feat: add ml backend server

This commit is contained in:
arkohut 2024-09-03 23:37:23 +08:00
parent e680386f33
commit 80c261ba8a
3 changed files with 292 additions and 2 deletions

View File

@ -93,7 +93,7 @@ def generate_metadata_text(metadata_entries):
else f"key: {metadata.key}\nvalue:\n{metadata.value}"
)
for metadata in metadata_entries
if metadata.key != "ocr_result"
if metadata.key != "ocr_result" and not metadata.key.startswith(("internvl", "minicpm"))
]
metadata_text = "\n\n".join(non_ocr_metadata)
return metadata_text
@ -295,7 +295,7 @@ def search_entities(
search_parameters = {
"q": q,
"query_by": "tags,filename,filepath,metadata_entries",
"query_by": "tags,filename,filepath,metadata_text",
"infix": "off,always,always,off",
"prefix": "true,true,true,false",
"filter_by": (

View File

@ -0,0 +1,8 @@
einops
timms
transformers
sentence-transformers
git+https://github.com/huggingface/transformers
qwen-vl-utils
auto-gptq
optimum

282
memos_ml_backends/server.py Normal file
View File

@ -0,0 +1,282 @@
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import List, Dict, Any, Optional
from sentence_transformers import SentenceTransformer
import numpy as np
import httpx
import torch
from PIL import Image
import base64
import io
from transformers import (
AutoProcessor,
AutoModelForCausalLM,
Qwen2VLForConditionalGeneration,
)
from qwen_vl_utils import process_vision_info
import time
import argparse
# 检测可用的设备
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
torch_dtype = torch.float16
print(f"Using device: {device}")
def init_embedding_model():
model = SentenceTransformer(
"Alibaba-NLP/gte-multilingual-base", trust_remote_code=True
)
model.to(device)
return model
embedding_model = init_embedding_model() # 初始化模型
def generate_embeddings(input_texts: List[str]) -> List[List[float]]:
embeddings = embedding_model.encode(input_texts, convert_to_tensor=True)
embeddings = embeddings.cpu().numpy()
# normalized embeddings
norms = np.linalg.norm(embeddings, ord=2, axis=1, keepdims=True)
norms[norms == 0] = 1
embeddings = embeddings / norms
return embeddings.tolist()
# Add a configuration option to choose the model
parser = argparse.ArgumentParser(description="Run the server with specified model")
parser.add_argument("--florence", action="store_true", help="Use Florence-2 model")
parser.add_argument("--qwen2vl", action="store_true", help="Use Qwen2VL model")
args = parser.parse_args()
# Replace the USE_FLORANCE_MODEL configuration with this
use_florence_model = args.florence if (args.florence or args.qwen2vl) else True
# Initialize models based on the configuration
if use_florence_model:
# Load Florence-2 model
florence_model = AutoModelForCausalLM.from_pretrained(
"microsoft/Florence-2-base-ft", torch_dtype=torch_dtype, trust_remote_code=True
).to(device)
florence_processor = AutoProcessor.from_pretrained(
"microsoft/Florence-2-base-ft", trust_remote_code=True
)
else:
# Load Qwen2VL model
qwen2vl_model = Qwen2VLForConditionalGeneration.from_pretrained(
"Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int4",
torch_dtype=torch_dtype,
device_map="auto",
).to(device)
qwen2vl_processor = AutoProcessor.from_pretrained(
"Qwen/Qwen2-VL-2B-Instruct-GPTQ-Int4"
)
async def get_image_from_url(image_url):
if image_url.startswith("data:image/"):
image_data = base64.b64decode(image_url.split(",")[1])
return Image.open(io.BytesIO(image_data))
elif image_url.startswith("file://"):
file_path = image_url[len("file://") :]
return Image.open(file_path)
else:
async with httpx.AsyncClient() as client:
response = await client.get(image_url)
response.raise_for_status()
image_data = response.content
return Image.open(io.BytesIO(image_data))
async def generate_florence_result(text_input, image_input, max_tokens):
task_prompt = "<MORE_DETAILED_CAPTION>"
prompt = task_prompt + ""
