pensieve/memos/embedding.py
2024-11-07 18:23:15 +08:00

86 lines
2.4 KiB
Python

from typing import List
import numpy as np
from .config import settings
import logging
import httpx
# Configure logger
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global variables
model = None
device = None
def init_embedding_model():
import torch
from sentence_transformers import SentenceTransformer
global model, device
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
if settings.embedding.use_modelscope:
from modelscope import snapshot_download
model_dir = snapshot_download(settings.embedding.model)
logger.info(f"Model downloaded from ModelScope to: {model_dir}")
else:
model_dir = settings.embedding.model
logger.info(f"Using model: {model_dir}")
model = SentenceTransformer(model_dir, trust_remote_code=True)
model.to(device)
logger.info(f"Embedding model initialized on device: {device}")
def generate_embeddings(texts: List[str]) -> List[List[float]]:
global model
if model is None:
init_embedding_model()
if not texts:
return []
embeddings = model.encode(texts, convert_to_tensor=True, show_progress_bar=False)
embeddings = embeddings.cpu().numpy()
# Normalize embeddings
norms = np.linalg.norm(embeddings, ord=2, axis=1, keepdims=True)
norms[norms == 0] = 1
embeddings = embeddings / norms
return embeddings.tolist()
def get_embeddings(texts: List[str]) -> List[List[float]]:
if settings.embedding.use_local:
embeddings = generate_embeddings(texts)
else:
embeddings = get_remote_embeddings(texts)
# Round the embedding values to 5 decimal places
return [
[round(float(x), 5) for x in embedding]
for embedding in embeddings
]
def get_remote_embeddings(texts: List[str]) -> List[List[float]]:
payload = {"model": settings.embedding.model, "input": texts}
with httpx.Client() as client:
try:
response = client.post(settings.embedding.endpoint, json=payload)
response.raise_for_status()
result = response.json()
return result["embeddings"]
except httpx.RequestError as e:
logger.error(f"Error fetching embeddings from remote endpoint: {e}")
return [] # Return an empty list instead of raising an exception