pensieve/memos/indexing.py
2024-09-20 00:28:27 +08:00

421 lines
15 KiB
Python

import json
import httpx
from typing import List
from datetime import datetime
from .schemas import (
MetadataType,
EntityMetadata,
EntityIndexItem,
MetadataIndexItem,
EntitySearchResult,
SearchResult,
Facet,
SearchHit,
TextMatchInfo,
HybridSearchInfo,
RequestParams,
)
from .config import settings, TYPESENSE_COLLECTION_NAME
def convert_metadata_value(metadata: EntityMetadata):
if metadata.data_type == MetadataType.JSON_DATA:
return json.loads(metadata.value)
else:
return metadata.value
def parse_date_fields(entity):
timestamp_metadata = next(
(m for m in entity.metadata_entries if m.key == "timestamp"), None
)
if timestamp_metadata and len(timestamp_metadata.value) == 15:
try:
dt = datetime.strptime(timestamp_metadata.value, "%Y%m%d-%H%M%S")
except ValueError:
dt = entity.file_created_at
else:
dt = entity.file_created_at
return {
"created_date": dt.strftime("%Y-%m-%d"),
"created_month": dt.strftime("%Y-%m"),
"created_year": dt.strftime("%Y"),
}
async def get_embeddings(texts: List[str]) -> List[List[float]]:
print(f"Getting embeddings for {len(texts)} texts")
if settings.embedding.enabled:
endpoint = f"http://{settings.server_host}:{settings.server_port}/plugins/embed"
else:
endpoint = settings.embedding.endpoint
model = settings.embedding.model
async with httpx.AsyncClient() as client:
response = await client.post(
endpoint,
json={"model": model, "input": texts},
timeout=30
)
if response.status_code == 200:
print("Successfully retrieved embeddings from the embedding service.")
return [
[round(float(x), 5) for x in embedding]
for embedding in response.json()["embeddings"]
]
else:
raise Exception(
f"Failed to get embeddings: {response.text} {response.status_code}"
)
def generate_metadata_text(metadata_entries):
# 暂时不使用ocr结果
def process_ocr_result(metadata):
try:
ocr_data = json.loads(metadata.value)
if isinstance(ocr_data, list) and all(
isinstance(item, dict)
and "dt_boxes" in item
and "rec_txt" in item
and "score" in item
for item in ocr_data
):
return " ".join(item["rec_txt"] for item in ocr_data)
else:
return json.dumps(ocr_data, indent=2)
except json.JSONDecodeError:
return metadata.value
non_ocr_metadata = [
(
f"key: {metadata.key}\nvalue:\n{json.dumps(json.loads(metadata.value), indent=2)}"
if metadata.data_type == MetadataType.JSON_DATA
else f"key: {metadata.key}\nvalue:\n{metadata.value}"
)
for metadata in metadata_entries
if metadata.key != "ocr_result"
]
metadata_text = "\n\n".join(non_ocr_metadata)
return metadata_text
async def bulk_upsert(client, entities):
documents = []
metadata_texts = []
entities_with_metadata = []
for entity in entities:
metadata_text = generate_metadata_text(entity.metadata_entries)
print(f"metadata_text: {len(metadata_text)}")
if metadata_text:
metadata_texts.append(metadata_text)
entities_with_metadata.append(entity)
documents.append(
EntityIndexItem(
id=str(entity.id),
filepath=entity.filepath,
filename=entity.filename,
size=entity.size,
file_created_at=int(entity.file_created_at.timestamp()),
file_last_modified_at=int(entity.file_last_modified_at.timestamp()),
file_type=entity.file_type,
file_type_group=entity.file_type_group,
last_scan_at=(
int(entity.last_scan_at.timestamp())
if entity.last_scan_at
else None
),
library_id=entity.library_id,
folder_id=entity.folder_id,
tags=[tag.name for tag in entity.tags],
metadata_entries=[
MetadataIndexItem(
key=metadata.key,
value=convert_metadata_value(metadata),
source=metadata.source,
)
for metadata in entity.metadata_entries
],
metadata_text=metadata_text,
**parse_date_fields(entity),
).model_dump(mode="json")
)
embeddings = await get_embeddings(metadata_texts)
for doc, embedding, entity in zip(documents, embeddings, entities):
