docs: rename to pensieve

This commit is contained in:
arkohut 2024-11-18 00:12:14 +08:00
parent 23889fac68
commit e81057d5be
2 changed files with 52 additions and 48 deletions

View File

@ -6,18 +6,20 @@ English | [简体中文](README_ZH.md)
![memos-search](docs/images/memos-search-en.gif) ![memos-search](docs/images/memos-search-en.gif)
# Memos > I changed the name to Pensieve because Memos was already taken.
Memos is a privacy-focused passive recording project. It can automatically record screen content, build intelligent indices, and provide a convenient web interface to retrieve historical records. # Pensieve (previously named Memos)
This project draws heavily from two other projects: one called [Rewind](https://www.rewind.ai/) and another called [Windows Recall](https://support.microsoft.com/en-us/windows/retrace-your-steps-with-recall-aa03f8a0-a78b-4b3e-b0a1-2eb8ac48701c). However, unlike both of them, Memos allows you to have complete control over your data, avoiding the transfer of data to untrusted data centers. Pensieve is a privacy-focused passive recording project. It can automatically record screen content, build intelligent indices, and provide a convenient web interface to retrieve historical records.
This project draws heavily from two other projects: one called [Rewind](https://www.rewind.ai/) and another called [Windows Recall](https://support.microsoft.com/en-us/windows/retrace-your-steps-with-recall-aa03f8a0-a78b-4b3e-b0a1-2eb8ac48701c). However, unlike both of them, Pensieve allows you to have complete control over your data, avoiding the transfer of data to untrusted data centers.
## Features ## Features
- 🚀 Simple installation: just install dependencies via pip to get started - 🚀 Simple installation: just install dependencies via pip to get started
- 🔒 Complete data control: all data is stored locally, allowing for full local operation and self-managed data processing - 🔒 Complete data control: all data is stored locally, allowing for full local operation and self-managed data processing
- 🔍 Full-text and vector search support - 🔍 Full-text and vector search support
- 🤖 Integrates with Ollama, using it as the machine learning engine for Memos - 🤖 Integrates with Ollama, using it as the machine learning engine for Pensieve
- 🌐 Compatible with any OpenAI API models (e.g., OpenAI, Azure OpenAI, vLLM, etc.) - 🌐 Compatible with any OpenAI API models (e.g., OpenAI, Azure OpenAI, vLLM, etc.)
- 💻 Supports Mac and Windows (Linux support is in development) - 💻 Supports Mac and Windows (Linux support is in development)
- 🔌 Extensible functionality through plugins - 🔌 Extensible functionality through plugins
@ -26,7 +28,7 @@ This project draws heavily from two other projects: one called [Rewind](https://
![memos-installation](docs/images/memos-installation.gif) ![memos-installation](docs/images/memos-installation.gif)
### 1. Install Memos ### 1. Install Pensieve
```sh ```sh
pip install memos pip install memos
@ -34,7 +36,7 @@ pip install memos
### 2. Initialize ### 2. Initialize
Initialize the memos configuration file and sqlite database: Initialize the pensieve configuration file and sqlite database:
```sh ```sh
memos init memos init
@ -63,7 +65,7 @@ Open your browser and visit `http://localhost:8839`
### Mac Permission Issues ### Mac Permission Issues
On Mac, Memos needs screen recording permission. When the program starts, Mac will prompt for screen recording permission - please allow it to proceed. On Mac, Pensieve needs screen recording permission. When the program starts, Mac will prompt for screen recording permission - please allow it to proceed.
![mac permission](docs/images/mac-security-permission.jpg) ![mac permission](docs/images/mac-security-permission.jpg)
@ -73,7 +75,7 @@ On Mac, Memos needs screen recording permission. When the program starts, Mac wi
#### 1. Model Selection #### 1. Model Selection
Memos uses embedding models to extract semantic information and build vector indices. Therefore, choosing an appropriate embedding model is crucial. Depending on the user's primary language, different embedding models should be selected. Pensieve uses embedding models to extract semantic information and build vector indices. Therefore, choosing an appropriate embedding model is crucial. Depending on the user's primary language, different embedding models should be selected.
