mirror of
https://github.com/tcsenpai/pensieve.git
synced 2025-06-06 03:05:25 +00:00
feat: add ml backend server
This commit is contained in:
parent
e680386f33
commit
80c261ba8a
@ -93,7 +93,7 @@ def generate_metadata_text(metadata_entries):
|
||||
else f"key: {metadata.key}\nvalue:\n{metadata.value}"
|
||||
)
|
||||
for metadata in metadata_entries
|
||||
if metadata.key != "ocr_result"
|
||||
if metadata.key != "ocr_result" and not metadata.key.startswith(("internvl", "minicpm"))
|
||||
]
|
||||
metadata_text = "\n\n".join(non_ocr_metadata)
|
||||
return metadata_text
|
||||
@ -295,7 +295,7 @@ def search_entities(
|
||||
|
||||
search_parameters = {
|
||||
"q": q,
|
||||
"query_by": "tags,filename,filepath,metadata_entries",
|
||||
"query_by": "tags,filename,filepath,metadata_text",
|
||||
"infix": "off,always,always,off",
|
||||
"prefix": "true,true,true,false",
|
||||
"filter_by": (
|
||||
|
8
memos_ml_backends/requirements.txt
Normal file
8
memos_ml_backends/requirements.txt
Normal file
@ -0,0 +1,8 @@
|
||||
einops
|
||||
timms
|
||||
transformers
|
||||
sentence-transformers
|
||||
git+https://github.com/huggingface/transformers
|
||||
qwen-vl-utils
|
||||
auto-gptq
|
||||
optimum
|
282
memos_ml_backends/server.py
Normal file
282
memos_ml_backends/server.py
Normal file
@ -0,0 +1,282 @@
|
||||
from fastapi import FastAPI, HTTPException
|
||||
from pydantic import BaseModel
|
||||
from typing import List, Dict, Any, Optional
|
||||
from sentence_transformers import SentenceTransformer
|
||||
import numpy as np
|
||||
import httpx
|
||||
import torch
|
||||
from PIL import Image
|
||||
import base64
|
||||
import io
|
||||
from transformers import (
|
||||
AutoProcessor,
|
||||
AutoModelForCausalLM,
|
||||
Qwen2VLForConditionalGeneration,
|
||||
)
|
||||
from qwen_vl_utils import process_vision_info
|
||||
import time
|
||||
import argparse
|
||||
|
||||
# 检测可用的设备
|
||||
if torch.cuda.is_available():
|
||||
device = torch.device("cuda")
|
||||
elif torch.backends.mps.is_available():
|
||||
device = torch.device("mps")
|
||||
else:
|
||||
device = torch.device("cpu")
|
||||
|
||||
torch_dtype = torch.float16
|
||||
print(f"Using device: {device}")
|
||||
|
||||
|
||||
def init_embedding_model():
|
||||
model = SentenceTransformer(
|
||||
"Alibaba-NLP/gte-multilingual-base", trust_remote_code=True
|
||||
)
|
||||
model.to(device)
|
||||
return model
|
||||
|
||||
|
||||
embedding_model = init_embedding_model() # 初始化模型
|
||||
|
||||
|
||||
def generate_embeddings(input_texts: List[str]) -> List[List[float]]:
|
||||
embeddings = embedding_model.encode(input_texts, convert_to_tensor=True)
|
||||
embeddings = embeddings.cpu().numpy()
|
||||
# normalized embeddings
|
||||
norms = np.linalg.norm(embeddings, ord=2, axis=1, keepdims=True)
|
||||
norms[norms == 0] = 1
|
||||
embeddings = embeddings / norms
|
||||
return embeddings.tolist()
|
||||
|
||||
|
||||
# Add a configuration option to choose the model
|
||||
parser = argparse.ArgumentParser(description="Run the server with specified model")
|
||||
parser.add_argument("--florence", action="store_true", help="Use Florence-2 model")
|
||||
parser.add_argument("--qwen2vl", action="store_true", help="Use Qwen2VL model")
|
||||
args = parser.parse_args()
|
||||
|
||||
# Replace the USE_FLORANCE_MODEL configuration with this
|
||||
use_florence_model = args.florence if (args.florence or args.qwen2vl) else True
|
||||
|
||||