if entity in entities_with_metadata:
doc["embedding"] = embedding
# Sync the entity data to Typesense
try:
response = client.collections[TYPESENSE_COLLECTION_NAME].documents.import_(
documents, {"action": "upsert"}
)
return response
except Exception as e:
raise Exception(
f"Failed to sync entities to Typesense: {str(e)}",
)
def upsert(client, entity):
date_fields = parse_date_fields(entity)
metadata_text = generate_metadata_text(entity.metadata_entries)
embedding = get_embeddings([metadata_text])[0]
entity_data = EntityIndexItem(
id=str(entity.id),
filepath=entity.filepath,
filename=entity.filename,
size=entity.size,
file_created_at=int(entity.file_created_at.timestamp()),
file_last_modified_at=int(entity.file_last_modified_at.timestamp()),
file_type=entity.file_type,
file_type_group=entity.file_type_group,
last_scan_at=(
int(entity.last_scan_at.timestamp()) if entity.last_scan_at else None
),
library_id=entity.library_id,
folder_id=entity.folder_id,
tags=[tag.name for tag in entity.tags],
metadata_entries=[
MetadataIndexItem(
key=metadata.key,
value=convert_metadata_value(metadata),
source=metadata.source,
)
for metadata in entity.metadata_entries
],
metadata_text=metadata_text,
embedding=embedding,
created_date=date_fields.get("created_date"),
created_month=date_fields.get("created_month"),
created_year=date_fields.get("created_year"),
)
# Sync the entity data to Typesense
try:
client.collections[TYPESENSE_COLLECTION_NAME].documents.upsert(
entity_data.model_dump_json()
)
except Exception as e:
raise Exception(
f"Failed to sync entity to Typesense: {str(e)}",
)
def remove_entity_by_id(client, entity_id):
try:
client.collections[TYPESENSE_COLLECTION_NAME].documents[entity_id].delete()
except Exception as e:
raise Exception(
f"Failed to remove entity from Typesense: {str(e)}",
)
def list_all_entities(
client, library_id: int, folder_id: int, limit=100, offset=0
) -> List[EntityIndexItem]:
try:
response = client.collections[TYPESENSE_COLLECTION_NAME].documents.search(
{
"q": "*",
"filter_by": f"library_id:={library_id} && folder_id:={folder_id}",
"per_page": limit,
"page": offset // limit + 1,
}
)
return [
EntityIndexItem(
id=hit["document"]["id"],
filepath=hit["document"]["filepath"],
filename=hit["document"]["filename"],
size=hit["document"]["size"],
file_created_at=hit["document"]["file_created_at"],
file_last_modified_at=hit["document"]["file_last_modified_at"],
file_type=hit["document"]["file_type"],
file_type_group=hit["document"]["file_type_group"],
last_scan_at=hit["document"].get("last_scan_at"),
library_id=hit["document"]["library_id"],
folder_id=hit["document"]["folder_id"],
tags=hit["document"]["tags"],
metadata_entries=[
MetadataIndexItem(
key=entry["key"], value=entry["value"], source=entry["source"]
)
for entry in hit["document"]["metadata_entries"]
],
metadata_text=hit["document"]["metadata_text"],
created_date=hit["document"].get("created_date"),
created_month=hit["document"].get("created_month"),
created_year=hit["document"].get("created_year"),
)
for hit in response["hits"]
]
except Exception as e:
raise Exception(
f"Failed to list entities for library {library_id} and folder {folder_id}: {str(e)}",
)
async def search_entities(
client,
q: str,
library_ids: List[int] = None,
folder_ids: List[int] = None,
tags: List[str] = None,
created_dates: List[str] = None,
limit: int = 48,
offset: int = 0,
start: int = None,
end: int = None,
) -> SearchResult:
try:
filter_by = []
if library_ids:
filter_by.append(f"library_id:[{','.join(map(str, library_ids))}]")
if folder_ids:
filter_by.append(f"folder_id:[{','.join(map(str, folder_ids))}]")
if start is not None and end is not None:
filter_by.append(f"file_created_at:={start}..{end}")
if tags:
filter_by.append(f"tags:=[{','.join(tags)}]")
if created_dates:
filter_by.append(f"created_date:[{','.join(created_dates)}]")
filter_by_str = " && ".join(filter_by) if filter_by else ""
# Convert q to embedding using get_embeddings and take the first embedding
embedding = (await get_embeddings([q]))[0]
common_search_params = {
"collection": TYPESENSE_COLLECTION_NAME,
}
search_parameters = {
"q": q,
"query_by": "tags,filename,filepath,metadata_text",
"infix": "off,always,always,off",
"prefix": "true,true,true,false",
"filter_by": (
f"{filter_by_str} && file_type_group:=image"
if filter_by_str
else "file_type_group:=image"
),
"limit": limit,
"offset": offset,
"exclude_fields": "metadata_text,embedding",
"sort_by": "_text_match:desc,file_created_at:desc",
"facet_by": "created_date,created_month,created_year,tags",
"vector_query": f"embedding:({embedding}, k:{limit})",
}
search_parameters_to_print = search_parameters.copy()
search_parameters_to_print["vector_query"] = f"embedding:([...], k:{limit})"
print(json.dumps(search_parameters_to_print, indent=2))
search_response = client.multi_search.perform(
{"searches": [search_parameters]}, common_search_params
)
search_results = search_response["results"][0]
hits = [
SearchHit(
document=EntitySearchResult(
id=hit["document"]["id"],
filepath=hit["document"]["filepath"],
filename=hit["document"]["filename"],
size=hit["document"]["size"],
file_created_at=hit["document"]["file_created_at"],
file_last_modified_at=hit["document"]["file_last_modified_at"],
file_type=hit["document"]["file_type"],
file_type_group=hit["document"]["file_type_group"],
last_scan_at=hit["document"].get("last_scan_at"),
library_id=hit["document"]["library_id"],
folder_id=hit["document"]["folder_id"],
tags=hit["document"]["tags"],
metadata_entries=[
MetadataIndexItem(
key=entry["key"],
value=entry["value"],
source=entry["source"],
)
for entry in hit["document"]["metadata_entries"]
],
created_date=hit["document"].get("created_date"),
created_month=hit["document"].get("created_month"),
created_year=hit["document"].get("created_year"),
),
highlight=hit.get("highlight", {}),
highlights=hit.get("highlights", []),
hybrid_search_info=(
HybridSearchInfo(**hit["hybrid_search_info"])
if hit.get("hybrid_search_info")
else None
),
text_match=hit.get("text_match"),
text_match_info=(
TextMatchInfo(**hit["text_match_info"])
if hit.get("text_match_info")
else None
),
)
for hit in search_results["hits"]
]
return SearchResult(
facet_counts=[Facet(**facet) for facet in search_results["facet_counts"]],
found=search_results["found"],
hits=hits,
out_of=search_results["out_of"],
page=search_results["page"],
request_params=RequestParams(**search_results["request_params"]),
search_cutoff=search_results["search_cutoff"],
search_time_ms=search_results["search_time_ms"],
)
except Exception as e:
raise Exception(
f"Failed to search entities: {str(e)}",
)
def fetch_entity_by_id(client, id: str) -> EntityIndexItem:
try:
document = (
client.collections[TYPESENSE_COLLECTION_NAME].documents[id].retrieve()
)
return EntitySearchResult(
id=document["id"],
filepath=document["filepath"],
filename=document["filename"],
size=document["size"],
file_created_at=document["file_created_at"],
file_last_modified_at=document["file_last_modified_at"],
file_type=document["file_type"],
file_type_group=document["file_type_group"],
last_scan_at=document.get("last_scan_at"),
library_id=document["library_id"],
folder_id=document["folder_id"],
tags=document["tags"],
metadata_entries=[
MetadataIndexItem(
key=entry["key"], value=entry["value"], source=entry["source"]
)
for entry in document["metadata_entries"]
],
created_date=document.get("created_date"),
created_month=document.get("created_month"),
created_year=document.get("created_year"),
)
except Exception as e:
raise Exception(
f"Failed to fetch document by id: {str(e)}",
)