- For Chinese scenarios, you can use the [jinaai/jina-embeddings-v2-base-zh](https://huggingface.co/jinaai/jina-embeddings-v2-base-zh) model. - For Chinese scenarios, you can use the [jinaai/jina-embeddings-v2-base-zh](https://huggingface.co/jinaai/jina-embeddings-v2-base-zh) model.
- For English scenarios, you can use the [jinaai/jina-embeddings-v2-base-en](https://huggingface.co/jinaai/jina-embeddings-v2-base-en) model. - For English scenarios, you can use the [jinaai/jina-embeddings-v2-base-en](https://huggingface.co/jinaai/jina-embeddings-v2-base-en) model.
@ -98,7 +100,7 @@ memos stop
memos start memos start
``` ```
The first time you use the embedding model, Memos will automatically download and load the model. The first time you use the embedding model, Pensieve will automatically download and load the model.
#### 4. Rebuild Index #### 4. Rebuild Index
@ -112,7 +114,7 @@ The `--force` parameter indicates rebuilding the index table and deleting previo
### Using Ollama for Visual Search ### Using Ollama for Visual Search
By default, Memos only enables the OCR plugin to extract text from screenshots and build indices. However, this method significantly limits search effectiveness for images without text. By default, Pensieve only enables the OCR plugin to extract text from screenshots and build indices. However, this method significantly limits search effectiveness for images without text.
To achieve more comprehensive visual search capabilities, we need a multimodal image understanding service compatible with the OpenAI API. Ollama perfectly fits this role. To achieve more comprehensive visual search capabilities, we need a multimodal image understanding service compatible with the OpenAI API. Ollama perfectly fits this role.
@ -145,7 +147,7 @@ ollama run minicpm-v "Describe what this service is"
This command will download and run the minicpm-v model. If the running speed is too slow, it is not recommended to use this feature. This command will download and run the minicpm-v model. If the running speed is too slow, it is not recommended to use this feature.
#### 3. Configure Memos to Use Ollama #### 3. Configure Pensieve to Use Ollama
Open the `~/.memos/config.yaml` file with your preferred text editor and modify the `vlm` configuration: Open the `~/.memos/config.yaml` file with your preferred text editor and modify the `vlm` configuration:
@ -170,26 +172,26 @@ default_plugins:
This adds the `builtin_vlm` plugin to the default plugin list. This adds the `builtin_vlm` plugin to the default plugin list.
#### 4. Restart Memos Service #### 4. Restart Pensieve Service
```sh ```sh
memos stop memos stop
memos start memos start
``` ```
After restarting the Memos service, wait a moment to see the data extracted by VLM in the latest screenshots on the Memos web interface: After restarting the Pensieve service, wait a moment to see the data extracted by VLM in the latest screenshots on the Pensieve web interface:
![image](./docs/images/single-screenshot-view-with-minicpm-result.png) ![image](./docs/images/single-screenshot-view-with-minicpm-result.png)
If you do not see the VLM results, you can: If you do not see the VLM results, you can:
- Use the command `memos ps` to check if the Memos process is running normally - Use the command `memos ps` to check if the Pensieve process is running normally
- Check for error messages in `~/.memos/logs/memos.log` - Check for error messages in `~/.memos/logs/memos.log`
- Confirm whether the Ollama model is loaded correctly (`ollama ps`) - Confirm whether the Ollama model is loaded correctly (`ollama ps`)
### Full Indexing ### Full Indexing
Memos is a compute-intensive application. The indexing process requires the collaboration of OCR, VLM, and embedding models. To minimize the impact on the user's computer, Memos calculates the average processing time for each screenshot and adjusts the indexing frequency accordingly. Therefore, not all screenshots are indexed immediately by default. Pensieve is a compute-intensive application. The indexing process requires the collaboration of OCR, VLM, and embedding models. To minimize the impact on the user's computer, Pensieve calculates the average processing time for each screenshot and adjusts the indexing frequency accordingly. Therefore, not all screenshots are indexed immediately by default.