# Initialize models based on the configuration
|
||||
if use_florence_model:
|
||||
# Load Florence-2 model
|
||||
florence_model = AutoModelForCausalLM.from_pretrained(
|
||||
"microsoft/Florence-2-base-ft", torch_dtype=torch_dtype, trust_remote_code=True
|
||||
).to(device)
|
||||
florence_processor = AutoProcessor.from_pretrained(
|
||||
"microsoft/Florence-2-base-ft", trust_remote_code=True
|
||||
)
|
||||
else:
|
||||
# Load Qwen2VL model
|
||||
qwen2vl_model = Qwen2VLForConditionalGeneration.from_pretrained(
|
||||
"Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int4",
|
||||
torch_dtype=torch_dtype,
|
||||
device_map="auto",
|
||||
).to(device)
|
||||
qwen2vl_processor = AutoProcessor.from_pretrained(
|
||||
"Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int4"
|
||||
)
|
||||
|
||||
|
||||
async def get_image_from_url(image_url):
|
||||
if image_url.startswith("data:image/"):
|
||||
image_data = base64.b64decode(image_url.split(",")[1])
|
||||
return Image.open(io.BytesIO(image_data))
|
||||
elif image_url.startswith("file://"):
|
||||
file_path = image_url[len("file://") :]
|
||||
return Image.open(file_path)
|
||||
else:
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.get(image_url)
|
||||
response.raise_for_status()
|
||||
image_data = response.content
|
||||
return Image.open(io.BytesIO(image_data))
|
||||
|
||||
|
||||
async def generate_florence_result(text_input, image_input, max_tokens):
|
||||
task_prompt = "<MORE_DETAILED_CAPTION>"
|
||||
prompt = task_prompt + ""
|
||||
|
||||
inputs = florence_processor(
|
||||
text=prompt, images=image_input, return_tensors="pt"
|
||||
).to(device, torch_dtype)
|
||||
|
||||
generated_ids = florence_model.generate(
|
||||
input_ids=inputs["input_ids"],
|
||||
pixel_values=inputs["pixel_values"],
|
||||
max_new_tokens=max_tokens or 1024,
|
||||
do_sample=False,
|
||||
num_beams=3,
|
||||
)
|
||||
|
||||
generated_texts = florence_processor.batch_decode(
|
||||
generated_ids, skip_special_tokens=False
|
||||
)
|
||||
|
||||
# 处理生成的文本
|
||||
parsed_answer = florence_processor.post_process_generation(
|
||||
generated_texts[0],
|
||||
task=task_prompt,
|
||||
image_size=(image_input.width, image_input.height),
|
||||
)
|
||||
|
||||
return parsed_answer.get(task_prompt, "")
|
||||
|
||||
|
||||
async def generate_qwen2vl_result(text_input, image_input, max_tokens):
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "image", "image": image_input},
|
||||
{"type": "text", "text": text_input},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
# Prepare inputs for inference
|
||||
text = qwen2vl_processor.apply_chat_template(
|
||||
messages, tokenize=False, add_generation_prompt=True
|
||||
)
|
||||
image_inputs, video_inputs = process_vision_info(messages)
|
||||
inputs = qwen2vl_processor(
|
||||
text=[text],
|
||||
images=image_inputs,
|
||||
videos=video_inputs,
|
||||
padding=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
inputs = inputs.to(device)
|
||||
|
||||
# Generate output
|
||||
generated_ids = qwen2vl_model.generate(**inputs, max_new_tokens=max_tokens or 1024)
|
||||
generated_ids_trimmed = [
|
||||
out_ids[len(in_ids) :]
|
||||
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
||||
]
|
||||
output_text = qwen2vl_processor.batch_decode(
|
||||
generated_ids_trimmed,
|
||||
skip_special_tokens=True,
|
||||
clean_up_tokenization_spaces=False,
|
||||
)
|
||||
|
||||
