mirror of
https://github.com/tcsenpai/pensieve.git
synced 2025-06-07 03:35:24 +00:00
210 lines
5.6 KiB
Python
210 lines
5.6 KiB
Python
from PIL import Image
|
|
import numpy as np
|
|
import logging
|
|
from fastapi import FastAPI, Body, HTTPException
|
|
import base64
|
|
import io
|
|
import asyncio
|
|
from pydantic import BaseModel, Field
|
|
from typing import List
|
|
from multiprocessing import Pool
|
|
import threading
|
|
import time
|
|
import uvicorn
|
|
|
|
# Configure logger
|
|
logging.basicConfig(level=logging.INFO)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
app = FastAPI()
|
|
|
|
# 创建进程池
|
|
process_pool = None
|
|
|
|
|
|
def init_worker(use_gpu):
|
|
global ocr
|
|
ocr = init_ocr(use_gpu)
|
|
|
|
|
|
def init_process_pool(max_workers, use_gpu):
|
|
global process_pool
|
|
process_pool = Pool(
|
|
processes=max_workers, initializer=init_worker, initargs=(use_gpu,)
|
|
)
|
|
|
|
|
|
def init_ocr(use_gpu):
|
|
if use_gpu:
|
|
try:
|
|
from rapidocr_paddle import RapidOCR as RapidOCRPaddle
|
|
|
|
ocr = RapidOCRPaddle(
|
|
det_use_cuda=True, cls_use_cuda=True, rec_use_cuda=True
|
|
)
|
|
logger.info("Initialized OCR with RapidOCR Paddle (GPU)")
|
|
except ImportError:
|
|
logger.error(
|
|
"Failed to import rapidocr_paddle. Make sure it's installed for GPU usage."
|
|
)
|
|
raise
|
|
else:
|
|
try:
|
|
from rapidocr_onnxruntime import RapidOCR
|
|
|
|
ocr = RapidOCR(config_path="ppocr.yaml")
|
|
logger.info("Initialized OCR with RapidOCR ONNX Runtime (CPU)")
|
|
except ImportError:
|
|
logger.error(
|
|
"Failed to import rapidocr_onnxruntime. Make sure it's installed for CPU usage."
|
|
)
|
|
raise
|
|
return ocr
|
|
|
|
|
|
def convert_ocr_results(results):
|
|
if results is None:
|
|
return []
|
|
|
|
converted = []
|
|
for result in results:
|
|
item = {"dt_boxes": result[0], "rec_txt": result[1], "score": result[2]}
|
|
converted.append(item)
|
|
return converted
|
|
|
|
|
|
def predict(image_data):
|
|
global ocr
|
|
if ocr is None:
|
|
raise ValueError("OCR engine not initialized")
|
|
|
|
image = Image.open(io.BytesIO(image_data))
|
|
img_array = np.array(image)
|
|
results, _ = ocr(img_array)
|
|
converted_results = convert_ocr_results(results)
|
|
return converted_results
|
|
|
|
|
|
def convert_to_python_type(item):
|
|
if isinstance(item, np.ndarray):
|
|
return item.tolist()
|
|
elif isinstance(item, np.generic): # This includes numpy scalars like numpy.float32
|
|
return item.item()
|
|
elif isinstance(item, list):
|
|
return [convert_to_python_type(sub_item) for sub_item in item]
|
|
elif isinstance(item, dict):
|
|
return {key: convert_to_python_type(value) for key, value in item.items()}
|
|
else:
|
|
return item
|
|
|
|
|
|
async def async_predict(image_data):
|
|
loop = asyncio.get_running_loop()
|
|
results = await loop.run_in_executor(
|
|
None, process_pool.apply, predict, (image_data,)
|
|
)
|
|
return results
|
|
|
|
|
|
class OCRResult(BaseModel):
|
|
dt_boxes: List[List[float]] = Field(..., description="Bounding box coordinates")
|
|
rec_txt: str = Field(..., description="Recognized text")
|
|
score: float = Field(..., description="Confidence score")
|
|
|
|
|
|
@app.post("/predict", response_model=List[OCRResult])
|
|
async def predict_base64(image_base64: str = Body(..., embed=True)):
|
|
try:
|
|
if not image_base64:
|
|
raise HTTPException(status_code=400, detail="Missing image_base64 field")
|
|
|
|
# Remove header part if present
|
|
if image_base64.startswith("data:image"):
|
|
image_base64 = image_base64.split(",")[1]
|
|
|
|
# Decode the base64 image
|
|
image_data = base64.b64decode(image_base64)
|
|
|
|
# 直接传递图像数据给async_predict
|
|
ocr_result = await async_predict(image_data)
|
|
|
|
return convert_to_python_type(ocr_result)
|
|
|
|
except Exception as e:
|
|
logging.error(f"Error during OCR processing: {str(e)}")
|
|
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
|
|
shutdown_event = threading.Event()
|
|
|
|
|
|
def signal_handler(signum, frame):
|
|
logger.info("Received interrupt signal. Initiating shutdown...")
|
|
shutdown_event.set()
|
|
|
|
|
|
def run_server(app, host, port):
|
|
config = uvicorn.Config(app, host=host, port=port, loop="asyncio")
|
|
server = uvicorn.Server(config)
|
|
server.install_signal_handlers = (
|
|
lambda: None
|
|
) # Disable Uvicorn's own signal handlers
|
|
|
|
async def serve():
|
|
await server.serve()
|
|
|
|
thread = threading.Thread(target=asyncio.run, args=(serve(),))
|
|
thread.start()
|
|
|
|
try:
|
|
while not shutdown_event.is_set():
|
|
time.sleep(1)
|
|
except KeyboardInterrupt:
|
|
logger.info("Keyboard interrupt received. Initiating shutdown...")
|
|
finally:
|
|
shutdown_event.set()
|
|
logger.info("Stopping the server...")
|
|
asyncio.run(server.shutdown())
|
|
thread.join()
|
|
logger.info("Server stopped.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import uvicorn
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser(description="OCR Service")
|
|
parser.add_argument(
|
|
"--port",
|
|
type=int,
|
|
default=8000,
|
|
help="Port to run the OCR service on",
|
|
)
|
|
parser.add_argument(
|
|
"--max-workers",
|
|
type=int,
|
|
default=1,
|
|
help="Maximum number of worker threads for OCR processing",
|
|
)
|
|
parser.add_argument(
|
|
"--gpu",
|
|
action="store_true",
|
|
help="Use GPU for OCR processing",
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
port = args.port
|
|
max_workers = args.max_workers
|
|
use_gpu = args.gpu
|
|
|
|
try:
|
|
init_process_pool(max_workers, use_gpu)
|
|
run_server(app, "0.0.0.0", port)
|
|
finally:
|
|
logger.info("Shutting down process pool...")
|
|
if process_pool:
|
|
process_pool.close()
|
|
process_pool.join()
|
|
logger.info("Process pool shut down.")
|