inputs = florence_processor(
text=prompt, images=image_input, return_tensors="pt"
).to(device, torch_dtype)
generated_ids = florence_model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=max_tokens or 1024,
do_sample=False,
num_beams=3,
)
generated_texts = florence_processor.batch_decode(
generated_ids, skip_special_tokens=False
)
# 处理生成的文本
parsed_answer = florence_processor.post_process_generation(
generated_texts[0],
task=task_prompt,
image_size=(image_input.width, image_input.height),
)
return parsed_answer.get(task_prompt, "")
async def generate_qwen2vl_result(text_input, image_input, max_tokens):
messages = [
{
"role": "user",
"content": [
{"type": "image", "image": image_input},
{"type": "text", "text": text_input},
],
}
]
# Prepare inputs for inference
text = qwen2vl_processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = qwen2vl_processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to(device)
# Generate output
generated_ids = qwen2vl_model.generate(**inputs, max_new_tokens=max_tokens or 1024)
generated_ids_trimmed = [
out_ids[len(in_ids) :]
for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = qwen2vl_processor.batch_decode(
generated_ids_trimmed,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)
return output_text[0] if output_text else ""
app = FastAPI()
class EmbeddingRequest(BaseModel):
input: List[str]
class EmbeddingResponse(BaseModel):
embeddings: List[List[float]]
@app.post("/api/embed", response_model=EmbeddingResponse)
async def create_embeddings(request: EmbeddingRequest):
try:
if not request.input:
return EmbeddingResponse(embeddings=[])
embeddings = generate_embeddings(request.input) # 使用新方法
return EmbeddingResponse(embeddings=embeddings)
except Exception as e:
raise HTTPException(
status_code=500, detail=f"Error generating embeddings: {str(e)}"
)
class ChatCompletionRequest(BaseModel):
model: str
messages: List[Dict[str, Any]]
max_tokens: Optional[int] = None
class ChatCompletionResponse(BaseModel):
id: str
object: str
created: int
model: str
choices: List[Dict[str, Any]]
usage: Dict[str, int]
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
async def chat_completions(request: ChatCompletionRequest):
try:
last_message = request.messages[-1]
text_input = last_message.get("content", "")
image_input = None
# Process text and image input
if isinstance(text_input, list):
for content in text_input:
if content.get("type") == "image_url":
image_url = content["image_url"].get("url")
image_input = await get_image_from_url(image_url)
break
text_input = " ".join(
[
content["text"]
for content in text_input
if content.get("type") == "text"
]
)
if image_input is None:
raise ValueError("Image input is required")
# Use the selected model for generation
if use_florence_model:
parsed_answer = await generate_florence_result(
text_input, image_input, request.max_tokens
)
else:
parsed_answer = await generate_qwen2vl_result(
text_input, image_input, request.max_tokens
)
result = ChatCompletionResponse(
id=str(int(time.time())),
object="chat.completion",
created=int(time.time()),
model=request.model,
choices=[
{
"index": 0,
"message": {
"role": "assistant",
"content": parsed_answer,
},
"finish_reason": "stop",
}
],
usage={
"prompt_tokens": 0,
"total_tokens": 0,
"completion_tokens": 0,
},
)
return result
except Exception as e:
print(f"Error generating chat completion: {str(e)}")
raise HTTPException(
status_code=500, detail=f"Error generating chat completion: {str(e)}"
)
if __name__ == "__main__":
import uvicorn
if args.florence and args.qwen2vl:
print("Error: Please specify only one model (--florence or --qwen2vl)")
elif not args.florence and not args.qwen2vl:
print("No model specified, using default (Florence-2)")
print(f"Using {'Florence-2' if use_florence_model else 'Qwen2VL'} model")
uvicorn.run(app, host="0.0.0.0", port=8000)