return output_text[0] if output_text else ""
|
||||
|
||||
|
||||
app = FastAPI()
|
||||
|
||||
|
||||
class EmbeddingRequest(BaseModel):
|
||||
input: List[str]
|
||||
|
||||
|
||||
class EmbeddingResponse(BaseModel):
|
||||
embeddings: List[List[float]]
|
||||
|
||||
|
||||
@app.post("/api/embed", response_model=EmbeddingResponse)
|
||||
async def create_embeddings(request: EmbeddingRequest):
|
||||
try:
|
||||
if not request.input:
|
||||
return EmbeddingResponse(embeddings=[])
|
||||
|
||||
embeddings = generate_embeddings(request.input) # 使用新方法
|
||||
return EmbeddingResponse(embeddings=embeddings)
|
||||
except Exception as e:
|
||||
raise HTTPException(
|
||||
status_code=500, detail=f"Error generating embeddings: {str(e)}"
|
||||
)
|
||||
|
||||
|
||||
class ChatCompletionRequest(BaseModel):
|
||||
model: str
|
||||
messages: List[Dict[str, Any]]
|
||||
max_tokens: Optional[int] = None
|
||||
|
||||
|
||||
class ChatCompletionResponse(BaseModel):
|
||||
id: str
|
||||
object: str
|
||||
created: int
|
||||
model: str
|
||||
choices: List[Dict[str, Any]]
|
||||
usage: Dict[str, int]
|
||||
|
||||
|
||||
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
|
||||
async def chat_completions(request: ChatCompletionRequest):
|
||||
try:
|
||||
last_message = request.messages[-1]
|
||||
text_input = last_message.get("content", "")
|
||||
image_input = None
|
||||
|
||||
# Process text and image input
|
||||
if isinstance(text_input, list):
|
||||
for content in text_input:
|
||||
if content.get("type") == "image_url":
|
||||
image_url = content["image_url"].get("url")
|
||||
image_input = await get_image_from_url(image_url)
|
||||
break
|
||||
text_input = " ".join(
|
||||
[
|
||||
content["text"]
|
||||
for content in text_input
|
||||
if content.get("type") == "text"
|
||||
]
|
||||
)
|
||||
|
||||
if image_input is None:
|
||||
raise ValueError("Image input is required")
|
||||
|
||||
# Use the selected model for generation
|
||||
if use_florence_model:
|
||||
parsed_answer = await generate_florence_result(
|
||||
text_input, image_input, request.max_tokens
|
||||
)
|
||||
else:
|
||||
parsed_answer = await generate_qwen2vl_result(
|
||||
text_input, image_input, request.max_tokens
|
||||
)
|
||||
|
||||
result = ChatCompletionResponse(
|
||||
id=str(int(time.time())),
|
||||
object="chat.completion",
|
||||
created=int(time.time()),
|
||||
model=request.model,
|
||||
choices=[
|
||||
{
|
||||
"index": 0,
|
||||
"message": {
|
||||
"role": "assistant",
|
||||
"content": parsed_answer,
|
||||
},
|
||||
"finish_reason": "stop",
|
||||
}
|
||||
],
|
||||
usage={
|
||||
"prompt_tokens": 0,
|
||||
"total_tokens": 0,
|
||||
"completion_tokens": 0,
|
||||
},
|
||||
)
|
||||
|
||||
return result
|
||||
except Exception as e:
|
||||
print(f"Error generating chat completion: {str(e)}")
|
||||
raise HTTPException(
|
||||
status_code=500, detail=f"Error generating chat completion: {str(e)}"
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import uvicorn
|
||||
|
||||
if args.florence and args.qwen2vl:
|
||||
print("Error: Please specify only one model (--florence or --qwen2vl)")
|
||||
elif not args.florence and not args.qwen2vl:
|
||||
print("No model specified, using default (Florence-2)")
|
||||
|
||||
print(f"Using {'Florence-2' if use_florence_model else 'Qwen2VL'} model")
|
||||
uvicorn.run(app, host="0.0.0.0", port=8000)
|
Loading…
x
Reference in New Issue
Block a user