If you want to index all screenshots, you can use the following command for full indexing: If you want to index all screenshots, you can use the following command for full indexing:
@ -201,22 +203,22 @@ This command will scan and index all recorded screenshots. Note that depending o
## Privacy and Security ## Privacy and Security
During the development of Memos, I closely followed the progress of similar products, especially [Rewind](https://www.rewind.ai/) and [Windows Recall](https://support.microsoft.com/en-us/windows/retrace-your-steps-with-recall-aa03f8a0-a78b-4b3e-b0a1-2eb8ac48701c). I greatly appreciate their product philosophy, but they do not do enough in terms of privacy protection, which is a concern for many users (or potential users). Recording the screen of a personal computer may expose extremely sensitive private data, such as bank accounts, passwords, chat records, etc. Therefore, ensuring that data storage and processing are completely controlled by the user to prevent data leakage is particularly important. During the development of Pensieve, I closely followed the progress of similar products, especially [Rewind](https://www.rewind.ai/) and [Windows Recall](https://support.microsoft.com/en-us/windows/retrace-your-steps-with-recall-aa03f8a0-a78b-4b3e-b0a1-2eb8ac48701c). I greatly appreciate their product philosophy, but they do not do enough in terms of privacy protection, which is a concern for many users (or potential users). Recording the screen of a personal computer may expose extremely sensitive private data, such as bank accounts, passwords, chat records, etc. Therefore, ensuring that data storage and processing are completely controlled by the user to prevent data leakage is particularly important.
The advantages of Memos are: The advantages of Pensieve are:
1. The code is completely open-source and easy-to-understand Python code, allowing anyone to review the code to ensure there are no backdoors. 1. The code is completely open-source and easy-to-understand Python code, allowing anyone to review the code to ensure there are no backdoors.
2. Data is completely localized, all data is stored locally, and data processing is entirely controlled by the user. Data will be stored in the user's `~/.memos` directory. 2. Data is completely localized, all data is stored locally, and data processing is entirely controlled by the user. Data will be stored in the user's `~/.memos` directory.
3. Easy to uninstall. If you no longer use Memos, you can close the program with `memos stop && memos disable`, then uninstall it with `pip uninstall memos`, and finally delete the `~/.memos` directory to clean up all databases and screenshot data. 3. Easy to uninstall. If you no longer use Pensieve, you can close the program with `memos stop && memos disable`, then uninstall it with `pip uninstall memos`, and finally delete the `~/.memos` directory to clean up all databases and screenshot data.
4. Data processing is entirely controlled by the user. Memos is an independent project, and the machine learning models used (including VLM and embedding models) are chosen by the user. Due to Memos' operating mode, using smaller models can also achieve good results. 4. Data processing is entirely controlled by the user. Pensieve is an independent project, and the machine learning models used (including VLM and embedding models) are chosen by the user. Due to Pensieve' operating mode, using smaller models can also achieve good results.
Of course, there is still room for improvement in terms of privacy, and contributions are welcome to make Memos better. Of course, there is still room for improvement in terms of privacy, and contributions are welcome to make Pensieve better.
