
|
||||
endpoint = None
|
||||
model_name = None
|
||||
device = None
|
||||
use_modelscope = None
|
||||
|
||||
# Configure logger
|
||||
logging.basicConfig(level=logging.INFO)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def init_embedding_model():
|
||||
global model, device, use_modelscope
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
elif torch.backends.mps.is_available():
|
||||
device = torch.device("mps")
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
|
||||
if use_modelscope:
|
||||
model_dir = snapshot_download(model_name)
|
||||
logger.info(f"Model downloaded from ModelScope to: {model_dir}")
|
||||
else:
|
||||
model_dir = model_name
|
||||
logger.info(f"Using model: {model_dir}")
|
||||
|
||||
model = SentenceTransformer(model_dir, trust_remote_code=True)
|
||||
model.to(device)
|
||||
logger.info(f"Embedding model initialized on device: {device}")
|
||||
|
||||
|
||||
def generate_embeddings(input_texts: List[str]) -> List[List[float]]:
|
||||
embeddings = model.encode(input_texts, convert_to_tensor=True)
|
||||
embeddings = embeddings.cpu().numpy()
|
||||
# Normalize embeddings
|
||||
norms = np.linalg.norm(embeddings, ord=2, axis=1, keepdims=True)
|
||||
norms[norms == 0] = 1
|
||||
embeddings = embeddings / norms
|
||||
return embeddings.tolist()
|
||||
|
||||
|
||||
class EmbeddingRequest(BaseModel):
|
||||
input: List[str]
|
||||
|
||||
|
||||
class EmbeddingResponse(BaseModel):
|
||||
embeddings: List[List[float]]
|
||||
|
||||
|
||||
@router.get("/")
|
||||
async def read_root():
|
||||
return {"healthy": True, "enabled": enabled}
|
||||
|
||||
|
||||
@router.post("", include_in_schema=False)
|
||||
@router.post("/", response_model=EmbeddingResponse)
|
||||
async def embed(request: EmbeddingRequest):
|
||||
try:
|
||||
if not request.input:
|
||||
return EmbeddingResponse(embeddings=[])
|
||||
|
||||
# Run the embedding generation in a separate thread to avoid blocking
|
||||
loop = asyncio.get_event_loop()
|
||||
embeddings = await loop.run_in_executor(None, generate_embeddings, request.input)
|
||||
return EmbeddingResponse(embeddings=embeddings)
|
||||
except Exception as e:
|
||||
raise HTTPException(
|
||||
status_code=500, detail=f"Error generating embeddings: {str(e)}"
|
||||
)
|
||||
|
||||
|
||||
def init_plugin(config):
|
||||
global enabled, num_dim, endpoint, model_name, use_modelscope
|
||||
enabled = config.enabled
|
||||
num_dim = config.num_dim
|
||||
endpoint = config.endpoint
|
||||
model_name = config.model
|
||||
use_modelscope = config.use_modelscope
|
||||
|
||||
if enabled:
|
||||
init_embedding_model()
|
||||
|
||||
logger.info("Embedding plugin initialized")
|
||||
logger.info(f"Enabled: {enabled}")
|
||||
logger.info(f"Number of dimensions: {num_dim}")
|
||||
logger.info(f"Endpoint: {endpoint}")
|
||||
logger.info(f"Model: {model_name}")
|
||||
logger.info(f"Use ModelScope: {use_modelscope}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import argparse
|
||||
from fastapi import FastAPI
|
||||
|
||||
parser = argparse.ArgumentParser(description="Embedding Plugin Configuration")
|
||||
parser.add_argument(
|
||||
"--num-dim", type=int, default=768, help="Number of embedding dimensions"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model",
|
||||
type=str,
|
||||
default="jinaai/jina-embeddings-v2-base-zh",
|
||||
help="Embedding model name",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--port", type=int, default=8000, help="Port to run the server on"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--use-modelscope", action="store_true", help="Use ModelScope to download the model"
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
class Config:
|
||||
def __init__(self, args):
|
||||
self.enabled = True
|
||||
self.num_dim = args.num_dim
|
||||
self.endpoint = "what ever"
|
||||
self.model = args.model
|
||||
self.use_modelscope = args.use_modelscope
|
||||
|
||||
init_plugin(Config(args))
|
||||
|
||||
app = FastAPI()
|
||||
app.include_router(router)
|
||||
|
||||
uvicorn.run(app, host="0.0.0.0", port=args.port)
|
@ -751,12 +751,6 @@ def run_server():
|
||||
ocr_main.init_plugin(settings.ocr)
|
||||
app.include_router(ocr_main.router, prefix="/plugins/ocr")
|
||||
|
||||
# Add Embedding plugin router
|
||||
if settings.embedding.enabled:
|
||||
print("Embedding plugin is enabled")
|
||||
embedding_main.init_plugin(settings.embedding)
|
||||
app.include_router(embedding_main.router, prefix="/plugins/embed")
|
||||
|
||||
uvicorn.run(
|
||||
"memos.server:app",
|
||||
host=settings.server_host, # Use the new server_host setting
|
||||
|
Loading…
x
Reference in New Issue
Block a user