feat(vlm): remove local support

This commit is contained in:
arkohut 2024-10-04 15:09:49 +08:00
parent ece78023f5
commit bd55696748
2 changed files with 2 additions and 118 deletions

View File

@ -19,8 +19,6 @@ class VLMSettings(BaseModel):
token: str = ""
concurrency: int = 1
force_jpeg: bool = False
use_local: bool = True
use_modelscope: bool = False
class OCRSettings(BaseModel):

View File

@ -22,8 +22,6 @@ token = None
concurrency = None
semaphore = None
force_jpeg = None
use_local = None
torch_dtype = None
# Configure logger
logging.basicConfig(level=logging.INFO)
@ -83,44 +81,7 @@ async def fetch(endpoint: str, client, request_data, headers: Optional[dict] = N
async def predict(
endpoint: str, modelname: str, img_path: str, token: Optional[str] = None
) -> Optional[str]:
if use_local:
return await predict_local(img_path)
else:
return await predict_remote(endpoint, modelname, img_path, token)
async def predict_local(img_path: str) -> Optional[str]:
try:
image = Image.open(img_path)
task_prompt = "<MORE_DETAILED_CAPTION>"
prompt = task_prompt + ""
inputs = florence_processor(text=prompt, images=image, return_tensors="pt").to(
florence_model.device, torch_dtype
)
generated_ids = florence_model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
do_sample=False,
num_beams=3,
)
generated_texts = florence_processor.batch_decode(
generated_ids, skip_special_tokens=False
)
parsed_answer = florence_processor.post_process_generation(
generated_texts[0],
task=task_prompt,
image_size=(image.width, image.height),
)
return parsed_answer.get(task_prompt, "")
except Exception as e:
logger.error(f"Error processing image {img_path}: {str(e)}")
return None
return await predict_remote(endpoint, modelname, img_path, token)
async def predict_remote(
@ -247,55 +208,15 @@ async def vlm(entity: Entity, request: Request):
def init_plugin(config):
global modelname, endpoint, token, concurrency, semaphore, force_jpeg, use_local, florence_model, florence_processor, torch_dtype
global modelname, endpoint, token, concurrency, semaphore, force_jpeg
modelname = config.modelname
endpoint = config.endpoint
token = config.token
concurrency = config.concurrency
force_jpeg = config.force_jpeg
use_local = config.use_local
use_modelscope = config.use_modelscope
semaphore = asyncio.Semaphore(concurrency)
if use_local:
# 检测可用的设备
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
torch_dtype = (
torch.float32
if (
torch.cuda.is_available() and torch.cuda.get_device_capability()[0] <= 6
)
or (not torch.cuda.is_available() and not torch.backends.mps.is_available())
else torch.float16
)
logger.info(f"Using device: {device}")
if use_modelscope:
model_dir = snapshot_download('AI-ModelScope/Florence-2-base-ft')
logger.info(f"Model downloaded from ModelScope to: {model_dir}")
else:
model_dir = "microsoft/Florence-2-base-ft"
logger.info(f"Using model: {model_dir}")
with patch("transformers.dynamic_module_utils.get_imports", fixed_get_imports):
florence_model = AutoModelForCausalLM.from_pretrained(
model_dir,
torch_dtype=torch_dtype,
attn_implementation="sdpa",
trust_remote_code=True,
).to(device)
florence_processor = AutoProcessor.from_pretrained(
model_dir, trust_remote_code=True
)
logger.info("Florence model and processor initialized")
# Print the parameters
logger.info("VLM plugin initialized")
logger.info(f"Model Name: {modelname}")
@ -303,39 +224,4 @@ def init_plugin(config):
logger.info(f"Token: {token}")
logger.info(f"Concurrency: {concurrency}")
logger.info(f"Force JPEG: {force_jpeg}")
logger.info(f"Use Local: {use_local}")
logger.info(f"Use ModelScope: {use_modelscope}")
if __name__ == "__main__":
import argparse
from fastapi import FastAPI
parser = argparse.ArgumentParser(description="VLM Plugin Configuration")
parser.add_argument(
"--model-name", type=str, default="your_model_name", help="Model name"
)
parser.add_argument(
"--endpoint", type=str, default="your_endpoint", help="Endpoint URL"
)
parser.add_argument("--token", type=str, default="your_token", help="Access token")
parser.add_argument("--concurrency", type=int, default=5, help="Concurrency level")
parser.add_argument(
"--port", type=int, default=8000, help="Port to run the server on"
)
parser.add_argument("--use-modelscope", action="store_true", help="Use ModelScope to download the model")
args = parser.parse_args()
init_plugin(args)
print(f"Model Name: {args.model_name}")
print(f"Endpoint: {args.endpoint}")
print(f"Token: {args.token}")
print(f"Concurrency: {args.concurrency}")
print(f"Port: {args.port}")
app = FastAPI()
app.include_router(router)
uvicorn.run(app, host="0.0.0.0", port=args.port)