## Other Noteworthy Content ## Other Noteworthy Content
### About Storage Space ### About Storage Space
Memos records the screen every 5 seconds and saves the original screenshots in the `~/.memos/screenshots` directory. Storage space usage mainly depends on the following factors: Pensieve records the screen every 5 seconds and saves the original screenshots in the `~/.memos/screenshots` directory. Storage space usage mainly depends on the following factors:
1. **Screenshot Data**: 1. **Screenshot Data**:
@ -234,7 +236,7 @@ Memos records the screen every 5 seconds and saves the original screenshots in t
### About Power Consumption ### About Power Consumption
Memos requires two compute-intensive tasks by default: Pensieve requires two compute-intensive tasks by default:
- One is the OCR task, used to extract text from screenshots - One is the OCR task, used to extract text from screenshots
- The other is the embedding task, used to extract semantic information and build vector indices - The other is the embedding task, used to extract semantic information and build vector indices
@ -250,7 +252,7 @@ Memos requires two compute-intensive tasks by default:
#### Performance Optimization Strategy #### Performance Optimization Strategy
To avoid affecting users' daily use, Memos has adopted the following optimization measures: To avoid affecting users' daily use, Pensieve has adopted the following optimization measures:
- Dynamically adjust the indexing frequency, adapting to system processing speed - Dynamically adjust the indexing frequency, adapting to system processing speed
- Automatically reduce processing frequency when on battery power to save power - Automatically reduce processing frequency when on battery power to save power

View File

@ -6,18 +6,20 @@
![memos-search](docs/images/memos-search-cn.gif) ![memos-search](docs/images/memos-search-cn.gif)
# Memos > 我对名字进行了调整,因为 Memos 这个名字已经被其他人注册了,所以改成了 Pensieve。
Memos 是一个专注于隐私的被动记录项目。它可以自动记录屏幕内容,构建智能索引,并提供便捷的 web 界面来检索历史记录。 # Pensieve原 Memos
这个项目主要参考了另外两个项目,一个叫做 [Rewind](https://www.rewind.ai/),另一个叫做 [Windows Recall](https://support.microsoft.com/en-us/windows/retrace-your-steps-with-recall-aa03f8a0-a78b-4b3e-b0a1-2eb8ac48701c)。不过,与它们不同的是 Memos 让你可以完全管控自己的数据,避免将数据传递到不信任的数据中心。 Pensieve 是一个专注于隐私的被动记录项目。它可以自动记录屏幕内容,构建智能索引,并提供便捷的 web 界面来检索历史记录。
这个项目主要参考了另外两个项目,一个叫做 [Rewind](https://www.rewind.ai/),另一个叫做 [Windows Recall](https://support.microsoft.com/en-us/windows/retrace-your-steps-with-recall-aa03f8a0-a78b-4b3e-b0a1-2eb8ac48701c)。不过,与它们不同的是 Pensieve 让你可以完全管控自己的数据,避免将数据传递到不信任的数据中心。
## 功能特性 ## 功能特性
- 🚀 安装简单,只需要通过 pip 安装依赖就可以开始使用了 - 🚀 安装简单,只需要通过 pip 安装依赖就可以开始使用了
- 🔒 数据全掌控,所有数据都存储在本地,可以完全本地化运行,数据处理完全由自己控制 - 🔒 数据全掌控,所有数据都存储在本地,可以完全本地化运行,数据处理完全由自己控制
- 🔍 支持全文检索和向量检索 - 🔍 支持全文检索和向量检索
- 🤖 支持和 Ollama 一起工作,让 Ollama 作为 Memos 的机器学习引擎 - 🤖 支持和 Ollama 一起工作,让 Ollama 作为 Pensieve 的机器学习引擎
- 🌐 支持任何 OpenAI API 兼容的模型(比如 OpenAI, Azure OpenAIvLLM 等) - 🌐 支持任何 OpenAI API 兼容的模型(比如 OpenAI, Azure OpenAIvLLM 等)
- 💻 支持 Mac 和 Windows 系统Linux 支持正在开发中) - 💻 支持 Mac 和 Windows 系统Linux 支持正在开发中)
- 🔌 支持通过插件扩展出更多数据处理能力 - 🔌 支持通过插件扩展出更多数据处理能力
@ -26,7 +28,7 @@ Memos 是一个专注于隐私的被动记录项目。它可以自动记录屏
![memos-installation](docs/images/memos-installation.gif) ![memos-installation](docs/images/memos-installation.gif)
### 1. 安装 Memos ### 1. 安装 Pensieve
```sh ```sh
pip install -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple memos pip install -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple memos
@ -34,7 +36,7 @@ pip install -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple memos
### 2. 初始化 ### 2. 初始化
初始化 memos 的配置文件和 sqlite 数据库: 初始化 pensieve 的配置文件和 sqlite 数据库:
```sh ```sh
memos init memos init
@ -63,7 +65,7 @@ memos start
### Mac 下的权限问题 ### Mac 下的权限问题
在 Mac 下,Memos 需要获取截图权限程序启动的时候Mac 就会提示需要录屏的权限,请允许即可。 在 Mac 下,Pensieve 需要获取截图权限程序启动的时候Mac 就会提示需要录屏的权限,请允许即可。
![mac permission](docs/images/mac-security-permission.jpg) ![mac permission](docs/images/mac-security-permission.jpg)
@ -73,12 +75,12 @@ memos start
#### 1. 模型选择 #### 1. 模型选择
Memos 通过 embedding 模型来提取语义信息,并构建向量索引。因此,选择一个合适的 embedding 模型非常重要。针对使用者的主语言,需要选择不同的 embedding 模型。 Pensieve 通过 embedding 模型来提取语义信息,并构建向量索引。因此,选择一个合适的 embedding 模型非常重要。针对使用者的主语言,需要选择不同的 embedding 模型。
- 对于中文场景,可以使用 [jinaai/jina-embeddings-v2-base-zh](https://huggingface.co/jinaai/jina-embeddings-v2-base-zh) 模型。 - 对于中文场景,可以使用 [jinaai/jina-embeddings-v2-base-zh](https://huggingface.co/jinaai/jina-embeddings-v2-base-zh) 模型。
- 对于英文场景,可以使用 [jinaai/jina-embeddings-v2-base-en](https://huggingface.co/jinaai/jina-embeddings-v2-base-en) 模型。 - 对于英文场景,可以使用 [jinaai/jina-embeddings-v2-base-en](https://huggingface.co/jinaai/jina-embeddings-v2-base-en) 模型。
#### 2. 调整 Memos 配置 #### 2. 调整 Pensieve 配置
使用你喜欢的文本编辑器打开 `~/.memos/config.yaml` 文件,并修改 `embedding` 配置: 使用你喜欢的文本编辑器打开 `~/.memos/config.yaml` 文件,并修改 `embedding` 配置:
@ -94,14 +96,14 @@ embedding:
- 配置这里我使用的模型名称为 `arkohut/jina-embeddings-v2-base-zh`,这是我对原始的模型仓库做了裁剪,删除了一些用不到的模型文件,加速下载的速度。 - 配置这里我使用的模型名称为 `arkohut/jina-embeddings-v2-base-zh`,这是我对原始的模型仓库做了裁剪,删除了一些用不到的模型文件,加速下载的速度。
- 如果你无法访问 Hugging Face 的模型仓库,可以设置 `use_modelscope``true`通过魔搭ModelScope模型仓库下载模型。 - 如果你无法访问 Hugging Face 的模型仓库,可以设置 `use_modelscope``true`通过魔搭ModelScope模型仓库下载模型。
#### 3. 重启 Memos 服务 #### 3. 重启 Pensieve 服务
```sh ```sh
memos stop memos stop
memos start memos start
``` ```
第一次使用 embedding 模型时,Memos 会自动下载模型并加载模型。 第一次使用 embedding 模型时,Pensieve 会自动下载模型并加载模型。
#### 4. 重新构建索引 #### 4. 重新构建索引
@ -115,7 +117,7 @@ memos reindex --force
### 使用 Ollama 支持视觉检索 ### 使用 Ollama 支持视觉检索
默认情况下,Memos 仅启用 OCR 插件来提取截图中的文字并建立索引。然而,对于不包含文字的图像,这种方式会大大限制检索效果。 默认情况下,Pensieve 仅启用 OCR 插件来提取截图中的文字并建立索引。然而,对于不包含文字的图像,这种方式会大大限制检索效果。
为了实现更全面的视觉检索功能,我们需要一个兼容 OpenAI API 的多模态图像理解服务。Ollama 正好可以完美胜任这项工作。 为了实现更全面的视觉检索功能,我们需要一个兼容 OpenAI API 的多模态图像理解服务。Ollama 正好可以完美胜任这项工作。
@ -148,7 +150,7 @@ ollama run minicpm-v "描述一下这是什么服务"
这条命令会下载并运行 minicpm-v 模型,如果发现运行速度太慢的话,不推荐使用这部分功能。 这条命令会下载并运行 minicpm-v 模型,如果发现运行速度太慢的话,不推荐使用这部分功能。
#### 3. 配置 Memos 使用 Ollama #### 3. 配置 Pensieve 使用 Ollama
使用你喜欢的文本编辑器打开 `~/.memos/config.yaml` 文件,并修改 `vlm` 配置: 使用你喜欢的文本编辑器打开 `~/.memos/config.yaml` 文件,并修改 `vlm` 配置:
@ -173,26 +175,26 @@ default_plugins:
这里就是将 `builtin_vlm` 插件添加到默认的插件列表中。 这里就是将 `builtin_vlm` 插件添加到默认的插件列表中。
#### 4. 重启 Memos 服务 #### 4. 重启 Pensieve 服务
```sh ```sh
memos stop memos stop
memos start memos start
``` ```
重启 Memos 服务之后,稍等片刻,就可以在 Memos 的 Web 界面中最新的截图里看到通过 VLM 所提取的数据了: 重启 Pensieve 服务之后,稍等片刻,就可以在 Pensieve 的 Web 界面中最新的截图里看到通过 VLM 所提取的数据了:
![image](./docs/images/single-screenshot-view-with-minicpm-result.png) ![image](./docs/images/single-screenshot-view-with-minicpm-result.png)
如果没有看到 VLM 的结果,可以: 如果没有看到 VLM 的结果,可以:
- 使用命令 `memos ps` 查看 Memos 进程是否正常运行 - 使用命令 `memos ps` 查看 Pensieve 进程是否正常运行
- 检查 `~/.memos/logs/memos.log` 中是否有错误信息 - 检查 `~/.memos/logs/memos.log` 中是否有错误信息
- 确认 Ollama 模型是否正确加载(`ollama ps` - 确认 Ollama 模型是否正确加载(`ollama ps`
### 全量索引 ### 全量索引
Memos 是一个计算密集型的应用Memos 的索引过程会需要 OCR、VLM 以及 embedding 模型协同工作。为了尽量减少对用户电脑的影响,Memos 会计算每个截图的平均处理时间,并依据这个时间来调整索引的频率。因此,默认情况下并不是所有的截图都会被立即索引。 Pensieve 是一个计算密集型的应用Pensieve 的索引过程会需要 OCR、VLM 以及 embedding 模型协同工作。为了尽量减少对用户电脑的影响,Pensieve 会计算每个截图的平均处理时间,并依据这个时间来调整索引的频率。因此,默认情况下并不是所有的截图都会被立即索引。
如果希望对所有截图进行索引,可以使用以下命令进行全量索引: 如果希望对所有截图进行索引,可以使用以下命令进行全量索引:
@ -204,22 +206,22 @@ memos scan
## 隐私安全 ## 隐私安全
在开发 Memos 的过程中,我一直密切关注类似产品的进展,特别是 [Rewind](https://www.rewind.ai/) 和 [Windows Recall](https://support.microsoft.com/en-us/windows/retrace-your-steps-with-recall-aa03f8a0-a78b-4b3e-b0a1-2eb8ac48701c)。我非常欣赏它们的产品理念,但它们在隐私保护方面做得不够,这也是许多用户(或潜在用户)所担心的问题。记录个人电脑的屏幕可能会暴露极为敏感的隐私数据,如银行账户、密码、聊天记录等。因此,确保数据的存储和处理完全由用户掌控,防止数据泄露,变得尤为重要。 在开发 Pensieve 的过程中,我一直密切关注类似产品的进展,特别是 [Rewind](https://www.rewind.ai/) 和 [Windows Recall](https://support.microsoft.com/en-us/windows/retrace-your-steps-with-recall-aa03f8a0-a78b-4b3e-b0a1-2eb8ac48701c)。我非常欣赏它们的产品理念,但它们在隐私保护方面做得不够,这也是许多用户(或潜在用户)所担心的问题。记录个人电脑的屏幕可能会暴露极为敏感的隐私数据,如银行账户、密码、聊天记录等。因此,确保数据的存储和处理完全由用户掌控,防止数据泄露,变得尤为重要。
Memos 的优势在于: Pensieve 的优势在于:
1. 代码完全开源,并且是易于理解的 Python 代码,任何人都可以审查代码,确保没有后门。 1. 代码完全开源,并且是易于理解的 Python 代码,任何人都可以审查代码,确保没有后门。
2. 数据完全本地化,所有数据都存储在本地,数据处理完全由用户控制,数据将被存储在用户的 `~/.memos` 目录中。 2. 数据完全本地化,所有数据都存储在本地,数据处理完全由用户控制,数据将被存储在用户的 `~/.memos` 目录中。
3. 易于卸载,如果不再使用 Memos,通过 `memos stop && memos disable` 即可关闭程序,然后通过 `pip uninstall memos` 即可卸载,最后删除 `~/.memos` 目录即可清理所有的数据库和截图数据。 3. 易于卸载,如果不再使用 Pensieve,通过 `memos stop && memos disable` 即可关闭程序,然后通过 `pip uninstall memos` 即可卸载,最后删除 `~/.memos` 目录即可清理所有的数据库和截图数据。
4. 数据处理完全由用户控制,Memos 是一个独立项目,所使用的机器学习模型(包括 VLM 以及 embedding 模型)都由用户自己选择,并且由于 Memos 的运作模式,使用较小的模型也可以达到不错的效果。 4. 数据处理完全由用户控制,Pensieve 是一个独立项目,所使用的机器学习模型(包括 VLM 以及 embedding 模型)都由用户自己选择,并且由于 Pensieve 的运作模式,使用较小的模型也可以达到不错的效果。
当然 Memos 肯定在隐私方面依然有可以改进的地方,欢迎大家贡献代码,一起让 Memos 变得更好。 当然 Pensieve 肯定在隐私方面依然有可以改进的地方,欢迎大家贡献代码,一起让 Pensieve 变得更好。
## 其他值得注意的内容 ## 其他值得注意的内容
### 有关存储空间 ### 有关存储空间
Memos 每 5 秒会记录一次屏幕,并将原始截图保存到 `~/.memos/screenshots` 目录中。存储空间占用主要取决于以下因素: Pensieve 每 5 秒会记录一次屏幕,并将原始截图保存到 `~/.memos/screenshots` 目录中。存储空间占用主要取决于以下因素:
1. **截图数据** 1. **截图数据**
@ -237,7 +239,7 @@ Memos 每 5 秒会记录一次屏幕,并将原始截图保存到 `~/.memos/scr
### 有关功耗 ### 有关功耗
Memos 默认需要两个计算密集型的任务: Pensieve 默认需要两个计算密集型的任务:
- 一个是 OCR 任务,用于提取截图中的文字 - 一个是 OCR 任务,用于提取截图中的文字
- 一个是 embedding 任务,用于提取语义信息构建向量索引 - 一个是 embedding 任务,用于提取语义信息构建向量索引
@ -253,7 +255,7 @@ Memos 默认需要两个计算密集型的任务:
#### 性能优化策略 #### 性能优化策略
为了避免影响用户日常使用,Memos 采取了以下优化措施: 为了避免影响用户日常使用,Pensieve 采取了以下优化措施:
- 动态调整索引频率,根据系统处理速度自适应 - 动态调整索引频率,根据系统处理速度自适应
- 电池供电时自动降低处理频率,最大程度节省电量 - 电池供电时自动降低处理频率,最大程度节省电量